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Abstract

Imitation is an example of social learning in which an individual observes and copies another’s actions. This paper presents

a new method for using imitation as a way of enhancing the learning speed of individual agents that employ a well-known

reinforcement learning algorithm, namely Q-learning. Compared to other research that uses imitation with reinforcement

learning, our method uses imitation of purely observed behaviours to enhance learning, with no internal state access or

sharing of experiences between agents. The paper evaluates our imitation-enhanced reinforcement learning approach in both

simulation and with real robots in continuous space. Both simulation and real robot experimental results show that the learning

speed of the group is improved.
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1 Introduction

Social learning, which enables individuals to learn from

others in a community, is an important mechanism for social

animals. One of the most important types of social learning

is imitation as it allows certain skills and behaviours to be

transferred between individuals without language or other

complex symbolic communication (Nehaniv and Dautenhahn,

2007). Imitation learning differs from other adaptive learning

algorithms that have been used in robotic research, including

reinforcement learning (Barto et al., 2004), evolutionary

algorithms (Nolfi and Floreano, 2000) and supervised

learning (Rumelhart et al., 1986), as learning by imitation

is based upon social interactions. Another important aspect

of imitation is that the only information transferred between

agents is the set of observed actions. An agent imitating

another may not know anything about the internal state and

structure of the other agent. Therefore imitation is different

from other types of learning in that supervision can not

be used to directly influence internal processes. This paper

presents a simple method for linking reinforcement learning

with imitation.

The problem of matching the actuators of the observed robot

to the robot’s own actuators is presented as the correspondence

problem (Nehaniv and Dautenhahn, 2002). A solution to

the correspondence problem for robot to robot imitation, for

our experimental context, is presented in this paper in the

following way: The problem can be divided into two separate

issues, (1) how to replicate the observed actions and (2) how to

find an appropriate context (or states) for which those actions

are meaningful. The first problem is solved by programming

intrinsically, that is to say if an agent observes that the other

agent turns to its left then goes forward for some time, by using

the embodied imitation algorithm developed in this paper,

it algorithmically determines that in order to replicate those

actions, it has to turn to its left and go forward. The second

issue of finding the appropriate state (or context) for which

the observed actions are meaningful is solved by the learning

process of the imitating agent so that it will infer in what

state the observed actions are useful through, for instance, a

trial and error mechanism. Thus imitated actions that cause

an increase in the performance in a state will be more likely

to be learned. Similarly, any negative outcome will make the

observed actions unlikely to be associated with that state.

Programming by Demonstration (PbD) (Billard et al.,

2008), in which a robot is taught new behaviours by humans

or other robots, has been widely studied in Robotics research.

With the development of humanoid robots, recent PbD

research has an increasingly interdisciplinary approach.

For example, it has benefited from examining the neural

mechanism for imitation in primates (Billard et al., 2008).

As humanoid robots are expected to adapt to changing

environments, the flexibility of their control system becomes

crucial. As a result, the notion of PbD has been progressively
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replaced by a more biologically inspired label: imitation

learning. Some example research that used imitation learning

in order to train robots are (Gaussier et al., 1998), (Dillmann,

2004), (Breazeal et al., 2005), (Nicolescu and Mataric, 2007),

(Calinon and Billard, 2007) and (Guenter & Billard, 2007).

There is some research that attempts to use imitation in

conjunction with individual learning. Abbel and Ng (Abbeel

and Ng, 2004) used an expert in order to learn to perform a

task in which the reward function is not known. They tried

to obtain the unknown reward function which is supposed to

be implicitly followed in the expert’s behaviour. A policy is

defined as a mapping from states to probability distributions

for actions that are possible in a state so that an agent acts

according to its policy. The value of a policy is defined

as a linear function of the features of the environment and

the learning agent has an estimate of the expert’s feature

expectations. Their algorithm is proven to attain performance

close to that of the expert agent. Latzke et al. (Latzke et al.,

2006) utilized Q-learning which uses the experience of an

expert agent as training data. The imitating agent has full

access to the experience of the expert and these experiences

are provided as sequences of states and actions along with

their rewards. Price and Boutilier (Price and Boutilier, 2003)

devised implicit imitation to accelerate reinforcement learning.

In their method, the observer agent obtains an experience

tuple from a mentor agent with each mentor transition.

The experience tuple is used to train the observer robot.

Bentivegna et al. (Bentivegna et al., 2004) used a modified

version of Q-learning in order to improve the performance of

an agent through practice. Their algorithm stores the actions

of a teacher agent in a number of states. During the practice

period, the learner agent selects one of the data entries based

on the distance between the state recorded in that entry and

the current state. The value of selecting that entry in the

current state is then updated, based on the reward observed

after the action stored in the selected data entry is performed.

The approach presented in this paper is different from those

outlined above for two reasons. Firstly, there is no assumption

about the learner agent having access to the internal state,

experience or expectations of the imitated agent. The only

information transferred to the learner agent are the imitated

agent’s executed actions. The learner agent does not know

anything about in what state these actions were executed or

what were the outcomes of these actions. Secondly, the case

in which the observed actions are not useful at all is also

considered; in this case the learner agent must discriminate

between useful and useless actions.

This paper presents and adaptive learning algorithm

in which imitation is used as a method for enhancing

learning of agents that employ a well-known reinforcement

learning algorithm, namely Q-learning. Compared to other

research that uses imitation with reinforcement learning,

our method uses imitation of purely observed behaviours to

enhance learning, with no internal state access or sharing

of experiences between agents. As in nature, imitation

provides agents with model behaviours that can influence

their individual learning. Finding in what state (or context)

these model behaviours are useful is determined by the

learning process of the imitating agent. As developing the

algorithm purely on real robots would take a long time, it

is firstly tested in simulation, with simulated agents. Once

the algorithm is shown to be effective, it is then tested

on real robots. Both simulation and real robot experiment

results show that the learning speed of the agents is improved.

