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Abstract. Attribute-based signatures allow a signer owning a set of attributes to anonymously sign a message w.r.t.
some signing policy. A recipient of the signature is convinced that a signer with a set of attributes satisfying the
signing policy has indeed produced the signature without learning the identity of the signer or which set of attributes
was used in the signing.
Traceable attribute-based signatures add anonymity revocation mechanisms to attribute-based signatures whereby a
special tracing authority equipped with a secret key is capable of revealing the identity of the signer. Such a feature
is important in settings where accountability and abuse prevention are required.
In this work, we first provide a formal security model for traceable attribute-based signatures. Our focus is on the
more practical case where attribute management is distributed among different authorities rather than relying on a
single central authority. By specializing our model to the single attribute authority setting, we overcome some of
the shortcomings of the existing model for the same setting.
Our second contribution is a generic construction for the primitive which achieves a strong notion of security.
Namely, it achieves CCA anonymity and its security is w.r.t. adaptive adversaries. Moreover, our framework per-
mits expressive signing polices. Finally, we provide some instantiations of the primitive whose security reduces to
falsifiable intractability assumptions and without relying on idealized assumptions.
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1 Introduction

Attribute-based cryptography has emerged as an important research topic in recent years. It offers a ver-
satile solution for designing role-based cryptosystems. In such systems, users are assigned attributes, and
private operations (e.g. decryption/signing) are associated with security policies. Only users possessing at-
tributes satisfying the policy in question can perform such operations. The first proposals of attribute-based
cryptosystems were: an encryption scheme by Goyal et al. [22] (inspired by Sahai and Waters [41]) and a
signature scheme by Maji et al. [35].

In traditional digital signature schemes, the recipient of a signature is convinced that a particular signer
has indeed authenticated the message in question. In Attribute-Based Signatures (ABS) [35, 36], messages
are signed w.r.t. a signing policy expressed as a predicate. Thus, the recipient is convinced that someone with
a set of attributes satisfying the signing predicate has indeed authenticated the message without learning the
identity of the signer or learning how the predicate was satisfied (i.e. which set of attributes was used in the
signing).

There are many applications of attribute-based signatures such as attribute-based messaging, e.g. [8],
trust negotiation, e.g. [15], and leaking secrets. Refer to [36] for more details and comparison with related
notions such as mesh signatures [10] and anonymous credentials [11].

Besides correctness, the security of attribute-based signatures requires signer privacy and unforgeability.
Informally, signer privacy (sometimes is also referred to as anonymity), requires that a signature reveals
neither the identity of the signer nor which set of attributes was used to satisfy the associated predicate. On
the other hand, unforgeability requires that a signer cannot forge a signature w.r.t. a signing predicate that
her individual attributes do not satisfy, even if she colludes with other signers.



Traceable Attribute-Based Signatures (TABS) [13] extend standard attribute-based signatures by adding
an anonymity revocation mechanism which allows a tracing authority to recover the identity of the signer
if needed. This added feature is very important in scenarios where accountability and abuse prevention are
required.

Related Work.Variants of attribute-based signatures exist in the literature each supporting policies that dif-
fer in their expressiveness. Those can be categorized into three main types of policies: non-monotonic poli-
cies, e.g. [38], monotonic policies, e.g. [36], and threshold-based policies, e.g. [33, 42, 32, 26, 18]. Schemes
with more expressive policies are more interesting since they cover a larger scale of potential applications.
Nevertheless, their current state–of–the–art instantiations are less efficient. The size of the signatures in ex-
isting instantiations of those supporting “monotonic” and “non-monotonic” policies, in the best case, are
linearly dependent on the number of attributes in the policy [36, 38]. While the works of [26, 18] yield
constant-size signatures, they only support threshold policies.

Early proposals of attribute-based signatures considered the case of multiple attribute authorities where
each authority is responsible for a sub–universe of attributes [35, 38]. However, the multi–authority case
still had the problem of relying on the existence of a central trusted authority. Moreover, in some cases, the
security (unforgeability) of the whole system is compromised if the central authority is corrupted. Okamoto
and Takashima [39] recently proposed the first decentralized construction.

Traceability in attribute-based signatures was first addressed by Khader [29] who proposed the notion
of attribute-based group signatures. In this notion, only the anonymity of the identity of the signer is pre-
served, whereas the attributes used are not hidden. This is an undesirable property for many applications.
Later, Khader et al. [30] proposed a traceable attribute-based signature scheme that relies on the verifier
to decide the policy and thus requiring interaction in the signing protocol. Even though this can be useful
in certain applications (see [30] for details), such interaction is prohibitive for many applications. A more
recent construction by Escala et al. [13] adds the traceability feature (it was called revocation by the authors)
to standard ABS schemes. The proposed scheme in [13] is in the inefficient composite-order groups setting
and was originally proven in the Random Oracle Model (ROM) [4]. Although the authors described how the
reliance on random oracles could be removed, this was done informally and without a concrete construction
or a full security proof. In addition, their construction relies on a central attribute authority which could be
a bottleneck when the number of members of the system increases.

Our Contribution. Our first contribution is a formal security model for traceable attribute-based signatures.
Our focus is on the more interesting setting where there are multiple attribute authorities. We refer to this
setting as Decentralized Traceable Attribute-Based Signatures (DTABS). By restricting the number of at-
tribute authorities to one, we get a new model which addresses some of the shortcomings of the previous
model for the same setting [13]. Our model can, in some sense, be viewed as an extension of the model of
[39] where we allow signatures to be traced and allow for dynamic corruption of attribute authorities.

Our second contribution is a generic construction for DTABS. Our construction meets strong security re-
quirements and permits expressive signing policies. Namely, it is CCA-anonymous under full-key exposure
attacks, and its unforgeability is w.r.t. adaptively chosen messages and signing policies.

Finally, we present example instantiations of the generic construction and provide the first provably
secure construction not relying on idealized assumptions. The security of all our instantiations rely on in-
tractability assumptions which are falsifiable [37].

Paper Organization. In Section 2, we give some preliminary definitions. We formally define DTABS and
provide their security model in Sections 3 and 4, respectively. We list the building blocks we use in Section
5. In Section 6, we present our generic construction and provide a proof of its security. In Section 7, we
present constructions in the standard model.
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Notation. A function ν(.) : N→ R+ is negligible in c if for every polynomial p(.) and all sufficiently large
values of c, it holds that ν(c) < 1

p(c) . Given a probability distribution S, we denote by y ← S the operation
of selecting an element according to S. If A is a probabilistic machine, we denote by A(x1, . . . , xn) the
output distribution of A on inputs (x1, . . . , xn). By PPT we mean running in probabilistic polynomial time
in the relevant security parameter.

2 Preliminaries

In this section we provide some preliminary definitions.

2.1 Bilinear Groups

A bilinear group is a tuple P := (G1,G2,GT , p,G, G̃, e) where G1,G2 and GT are groups of a prime
order p and G and G̃ generate G1 and G2, respectively. The function e is a non-degenerate bilinear map
G1 × G2 −→ GT . We will use multiplicative notation for all the groups although usually G1 and G2 are
chosen to be additive groups. We let G×1 := G1 \ {1G1} and G×2 := G2 \ {1G2}. For clarity, elements from
G2 will be accented with .̃

Following [19], we categorize prime-order bilinear groups into three main types:

• Type-1: This is the symmetric pairing setting in which G1 = G2.
• Type-2: G1 6= G2 but there is an efficiently computable isomorphism ψ : G2 −→ G1.
• Type-3: G1 6= G2 but there is no efficiently computable isomorphism between the groups in either

direction.

We assume that there is an algorithm BGrpSetup that takes as input a security parameter λ and a type
tp ∈ {1, 2, 3} and outputs a description of bilinear groups of Type-tp.

2.2 Complexity Assumptions

We will use the following assumptions from the literature:

DDH. For a group G := 〈G〉 of a prime order p, given (G,Ga, Gb, C) ∈ G4 for a, b ← Zp, it is hard to
decide whether or not C = Gab.

SXDH. The Decisional Diffie-Hellman (DDH) assumption holds in both groups G1 and G2.
DLIN [9]. For a group G := 〈G〉 of a prime order p, given the tuple (Ga, Gb, Gra, Gsb, Gt) for unknown

a, b, r, s, t ∈ Zp, it is hard to tell whether t = r + s or t is random.
q-SDH [7]. For a group G := 〈G〉 of a prime order p, given (G,Gx, . . . , Gx

q
) for x ← Zp, it is hard to

output a pair (c,G
1
x+c ) ∈ Zp ×G for an arbitrary c ∈ Zp\{−x}.

WFCDH [16]. In symmetric bilinear groups, given (G,Ga, Gb) ∈ G3 for a, b ← Zp, it is hard to output a
tuple (Gr, Gra, Grb, Grab) ∈ G×4 for an arbitrary r ∈ Zp.

AWFCDH [16]. In asymmetric bilinear groups, given (G,Ga, G̃) ∈ G1
2 × G2 for a ← Zp, it is hard to

output a tuple (Gb, Gab, G̃b, G̃ab) ∈ G×1
2 ×G×2

2 for an arbitrary b ∈ Zp.
q-ADHSDH [16]. In asymmetric bilinear groups 4, given (G,F,K,Gx, G̃, G̃x) ∈ G4

1×G2
2 for x← Zp, and

q − 1 tuples (Wi := (K · Gui)
1

x+vi , Ui := Gui , Ũi := G̃ui , Vi := F vi , Ṽi := G̃vi)q−1
i=1 for ui, vi ← Zp,

it is hard to output a new tuple (W ∗, U∗, Ũ∗, V ∗, Ṽ ∗) of this form.

4 This can also be instantiated in symmetric groups. See [16].
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2.3 Span Programs

For a field F and a variable setA = {a1, . . . , an}, a monotone span program [27] is define by a α×β matrix
Z (over F) along with a labeling map ρ which associates each row in Z with an element ai ∈ A.

The span program accepts a set γ iff 1 ∈ Span(Zγ), where Zγ is the sub-matrix of Z containing only
rows with labels ai ∈ γ. In other words, the span program only accepts the set γ if there exists a vector s
s.t. sZγ = [1, 0, . . . , 0].

3 Syntax of Decentralized Traceable Attribute-Based Signatures

The parties involved in a DTABS scheme are: κ attribute authorities each with a unique identity aid and a
pair of secret/verification keys (aaskaid, aavkaid); a tracing authority T which possesses a secret tracing key
tk that can be used to trace the identity of the signer of a given signature; a set of signers each with a unique
identity sid and a set of attributes A ⊆ A, where A is the universe of all possible attributes. An attribute can
be uniquely identified by concatenating the identity of the managing attribute authority with the name of the
attribute itself. A DTABS scheme is a tuple of polynomial-time algorithms

DTABS := (Setup,AuthSetup,KeyGen, Sign,Verify,Trace, Judge)·

The syntax of the algorithms is defined below; where to aid notation all algorithms bar (Setup and
AuthSetup) are assumed to take as implicit input the public parameters pp output by algorithm Setup.

• Setup(1λ) is run by some trusted third party. It takes as input a security parameter 1λ and outputs public
parameters pp and the tracing key tk. We assume that pp contains the attribute universe A.

• AuthSetup(pp, aid) used by attribute authority Authaid to generate its key pair (aaskaid, aavkaid). The
attribute authority publishes its public verification key aavkaid.

• KeyGen(aaskaid, sid, a) takes as input an attribute authority’s secret key aaskaid, a signer’s identity sid
and an attribute a ∈ A that signer sid possesses and generates a secret key sksid,a for attribute a for the
signer. The key sksid,a is given to sid. The attribute authority may locally maintain a list of signers for
which it ran the KeyGen algorithm.

• Sign({aavkaid(a)}a∈A, {sksid,a}a∈A,m, Ψ) signer sid who possesses a set of attributes A ⊆ A uses this
algorithm to produce a signature on m w.r.t. the signing policy Ψ where Ψ(A) = 1. The algorithm
takes as input an ordered list of attribute authorities’ verification keys {aavkaid(a)}a∈A, an ordered list
of attributes’ secret keys {sksid,a}a∈A, a message m and a signing predicate Ψ , and outputs a signature
σ. Here aid(a) denotes the identity of the attribute authority managing attribute a ∈ A.

• Verify({aavkaid(a)}a∈Ψ ,m, σ, Ψ) is a deterministic algorithm which takes as input an ordered list of at-
tribute authorities’ verification keys {aavkaid(a)}a∈Ψ , a messagem, a signature σ and a signing predicate
Ψ , and outputs 1 if σ is valid on m w.r.t. the signing predicate Ψ or 0 otherwise.

• Trace(tk,m, σ, Ψ) is a deterministic algorithm which takes as input T’s key tk, a message m, a signature
σ and a signing predicate Ψ , and outputs the identity sid of the signer plus a proof π attesting to this
claim. If the algorithm is unable to trace the signature to a signer, it returns the special symbol ⊥. Note
that if the tracing authority additionally gets a read-only access to the local registration tables maintained
by the attribute authorities (whose identities can be inferred from the signing policy Ψ ), then the tracing
authority could additionally check whether or not sid has run the KeyGen algorithm.