2 Imitation-Enhanced Reinforcement Learning

2.1 Simulation Setup

To examine the effects of imitation on learning strategy, an

agent that employs Q-learning in order to reach a target

location is simulated. For the first set of experiments, the arena

in which the agent operates is a 10 by 10 grid world (figure 1).

The agent starts from the top-left corner of the arena and, in

each time unit, it moves to one of the eight neighbouring cells.

One simulation run ends when the agent reaches the goal item,

which is placed in the bottom-right corner of the arena.

Figure 1. Simulated arena. The arena is a 10 by 10 grid world. The agent
is placed in the top-left corner and the goal item is placed in the bottom right
corner.

The learning agent uses an ǫ− greedy algorithm in which

at each time step it finds the action that has the highest Q
value estimate for its current position. With probability 1− ǫ,
it chooses that action and with a probability of ǫ, it chooses

a random action. In this way, it updates the Q value for its

current state and chosen action:

(1)
Q(st, ac) = Q(st, ac) + α[rt+1 + γargmaxaQ(st+1, a)

−Q(st, ac)]

in which ac is the chosen action, α is the learning ratio, γ
is the discount factor and rt+1 is the reward for getting to

state st+1 (α and γ values are set to 0.2 and 0.7 respectively

in the experiments). In one experiment run, the agent gets to

the goal state 100,000 times and so the Q values for each

state-action pair have adequate time to converge to their final



values. Every 10 time units, the shortest path to the goal item

that is learned by the agent is determined by using a greedy

action selection method on the current Q values.

2.2 Imitation-Enhanced Reinforcement Learning Algorithm

Only the executed actions are observable and hence copied

when an agent imitates another. To simulate this process, for

the first experiments a set of actions is given to the learning

agent. At each time step, the agent may start to replicate the

given set of actions with a probability equal to pimitate. When

the agent starts to imitate the path, all actions that constitute

the path are executed one by one by the agent. If these actions

contradict the Q values of the agent, i.e. have a low value, then

the agent stops following the imitated path and acts based on

its original ǫ − greedy algorithm. Thus the controller of the

agent with imitation is updated as shown in Algorithm 1. But

how do we select, pimitate, the starting imitation probability?

The rest of the section compares 3 different approaches for

selecting pimitate.

Approach 1 - Fixed value: With the first approach, pimitate

is set to a fixed value. In the first experiment run, the agent

is given a path that moves it towards the goal item (figure 2)

which is a beneficial path, so that the agent has this path in

memory and is able to enact it according to its controller.

Figure 3 shows the performance of imitation enhanced learning

agent with different pimitate values. As can be expected, there

is a performance increase in the learning speed of the agent

compared to a no-imitation agent. The imitation-enhanced

agent finds the shortest path much earlier than the agent with

Q-learning only. But what would happen if the path given

is not beneficial? To test this scenario, the path in figure 4

is given to the agent in the second experiment run. Figure 5

shows the performance of the agent when this path is given,

which is clearly not a beneficial path. A pair-wise t-test1

reveals that there is a statistically significant performance loss

for all β values when the path given is not directing the

agent towards the goal item. It is clear that there should be

an adaptive pimitate calculation which can determine if an

observed path is beneficial or not.

Approach 2 - Path completion test: The agent can also check

if an imitated path is typically completed. If the imitated path

is being abandoned continuously (because it is rejected by the

Q values or because of the physical boundaries of the arena)

whenever it is started, it may be a sign of a non-beneficial

path. So for the second try, the pimitate value is calculated

by:

ncompleted = number of times the observed path is com-

pleted

nreplicated = number of times the observed path is repli-

cated

1A pair-wise t-test checks the hypothesis that, for two data sets S1 and S2,
the data in S1 − S2 comes from a normal distribution with mean equal to
0 and unknown variance. The same statistical test is applied to experiment
results for comparison.

pimitate = β
ncompleted + 1

nreplicated + 1
(2)

in which β is a constant that regulates initial imitation proba-

bility. Therefore by using this formula, the agent will tend to

imitate paths more if they can be completed. Figure 6 shows

the performance of the imitation-enhanced learning agent for

different β values when the beneficial path in figure 2 is

given. Once again there is a clear performance increase in

the learning speed of the agent when the imitated path is

beneficial. Figure 7 shows the performance of the imitation-

enhanced agent when the path in figure 4 is given. Although

it is slightly better than the case with a fixed pimitate, there is

still a statistically significant performance loss for all β values

when the path given is not beneficial.

Algorithm 1 Pseudocode for the controller of the agent with

one path

Input:

Set Q(s, a)← 0 for all state-action pairs

A set of observed actions: actionList ← {a1, a2, ..., an},
actionIndex← 0
Repeat 100.000 times
Place the agent in the top-left corner

while s 6= GoalState do

if actionIndex 6= 0 then

actionIndex← actionIndex+ 1
a← actionList[actionIndex]
if ListCompleted(actionList) = true then

actionIndex← 0
end if

else

if pimitate > random() then

actionIndex← 1
a← actionList[actionIndex]

else

a← argmaxa′Q(s, a′)
if ǫ > random() then

a← SelectRandomAction()
end if

actionIndex← 0
end if

end if

if actionIndex > 0 then

if ∃ a′ : Q(s, a′) > Q(s, a) then

a← argmaxa′Q(s, a′)
if ǫ > random() then

a← SelectRandomAction()
end if

actionIndex← 0
end if

end if

Q(s, a)← Q(s, a)+α[r+argmaxa′Q(s′, a′)−Q(s, a)]
s← s′

end while



Figure 2. Path given to the agent. It consists of 5 consecutive moves South
East. Since by following this path, the agent gets close to the goal item, this
path is beneficial for the agent. These moves are shown at relative positions.
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Figure 3. Approach 1: Fixed value, performance of the agent when a
beneficial path is given. The results are mean best path length from 100
experiment runs along with 95% confidence intervals (note these are shown
only at 10 point intervals). The best path for each agent is calculated every
10 time units by using a greedy algorithm on the current Q values. Time is
given in time units.

Approach 3 - Average Q value test: Another approach is to

examine the effects of imitation on the Q values of the agent.

For this purpose, we check if the observed actions cause any

change in Q-value of the related state-action pairs. If they

do not, this means that the observed actions are causing the

agent to explore some parts of the state-action space which

have already converged to their final values or the agent is

exploring some parts of the state action-space which do not

contribute to its overall performance. If the observed actions

do cause a change in Q-values then it is possible that imitation

Figure 4. Path given to the agent. It consists of 5 consecutive moves East.
Since by following this path, the agent does not get close to the goal item,
this path is not beneficial for the agent. These moves are shown at relative
positions.
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Figure 5. Approach 1: Fixed value, performance of the agent when a non-
beneficial path is given. The results are mean best path length from 100
experiment runs along with 95% confidence intervals (note these are shown
only at 10 point intervals). The best path for each agent is calculated every
10 time units by using a greedy algorithm on the current Q values. Time is
given in time units.

may be beneficial. This is determined as follows: the average

Q value is recorded at the start of each imitation sequence and

is compared to the average Q value when the imitated path is

completed or abandoned. So pimitate is calculated by:

nQ+ = number of times the average Q value increased when

the observed path is replicated

nreplicated = number of times the observed path is repli-

cated
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Figure 6. Approach 2: Path completion test, performance of the agent when
a beneficial path is given. The results are mean best path length from 100
experiment runs along with 95% confidence intervals (note these are shown
only at 10 point intervals). The best path for each agent is calculated every
10 time units by using a greedy algorithm on the current Q values. Time is
given in time units.
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Figure 7. Approach 2: Path completion test, performance of the agent when
a non-beneficial path is given. The results are mean best path length from 100
experiment runs along with 95% confidence intervals (note these are shown
only at 10 point intervals). The best path for each agent is calculated every
10 time units by using a greedy algorithm on the current Q values. Time is
given in time units.

pimitate = β
nQ+ + 1

nreplicated + 1
(3)

Figure 8 shows the performance of the imitation-enhanced

agent for different β values when the beneficial path in

figure 2 is given. Once again there is a clear performance

increase in the learning speed of the agent when the imitated

path is beneficial. Figure 9 shows the performance of the

imitation-enhanced agent when the path in figure 4 is given.

As can be seen, the performance loss due to imitating a

non-beneficial path is minimal compared to the previous two

tries. A pair-wise t-test reveals that when the β value is set

to 0.1, the difference between an imitation-enhanced agent

and a no-imitation agent is not statistically significant. For

higher β values (0.3 and 0.5) there is a statistically significant

performance loss but the difference is much smaller than the

case with a fixed pimitate and with the path completion test.

Therefore, by checking temporal changes in Q values, it is

possible to determine if imitating an observed path is beneficial

or not.
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Figure 8. Approach 3: Average Q value test, performance of the agent when
a beneficial path is given. The results are mean best path length from 100
experiment runs along with 95% confidence intervals (note these are shown
only at 10 point intervals). The best path for each agent is calculated every
10 time units by using a greedy algorithm on the current Q values. Time is
given in time units.

As the imitation-enhanced agent is able to determine if a

path is beneficial or not by checking temporal changes in Q

values, when it observes multiple paths, it should be able

to select the ones that are useful and avoid others. For this

purpose, the ratio of the times the average Q value increased

is calculated for each path i as:

ni
Q+ = number of times the average Q value changed when

path i is replicated

ni
replicated = number of times path i is replicated

Ri =
ni
Q+ + 1

ni
replicated + 1

(4)

Ri is used for both regulating the imitation probability of

each path observed and choosing which path to imitate. If the

agent has n distinct paths, the probability of choosing path i
is calculated by:

P i
choose =

Ri∑n

k=1 Rk

(5)
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Figure 9. Approach 3: Average Q value test, performance of the agent when
a non-beneficial path is given. The results are mean best path length from 100
experiment runs along with 95% confidence intervals (note these are shown
only at 10 point intervals). The best path for each agent is calculated every
10 time units by using a greedy algorithm on the current Q values. Time is
given in time units.

The probability of imitating path i once it is chosen is:

piimitate = βRi (6)

in which β is a constant that regulates the initial imitation

probability. The controller of the agent with multiple paths

is updated as shown in Algorithm 2. In appendix A, it is

shown that the imitation-enhanced Q-learning algorithm does

not violate the conditions for the convergence of Q-learning

algorithm.

2.3 Experiments

In order to test the generalization of the algorithm and to

make the problem more complex, the next set of experiments

are performed in a 100 by 100 grid with an obstacle in the

middle (figure 10). Once again the learning agents start from

the top-left corner and try to reach the goal item which is

placed in the bottom-right corner.

2.3.1 Imitating Predefined Paths

To check if the algorithm is able to select useful paths and

improve the learning speed by exploiting them, the learning

agent is given 8 paths. These are chosen to each represent

20 consecutive moves in the eight different directions of the

compass, as shown in figure 11. The agent has these paths

in its memory and it is able to enact them according to its

controller. During the experiment, the agent has the following

action sets in its memory:

• Path1: E-E-E-E-E-E....-E (20 moves)

• Path2: SE-SE-SE-SE-SE-SE....-SE

• Path3: S-S-S-S-S-S....-S

• Path4: SW-SW-SW-SW-SW-SW....-SW

• Path5: W-W-W-W-W-W....-W

• Path6: NW-NW-NW-NW-NW-NW....-NW

• Path7: N-N-N-N-N-N....-N

• Path8: NE-NE-NE-NE-NE-NE....-NE

If the corresponding Ri values for each path are R1,

R2,....,R8, the probability of selecting each path would be

equal to Ri/(R1+R2+R3+R4+R5+R6+R7+R8). Assume

the agent is in state st and it selects Path1 and starts it. If

there exists Q(st, a) > Q(st,
′ E′), the path is rejected and the

agent moves according to its ǫ-greedy Q-learning. Otherwise

the agent starts to follow Path1, making the same check at

each step. Whenever a path is rejected or completed, its Ri

value is updated.