• Judge({aavkaid(a)}a∈Ψ ,m, σ, Ψ, sid, π) is a deterministic algorithm which takes as input an ordered
list of attribute authorities’ verification keys {aavkaid(a)}a∈Ψ , a message m, a signature σ, a signing
predicate Ψ , a signer identity sid, and a tracing proof π, and outputs 1 if π is a valid proof that sid has
produced σ or 0 otherwise.
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AddS(sid,A)

• If ∃a ∈ A s.t. (sid, a) ∈ HSL Then Return ⊥.
• For each a ∈ A Do

◦ If aid(a) /∈ HAL Then
∗ If aid(a) ∈ CAL Then Return ⊥.
∗ AddA(aid(a)).

◦ If aaskaid(a) = ⊥ Then Return ⊥.
◦ sksid,a ← KeyGen(aaskaid(a), sid, a).

• HSL := HSL ∪ {(sid, a)}a∈A.

AddA(aid)

• If aid ∈ HAL ∪ CAL Then Return ⊥.
• (aaskaid, aavkaid)← AuthSetup(pp, aid).
• HAL := HAL ∪ {aid}.

Sign(sid,A,m, Ψ)

• If ∃a ∈ A s.t. (sid, a) /∈ HSL Then Return ⊥.
• If Ψ(A) 6= 1 or ∃a ∈ A s.t. sksid,a =⊥ Then Return ⊥.
• σ ← Sign({aavkaid(a)}a∈A, {sksid,a}a∈A,m, Ψ).
• SL := SL ∪ {(sid,A,m, σ, Ψ)}.
• Return σ.

Trace(m,σ, Ψ)

• If Verify({aavkaid(a)}a∈Ψ ,m, σ, Ψ) = 0 Then Return⊥.
• If (m,σ, Ψ) ∈ CL Then Return ⊥.
• Return Trace(tk,m, σ, Ψ).

CHb((sid0,A0), (sid1,A1),m, Ψ)

• If Ψ(A0) 6= 1 or Ψ(A1) 6= 1 Then Return ⊥.
• For i=0 To 1 Do

◦ For each a ∈ Ai s.t. (sidi, a) /∈ HSL DO
∗ If AddS(sidi, a) =⊥ Then Return ⊥.

◦ If ∃a ∈ Ai s.t. sksidi,a =⊥ Then Return ⊥.
• σ ← Sign({aavkaid(a)}a∈Ab , {sksidb,a}a∈Ab ,m, Ψ).
• CL := CL ∪ {(m,σ, Ψ)}.
• Return σ.

RevealA(aid)

• If aid /∈ HAL \ (CAL ∪ BAL) Then Return ⊥.
• BAL := BAL ∪ {aid}.
• Return aaskaid.

CrptA(aid, vk)

• If aid ∈ HAL ∪ CAL Then Return ⊥.
• CAL := CAL ∪ {aid}.

RevealS(sid,A)

• If ∃a ∈ A s.t. (sid, a) /∈ HSL \ BSL Then Return ⊥.
• BSL := BSL ∪ {(sid, a)}a∈A.
• Return {sksid,a}a∈A.

Fig. 1. Oracles used in the security games for DTABS

4 Security of Decentralized Traceble Attribute-Based Signatures

The security properties required from a DTABS scheme are: correctness, anonymity, full unforgeability, and
traceability. In defining those requirements we use a set of experiments in which the adversary has access
to a set of oracles. The following global lists are maintained: HSL is a list of honest signers’ attributes and
has entries of the form (sid, a); HAL is a list of honest attribute authorities; BSL is a list of bad signers’
attributes whose secret keys have been revealed to the adversary with entries of the form (sid, a); BAL is a
list of bad attribute authorities whose secret keys have been learned by the adversary; CAL is a list of corrupt
attribute authorities whose keys have been chosen by the adversary; SL is a list of signatures obtained from
the Sign oracle; CL is a list of challenge signatures obtained from the challenge oracle and is used only in
the anonymity game.

The details of the following oracles are given in Fig. 1.

• AddS(sid,A) is used to add honest attributes A ⊆ A for signer sid. It can be called multiple times to
add more attributes.

• AddA(aid) is used to add an honest attribute authority with identity aid.
• CrptA(aid, vk) is used to create a corrupt attribute authority whose secret key is chosen by the adversary.
• RevealS(sid,A) is used to obtain the secret keys {sksid,a}a∈A corresponding to the subset of attributes
A ⊆ A owned by signer sid. It can be called multiple times.

• RevealA(aid) is used to obtain the secret key aaskaid of the honest attribute authority aid.
• Sign(sid,A,m, Ψ) is used to obtain a signature σ on message m by signer sid using {sksid,a}a∈A where
Ψ(A) = 1.
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Experiment: ExpCorr
DTABS,F (λ)

• (pp, tk)← Setup(1λ).
• HSL := ∅.
• (sid,A,m, Ψ)← F(pp : AddS(·, ·),AddA(·)).
• If Ψ(A) 6= 1 or A 6⊆ A Then Return 0.
• If ∃a ∈ A s.t. (sid, a) /∈ HSL or sksid,a =⊥ or aid(a) /∈ HAL Then Return 0.
• σ ← Sign({aavkaid(a)}a∈A, {sksid,a}a∈A,m, Ψ).
• If Verify({aavkaid(a)}a∈Ψ ,m, σ, Ψ) = 0 Then Return 1.
• (sid′, π)← Trace(tk,m, σ, Ψ).
• If sid′ 6= sid Then Return 1.
• If Judge({aavkaid(a)}a∈Ψ ,m, σ, Ψ, sid, π) = 0 Then Return 1.
• Return 0.

Experiment: ExpAnon-b
DTABS,F (λ)

• (pp, tk)← Setup(1λ).
• CAL,HSL,HAL,BSL,BAL,CL := ∅.
• b∗ ← F (pp : AddS(·, ·),AddA(·),CrptA(·, ·),RevealS(·, ·),RevealA(·),CHb((·, ·), (·, ·), ·, ·),Trace(·, ·, ·)).
• Return b∗.

Experiment: ExpF-Unforge
DTABS,F (λ)

• (pp, tk)← Setup(1λ).
• CAL,HSL,HAL,BSL,BAL,SL := ∅.
• (m∗, σ∗, Ψ∗, sid∗, π∗)← F (pp, tk : AddS(·, ·),AddA(·),CrptA(·, ·),RevealS(·, ·),RevealA(·),Sign(·, ·, ·, ·)).
• If Verify({aavkaid(a)}a∈Ψ∗ ,m∗, σ∗, Ψ∗) = 0 Then Return 0.
• If Judge({aavkaid(a)}a∈Ψ∗ ,m∗, σ∗, Ψ∗, sid∗, π∗) = 0 Then Return 0.
• Let Asid∗ be the set of attributes owned by sid∗ and managed by dishonest (i.e. ∈ CAL ∪ BAL) attribute authorities.
• If ∃A s.t. {(sid∗, a)}a∈A ⊆ BSL and Ψ∗(A ∪Asid∗) = 1 Then Return 0.
• If ∃(sid∗, ·,m∗, σ∗, Ψ∗) ∈ SL Then Return 0.
• Return 1.

Experiment: ExpTrace
DTABS,F (λ)

• (pp, tk)← Setup(1λ).
• CAL,HSL,HAL,BSL,BAL,SL := ∅.
• (m∗, σ∗, Ψ∗)← F (pp, tk : AddS(·, ·),AddA(·),RevealS(·, ·), Sign(·, ·, ·, ·)).
• If Verify({aavkaid(a)}a∈Ψ∗ ,m∗, σ∗, Ψ∗) = 0 Then Return 0.
• (sid∗, π)← Trace(tk,m∗, σ∗, Ψ∗).
• If sid∗ =⊥ Then Return 1.
• If Judge({aavkaid(a)}a∈Ψ∗ ,m∗, σ∗, Ψ∗, sid∗, π) = 0 Then Return 1.
• If (sid, ·) ∈ HSL Then Return 0.
• Return 1.

Fig. 2. Security experiments for decentralized traceable attribute-based signatures

• CHb((sid0,A0), (sid1,A1),m, Ψ) is a left-right oracle for defining anonymity and is only called once.
The adversary sends a couple of identities (sid0,A0), (sid1,A1), a message m and a signing policy Ψ .
If Ψ(A0) = Ψ(A1) = 1, the oracle returns a signature on m using {sksidb,a}a∈Ab for b← {0, 1}.

• Trace(m,σ, Ψ) allows the adversary to ask for signatures to be traced.

The security requirements are defined by the games in Fig. 2.

Correctness. This demands that signatures produced by honest signers are accepted by the Verify algorithm
and trace to the signer who produced them. Moreover, the Judge algorithm accepts the proof produced by
the Trace algorithm. Formally, a DTABS scheme is correct if for all λ ∈ N, all PPT adversaries F have a
negligible advantage AdvCorr

DTABS,F (λ) := Pr[ExpCorr
DTABS,F (λ) = 1].

6



Anonymity. This requires that a signature reveals neither the identity of the signer nor the set of attributes
used in the signing. This is a stronger notion than what is used in other settings, e.g. [29, 33], which only
require that the identity of the signer remains anonymous. Thus, our definition ensures that a signature does
not reveal more information other than what can be already inferred from the signing predicate itself.

In the game, the adversary chooses a message, a signing policy and two signers with two, possibly
different, sets of attributes with the condition that both sets have to satisfy the signing policy. The adversary
gets a signature by either signer and wins if it correctly guesses the signer.

Our model provides the adversary with strong capabilities, for instance, it can fully corrupt the attribute
authorities and can ask for signers’ secret keys to be revealed including the two signers it chooses for the
challenge (and thus capturing full-key exposure attacks). Note that since the adversary can sign on behalf of
any signer, it is redundant to provide the adversary with a sign oracle. The only restriction we impose on the
adversary is that it may not query the Trace oracle on the challenge signature.

In CPA-anonymity [9], the adversary is not given access to the Trace oracle. On the contrary, in CCA-
anonymity [5], the adversary can ask Trace queries at any stage of the game on any signature except the
challenge signature. One can also consider a weaker non-adaptive variant of CCA-anonymity where the
adversary can only ask Trace queries before it sees the challenge signature.

WLOG and in order to simplify the security proofs, we only allow the adversary a single call to the
challenge oracle. We show in Appendix A that this is sufficient by showing a reduction from any adversary
with a polynomial number of calls to the challenge oracle to one with a single call via a hybrid argument.

Also, our definition captures unlinkability because the adversary has access to all signers’ secret keys
and hence can produce signatures on behalf of any signer.

Formally, a DTABS scheme is anonymous if for all λ ∈ N, all PPT adversaries F have a negligible
advantage AdvAnon

DTABS,F (λ) :=
∣∣Pr[ExpAnon-0

DTABS,F (λ) = 1]− Pr[ExpAnon-1
DTABS,F (λ) = 1]

∣∣.
Full Unforgeability. This requirement captures unforgeability scenarios where the forgery opens to a par-
ticular signer. It ensures that even if signers collude and combine their attributes together, they cannot forge
a signature that opens to a signer whose attributes do not satisfy the signing predicate. It also covers non-
frameability and ensures that even if signers collude, they cannot frame a user who did not produce the
signature.

Unlike the single attribute authority setting, here we allow the adversary to adaptively create corrupt
attribute authorities and learn some of the honest authorities’ secret keys as long as there is at least a single
honest attribute authority managing one of the attributes required for satisfying the policy used in the forgery.
In addition, we allow the adversary to fully corrupt the tracing authority.

Our definition is adaptive and allows the adversary to adaptively choose the predicate and the message on
which it wants to produce the forgery rather than having to select the predicate at the start of the game. Also,
note that we consider the stronger form of unforgeability, i.e. (strong unforgeability) where the adversary
wins even if it manages to produce a new signature on a message/predicate pair that was queried to the sign
oracle. We refer to this stronger definition as Strong Full Unforgeability and use the abbreviation SFU for
short. The definition can, in a straightforward manner, be adapted to work for the weaker variant used in,
e.g. [5, 36, 13], by requiring that the forgery is not on a message/predicate pair that was queried to the sign
oracle. For the latter variant which we refer to as Weak Full Unforgeability (WFU), we just need to replace
the check ∃(sid∗, ·,m∗, Ψ∗, σ∗) ∈ SL by the check ∃(sid∗, ·,m∗, Ψ∗, ·) ∈ SL.

Formally, a DTABS scheme is fully unforgeable if for all λ ∈ N, all PPT adversaries F have a negligible
advantage AdvF-Unforge

DTABS,F (λ) := Pr[ExpF-Unforge
DTABS,F (λ) = 1].

Traceability. This requirement ensures that the adversary cannot produce a signature that traces to a signer
who did not run the honest KeyGen algorithm. Thus, it covers unforgeability scenarios where the forgery is
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untraceable. In the game, the adversary is allowed to corrupt the tracing authority and ask for the signing
keys of any signer to be revealed. However, unlike in the full unforgeability game, we require that all the
attribute authorities are honest as knowing a secret key of any attribute authority makes it easy to create
signatures by dummy signers which are thus untraceable.