Figure 12 shows the performance of the imitating agent

averaged over 100 experimental runs in comparison with a

no-imitation agent. The imitation-enhanced learning agent

was able to choose the beneficial paths and improve its

performance. A pair-wise t-test reveals that the difference

between the two is statistically significant until around time

step 15.5m2. Figure 13 shows an example shortest path in

our arena. Any shortest path consists of a combination of

80 moves south-east, 20 moves east and 20 moves south.

Figure 14 shows the Ri values for each of the 8 paths

averaged over 100 runs. As can be seen, the path to the SE

has the highest Ri value which makes it more likely to be

chosen. The paths E and S have relatively higher Ri values

compared to the other 5 paths. This confirms that the agent

was able to select the 3 paths that are more likely to improve

its performance.

2.3.2 Agents Imitating Each Other

a) Agent Copying an Expert Agent: An important as-

pect of imitation is the possibility of a teacher or expert

whose experience can be transferred, by imitation, to other

individuals. To simulate an expert in the arena, an agent

is programmed to follow the shortest path in Figure 13

indefinitely. Then a second agent is presented in the arena

that starts learning and is able to watch and copy the expert

agent, following the imitation-enhanced Q-learning algorithm

as shown in Algorithm 2. The second agent starts with an

empty memory and once every 100 simulation runs, it copies

a random consecutive portion of the expert’s trajectory. Note

that although this is a part of an ideal (i.e. shortest) path, the

imitating agent does not know anything about in which state

(or location in the arena) these actions are meaningful. The

imitating agent can store up to 10 paths. After its memory is

full, when a new path is copied, of the paths in its memory the

one with the lowest Ri is erased and the new path is saved.

Since each experiment consists of 100,000 simulation runs, the

agent will imitate and test 1000 portions in each experiment

run. Figure 15 shows the performance of the agent imitating

215.5m means 15.500.000 time steps



an expert. As can be seen, the imitation-enhanced learning

agent finds the shortest path much earlier than the agent with

Q-learning only. A pair-wise t-test reveals that the difference

between the two is statistically significant until around time

step 15.5m.

Algorithm 2 Pseudocode for the controller of the agent with

multiple paths

Input:

Set Q(s, a)← 0 for all state-action pairs

A set of observed paths pathList← {Path1, ..., Pathn}
pathChosen← 0, actionIndex← 0
Repeat 100.000 times
Place the agent in the top-left corner

while s 6= GoalState do

if pathChosen 6= 0 then

actionIndex← actionIndex+ 1
a← pathChosen[actionIndex]
if PathCompleted(pathChosen) = true then

update RpathChosen

pathChosen← 0
end if

else

pathChosen← SelectProbabilistically(PathList)
if ppathChosen

imitate > random() then

actionIndex← 1
a← pathChosen[actionIndex]

else

a← argmaxa′Q(s, a′)
if ǫ > random() then

a← SelectRandomAction()
end if

pathChosen← 0
end if

end if

if pathChosen > 0 then

if ∃ a′ : Q(s, a′) > Q(s, a) then

a← argmaxa′Q(s, a′)
if ǫ > random() then

a← SelectRandomAction()
end if

update RpathChosen

pathChosen← 0
end if

end if

Q(s, a)← Q(s, a)+α[r+argmaxa′Q(s′, a′)−Q(s, a)]
s← s′

end while

b) An Agent Copying an Experienced Agent: In this case,

the effect of the existence of a slightly experienced agent

instead of an expert is tested. A single agent is trained in

the arena for some time (90,000 simulation runs), hence with

no-imitation, and a second agent is presented later. The second

agent is able to watch and copy the trained agent, following

Figure 10. Arena with obstacle: The arena is a 100 by 100 grid world. The
agents are placed in the top-left corner and the goal item is placed in the
bottom-right corner. There is an obstacle in the middle of the arena.

the imitation-enhanced Q-learning algorithm. Note that, even if

the experienced agent discovers the best path, it may still make

random moves because of its ǫ−greedy algorithm. Once again

the imitating agent copies a new path every 100 simulation

runs and has a memory of 10 action lists. Figure 16 shows

the results for this experiment. The agent that is watching an

experienced (but not expert) agent has a faster learning rate

compared to a no-imitation agent. A pair-wise t-test reveals

that the difference between the two is statistically significant

until around time step 15.5m.

c) Agents Copying Each Other : But what would happen

if there is no expert agent to share its experience? In order to

simulate this scenario, two agents are present in the arena,

both starting to learn at the same time and able to watch each

other. Once again they store 10 action lists and they copy

(i.e. imitate) a new path from each other every 100 simulation

runs. Figure 17 shows results for this experiment. As can be

seen, the imitating agents have a better performance than a

no-imitation agent initially. But the difference between them

vanishes after 5m time steps. This is due to the fact that

the two imitating agents influence each other throughout the

experiment. At the start, the one that has slightly better per-

formance is able to improve the other but as time passes both

start to converge to the same performance. After some point,

their continuous effect on each other causes less improvement

which explains why they get similar performance to a no-

imitation agent. Pair-wise t-test shows that the imitating agent

has a statistically better performance between the time steps

4m and 9.5m. Note also that some runs of the no-imitation



Figure 11. 8 Paths given to the agent. Each list of actions consist of 20
consecutive moves in one direction: E, SE, S, SW, W, NW, N and NE
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Figure 12. Best path length for imitating (8 paths given) and no-imitation
agents. The results are mean best path length from 100 experiment runs
along with 95% confidence intervals (note these are shown only at 10 point
intervals). The best path for each agent is calculated every 1000 time units by
using a greedy algorithm on the current Q values. The β value that regulates
the initial imitation probability is set to 0.5 for these experiments. Time is
given in 100 time units.

agent converge to a shortest path earlier than the imitating

agent which makes the no-imitation agent statistically better

between the time steps 12.5m and 19.5m, although the differ-

ence between the two is very small.