Formally, a DTABS scheme is traceable if for all λ ∈ N, all PPT adversaries F have a negligible
advantage AdvTrace

DTABS,F (λ) := Pr[ExpTrace
DTABS,F (λ) = 1].

4.1 Comparison with Escala et al. Model [13] for the Single Attribute Authority Setting

Specializing our model to the single attribute authority setting, we get a stronger model than the one in [13].
In particular, our model avoids some of the shortcomings inherent to [13] which we now explain. When
defining non-frameability in [13], the sign oracle used by [13] does not consider the identity of the signer
and hence it does not capture the following scenario: The adversary asks for two different signers sid1 with
attributesA1 and sid2 with attributesA2 to be added. It then asks for a signature on the message m w.r.t. the
signing policy Ψ by signer sid1 (where Ψ(A1) = 1), and outputs as its forgery a signature σ∗ on the same
message m w.r.t. the same signing policy Ψ but the signature opens to sid2 (assume here that Ψ(A2) = 1).

Therefore, we believe that in this context, where traceability is required, it is important that the identity
of the signer is taken into account when answering signing queries. Otherwise, some of the unforgeabil-
ity scenarios are not captured. This is, of course, different from standard attribute-based signatures where
traceability is not required and thus there is no way for the adversary to learn who produced a particular
signature.

In addition, our full unforgeability definition protects against a fully corrupt tracing authority which is
stronger than the non-frameability definition in [13] which only considers a partially but not fully corrupt
tracing authority.

5 Building Blocks

In this section we present the building blocks that we use in our constructions.

5.1 Tagged Signature Scheme

We define here a new variant of a signature scheme which we call a Tagged Signature (TS) scheme5. A
tagged signature scheme for a message spaceMTS and a tag space TTS is a tuple of algorithms

TS := ([Setup],KeyGen,Sign,Verify) .

• Setup(1λ) this optional algorithm takes as input a security parameter and outputs common public pa-
rameters param which is an implicit input to the rest of algorithms.

• KeyGen({param|1λ}) takes as input either public parameters (if the scheme requires a setup) or just the
security parameter (if no setup is required) and outputs a pair of secret/verification keys (sk, vk).

• Sign(sk, τ,m) takes as input a secret key sk, a tag τ ∈ TTS and a message m ∈ MTS, and outputs a
signature σ.

• Verify(vk, τ,m, σ) outputs 1 if σ is a signature on τ and m w.r.t. the verification key vk.

The security of a tagged signature scheme is similar to that of a traditional digital signature and consists of
correctness and unforgeability:

5 A variant of this primitive has been used by [1] in the context of one-time signatures which they call tagged one-time signatures.
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• Correctness: Requires that for all m ∈ MTS, τ ∈ TTS and (sk, vk) output by KeyGen, we have
Verify(vk, τ,m,Sign(sk, τ,m)) = 1.

• (Existential) Unforgeability: Unforgeability under adaptive chosen-message-tag attack requires that
any PPT adversary F that is given a sign oracle Sign(sk, ·, ·) has a negligible advantage in winning the
following game:
◦ A key pair (sk, vk) is generated and vk is sent to F .
◦ F makes a polynomial number of queries to Sign(sk, ·, ·).
◦ Eventually, F halts by outputting a tuple (σ∗, τ∗,m∗) and wins if σ∗ is valid on (τ∗,m∗) and

(τ∗,m∗) was never queried to Sign.

We note here that any signature scheme that can sign a pair of messages can be used as a tagged signature
scheme. However, to allow for generality and explicitly distinguish the tag space from the message space
(and hence care for the case where they might be distinct), we define this notion. Note that one can always
use a collision-resistant hash function to map the tag into the message space.

Defining this as a new notion also serves to simplify the description of our constructions and security
proofs. In particular, later in the constructions we need to hide the tag, whereas the message remains public
and hence just signing the hash of the combination of the tag and the message using a standard digital
signature would be problematic.

Instantiation. To construct a tagged signature, we use a variant of the automorphic scheme from [16] which
was given in [17]. The original scheme given in [17] was given in the asymmetric setting. For simplicity, the
variant we give here is in the symmetric setting. The tag space of the tagged signature scheme are Diffie–
Hellman tuples DH where DH := {(Ga, G′a) ∈ G2|a ∈ Zp}, whereas the message space is Zp. The
scheme is unforgeable under the q-ADHSDH and WFCDH assumptions in the symmetric setting (and the
q-ADHSDH and AWFCDH assumptions in the asymmetric setting) (cf. Section 2.2). Our tagged signature
construction is as follows:

• TS.Setup(1λ): Let P := (G,GT , p,G, e) be the description of Type-1 bilinear groups. Choose F,K, T,
G′, L← G and return param := (P, F,K, T, L,G′).

• TS.KeyGen(param): Choose x← Zp and set (X,X ′) := (Gx, G′x). Set sk := x and vk := (X,X ′).
• TS.Sign(sk, (τ, τ ′),m): Reject if (τ, τ ′) /∈ DH (i.e. e(τ,G′) 6= e(G, τ ′)). Otherwise, choose u, v ← Zp

and compute σ :=
(
U := Gu, U ′ := G′u, V := F v, V ′ := G′v, W := (K · T u · τ · Lm)

1
x+v

)
.

• TS.Verify(vk, (τ, τ ′),m, σ): Check that e(U,G′) = e(G,U ′), e(V,G′) = e(F, V ′), and e(W,X ′ ·V ′) =
e(T,U ′)e(K · τ · Lm, G′), and output 1 or 0 accordingly.

5.2 The Full Boneh-Boyen (FBB) Signature Scheme

In [7], the authors gave a signature scheme that is secure under the q-SDH assumption (cf. Section 2.2).
The signature scheme can be instantiated in both the symmetric and asymmetric bilinear group settings. Let
P := (G,GT , p,G, e) be the description of a bilinear group. The scheme is as follows; where to aid notation
all algorithms bar KeyGen are assumed to take as implicit input P:

• KeyGen(P): Choose x, y ← Zp and set (X,Y ) := (Gx, Gy). Set sk := (x, y) and vk := (X,Y ).
• Sign(sk,m): To sign m ∈ Zp, choose r ← Zp such that x + r · y + m 6= 0 and compute the signature

σ := G
1

x+r·y+m .
• Verify(vk,m, σ): Output 1 if e(σ,X · Y r ·Gm) = e(G,G) and 0 otherwise.
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5.3 Strongly Unforgeable One-Time Signatures

A digital signature scheme is called one-time signature if in the unforgeability game, the adversary is re-
stricted to a single signing query. Strong Unforgeability as opposed to weak unforgeability requires that the
adversary cannot even forge a new signature on a message that she obtained a signature on from the sign-
ing oracle. In this paper, we will instantiate the one-time signature using the Full Boneh-Boyen signature
scheme from Section 5.2.

5.4 Simulation-Sound Non-Interactive Zero-Knowledge Proofs

Let R be an efficiently computable relation. For pairs (x,w) ∈ R, we call x the statement and w the
witness. We define the language L as all the statements x in R. A Simulation-Sound Non-Interactive Zero-
Knowledge (SS-NIZK) proof system forR is defined by a tuple of algorithms

(Setup,Prove,Verify,Extract,SimSetup, SimProve) .

Setup takes as input a security parameter 1λ and outputs a common reference string crs and an extraction
key xk which allows for witness extraction. Prove takes as input (crs, x, w) and outputs a proof π that
(x,w) ∈ R. Verify takes as input (crs, x, π) and outputs 1 if the proof is valid, or 0 otherwise. Extract takes
as input (crs, xk, x, π) and outputs a witness. SimSetup takes as input a security parameter 1λ and outputs a
simulated reference string crsSim and a trapdoor key tr that allows for proof simulation. SimProve takes as
input (crsSim, tr, x) and outputs a simulated proof πSim without a witness.

We require: completeness, soundness, zero-knowledge and simulation-soundness which are all formally
defined in Appendix B.

Groth-Sahai Proofs. Groth-Sahai (GS) proofs [25] are efficient non-interactive proofs in the Common
Reference String (CRS) model. The GS system can be instantiated under different intractability assumptions
with the SXDH-based instantiation being the most efficient [21].

The language for the system has the form

L := {statement | ∃witness : E1(statement,witness), . . . , En(statement,witness) hold },

where Ei(statement, ·) is one of the types of equation summarized in Fig. 3, where X1, . . . , Xm, Y1,
. . . , Yn ∈ G, x1, . . . , xm, y1, . . . , yn ∈ Zp are secret variables (hence underlined), whereas Ai, T ∈ G,
ai, bi, ki,j , t ∈ Zp, tT ∈ GT are public constants. Note that in the asymmetric setting, there are two types of
MSM equations depending on which group the elements belong to.

While one can fully extract parts of the witness which are group elements from Groth-Sahai proofs,
we can only extract a one-way function of exponents as fully extracting an exponent element of the witness
requires solving discrete logarithms. Also, for the proof to be zero-knowledge, all the equations have to have
a trivial right-hand side. In particular, in the PPE case, we can only obtain zero-knowledge if either tT = 1
or one knows P1, . . . , Pk and Q1, . . . , Qk such that tT =

∏k
i=1 e(Pi, Qi).

The proof system has perfect completeness, perfect soundness, composable witness-indistinguishabilit-
y/zero-knowledge. Note that the original proof system in [25] is not simulation-sound. We refer to [25] for
the formal definitions and details of the instantiations.

NIZK Proofs in the Random Oracle Model. NIZK proofs in the random oracle model can be obtained
by applying the Fiat–Shamir transformation [14] to interactive Σ-protocols to eliminate the interaction. In
these proofs, a hash function which is modeled as a random oracle is used to compute the challenge.
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• Pairing Product Equation (PPE):
nQ
i=1

e(Ai, Yi) ·
mQ
i=1

nQ
j=1

e(Xi, Yj)
ki,j = tT ·

• Multi-Scalar Multiplication Equation (MSME):
nQ
i=1

A
yi

i

mQ
i=1

Xi
bi

mQ
i=1

nQ
j=1

Xi
ki,jyj = T ·

• Quadratic Equation (QE) in Zp:
nP
i=1

aiyi +
mP
i=1

xibi +
mP
i=1

nP
j=1

xiyj = t·

Fig. 3. Types of equations one can use Groth-Sahai proofs for

Experiment: ExpIND-CCA-b
PKE,F (λ):

• (pk, sk)← KeyGen(1λ).
• (m0,m1, stfind)← Ffind (pk : Dec(sk, ·)), where |m0| = |m1|.
• Cb ← Enc(pk,mb).
• b∗ ← Fguess

`
stfind, Cb : DecCb(sk, ·)

´
, where DecCb returns ⊥ if queried on Cb.

• Return b∗.

Fig. 4. IND–CCA security game for PKE

5.5 Public-Key Encryption

A Public-Key Encryption (PKE) scheme is a tuple of polynomial-time algorithms

PKE := (KeyGen,Enc,Dec),

where the algorithms are defined as follows:

• KeyGen(1λ): Takes a security parameter 1λ and outputs a public key pk and a secret key sk.
• Enc(pk,m): Takes as input the public key pk and a message m, and outputs a ciphertext C.
• Dec(sk, C): Takes as input the secret key sk and a ciphertext C, and outputs a message m.

Besides the usual correctness requirement, we require that the scheme is indistinguishable against adap-
tive chosen-ciphertext attacks (IND-CCA), which is defined by the game in Fig. 4.

We say that an encryption scheme is IND-CCA secure if for all λ ∈ N, all polynomial-time adversaries
F have a negligible advantage

AdvIND-CCA
PKE,F (λ) :=

∣∣Pr[ExpIND-CCA-0
PKE,F (λ) = 1]− Pr[ExpIND-CCA-1

PKE,F (λ) = 1]
∣∣

5.6 Tag-Based Encryption

A Tag-based Public-Key Encryption (TPKE) scheme [34] is similar to a public-key encryption scheme with
the only difference being that both Enc and Dec algorithms take as an additional input a tag t.

More formally, a TPKE scheme for a message space MTPKE and a tag space TTPKE is a tuple of
polynomial-time algorithms

TPKE := (KeyGen,Enc,Dec[, IsValid]),

where the algorithms are defined as follows:

• KeyGen(1λ): Takes a security parameter 1λ and outputs a public key pk and a secret key sk.
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Experiment: ExpST-WIND-CCA-b
TPKE,F (λ):

• (t∗, stinit)← Finit

`
1λ
´
.

• (pk, sk)← KeyGen(1λ).
• (m0,m1, stfind)← Ffind

“
stinit, pk : Dect

∗
(sk, ·, ·)

”
, where |m0| = |m1|.

• Ctbe,b ← Enc(pk, t∗,mb).
• b∗ ← Fguess

“
stfind, Ctbe,b : Dect

∗
(sk, ·, ·)

”
, where Dect

∗
returns ⊥ if queried on t∗.

• Return b∗.