Figure 18 compares all scenarios: an agent given 8 paths

(figure 12), an agent watching an expert (figure 15), two

Figure 13. An example shortest path to the goal state. Any shortest path
consists of a combination of 80 moves to SE, 20 moves to S and 20 moves
to E directions.
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Figure 14. The Ri values for each path given to the agent.

agents watching each other from the beginning (figure 17)

and an agent watching an experienced agent (figure 16). As

expected the agent copying an expert outperforms all others

although the agent that is given 8 paths achieves the same

performance as around 5m time steps. The agent that is

watching an experienced (but not expert) agent achieves the

same performance with these two after around 8m time steps.

All three have significantly better performance than the worst

case of two agents copying each other.

2.4 Beyond Imitation; Agents Having Access to Each Other’s

Internal State

Based on the related work discussed in section 1, the perfor-
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Figure 15. Best path length for imitating (copying an expert) and no-
imitation agents. The results are mean best path length from 100 experiment
runs along with 95% confidence intervals. The best path for each agent is
calculated every 1000 time units by using a greedy algorithm on the current
Q values. The β value that regulates the initial imitation probability is set to
0.5 for these experiments. Time is given in 100 time units.
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Figure 16. Best path length for imitating (copying an experienced agent)
and no-imitation agents. The results are mean best path length from 100
experiment runs along with 95% confidence intervals. The best path for each
agent is calculated every 1000 time units by using a greedy algorithm on the
current Q values. The β value that regulates the initial imitation probability
is set to 0.5 for these experiments. Time is given in 100 time units.

mance of the agents when they are able to access the internal

state of the other agent is tested. In this case the agents have

complete access to the Q-table of the other agent, i.e. Q values

for all state-action pairs. This essentially means that the agent

being observed makes available its estimate of the best action

for the current state of the observing agent. Therefore the

observing agent, instead of copying actions executed by the

other agent from potentially any state, determines a path by
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Figure 17. Best path length for imitating (two agents copying each other)
and no-imitation agents. The results are mean best path length from 100
experiment runs along with 95% confidence intervals. The best path for each
agent is calculated every 1000 time units by using a greedy algorithm on the
current Q values. The β value that regulates the initial imitation probability
is set to 0.5 for these experiments. Time is given in 100 time units.
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Figure 18. Best path length for 4 scenarios. The results are mean best path
length from 100 experiment runs along with 95% confidence intervals. The
best path for each agent is calculated every 1000 time units by using a greedy
algorithm on the current Q values. Time is given in 100 time units.

repeatedly selecting the action with the highest Q value of

the other agent in the current state. Based on the previous

mechanism, if the suggested action contradicts its own Q

values, i.e. it has a lower value, the observing agent stops

imitating.

Figure 19 shows the results of this scheme when copying

from an expert. As can be seen, the learning agent becomes

optimal after a very short time interval. This is perhaps not

unexpected, since the scenario is similar to telepathy. But what

if there is no expert? Figure 20 shows the results when two

agents, starting to learn at the same time, are able to access



each other’s internal state. It almost has the same performance

as the ǫ − greedy Q-learning algorithm as a pair-wise t-test

reveals that there is no statistical difference between two.

Figure 21 compares two agents copying each other (fig-

ure 17) and two agents copying each other with access

to each other’s internal state (figure 20). As can be seen,

the agent with the imitation-enhanced Q-learning algorithm

learns more quickly and a pair-wise t-test reveals that the

agent utilising imitation is statistically better than the other

scenario between time steps 4m to 9.5m. The reason for the

difference can be explained as follows: The agent with the

state access receives state specific information from the other

agent. For this information to be useful, it is required that

the observed agent has visited that specific state and have

some Q-values assigned to the state-action pairs in that state.

If not, the observed agent essentially suggests a random action

to the imitating agent. But with observed imitation, the only

information that is transferred to the imitating agent is the

set of performed actions. Further, the imitating agent is able

to test the utility of these sets of actions in different states

and determine if they are useful. Thus, it can be deduced that

there is more scope for exploration using the observed action

sequences.
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Figure 19. Best path length for an internal-state-access (accessing an expert
agent’s Q values) agent and no-imitation/no-internal-state-access agents. The
results are mean best path length from 100 experiment runs along with 95%
confidence intervals. The best path for each agent is calculated every 1000
time units by using a greedy algorithm on the current Q values. Time is given
in 100 time units.

3 Imitation-Enhanced Reinforcement Learning in

Continuous Space

The most important simplification in the previous section is

that the algorithm was tested in simulation. The agents do not

possess any physical structure and they interact based on an

abstract model of perfect imitation by copying each other’s

trajectory. In this section, the imitation-enhanced Q-learning

algorithm is tested on real robots. The robots use an extended
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Figure 20. Best path length for an internal-state-access (two agents using
each other’s Q values) agent and no-imitation/no-internal-state-access agents.
The results are mean best path length from 100 experiment runs along with
95% confidence intervals. The best path for each agent is calculated every
1000 time units by using a greedy algorithm on the current Q values. Time
is given in 100 time units.
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Figure 21. Best path length for an agent accessing another agent’s Q values
and imitating (two agents copying each other) agent. The results are mean best
path length from 100 experiment runs along with 95% confidence intervals.
The best path for each agent is calculated every 1000 time units by using a
greedy algorithm on the current Q values. Time is given in 100 time units.

version of Q-learning that is adapted for continuous time. The

effects of embodied imitation on the learning speed of robots

is evaluated in experiments as the robots learn a simple task.

There are a number of mechanisms proposed in order to

use reinforcement learning methods in continuous time and

space (Santamaria et al., 1998), (Smart and Kaelbling, 2000),

(Doya, 2000), (Strosslin and Gerstner, 2006), (Peters and

Schaal, 2006). Although we have a continuous-time problem,

the learning robot has to make choices only infrequently. Such



systems are called semi-Markov Decision Processes (SMDP)

(Sutton and Barto, 1998). They can be treated as a Markov

process by taking the reward on each discrete transition

as an integral of the cumulative reward on the continuous

time interval passed before that transition. Bradtke and Duff

(Bradtke and Duff, 1995) introduced algorithms, based on

reinforcement learning, adopted to the solution of SMDPs.

They applied the SMDP version of Q-learning to the problem

of determining the optimal control for a queuing system. Using

a similar approach, Crites and Barto (Crites and Barto, 1996)

applied the SMDP version of Q-learning, with some additional

constraints that provide prior knowledge to the system, to

an elevator dispatching task. They used a neural network for

function approximation to represent the action-value function.

Since we wanted to apply the imitation-enhanced Q-learning

algorithm developed in previous section to continuous time

and space, and our system has the property of SMDP, we used

the method that is developed by Crites and Barto, by dividing

our arena into 10x10 grids. Assume that the robot is in state

s and it selects action a at time t1. If the next state transition

will happen at time t2 and the next state will be s′, then the

update for the Q value for the semi-Markov decision process

is calculated by (Crites and Barto, 1996):

(7)
Q(s, a) = Q(s, a) + α[

∫ t2

t1

e−β(τ−t1)rτdτ

+ e−β(t2−t1)argmaxa′Q(s′, a′)−Q(s, a)]

in which e−β(t2−t1) acts as a variable discount factor,

similar to the γ parameter in the discrete time formula, and

it depends on the time between state transitions. Each time

the robot makes a decision and moves to its next state, the Q

value of its state-action pair is updated based on this formula.

3.1 Hardware Setup

The robots that are used in the experiments are e-puck

miniature robots (Mondada et al., 2009), 7 cm in diameter

and 5 cm in height. They are equipped with 2 stepper

motors, two wheels of 41 mm diameter, 8 proximity sensors,

a CMOS image sensor, an accelerometer, a microphone, a

speaker and a ring of coloured LEDs. Their on-board battery

provides 3 hours of autonomy. The original e-puck robot lacks

the computational power needed for the image processing

required for imitation. To overcome this limitation, the

robots are enhanced with a Linux extension board (Liu and

Winfield, 2011) based on the 32-bit ARM9 micro-controller

with the Debian/Linux system installed. The board has a

USB extension port, used to connect a wireless network card,

and is equipped with a MicroSD card slot. These additions

to the standard e-puck robot offer some benefits, including

increased processing power and increased memory. The

robots are also fitted with coloured ‘skirts’ to enable them

to see each other using their built-in image sensors. The

experiments are performed in an arena measuring 3 m x 3

m. A vision-tracking system provides high-precision position

tracking and a dedicated swarm server combines the data

from the tracking system and the internal data from robots for

later analysis. Each robot is also fitted with a tracking ‘hat’

which provides a matrix of pins holding unique patterns of

reflective markers that allow the tracking system to uniquely

identify and track each robot (Figure 22).

Figure 22. An e-puck with Linux board fitted in between the e-puck
motherboard (lower) and the e-puck speaker board(upper). Note both the red
skirt, and the yellow hat that provides a matrix of pins for the reflective
spheres which allow the tracking system to identify and track each robot.

3.2 Movement Imitation Algorithm

In this section, an embodied robot-to-robot movement imita-

tion algorithm is implemented on the Linux extended e-puck

robots. Each robot is able to track and copy the other robot’s

movement patterns. The algorithm completely depends on the

visual data coming from the image sensor of the robots; no

other type of communication is allowed between the robots.

There are 3 main stages in the imitation algorithm:

• Frame processing: While observing captured visual

frames, the observing robot tracks the movement of the

demonstrator robot. As stated above, the robots are fitted

with coloured skirts; by determining the size and location

of the skirt on the demonstrator robot, the observing robot

estimates the relative position of the demonstrator and

stores this information in a linked list of positions. In

this way, up to 5 frames per second are processed.

• Data processing: After the demonstrator’s movement

pattern is completed, the observer robot processes the

linked list of positions using a regression line-fitting

method to convert the estimated positions into straight

line segments.

• Pattern replication: The straight line segments and their

intersections are converted into a sequence of motor



commands (moves and turns).

In this way, the observing robot replicates the pattern

demonstrated by the demonstrator robot. Further information

on the embodied imitation algorithm can be found at (Winfield

and Erbas, 2011).

3.3 Experimental Setup

To examine the effects of embodied imitation on learning

speed, robots that employ imitation-enhanced Q-learning to

reach a target location are used. The robot arena is divided into

multiple compartments, of size 120 cm x 120 cm and a robot

resides in each of them (figure 23). Figure 24 shows two robots

in their separate compartments performing individual learning.

Similar to the previous section’s settings, each compartment

is divided into 10x10 grids and a look-up table method is

used to store Q values for each state-action pair. The tracking

system acts as a GPS server and so it broadcasts the location of

each robot over the network. Upon receiving this information,

the robots determine their current state and decide on their

next action. So the robots use the position information to

determine where they themselves are (not to determine the

movement pattern of an observed robot). They start from the

top-left corner of their compartment and they can move to

eight different directions of the compass to get to their next

state. An experiment track ends when the robot reaches its

target location which is placed in the bottom-right corner of

the compartment. One experiment run ends when 15000 moves

are enacted by the robot. Compared to a simulation with the

same settings, the real robot experiments need a much longer

time period as an experimental run requires around 10 hours.

Figure 23. The robot arena is divided into multiple compartments and a
robot resides in each of them. The figure on the left shows two robots, robot A
and robot B, in their own compartments, performing their individual learning.
In the figure on the right, robot B is watching and copying actions performed
by robot A.