Fig. 5. ST-WIND-CCA security game for TPKE

• TPKE.KeyGen(1λ)
◦ (G, p)← GrpSetup(1λ).
◦ K,L← G; f, h← Zp.
◦ F := Gf , H := Gh.
◦ pk := (G,F,H,K,L); sk := (f, h).

• TPKE.Enc(pk, t,M)
◦ r1, r2 ← Zp.
◦ C1 := F r1 ; C2 := Hr2 ; C3 := Gr1+r2 ·M .
◦ C4 := (Gt ·K)r1 ; C5 := (Gt · L)r2 .
◦ Ctbe := (C1, C2, C3, C4, C5).

• TPKE.Dec(sk, t, Ctbe)
◦ If TPKE.IsValid(pk, t, Ctbe) = 0 Then return ⊥
◦ Parse Ctbe as (C1, C2, C3, C4, C5).
◦ M := C3 · C−1/f

1 C
−1/h
2 .

• TPKE.IsValid(pk, t, Ctbe)
◦ Parse Ctbe as (C1, C2, C3, C4, C5).
◦ If e(F,C4) 6= e(C1, G

t ·K) Or
e(H,C5) 6= e(C2, G

t · L) Then Return 0.
◦ Else Return 1.

Fig. 6. The tag-based encryption by Kiltz [31]

• Enc(pk, t,m): Takes as input the public key pk, a tag t ∈ TTPKE and a message m ∈ MTPKE, and
outputs a ciphertext Ctbe.

• Dec(sk, t, Ctbe): Takes as input the secret key sk, a tag t ∈ TTPKE and a ciphertext Ctbe, and outputs a
message m or the reject symbol ⊥.

• IsValid(pk, t, Ctbe): This is an optional algorithm and is used to check whether a ciphertext is valid under
the tag t w.r.t. the pubic key pk. It returns 1 or 0 accordingly.

Besides the usual correctness requirement, we require selective-tag weak indistinguishability against
adaptive chosen-ciphertext attacks (ST-WIND-CCA), which is defined by the game in Fig. 5.

We say the scheme is ST-WIND-CCA secure if for all λ ∈ N, all polynomial-time adversaries F have a
negligible advantage

AdvST-WIND-CCA
TPKE,F (λ) :=

∣∣Pr[ExpST-WIND-CCA-0
TPKE,F (λ) = 1]− Pr[ExpST-WIND-CCA-1

TPKE,F (λ) = 1]
∣∣

Kiltz [31] showed how to combine a ST-WIND-CCA secure TPKE scheme with a strongly unforgeable
one-time signature scheme to obtain an IND-CCA2 secure PKE scheme. In the transformation the one-time
signature verification key is used as a tag for the TPKE scheme and then the tag-based ciphertext Ctbe is
signed with the one-time signature secret signing key.

Instantiation of ST-WIND-CCA Tag-Based Encryption. We use the selective-tag weakly secure CCA
tag-based encryption scheme by Kiltz [31] which is secure under the DLIN assumption. The scheme is in
Fig. 6.

In [28], it was shown that the tag-based scheme in Fig. 6 can be translated into both (Type-2 & Type-3)
asymmetric bilinear group settings. The security of the scheme in the Type-3 setting relies on a variant of
the DLIN assumption called the SDLIN assumption, in which the last element in the input tuple is provided
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in both groups. However, the security of this variant requires that the message space is polynomial in the
security parameter so that we can efficiently search when decrypting.

6 A Generic Construction for Decentralized Traceable Attribute-Based Signatures

In this section, we present our generic construction for decentralized traceable attribute-based signatures.

Overview of the construction. The tools we use in our generic construction are two NIZK proof systems
NIZK1 and NIZK2, an IND-CCA2 secure public-key encryption scheme PKE, an existentially unforgeable
tagged signature scheme TS, and an existentially unforgeable digital signature scheme DS with a message
spaceMDS. In addition, we need a collision-resistant hash functionH : {0, 1}∗ →MDS.

We require that the NIZK1 proof system, which will be used in the signing, is simulation-sound [40]
and a proof of knowledge [12]. In fact, it is sufficient for it to be only one-time simulation-sound (see
Appendix B). On the contrary, it suffices that NIZK2 is a zero-knowledge proof system, i.e. we require
neither simulation-soundness nor knowledge extractability from NIZK2.

The Setup algorithm generates two separate common reference strings crs1 and crs2 for the NIZK sys-
tems NIZK1 and NIZK2, respectively. It also generates a key pair (tvk, tsk) for the digital signature scheme
DS, and an encryption/decryption key pair (epk, esk) for the encryption scheme PKE. The public parameters
of the system is set to pp := (crs1, crs2, tvk, epk,A,H), where A is the universe of attributes. The tracing
authority’s key is set to tk := esk.

When a new attribute authority joins the system, it creates a secret/verification key pair (aaskaid, aavkaid)
for the tagged signature scheme TS. To generate a signing key for attribute a ∈ A for signer sid, the
managing attribute authority signs the signer identity sid (used as tag) along with the attribute a using her
secret tagged signature signing key. The resulting signature is used as the secret key for that attribute by
signer sid.

To sign a message m w.r.t. a signing policy Ψ , the signer first encrypts her identity sid using the en-
cryption scheme PKE (and some randomness µ) to obtain a ciphertext C. She then computes, using the
NIZK system NIZK1, a proof π that she encrypted her identity correctly and that she either has a digital
signature on the hash of the combination of the signing predicate, the message and the ciphertext containing
her identity, i.e. H(Ψ,m,C), that verifies w.r.t. the verification key tvk or that she owns enough attributes
to satisfy the original signing predicate Ψ in the form of tagged signatures on her identity and the attributes.
For ease of composition and following [36], we refer to H(Ψ,m,C) as pseudo-attributes and denote them
by aΨ,m,C . Note here that including the ciphertext as part of the encoding of the pseudo-attribute does not
affect the signature size.

The extended predicate Ψ̂ is proved via a span program (see Section 2.3) represented by the matrix Z: the

signer proves that she knows a secret vector s ∈ Z|Ψ̂ |p s.t. sZ = [1, 0, . . . , 0]. She also needs to show that she
possesses a valid (tagged) signature on each attribute in the signing predicate for which the corresponding
element in s is non-zero or a valid signature that verifies w.r.t tvk in the case of a pseudo-attribute. For
attributes appearing in the policy that the signer does not own, she chooses random signatures.

Note that the hiding property of the NIZK1 system ensures that the proof π does not reveal how the
modified predicate Ψ̂ was satisfied, i.e. whether the signer has a special signature on the pseudo-attribute or
she owns enough attributes to satisfy the original predicate Ψ . The signature is then set to σ := (π,C). To
verify the signature, one just needs to verify the proof π.

The modified OR predicate Ψ̂ serves to bind the signature to the message and the signing predicate.
The secret signing key tsk for the digital signature scheme DS is only used as a trapdoor in the security
proofs, and thus is not given to any authority. It allows its holder to simulate signatures and sign on behalf
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• Setup(1λ)

◦ (crs1, xk1)← NIZK1.Setup(1λ) and crs2 ← NIZK2.Setup(1λ).
◦ (tvk, tsk)← DS.KeyGen(1λ) and (epk, esk)← PKE.KeyGen(1λ; ρ).
◦ Choose a collision-resistant hash functionH : {0, 1}∗ →MDS.
◦ Let tk := esk and pp := (crs1, crs2, tvk, epk,A,H), where A is the attribute universe.
◦ Return pp.

• AuthSetup(pp, aid)

◦ (aavkaid, aaskaid)← TS.KeyGen(1λ).
◦ Return (aavkaid, aaskaid).

• KeyGen(aaskaid(a), sid, a)
◦ sksid,a ← TS.Sign(aaskaid(a), sid, a).
◦ Return sksid,a.

• Sign({aavkaid(a)}a∈A, {sksid,a}a∈A,m, Ψ)
◦ Return ⊥ if Ψ(A) = 0.
◦ C ← PKE.Enc(epk, sid;µ).
◦ Let Ψ̂ := Ψ ∨ aΨ,m,C and Z ∈ Z|Ψ̂ |,βp be the span program for Ψ̂ .
◦ Let a := {ai}|Ψ̂ |i=1 denote the attributes appearing in Ψ̂ .
◦ π ← NIZK1.Prove(crs1, {sid, µ, s, {σai}

|Ψ̂ |
i=1} : (C, {aavkaid(ai)}

|Ψ̂ |−1
i=1 ∪ tvk,a) ∈ L1).

◦ Return σ := (π,C).
• Verify({aavkaid(a)}a∈Ψ ,m, σ, Ψ)

◦ Return NIZK1.Verify(crs1, π).
• Trace(tk,m, σ, Ψ)

◦ Return (⊥,⊥) if Verify({aavkaid(a)}a∈Ψ ,m, σ, Ψ) = 0.
◦ sid← PKE.Dec(tk, C).
◦ πTrace ← NIZK2.Prove(crs2, {tk, ρ} : (C, epk, sid) ∈ L2).
◦ Return (sid, πTrace).

• Judge({aavkaid(a)}a∈Ψ ,m, σ, Ψ, sid, πTrace)
◦ If (sid, πTrace) = (⊥,⊥) Then Return Verify({aavkaid(a)}a∈Ψ ,m, σ, Ψ) = 0.
◦ Return NIZK2.Verify(crs2, πTrace).

Fig. 7. The generic construction for DTABS

of any signer without knowing their secret keys by simply encrypting their identity and producing a signa-
ture on the pseudo-attribute associated with the message and the signing predicate. Note that even in the
unlikely case that any of the pseudo-attributes happened to collide with a real attribute, this is not a problem
since signatures associated with pseudo-attributes must verify w.r.t. tvk which is different from all attribute
authorities’ keys.

To trace a signature, the tracing authority just decrypts the ciphertext C to recover the signer’s identity. It
then produces a proof πTrace using the NIZK system NIZK2 to prove that the decryption was done correctly.
To verify the tracing correctness, the judge just needs to verify the validity of the NIZK proof πTrace.

The details of the construction are in Fig. 7, whereas the languages associated with the NIZK proofs
used in the construction are as follows, where for clarity we underline the elements of the witness:

L1 :
{(

(C, vk := {aavkaid(ai)}
|Ψ̂ |−1
i=1 ∪ tvk,a := {ai}|Ψ̂ |i=1), (sid, µ, s,σ := {σai}

|Ψ̂ |
i=1)

)
:

(
sZ = [1, 0, . . . , 0]

|Ψ̂ |−1∧
i=1

if si 6= 0⇒ TS.Verify(vki, sid, ai, σai) = 1

∧ if s|Ψ̂ | 6= 0⇒ DS.Verify(tvk, aΨ,m,C , σa|Ψ̂ |) = 1
)
∧ PKE.Enc(epk, sid;µ) = C

}
·
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The witness consists of a signer identity sid, the randomness µ used in encrypting sid, a vector s ∈ Z|Ψ̂ |p ,

and signatures {σai}
|Ψ̂ |
i=1 s.t. the span program Z verifies w.r.t. to s and for every non-zero element si for

i ∈ {1, . . . |s| − 1}, the tagged signature σai on sid (as a tag) and the attribute ai (as a message) verifies
w.r.t. the corresponding attribute authority verification key, and if s|s| 6= 0, the signature σ|Ψ̂ |, i.e. the one on
the special pseudo-attribute verifies w.r.t. the verification key tvk.

L2 :
{(

(C, epk, sid), (tk, ρ)
)

: PKE.KeyGen(1λ; ρ) = (epk, tk) ∧ PKE.Dec(tk, C) = sid
}
·

The witness consists of the tracing key, i.e. the decryption key for PKE, and the randomness ρ (if any) used
in the key generation of PKE s.t. the encryption/decryption key pair is correct and the ciphertext C decrypts
to sid.

Note that if we encrypted the whole witness of π (rather than just the signer identity) then we could
drop the requirement for NIZK1 to be a proof of knowledge. The reason why we cannot afford to do this is
two-fold: first, since the decryption key is used as a tracing key and signers do not have their own personal
key pairs, this would mean that a dishonest tracing authority will be able to forge on behalf of an honest
signer once it has opened a signature by them. Second, since in both the full unforgeability and traceability
experiments, the adversary has access to the tracing key, it would mean that we can no longer sign using
pseudo-attributes since the adversary will be able to learn what witness we used in producing a signature.

Also, note that for the construction to satisfy the stronger variant of full unforgeability (i.e. SFU) rather
than WFU, NIZK1 must additionally be strongly non-malleable in the sense that it is infeasible for the
adversary to even output a new proof for a statement that it received a proof for. In particular, as noted by
[23] if the proof system is simulation-sound extractable [23] then it is non-malleable.

Theorem 1. The construction in Fig. 7 is a secure decentralized traceable attribute-based signature if the
building blocks are secure w.r.t. their security requirements.