The learning robot uses an ǫ-greedy algorithm in which, at

every state transition, it finds the action that has the highest

Q value estimate for its current state. With probability of 1−
ǫ, it chooses the action with the highest Q value and, with

probability of ǫ, it chooses a random action. In this way, it

updates the Q value for its current state and selected action

using the update formula explained in the previous section.

After every 10 moves, the shortest path that is learned by the

robot is determined by using a greedy action selection method

on the current Q values.

Figure 24. Two robots performing individual learning in their separate
compartments.

The robots are able to watch and copy the actions that

are enacted by other robots, using the embodied imitation

algorithm presented in the previous section. In accordance

with the experimental scenario in the previous section, each

time a robot needs to observe another robot, by human

intervention, it is physically moved to the bottom-right corner

of the compartment of the robot that it plans to imitate.

The imitating robot then watches the actions enacted by

the observed robot for approximately 30 seconds. Once its

observation finishes, the observing robot is returned to its

compartment and continues its individual learning.

3.4 Experiments

3.4.1 Learner Robot Copying an Expert Robot

In the first set of experiments, the learning speed of a robot,

that is able to watch and copy the actions that are executed

by an expert robot, using the embodied imitation algorithm

presented in section 3.2, is examined. In order to do that, a

robot (expert) is programmed to follow the shortest path to the

target location indefinitely in its compartment. A second robot

(learner) is then placed in another compartment and starts

learning using the imitation-enhanced Q-learning method. The

pseudo-code of the controller of the learning robot is given in

algorithm 3. At the beginning of the experiment, the learning

robot moves to the bottom-right corner of the compartment

of the expert robot and randomly copies 5 consecutive moves

of the expert. It then moves back to its own compartment and

starts its individual learning. At the end of every 10 experiment

tracks, the learning robot copies a new path of the expert

robot3. The learning robot has a memory of 10 paths and once

filled, no more paths are copied.

Figure 25 shows the performance of robots imitating an

expert, in comparison with robots without imitation. As can

3The number of consecutive moves to be copied and how often a new path
will be copied is chosen to be proportional to the simulation settings in section
2.3.



Algorithm 3 Pseudocode for the controller of the robot

Input:

Set Q(s, a)← 0 for all state-action pairs

pathList ← ∅, pathChosen ← 0, actionIndex ←
0, trackCounter← 0
moveCounter← 0, s← ∅
while moveCounter < 15000 do

if trackCounter%10 = 0 && trackCounter < 100
then

newPath← CopyNewPath();
PathList← AddNewPath(newPath);

end if

trackCounter ← trackCounter + 1
MoveToTopLeftCorner()
s← GetState()
while s 6= GoalState do

if pathChosen 6= 0 then

actionIndex← actionIndex+ 1
a← pathChosen[actionIndex]
if PathCompleted(pathChosen) = true then

update RpathChosen

pathChosen← 0
end if

else

pathChosen← SelectProbabilistically(PathList)
if ppathChosen

imitate > random() then

actionIndex← 1
a← pathChosen[actionIndex]

else

a← argmaxa′Q(s, a′)
if ǫ > random() then

a← SelectRandomAction()
end if

pathChosen← 0
end if

end if

if pathChosen > 0 then

if ∃ a′ : Q(s, a′) > Q(s, a) then

a← argmaxa′Q(s, a′)
if ǫ > random() then

a← SelectRandomAction()
end if

update RpathChosen

pathChosen← 0
end if

end if

Q(s, a) = Q(s, a) + α[
∫ t2

t1
e−β(τ−t1)rτdτ +

e−β(t2−t1)argmaxa′Q(s′, a′)−Q(s, a)]
PerformAction(a)
s← GetState()
moveCounter← moveCounter + 1

end while

end while

be seen, the imitation-enhanced robot finds the shortest path

much earlier than the robot with Q-learning only. During

experiments, copying errors occasionally occur but the

learning robot is able to exploit the information coming from

the expert as the robots are able to discriminate between

useful and useless observed behaviours. The effect of copying

errors is further discussed in section 3.5.
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Figure 25. Best path length for Q-learning with imitation (copying an expert)
and Q-learning with no-imitation robots. The results are mean best path length
from 4 experiment runs along with 95% confidence intervals. The best path
for each robot is calculated every 10 state transitions by using a greedy action
selection algorithm on the current Q values. The β value that regulates the
initial imitation probability is set to 0.5 for these experiments. The distance
between two subsequent data points in the plot corresponds to the time needed
for 10 state transitions of the robots.

3.4.2 Two Robots Copying Each Other

In the second set of experiments, two robots are placed in

separate compartments, both starting to learn at the same time

and able to watch each other. At the beginning of the exper-

iment, robots, in turn, are moved to the bottom-right corner

of the compartment of the other robot and copy 5 consecutive

moves of the other robot. Then, they are moved back to their

own compartment and start their individual learning. Once

again, at the end of every 10 experiment tracks, the robots

copy a new path of the other robot. They have a memory of

size 10 paths and once it is filled, no more paths are copied.

Figure 26 shows results for this experiment. In accordance

with the results from simulation with the same settings (figure

17), the imitating robots have a higher learning speed, on

average, as they are able to achieve better solutions earlier

than the robots with Q-learning only. However, as expected,

the difference between the two cases is smaller compared to

the previous set of experiments. A close examination of the

results reveals that if one of the robots makes a better start in

its individual learning, by chance, then it is able to achieve

better solutions sooner than the other robot. As that robot

improves its performance, the other robot is able to learn from

it by imitation. Therefore, imitation has a positive effect on the

collective success of the robots in this scenario. On the other



hand, if none of the robots make a good start, imitation does

not improve the learning speed of robots as there is nothing

to be gained by copying the other robot. The chance effect

explains the larger variations in the experimental results.
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Figure 26. Best path length for Q-learning with imitation (two robots
imitating each other) and Q-learning with no-imitation robots. The results
are mean best length from 4 experiment runs along with 95% confidence
intervals. The best path for each robot is calculated every 10 state transitions
by using a greedy action selection algorithm in the current Q values. The
β value that regulates the initial imitation probability is set to 0.5 for these
experiments. The distance between two subsequent data points in the plot
corresponds to the time needed for 10 state transitions of the robots.