The full proof of this theorem can be found in Appendix C.
We note here that instantiations of all the tools we require for the generic construction exist in the

literature in both the random oracle and the standard models. In particular, we note that in the random oracle
model we can instantiate the proof systems required using the Fiat–Shamir heuristics [14]. Our focus is,
however, on constructions which do not rely on idealized assumptions. Before we proceed we note here that
the size of the signature in [13], which requires random oracles and is over the inefficient composite-order
bilinear groups, is G|Ψ̂ |+β+7. Note that the size of the group order of composite-order groups is about 10
times that of their prime-order counterparts at the same security level.

In order to improve the efficiency in the standard model, we present a construction in the next section
that slightly deviates from the generic framework.

7 Constructions in the Standard Model

In order to get more efficient constructions in the standard model, we slightly deviate from the generic
framework by dropping the requirement that NIZK1 is simulation-sound. In particular, in our instantiations
we will use the Groth-Sahai proof system (which is the only efficient non-interactive proof system not
relying on random oracles) to instantiate both NIZK1 and NIZK2 systems. Note that Groth-Sahai proofs
are malleable and therefore not simulation-sound. Although there exist transformations which make Groth-
Sahai proofs simulation-sound, e.g. [23], unfortunately, all those transformations degrade the efficiency of
the proofs. Also, note that the fact that one cannot efficiently extract exponents from Groth-Sahai proofs is
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• Setup(1λ)

◦ (crs1, xk1)← NIZK1.Setup(1λ) and (crs2, xk2)← NIZK2.Setup(1λ).
◦ (tvk, tsk)← DS.KeyGen(1λ) and (epk, esk)← TPKE.KeyGen(1λ; ρ).
◦ Choose collision-resistant hash functionsH : {0, 1}∗ →MDS and Ĥ : {0, 1}∗ → TTPKE.
◦ Let tk := esk and pp := (crs1, crs2, tvk, epk,A,H, Ĥ), where A is the attribute universe.
◦ Return pp.

• AuthSetup(pp, aid)

◦ (aavkaid, aaskaid)← TS.KeyGen(1λ).
◦ Return (aavkaid, aaskaid).

• KeyGen(aaskaid(a), sid, a)
◦ sksid,a ← TS.Sign(aaskaid(a), sid, a).
◦ Return sksid,a.

• Sign({aavkaid(a)}a∈A, {sksid,a}a∈A,m, Ψ)
◦ Return ⊥ if Ψ(A) = 0.
◦ (otsvk, otssk)← OTS.KeyGen(1λ).
◦ Ctbe ← TPKE.Enc(epk, Ĥ(otsvk), sid;µ).
◦ Let Ψ̂ := Ψ ∨ aΨ,m,Ctbe,Ĥ(otsvk) and Z ∈ Z|Ψ̂ |,βp be the span program for Ψ̂ .
◦ Let a := {ai}|Ψ̂ |i=1 denote the attributes appearing in Ψ̂ .
◦ π ← NIZK1.Prove(crs1, {sid, µ, s, {σai}

|Ψ̂ |
i=1} : (Ĥ(otsvk), Ctbe, {aavkaid(ai)}

|Ψ̂ |−1
i=1 ∪ tvk,a) ∈ L′1).

◦ σots ← OTS.Sign(otssk, (π,Ctbe, otsvk)).
◦ Return σ := (σots, π, Ctbe, otsvk).

• Verify({aavkaid(a)}a∈Ψ ,m, σ, Ψ)
◦ Parse σ as (σots, π, Ctbe, otsvk).
◦ Return 1 if all the following verify; otherwise, return 0:
∗ OTS.Verify(otsvk, (π,Ctbe, otsvk), σots) = 1.
∗ NIZK1.Verify(crs1, π) = 1.
∗ TPKE.IsValid(epk, Ĥ(otsvk), Ctbe) = 1.

• Trace(tk,m, σ, Ψ)
◦ Return (⊥,⊥) if Verify({aavkaid(a)}a∈Ψ ,m, σ, Ψ) = 0.
◦ sid← TPKE.Dec(tk, Ĥ(otsvk), Ctbe).
◦ πTrace ← NIZK2.Prove(crs2, {tk, ρ} : (Ĥ(otsvk), Ctbe, epk, sid) ∈ L′2).
◦ Return (sid, πTrace).

• Judge({aavkaid(a)}a∈Ψ ,m, σ, Ψ, sid, πTrace)
◦ If (sid, πTrace) = (⊥,⊥) Then Return Verify({aavkaid(a)}a∈Ψ ,m, σ, Ψ) = 0.
◦ Return NIZK2.Verify(crs2, πTrace).

Fig. 8. Details of the second construction

not a problem in our case as we never need to be able to efficiently extract the exponent components of the
witness.

We will start by describing the idea of the construction generically and then present the exact instantia-
tions later. To eliminate the need for NIZK1 to be simulation-sound, we apply a trick similar to that used by
Groth in [24] where we sign the final signature with a strongly unforgeable one-time signature scheme OTS.
We require that OTS is strongly existentially unforgeable against adaptive chosen-message attack. We use
the corresponding one-time verification key as a tag for a selective-tag weakly IND-CCA (i.e. ST-WIND-
CCA secure) tag-based encryption scheme TPKE with which we encrypt the user’s identity sid. The rest of
the tools are the same as in the generic construction in Section 6.

To map the one-time signature verification key into the tag space of the tag-based encryption, we require
another collision-resistant hash function, Ĥ : {0, 1}∗ → TTPKE. In order to further bind the signature to
the one-time signature verification key (i.e. the tag used for the ciphertext), we sign the one-time signature
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verification key as a part of the pseudo-attribute, i.e. the pseudo-attribute now is (Ψ,m,Ctbe, Ĥ(otsvk)),
which we will denote by aΨ,m,Ctbe,Ĥ(otsvk). The one-time signature serves to prevent the adversary from
transforming a signature that it received into another valid signature as it now must be able to forge a one-
time signature in order to succeed. Moreover, the one-time signature gives us the added bonus of realizing
the stronger variant of full unforgeability.

The general idea of this construction is given in Fig. 8, whereas the languages associated with the NIZK
proofs used in the construction are as follows, where again the elements of the witness are underlined:

• Language L′1 is defined as

L′1 :
{(

(Ĥ(otsvk), Ctbe, vk := {aavkaid(ai)}
|Ψ̂ |−1
i=1 ∪ tvk,a := {ai}|Ψ̂ |i=1), (sid, µ, s,σ := {σai}

|Ψ̂ |
i=1)

)
:

(
sZ = [1, 0, . . . , 0]

|Ψ̂ |−1∧
i=1

if si 6= 0⇒ TS.Verify(vki, sid, ai, σai) = 1

∧ if s|Ψ̂ | 6= 0⇒ DS.Verify(tvk, aΨ,m,Ctbe,Ĥ(otsvk), σa|Ψ̂ |) = 1
)

∧ TPKE.Enc(epk, Ĥ(otsvk), sid;µ) = Ctbe

}
·

• Language L′2 is defined as

L′2 :
{(

(Ĥ(otsvk), Ctbe, epk, sid), (tk, ρ)
)

: TPKE.KeyGen(1λ; ρ) = (epk, tk)

∧ TPKE.Dec(tk, Ĥ(otsvk), Ctbe) = sid
}
·

We provide a proof for the following Theorem in Appendix D.

Theorem 2. The construction in Fig. 8 is a secure decentralized traceable attribute-based signature if the
building blocks are secure w.r.t. their security requirements.

7.1 An Instantiation in Symmetric Groups

We use the instantiation of the tagged signature scheme from Section 5.1 and instantiate the digital signature
DS used for pseudo-attributes with the full Boneh-Boyen signature scheme (cf. Section 5.2) both in the
symmetric setting. Thus, we assume a collision-resistant hash functionH : {0, 1}∗ → Zp. Note that we need
not hide the integer component r of the full Boneh-Boyen signature when proving π as such a signature can
only be generated by the simulator running the security game and hence r does not reveal any information
about the attributes involved or the identity of the signer. In other words, in both the real signature and the
simulated signature cases, r is chosen uniformly at random.

We use the selective-tag weakly IND-CCA tag-based encryption scheme by Kiltz [31] as illustrated in
Fig. 6 to instantiate TPKE and instantiate the one-time signature with the full Boneh-Boyen signature in the
symmetric setting.

We now give the specific details of the proofs invloved. Let Z ∈ Z|Ψ̂ |,βp be the span program for Ψ̂ :=
Ψ ∨ aΨ,m,Ctbe,Ĥ(otsvk). To sign, we need the following proofs:

• To prove that sZ = [1, 0, . . . , 0], we need to prove the following linear equations:

|Ψ̂ |∑
i=1

(siZi,1) = 1
|Ψ̂ |∑
i=1

(siZi,j) = 0, for j = 2, . . . , β (1)
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To prove that if si 6= 0 ⇒ TS.Verify(vki, sid, ai, σai) = 1, one needs to raise each pairing involved
in the signature verification equations to si. This will ensure that if si 6= 0 then the only way for the
equations to verify is by having a valid signature on sid and ai. On the other hand, when the user does not
own attribute ai, i.e. does not have a valid signature σai , then si = 0 and the equations will verify since
each pairing will evaluate to 1. Based on the observation that computing the components U,U ′, V, V ′ of
the tagged signature does not require knowledge of the secret signing key and hence even when the user
does not have a valid signature on ai can still choose random components U,U ′, V, V ′ of the correct
form to satisfy the first two verification equations of the tagged signature. Thus, it is sufficient to use
si only in the last equation of the tagged signature verification equations. This reduces the number of
additional GS commitments and equations required and hence improves the efficiency.
For each of the first |Ψ̂ | − 1 rows in Z, we prove:

T̄i = T si Ḡ′i = G′
si W̄i = Wi

si (2)

e(Ui, G′i) = e(Gi, U ′i) e(Vi, G′i) = e(Fi, V ′i ) e(W̄i, X
′ · V ′i ) = e(T̄i, U ′i)e(K · sid · Lai , Ḡ′i) (3)

For the last row in Z, i.e. the pseudo-attribute, the proofs required are:

σ̄ = σ
s|Ψ̂ | Ḡ = G

s|Ψ̂ | e(σ̄, X · Y r ·GH(Ψ,m,Ctbe,Ĥ(otsvk)))e(Ḡ,G) = 1 (4)

• To prove that TPKE.Enc(epk, Ĥ(otsvk), sid; (r1, r2)) = Ctbe, the signer needs to prove that she com-
puted the ciphertext (C1, C2, C3, C4, C5) =

(
F r1 , Hr2 , Gr1+r2 ·sid, (GĤ(otsvk) ·K)r1 , (GĤ(otsvk) ·L)r2

)
correctly. Since the validity of the ciphertext is publicly verifiable, and for the sake of efficiency, it is
sufficient to provide proofs that C1, C2 and C3 were computed correctly and the rest can be verified
by checking that e(F,C4) = e(C1, G

Ĥ(otsvk) ·K) and e(H,C5) = e(C2, G
Ĥ(otsvk) · L). Thus, proving

this clause requires proving the 3 following multi-scalar multiplication equations, where the first two are
linear, whereas the last equation is quadratic

C1 = F r1 C2 = Hr2 C3 = Gr1 ·Gr2 · sid (5)

Note that we do not need to efficiently extract the exponents r1 and r2 from the proofs. Also, note that
the equations are simultable and thus yield zero-knowledge proofs.

• Finally, the signer needs to prove that her identity is a Diffie–Hellman tuple satisfying e(sid, G′) =
e(G, sid′).

The total size of the Groth-Sahai proofs used is Z2·β
p + G42·|Ψ̂ |−5. The proofs require 9 · |Ψ̂ | − 1 GS

commitments each of size G3. The size of the tag-based ciphertext is G5, whereas the size of the one-time
signature including the verification key is G3 + Zp. Thus, the total size of the signature is Z2·β+1

p + G69·|Ψ̂ |.
An important observation is that the verification of the signature could be made more efficient by using batch
verification techniques for Groth-Sahai proofs [20, 6].
Tracing. Computing the proof πTrace requires proving the following equations

Gf = F Gh = H C3 · C
−1/f

1 · C−1/h
2 = sid (6)

Those are 3 linear MSME proofs and immediately yield zero-knowledge. The total size of πTrace is G12.
The proof for the following Theorem follows from that of Theorem 2.

Theorem 3. The construction is secure if the assumptions DLIN, q-SDH, q-ADHSDH, and WFCDH hold.
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7.2 An Instantiation in Asymmetric Groups

To improve efficiency, here we translate the above instantiation into the asymmetric setting (i.e. Type-3
bilinear groups) where we use the more efficient SXDH-based instantiation of Groth-Sahai proofs. We use
the asymmetric variants of all the building blocks used in the symmetric instantiation. Note that the security
of the asymmetric instantiation of the tag-based encryption scheme from [28] which we use here is based on
the SDLIN assumption [28] (a variant of the DLIN assumption in which the last element in the input tuple
is provided in both groups) requires that the message space of the encryption scheme (i.e. the number of
signers’ identities to be encrypted) is polynomial in the security parameter so that we can efficiently search
when decrypting. Thus, this instantiation only works when traceability is defined w.r.t. registered users in
the system which is polynomial in the security parameter.

For clarity, in the following description we will also accent exponents with˜ when they are to be com-

mitted to in group G2. Let Z ∈ Z|Ψ̂ |,βp be the span program for Ψ̂ := Ψ ∨ aΨ,m,Ctbe,Ĥ(otsvk). To sign, we need
the following proofs:

• Commit to the vector s in both groups G1 and G2 and prove that the values are equal which involves
|Ψ̂ | proofs for QEs of the form si − s̃i = 0.

• To prove that sZ = [1, 0, . . . , 0], we need to prove the following linear equations:

|Ψ̂ |∑
i=1

(siZi,1) = 1
|Ψ̂ |∑
i=1

(siZi,j) = 0, for j = 2, . . . , β (7)

To prove that if si 6= 0 ⇒ TS.Verify(vki, sid, ai, σai) = 1, for each of the first |Ψ̂ | − 1 rows in Z, we
prove:

T̄i = T s̃i ¯̃Gi = G̃si W̄i = Wi
s̃i (8)

e(Ui, G̃i) = e(Gi, Ũi) e(Vi, G̃i) = e(Fi, Ṽi) e(W̄i, X̃ · Ṽi) = e(T̄i, Ũi)e(K · sid · Lai , ¯̃Gi)
(9)

For the last row in Z, i.e. the pseudo-attribute, the proofs required are:

σ̄ = σ
s̃|Ψ̂ | Ḡ = G

s̃|Ψ̂ | e(σ̄, X̃ · Ỹ r · G̃H(Ψ,m,Ctbe,Ĥ(otsvk)))e(Ḡ, G̃) = 1 (10)

• To prove that TPKE.Enc(epk, Ĥ(otsvk), sid; (r1, r2)) = Ctbe, the signer needs to prove that she com-
puted the ciphertext (C1, C2, C3, C̃4, C̃5) = (F r1 , Hr2 , Gr1+r2 ·sid, (G̃Ĥ(otsvk) ·K̃)r1 , (G̃Ĥ(otsvk) · L̃)r2)
correctly. Since the validity of the ciphertext is publicly verifiable, and for the sake of efficiency, it is
sufficient to provide proofs that C1, C2 and C3 were computed correctly and the rest can be verified
by checking that e(F, C̃4) = e(C1, G̃

Ĥ(otsvk) · K̃) and e(H, C̃5) = e(C2, G̃
Ĥ(otsvk) · L̃). Thus, proving

this clause requires proving the 3 following multi-scalar multiplication equations, where the first two are
linear, whereas the last equation is quadratic

C1 = F r̃1 C2 = H r̃2 C3 = Gr̃1 ·Gr̃2 · sid (11)

Note that we do not need to efficiently extract the exponents r̃1 and r̃2 from the proofs. Also, note that
the equations are simultable and thus yield zero-knowledge proofs.
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• Finally, the signer needs to prove that her identity is a Diffie–Hellman tuple satisfying e(sid, G̃) =
e(G, s̃id).

The total size of the signature in this setting is G34·|Ψ̂ |−6
1 + G32·|Ψ̂ |

2 + Zβ+1
p . Again, the verification of the

signature could be made more efficient by using batch verification techniques for Groth-Sahai proofs [20,
6].

Tracing. Computing the proof πTrace requires proving the following equations

Gf̃ = F Gh̃ = H C3 · C
−1/f̃

1 · C−1/h̃
2 = sid (12)

Those are 3 linear MSME proofs and immediately yield zero-knowledge. The total size of πTrace is G3
1×G4

2.
The proof for the following Theorem follows from that of Theorem 2.

Theorem 4. The construction is secure for a polynomial (in λ) signer identity space if the assumptions
SDLIN in G1, q-SDH, q-ADHSDH, AWFCDH, and SXDH hold.

We end by noting (similarly to [28]) that by translating the instantiation into the Type-2 setting, we can
eliminate the requirement for the signer identity space (i.e. the message space of the TPKE scheme) to be
polynomial. In this setting, we can use the instantiation of Groth-Sahai proofs based on DDH in G1 and
DLIN in G2 as in [21].

7.3 Other Instantiations

By replacing the tagged signature scheme used in the previous instantiation with one based on any structure-
preserving signature scheme [2] that is capable of signing two messages, we get more instantiations in the
standard model.

An obvious candidate for this is the signature scheme by Abe et al. [3], which can sign multiple group
elements and is at the same time compatible with Groth-Sahai proofs. The Abe et al. signature scheme yields
signatures consisting of 7 group elements and requires 2 PPE for verification.
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A From Many Challenge Queries to a Single Query

Here we use a hybrid argument to show a reduction from an adversary B against the anonymity definition
which makes at most n(λ) calls (for some polynomial n(·)) to the CHb oracle to an adversary F which
makes a single call to the CHb oracle. The hybrid argument utilizes the fact that the adversary is allowed to
learn the secret keys of any signer and hence it is capable of signing on behalf of any of them.

Lemma 1. Let DTABS be a decentralized traceable attribute-based signature scheme. For any polynomial-
time adversary B attacking the anonymity of DTABS with at most n(λ) CHb calls, there exists an adversary
F attacking the anonymity of DTABS with only a single call to CHb.

Proof. We define a series of games {Gj}n(λ)
j=0 , where in game Gj , the first j-th challenge queries by B

are answered using the signing key {sksid0,a}a∈A0 , whereas the rest of the queries are answered using
{sksid1,a}a∈A1 . Let Pj be the probability that adversary B wins game Gj . We have that

Pn(λ) = Pr[ExpAnon-0
DTABS,B(λ) = 1]

P0 = Pr[ExpAnon-1
DTABS,B(λ) = 1]

In answering B’s challenge queries, F randomly chooses i ← [1, n(λ)], all challenge queries j < i are
answered using the key {sksid0,a}a∈A0 . The i-th challenge query is answered usingF’s own challenge oracle
and the remaining challenge queries are answered using the key {sksid1,a}a∈A1 . The rest of B’s queries are
answered normally using the oracles available toF . In the game, adversaryF keeps an independent list CLF
in which it records all its answers to B’s challenge queries to ensure that B never asks to trace any of the
challenge signatures. Thus, every time B asks a Trace query, F first looks up (m,σ, Ψ) in the list CLF and
returns ⊥ if it exists. Otherwise, it forwards such a request to its own Trace oracle and returns the answer to
B.

Adversar F is shown in Fig. 9, whereas the challenge and Trace oracles used by F to answer B’s
challenge and trace queries are given in Fig. 10.

Adversary F (pp : AddS(·, ·),AddA(·),CrptA(·, ·),RevealS(·, ·),RevealA(·),CHb((·, ·), (·, ·), ·, ·),Trace(·, ·, ·))
− CLF := ∅.
− cnt := 0.
− i← [1, n(λ)].
− b∗ ← B (pp : AddS(·, ·),AddA(·),CrptA(·, ·),RevealS(·, ·),RevealA(·),CH((·, ·), (·, ·), ·, ·),Trace(·, ·, ·)).
− If cnt < i Then σ ← CHb((0,⊥), (0,⊥), ε,⊥).6\\ Oracle Query
− Return b∗.

Fig. 9. Adversary F .

6 This statement is to ensure that F will always make one call to its challenge oracle.
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CH((sid0,A0), (sid1,A1),m, Ψ):
− If Ψ(A0) 6= 1 or Ψ(A1) 6= 1 Then Return ⊥.
− cnt := cnt + 1.
− If cnt = i Then
• σ ← CHb((sid0,A0), (sid1,A1),m, Ψ). \\ Oracle Query

− Else
• {sksid0,a}a∈A0 ← RevealS(sid0,A0). \\ Oracle Query
• {sksid1,a}a∈A1 ← RevealS(sid1,A1). \\ Oracle Query
• If cnt < i Then
∗ σ ← Sign({aavkaid(a)}a∈A0 , {sksid0,a}a∈A0 ,m, Ψ).
• Else
∗ σ ← Sign({aavkaid(a)}a∈A1 , {sksid1,a}a∈A1 ,m, Ψ).

− CLF := CLF ∪ {(m,σ, Ψ)}.

Trace(m,σ, Ψ):
− If (m,σ, Ψ) ∈ CLF Then Return ⊥.
− Return Trace(m,σ, Ψ). \\ Oracle Query

Fig. 10. The challenge oracle (left) and the Trace oracle (right) used by adversary F .

Since i is chosen uniformly at random from the set [1, n(λ)], we have for every j ∈ [1, n(λ)] that

Pr[ExpAnon-0
DTABS,F (λ) = 1|i = j] = Pj

Pr[ExpAnon-1
DTABS,F (λ) = 1|i = j] = Pj−1

Thus, we have

Pr[ExpAnon-0
DTABS,F (λ) = 1] =

n(λ)∑
j=1

Pr[ExpAnon-0
DTABS,F (λ) = 1|i = j]

=
n(λ)∑
j=1

Pj ·
1

n(λ)

Similarly, we have

Pr[ExpAnon-1
DTABS,F (λ) = 1] =

n(λ)∑
j=1

Pr[ExpAnon-1
DTABS,F (λ) = 1|i = j]

=
n(λ)∑
j=1

Pj−1 ·
1

n(λ)

By the above two equations, we have

AdvAnon
DTABS,F (λ) =

∣∣Pr[ExpAnon-0
DTABS,F (λ) = 1]− Pr[ExpAnon-1

DTABS,F (λ) = 1]
∣∣

=
1

n(λ)
·
∣∣Pn(λ) − P0

∣∣
=

1
n(λ)

· AdvAnon
DTABS,B(λ)
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B Properties of Simulation-Sound Non-Interactive Zero-Knowledge Proofs

The properties we require from a simulation-sound non-interctive zero-knowledge proof system are:
• (Perfect) Completeness: ∀λ ∈ N, ∀(x,w) ∈ R, we have

Pr
[
(crs, xk)← Setup(1λ);π ← Prove(crs, x, w) : Verify(crs, x, π) = 1

]
= 1 .

• Soundness: ∀λ ∈ N, ∀x /∈ L, we have for all adversaries F

Pr
[
(crs, xk)← Setup(1λ);π ← F(crs, x) : Verify(crs, x, π) = 1

]
≤ 2−λ .

If the above probability is 0, we say the system has perfect soundness.
• Knowledge Extraction: A proof system is a Proof of Knowledge or has Knowledge Extraction if there

exists an efficient extractor algorithm Extract which can extract the witness from any proof the adversary
outputs. Note that if a proof system is a proof of knowledge then it is sound. More formally, for all
adversaries F , we have

Pr
[
(crs, xk)← Setup(1λ); (x, π)← F(crs);w ← Extract(crs, xk, x, π)

: Verify(crs, x, π) = 0 OR (x,w) ∈ R] ≤ 1− ν(λ) .

If the above probability is 1, we say the system has perfect knowledge extraction.
• Witness Indistinguishability: The system is witness indistinguishable if for all PPT adversaries F , we

have

Pr

 (crs, xk)← Setup(1λ); (stfind, x, w0, w1)← Ffind(crs); b← {0, 1};
π ← Prove(crs, x, wb); b∗ ← Fguess(stfind, π)
: (x,w0) ∈ R ∧ (x,w1) ∈ R ∧ b = b∗

 =
1
2

+ ν(λ) .

If ν(λ) = 0, we say the system has perfect witness indistinguishability.
• Zero-Knowledge: The system is zero-knowledge if ∀(x,w) ∈ R, we have for all PPT adversaries F

Pr
[
(crsSim, tr)← SimSetup(1λ) : FSim(crsSim,tr,·,·)(crsSim) = 1

]
≈ Pr

[
(crs, xk)← Setup(1λ) : FProve(crs,·,·)(crs) = 1

]
,

where Sim(crsSim, tr, x, w) outputs SimProve(crsSim, tr, x) if (x,w) ∈ R or ⊥ otherwise.
• Simulation-Soundness: The system is simulation-sound [40] if the adversary cannot produce a proof

for a false statement even after seeing simulated proofs for possibly false statements. Formally, for all
PPT adversaries F we have

Pr

[
(crsSim, tr)← SimSetup(1λ); (π∗, x∗)← FSimProve(crsSim,tr,·)(crsSim)
: (π∗, x∗) /∈ Q ∧ Verify(crs, x, π) = 1 ∧ x /∈ L

]
≈ 0 .

If we limit the number of queries to one, we call the system one-time simulation-sound.
• Simulation Sound Extractability: By combining simulation-soundness and knowledge extraction, we

get Simulation-Sound Extractable Proofs [23]. This requires that we can extract a witness from any proof
the adversary outputs even after seeing simulated proofs. More formally, (here we abuse the notation and
assume that SimSetup now also outputs the extraction key xk), we have for all PPT adversaries F that

Pr
[
(crsSim, tr, xk)← SimSetup(1λ); (x, π)← FSimProve(crsSim,tr,·)(crs, xk);w ← Extract(crs, xk, x, π)

: (x, π) /∈ Q ∧ Verify(crs, x, π) = 1 ∧ (x,w) /∈ R] ≤ ν(λ) .
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C Proof of Theorem 1

Proof. Correctness of the construction follows from that of the underlying building blocks.