During these experiments, the robots are able to choose the

paths that are more beneficial to their individual learning, by

using the selection method that checks temporal changes in

the Q values. Figure 27 shows two example paths that are

copied and then enacted the highest number of times during

an experimental run. As imitating these paths improves the

performance of the robot, they are more likely to be selected

and they have the highest Ri values. Figure 28 shows two

example paths that are copied and then enacted the smallest

number of times for the same experimental run. These two

paths have the lowest Ri values which make them less likely

to be selected.

Figure 27. Two paths that are copied and then enacted highest number of
times during an experimental run.

Figure 28. Two paths that are copied and then enacted lowest number of
times during an experimental run.

3.5 On the Effects of Embodied Imitation

As stated above, the robots use embodied imitation in which

they utilise their on-board sensors to watch and copy each

other’s actions. Copying errors that arise from embodiment

provide variation in the imitation which cause copied paths

to differ from their originals. Figure 29 shows two example

paths that were copied and then enacted the largest number

of times during an experimental run, together with the

original paths. As can be seen, they are not perfect copies.

As the most enacted movement patterns were the result of

imperfect imitations (in some experimental runs), it can be

deduced that these errors may have a positive effect on the

learning of robots. Variations that arise from embodiment

may have a functionality somewhat similar to the that of

mutations in a genetic algorithm in that they allow different

movement patterns to emerge. If these variations are by

chance beneficial, they can be selected by the path selection

method of the imitation-enhanced Q-learning algorithm, as

in fact observed in some experimental runs. The effects of

embodied imitation on the emergence of shared behaviours in

a group of robots is further explored in (Erbas and Winfield,

2011).

4 Conclusion and Discussion

This paper has presented a method for using imitation as an

enhancing factor to increase the speed of learning for the

well known reinforcement learning algorithm, Q-learning.

It was shown that information gained by imitation could

be used within the Q-learning algorithm. By checking the

temporal changes in Q values, it is possible to determine

if imitating some observed paths is beneficial or not. The

algorithm was first tested in a simple abstract model in

simulation and it was shown that the imitation-enhanced

Q-learning agent learned faster than the same Q-learner

without imitation. It is important to note that, compared to

other research that uses imitation with reinforcement learning,

our method uses imitation of purely observed behaviours to

enhance learning with no internal state access or sharing of

experiences between agents. The only information transferred

between agents is the imitated agent’s executed actions.



Figure 29. Two example movement patterns that were copied and then
enacted the largest number of times. The shape on the left shows the original
movement pattern of the observed robot and the figure on the right shows its
perceived copy by the imitating robot.

Finding in what state or context these actions are meaningful

is determined by the learning process of the imitating agent.

The algorithm was tested on real robots and it was shown

that information gained by imitation could be used within

the Q-learning algorithm in a continuous time learning task.

Robots were able to exploit imitated actions of an expert

or experienced robot to improve their individual learning

speed. In the case of two robots copying each other, imitation

improved the collective learning speed of the robots given

that, generally, one of the robots made a better start than the

other. The effects of embodied imitation on learning speed

was also examined. It was shown that variations that result

from copying errors may allow novel solutions to emerge.

If these variations lead to a beneficial movement pattern,

it could be selected by the path selection method of the

imitation-enhanced learning algorithm. The variations that

result from embodied imitation can only be examined if real

robots are used instead of simulated agents. Therefore, there

is a clear value in examining embodied imitation in real

robots rather than relying entirely on simulation.

As it was explained in section 3, applying reinforcement

learning methods to tasks in continuous time and space is

an open research area and there are many mechanisms for

different applications. Since the task our robots solved could

be formalised as an SMDP, we used the method that was

developed by Crites and Barto by dividing the compartment

of each robot into 10x10 grids. This simple solution allowed

us to test the imitation-enhanced Q-learning algorithm on

real robots. The algorithm can be further extended so that it

could be used for tasks in continuous time without dividing

the robot arena into grids and so allowing any type of move

and turn in continuous time and space.
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APPENDIX

A. Convergence Proof of Imitation-Enhanced Reinforcement

Learning

Assume that we have a Markov decision process that is

denoted by the tuple (S,A,P,R) in which S is the finite set

of possible states, A is the finite set of possible actions, P

is the transition probabilities, and R is the reward function.

Q-learning converges to optimal Q function ? if

∑
t

αt(s, a) =∞ and
∑
t

α2
t (s, a) <∞ (8)

for all s ∈ S and for all a ∈ A, in which α is the learning

rate. Since 0 ≤ αt(s, a) < 1, all state-action pairs should be

visited infinitely often. We will prove that this prerequisite

is not validated in imitation-enhanced Q-learning algorithm.

Assume that the observed path i constitutes policy πi and

πi(0) = a0i (the first action given by the policy πi). For each

s ∈ S,

if argmaxaQ(s, a) = 0, then

p(a0i : s) = pstarti +
1− pstarti

n(A)
(9)

which gives that if pstarti < 1, all state-action pairs in this

state will be visited.

if argmaxaQ(s, a) > 0,then

if ∃a′ such that Q(s, a′) > Q(s, a0i ), then the a0i is rejected

and the agent acts in its ǫ-greedy algorithm.

if argmaxaQ(s, a) = Q(s, a0i ), then

p(a0i : s) = pstarti +(1−pstarti )∗ (1− ǫ)+(1−pstarti )∗
ǫ

n(A)
(10)

which gives that if pstarti < 1, all state-action pairs will be

visited. Therefore, the actions that are imitated are reinforced

by the algorithm but it does not cause any of the state-

action pairs not to be visited if the initial imitation starting

probability, pimitate, is smaller than 1.
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