Lemma 2. If the NIZK proof system NIZK1 is simulation-sound and zero-knowledge, NIZK2 is zero-knowl-
edge, the encryption scheme PKE is IND-CCA2 secure, and the hash functionH is collision-resistance then
the generic construction is fully anonymous (against full-key exposure).

Proof. We show that if there exists an adversary B which breaks the anonymity of the construction, we
can construct adversaries F1 against the NIZK property of the proof system NIZK1, F2 against the NIZK
property of the proof system NIZK2, F3,d for d ∈ {0, 1} against the IND-CCA2 security of the encryption
scheme PKE, F4 against the simulation-soundness of NIZK1, and F5 against the collision-resistance of the
hash functionH such that

AdvAnon
DTABS,B(λ) ≤2 · (AdvNIZK

NIZK1,F1
(λ) + AdvNIZK

NIZK2,F2
(λ)) + AdvIND-CCA

PKE,F3,0
(λ) + AdvIND-CCA

PKE,F3,1
(λ)

+ AdvSS
NIZK1,F4

(λ) + AdvColl
H,F5

(λ).

By the collision-resistance of H, B has a negligible advantage in finding pairs (Ψ∗,m∗) 6= (Ψ,m) such
thatH(Ψ∗,m∗, C) = H(Ψ,m,C) for some ciphertext C. If this is not the case, we can use B to construct an
adversary F5 which breaks the collision-resistance of the hash function H. Thus, from now on we assume
that there are no hash collisions.

• Adversary F1: Adversary F1 runs the Setup algorithm normally and chooses all the keys itself. The
only two differences here is that the CRS crs1 used for NIZK1 is obtained from F1’s environment,
whereas crs2 used for NIZK2 is chosen by F1 by running (crs2, tr2) ← NIZK2.SimSetup(1λ). F1

forwards pp := (crs1, crs2, epk, tvk,A,H) to B.
When asked AddA queries, F1 chooses the secret/verification keys for the authorities itself. Thus, F1

can answer any AddS queries itself.
To answer Trace queries, F1 just decrypts the ciphertext within the signature, and simulates the proof
πTrace.
When asked a CHb((sid0,A0), (sid1,A1),m, Ψ) query, F1 randomly chooses b← {0, 1} and generates
the signature by signer sidb and then forwards the details of the witness for the signature to its environ-
ment which responsds with a proof π which F1 needs to tell if it is a real proof or a simulated one. F1

constructs the rest of the signature and forwards it to B. The output of F1 is that of B.
• Adversary F2: Adversary F2 runs the Setup algorithm normally and chooses all the keys itself. The

only difference here is the the CRS crs2 used for NIZK2 is obtained from F2’s environment.
Adversary F2 forwards pp := (crs1, crs2, epk, tvk,A,H) to B.
When asked AddA queries, F2 chooses the secret/verification keys for the authorities itself. Thus, F2

can answer any AddS queries itself.
To answer Trace queries, F2 just decrypts the ciphertext within the signature, and the proof πTrace is
obtained from F2’s Prove oracle. To answer the challenge query CHb((sid0,A0), (sid1,A1),m, Ψ), F2

randomly chooses b ← {0, 1} and generates the signature by signer sidb and constructs the proof π by
itself. It then forwards the challenge signature to B. The output of F2 is whatever B outputs.

• Adversaries F3,0 and F3,1: The details of adversaries F3,0 and F3,1 against the IND-CCA security of
PKE are identical except for the difference in answering B’s challenge query.
Adversary F3,d gets epk from its IND-CCA game (therefore it does not know the corresponding de-
cryption key esk) and chooses crs1 for NIZK1 and crs2 for NIZK2 as simulated strings. In its IND-CCA
game, F3,d has access to a decryption oracle Dec.
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Adversary F3,d starts B with input pp := (crs1, crs2, epk, tvk,A,H). When asked AddA queries, F3,d

chooses the secret/verification keys for the authorities itself. Thus, F3,d can answer any AddS/Sign
queries itself. To answer Trace queries, F3,d sends the ciphertext C used in the input signature to its
decryption oracle and then simulates the proof πTrace (since it does not know the tracing key).
When asked a CHb((sid0,A0), (sid1,A1),m, Ψ) query, F3,d randomly chooses d ← {0, 1} and sets
pd := sidd and p1−d := 0|sidd|. It then uses (p0, p1) as the challenge pair in its IND-CCA game. When it
receives the challenge ciphertext C, F3,d constructs the rest of the challenge signature by simulating the
proof π.
The rest of B’s queries are answered normally as in Fig. 1.
If in the game, B queries the Trace oracle on a signature (π′, C), i.e. one that re-uses the challenge
ciphertext C but the associated proof is different from that used in the challenge signature, then F3,d

outputs its guess d; otherwise, it outputs whatever B outputs.
• Adversary F4: Adversary F4 runs the Setup algorithm normally and chooses all the keys itself. The

only two differences here is that the CRS crs1 used for NIZK1 is obtained from F1’s simulation-
soundness environment and crs2 for NIZK2 is chosen by running (crs2, tr2) ← NIZK2.SimSetup(1λ).
F4 forwards pp := (crs1, crs2, epk, tvk,A,H) to B.
When asked AddA queries, F4 chooses the secret/verification keys for the authorities itself. Thus, F4

can answer any AddS queries itself.
To answer Trace queries, F4 just decrypts the ciphertext within the signature, and simulates the proof
πTrace.
When asked a CHb((sid0,A0), (sid1,A1),m, Ψ) query, F4 computes C as the encryption of the string
of zeros of length equal to the bit length of the signer identity space and uses the simulated proof it gets
from its game to construct the challenge signature that it forwards to B.
If during the game, B managed to query the Trace oracle on a signature σ′ = (π′, C), i.e. one that
re-uses the same challenge ciphertext but associated with a different proof π′, F4 outputs the statement
with which the proof π′ is associated along with π′ as its answer in its simulation-soundness game.
Otherwise, it aborts.

Lemma 3. The generic construction is fully unforgeable if the NIZK proof systems NIZK1 and NIZK2 are
sound, the hash function H (used in encoding pseudo-attributes) is collision-resistant, and the digital sig-
nature scheme DS and the tagged signature scheme TS are both existentially unforgeable.

Proof. Since the NIZK proof systems NIZK1 and NIZK2 are sound, the adversary has a negligible advantage
in breaking full unforgeability by faking proofs for a false statement. Also, by the security of the hash
functionH, the adversary has a negligible probability in finding collision between the encoding of different
pairs of message/signing predicate. Thus, we proceed to show that if there exists an adversary that wins
the full unforgeability game then we can construct adversaries F1 against the unforgeability of the tagged
signature scheme TS, and adversary F2 against the unforgeability of the digital signature scheme DS such
that

AdvF-Unforge
DTABS,B(λ) ≤ κ(λ) · AdvUnfor

TS,F1
(λ) + AdvUnfor

DS,F2
(λ),

where κ(λ) is a polynomial in λ representing an upper bound on the number of honest attribute authorities
B is allowed to use in the game.

• Adversay F1: Adversary F1 gets the tagged signature scheme’s verification key vk from its game and
has access to an oracle Sign that it uses to obtain tagged signatures that verify w.r.t. vk on messages
and tags (i.e. identities and attributes) of its choice. Adversary F1 starts by running (crs1, xk1) ←
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NIZK1.Setup(1λ), crs2 ← NIZK2.Setup(1λ) and creating (tsk, tvk) honestly. It also creates the key pair
(esk, epk) for the encryption scheme. It then forwards pp := (crs1, crs2, epk, tvk,A,H) and tk := esk
to B.
Adversary F1 randomly chooses i ← {1, . . . , κ(λ)} and guesses that B’s forgery will involve forging
an attribute managed by the attribute authority i. When asked AddA queries, for all authorities j 6= i,
F1 chooses the secret/verification keys for the authority itself. For authority i, it sets its verification key
to vk it got from its game (and thus it does not know the corresponding secret key). If in the game, B
issues RevealA query on authority i, F1 aborts the game.
WheneverB asks AddS queries, if the user has attributes managed by authority i, it forwards such a query
to its Sign oracle; otherwise, it answers the query itself by using the authorities’ secret keys available to
it. When asked for Sign queries on (sid,A,m, Ψ), F1 answers the query by first encrypting the identity
sid and producing a signature on the pseudo-attribute that verifies w.r.t tvk. Note that F1 knows tsk
and hence it can produce such a signature. By the witness-indistinguishability of NIZK1 (implied by
the zero-knowledge property) B cannot tell how the modified predicate was satisfied and hence cannot
distinguish this signature from a real signature where the actual attributes of the user are used. The rest
of B’s queries are answered normally as in Fig. 1.
Eventually, when B outputs its forgery, F1 uses the NIZK1’s extraction key xk1 to extract the witness
and returns the tagged signature on the identity and the attribute if B’s forgery involved forging a tagged
signature. Otherwise, it aborts (i.e. if the forgery was by forging a pseudo-attribute). If the signature does
not involve forged attributes managed by authority i that F1 has gussed, it aborts. The probability that
F1 guesses the correct authority is 1

κ(λ) .
• Adversary F2: By the collision-resistant property of the hash function H, the adversary cannot find

collisions between different predicate/message/ciphertext tuples and hence we ignore this case.
Adversary F2 gets tvk from its game and has access to an oracle Sign that it uses to obtain digital
signatures that verify w.r.t. tvk on messages of its choice. It runs (crs1, xk1) ← NIZK1.Setup(1λ),
crs2 ← NIZK2.Setup(1λ). It also creates the key pair (esk, epk) for the encryption scheme. It then
forwards pp := (crs1, crs2, epk, tvk,A,H) and tk := esk to B.
When asked for AddA queries, F2 creates the authority keys itself. Whenever B asks AddS queries, F2

uses the corresponding authorities’ secret keys aaskaid(a) to create the key for the signer. When asked
for Sign queries on (sid,A,m, Ψ), F2 first encrypts sid and queries its Sign oracle to obtain a signature
on the corresponding pseudo-attribute matching (Ψ,m,C) and then constructs the rest of the signature
by generating the proof π. Again, by the witness-indistinguishability of NIZK1 (implied by the zero-
knowledge property) B cannot tell which witness was used in the proof. The rest of B’s queries are
answered normally as in Fig. 1.
Eventually, when B outputs its forgery, F2 uses NIZK1’s extraction key xk1 to extract the witness and
returns the signature on the pseudo-attribute aΨ̂∗,m∗,C∗ if the forgery was done by forging a signature on
a pseudo-attribute; otherwise, it aborts.

Lemma 4. The generic construction is traceable if the NIZK proof system NIZK1 is sound, and the digital
signature scheme DS and the tagged signature scheme TS are both existentially unforgeable.

Proof. The details are very similar to that of full unforgeability. The difference between the full unforge-
ability proof and the traceability proof is that here the adversary is not allowed to corrupt or learn the secret
key of any attribute authority; otherwise, it is easy to create untraceable signatures.

Since the NIZK proof system NIZK1 is sound, the adversary has a negligible advantage in succeeding
by faking proofs for false statements. Thus, we proceed to show that if there exists an adversary that wins
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the traceability game then we can construct adversaries F1 against the unforgeability of the tagged signature
scheme TS, and adversary F2 against the unforgeability of the digital signature scheme DS such that

AdvTrace
DTABS,B(λ) ≤ κ(λ) · AdvUnfor

TS,F1
(λ) + AdvUnfor

DS,F2
(λ),

where κ(λ) is a polynomial in λ representing an upper bound on the number of honest attribute authorities
B is allowed to use in the game.

• Adversay F1: Adversary F1 gets the tagged signature scheme’s verification key vk from its game and
has access to an oracle Sign that it uses to obtain tagged signatures that verify w.r.t. vk on messages
and tags (i.e. identities and attributes) of its choice. Adversary F1 starts by running (crs1, xk1) ←
NIZK1.Setup(1λ), crs2 ← NIZK2.Setup(1λ) and creating (tsk, tvk) honestly. It also creates the key pair
(esk, epk) for the encryption scheme. It then forwards pp := (crs1, crs2, epk, tvk,A,H) and tk := esk
to B.
Adversary F1 randomly chooses i ← {1, . . . , κ(λ)} and guesses that B’s untraceable signature in-
volves the attribute authority i. When asked AddA queries, for all authorities j 6= i, F1 chooses the
secret/verification keys for the authority itself. For authority i, it sets its verification key to vk it got from
its game (and thus it does not know the corresponding secret key).
WheneverB asks AddS queries, if the user has attributes managed by authority i, it forwards such a query
to its Sign oracle; otherwise, it answers the query itself by using the authorities’ secret keys available
to it. When asked for Sign queries on (sid,A,m, Ψ), F1 answers the query by producing a signature
on the pseudo-attribute that verifies w.r.t tvk. Note that F1 knows tsk and hence it can produce such
a signature. By the witness-indistinguishability of NIZK1 (implied by the zero-knowledge property) B
cannot tell how the modified predicate was satisfied and hence cannot distinguish this signature from
a real signature where the actual attributes of the user are used. The rest of B’s queries are answered
normally as in Fig. 1.
Eventually, when B outputs its forgery, F1 uses the NIZK1’s extraction key xk1 to extract the witness
and returns the tagged signature on the identity and the attributes if the forgery involves the attribute
authority i. Otherwise, it aborts. The probability that F1 guesses the correct authority is 1

κ(λ) .
• Adversary F2: Adversary F2 gets tvk from its game and has access to an oracle Sign that it uses to

obtain signatures that verify w.r.t. tvk on messages of its choice. It runs (crs1, xk1)← NIZK1.Setup(1λ)
and crs2 ← NIZK2.Setup(1λ). It also creates the key pair (esk, epk) for the encryption scheme. It then
forwards pp := (crs1, crs2, epk, tvk,A,H) and tk := esk to B.
When asked for AddA queries, F2 creates the authority keys itself. Whenever B asks AddS queries, F2

uses the corresponding authorities’ secret keys aaskaid(a) to create the key for the signer. When asked
for Sign queries on (sid,A,m, Ψ), F2 queries its Sign oracle to obtain a signature on the correspond-
ing pseudo-attribute matching (Ψ,m,C) and constructs the rest of the signature by encrypting sid and
generating the proof π using sid and the signature on the pseudo-attribute aΨ,m,C as a witness. By the
witness indistinguishability of NIZK1, the adversary cannot tell which witness was used in creating the
proof. The rest of B’s queries are answered normally as in Fig. 1.
Eventually, when B outputs its forgery, F2 uses NIZK1’s extraction key xk1 to extract the witness and
returns the signature on the pseudo-attribute aΨ̂∗,m∗,C∗ if B created the untraceable signature by using a
forged signature on a new pseudo-attribute that it did not get from querying F2; otherwise, F2 aborts.

D Proof of Theorem 2

Proof. Correctness of the construction follows from that of the underlying building blocks.
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Lemma 5. If the NIZK1 and NIZK2 proof systems are zero-knowledge, the tag-based encryption scheme
TPKE is selective-tag weakly IND-CCA secure, the one-time signature OTS is strongly existentially un-
forgeable, and the hash functions Ĥ and H are collision-resistant then the construction is fully anonymous
(against full-key exposure).

Proof. We show that if there exists an adversary B which breaks the anonymity of the construction, we
can construct adversaries F1 against the collision-resistance of the hash function Ĥ, F2 against the strong
unforgeability of the one-time signature OTS, F3 against the collision-resistance of the hash functionH, F4

against the NIZK property of the proof system NIZK1, F5 against the NIZK property of the proof system
NIZK2, and F6 against the selective-tag weakly IND-CCA security of the tag-based encryption scheme
TPKE.

By the collision-resistance of the hash function Ĥ, B has a negligible probability in finding otsvk′ such
that Ĥ(otsvk′) collides with the tag Ĥ(otsvk∗) we will use for the tag-based ciphertext within the challenge
signature. If this is not the case, then we can use B to construct an adversary F1 that breaks the collision-
resistance of Ĥ.

By the strong existential unforgeability of OTS, we also have that B has a negligible probability in
forging a one-time signature under otsvk∗ used in the challenge signature. If this is not the case, we can
construct an adversary F2 that wins the strong unforgeability game of the one-time signature.

By the collision-resistance of the H, B has a negligible advantage in finding pairs (Ψ∗,m∗) 6= (Ψ,m)
such that H(Ψ∗,m∗, Ctbe, Ĥ(otsvk)) = H(Ψ,m,Ctbe, Ĥ(otsvk)). If this is not the case, we can use B to
construct an adversary F3 which breaks the collision-resistance of the hash functionH. Thus, from now on
we assume that there are no such hash collisions.

We now start NIZK1 in the simulation setting which is by the security of NIZK1 is indistinguishable from
the soundness setting. The proof π is thus now zero-knowledge and hence does not reveal any information
about the witness.

We now also start NIZK2 in the simulation setting which is indistinguishable from the soundness setting.
The proof πTrace is now also zero-knowledge and hence B cannot tell simulated proofs from real proofs.

We now proceed to show how to use B to construct an adversary F6 against the selective-tag weakly
IND-CCA security of TPKE.

Adversary F6 runs the Setup algorithm where it starts by randomly choosing a key pair (otsvk∗, otssk∗)
for OTS that it will use in answering B’s challenge signature. Note that we needed to choose the key pair
beforehand as the tag-based encryption scheme is only selective-tag secure and hence the challenger in the
ST-WIND-CCA game needs to know the challenge tag before it sends the public-key epk for TPKE. F6

sends Ĥ(otsvk∗) to its challenger and gets back epk. In its game, F6 has access to a decryption oracle Dec
which it can query on any ciphertext under any tag different from Ĥ(otsvk∗). F6 chooses crs1 and crs2 as
simulation reference strings. F6 also chooses a key pair (tvk, tsk) for the digital signature scheme DS. F6

forwards pp := (crs1, crs2, epk, tvk,A,H, Ĥ) to B.
When asked AddA queries, F6 chooses the secret/verification keys for the authorities itself. Thus, F6

can answer any AddS queries itself.
To answer the challenge query CHb((sid0,A0), (sid1,A1),m, Ψ), F6 sends (sid0, sid1) as its challenge

in its ST-WIND-CCA game and gets a ciphertext under the tag Ĥ(otsvk∗) of either the plaintext sid0 or sid1

which he needs to distinguish. F6 can now construct the rest of the challenge signature by simulating the
proof π and signing the whole thing with otssk∗ to obtain σots.

To answer Trace queries, F6 just uses its decryption oracle to get the decryption of Ctbe which is part
of the signature and then simulates proof πTrace. Note that since we have chosen the challenge tag otsvk∗

uniformly at random and since we already eliminated any case where any signature sent to Trace uses the
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same tag as that we used for the challenge signature, such a query will be accepted by F6’s decryption
oracle because the tag is different from the tag used in the challenge ciphertext. The rest of B’s queries are
answered normally as in Fig. 1.

Finally, when B outputs its guess, F6’s output is that of B

Lemma 6. The construction is fully unforgeable if NIZK1 and NIZK2 proof systems are sound, the hash
functions H (used in encoding pseudo-attributes) and Ĥ are collision-resistant, and the one-time signature
OTS, the digital signature DS and the tagged signature TS are all existentially unforgeable.

Proof. We instantiate both NIZK1 and NIZK2 proof systems in the soundness setting and hence the adversary
cannot break full unforgeability by faking proofs for a false statement. Thus, we proceed to show that if
there exists an adversary that wins the full unforgeability game then we can construct adversaries F1 against
the unforgeability of the tagged signature scheme TS, adversary F2 against the unforgeability of the digital
signature scheme DS, adversaryF3 against the strong unforgeability of the one-time signature scheme OTS,
and adversaries F4 and F5 against the collision-resistance of the hash functionsH and Ĥ, respectively, such
that

AdvF-Unforge
DTABS,B(λ) ≤ κ(λ) ·AdvUnfor

TS,F1
(λ)+AdvUnfor

DS,F2
(λ)+ δ(λ) ·AdvUnfor

OTS,F3
(λ)+AdvColl

H,F4
(λ)+AdvColl

Ĥ,F5
(λ),

where κ(λ) and δ(λ) are polynomials in λ representing an upper bound on the number of honest attribute
authorities and sign queries, respectively, B is allowed to make in the game.

By the security of the hash function H, B has a negligible probability in finding collisions between the
encodings of different tuples of signing predicate/message/ciphertext/OTS verification key. If this is not the
case, we can use B to construct an adversary F4 that breaks the collision-resistance ofH.

Similarly, by the collision-resistance of the hash function Ĥ, B has a negligible probability in finding
two different one-time signature keys otsvk 6= otsvk′ such that Ĥ(otsvk) = Ĥ(otsvk′). If this is not the
case, we can use B to construct an adversary F5 that breaks the collision-resistance of Ĥ.

Thus, from now on we assume that there are no hash collisions.

• Adversay F1: Adversary F1 gets the tagged signature scheme’s verification key vk from its game and
has access to an oracle Sign that it uses to obtain tagged signatures that verify w.r.t. vk on messages
and tags (i.e. identities and attributes) of its choice. Adversary F1 starts by running (crs1, xk1) ←
NIZK1.Setup(1λ), (crs2, xk2)← NIZK2.Setup(1λ) and choosing (tsk, tvk) honestly. It also creates the
key pair (esk, epk) for the tag-based encryption scheme TPKE. It then forwards pp := (crs1, crs2, epk,
tvk,A,H, Ĥ) and tk := esk to B.
Adversary F1 randomly chooses i ← {1, . . . , κ(λ)} and guesses that B’s forgery will involve forging
an attribute managed by the attribute authority i. When asked AddA queries, for all authorities j 6= i,
F1 chooses the secret/verification keys for the authority itself. For authority i, it sets its verification key
to vk it got from its game (and thus it does not know the corresponding secret key). If in the game, B
issues RevealA query on authority i, F1 aborts the game.
Whenever B asks AddS queries, if the user has attributes managed by authority i, it forwards such a
query to its Sign oracle; Otherwise, it answers the query itself by using the authorities’ secret keys
available to it.
When asked for Sign queries on (sid,A,m, Ψ), F1 first chooses a fresh key pair (otsvk, otssk) for the
one-time signature OTS and encrypts sid using Ĥ(otsvk) as a tag. It then uses tsk to generate a signature
on the pseudo-attribute. Note that by the witness-indistinguishability of NIZK1, B cannot tell whether
we constructed the signature by using real attributes that sid possesses or using a pseudo-attribute. F1

forwards the signature to B. The rest of B’s queries are answered normally as in Fig. 1.

30



Eventually, when B outputs its forgery, F1 uses the NIZK1’s extraction key xk1 to extract the witness
and returns the tagged signature on the identity and the attribute if B’s forgery involved forging a tagged
signature. Otherwise, it aborts. F1 also aborts if the forgery does not involve forged attributes managed
by authority i that F1 has guessed. The probability that F1 guesses the correct authority is 1

κ(λ) .
By the existential unforgeability of the tagged signature scheme, the probability of B winning in this
case is negligible.

• Adversary F2: Adversary F2 gets tvk from its game and has access to an oracle Sign that it uses to
obtain signatures that verify w.r.t. tvk on messages of its choice. It runs (crs1, xk1)← NIZK1.Setup(1λ),
(crs2, xk2) ← NIZK2.Setup(1λ). It also creates the key pair (esk, epk) for the tag-based encryption
scheme TPKE. It then forwards pp := (crs1, crs2, epk, tvk,A,H, Ĥ) and tk := esk to B.
When asked for AddA queries, F2 creates the authority keys itself.
Whenever B asks AddS queries, F2 uses the corresponding authorities’ secret keys aaskaid(a) to create
the key for the signer.
When asked for Sign queries on (sid,A,m, Ψ), F2 generates a fresh key pair (otsvk, otssk) for the
one-time signature. It then produces the tag-based ciphertext Ctbe which is the encryption of sid us-
ing Ĥ(otsvk) as a tag and forwards the pseudo-attribute H(Ψ,m,Ctbe, Ĥ(otsvk)) to its oracle. After
receiving the signature from its own sign oracle, F2 produces the proof π using sid and the signa-
ture on the pseudo-attribute as a witness. It then signs the whole thing with otssk and returns σ :=
(σots, π, Ctbe, otsvk) as the answer. By the witness-indistinguishability of the proof system NIZK1, the
adversary cannot tell which witness was used in the proof. The rest of B’s queries are answered normally
as in Fig. 1.
Eventually, when B outputs its forgery, F2 uses NIZK1’s extraction key xk1 to extract the witness and
returns the signature on the pseudo-attribute am∗,Ψ̂∗,Ctbe,Ĥ(otsvk∗) if the forgery was done by forging a
signature on a pseudo-attribute; otherwise, it aborts.
By the existential unforgeability of the of the digital signature scheme DS, the probability of B winning
in this case is negligible.

• Adversary F3: Adversary F3 gets otsvk∗ from its game and has access to an oracle Sign that it uses to
obtain a single one-time signature that verify w.r.t. otsvk on a message of its choice. It runs (crs1, xk1)←
NIZK1.Setup(1λ), (crs2, xk2) ← NIZK2.Setup(1λ). It also creates the key pair (esk, epk) for the tag-
based encryption scheme TPKE and (tsk, tvk) for the digital signature DS. It then forwards pp :=
(crs1, crs2, epk, tvk,A,H, Ĥ) and tk := esk to B.
When asked for AddA queries, F3 creates the authority keys itself. Whenever B asks AddS queries, F3

uses the corresponding authorities’ secret keys aaskaid(a) to create the key for the signer.
Adversary F3 randomly chooses i ← {1, . . . , δ(λ)} and guesses that B’s forgery will involve forging a
one-time signature that verifies under otsvk∗ used in answering the i-th signing query.
When asked for the j-th Sign query on (sid,A,m, Ψ), if j 6= i,F3 chooses a fresh key pair (otsvk, otssk)
for the one-time signature scheme and answers the query by itself. If j = i, F3 encrypts sid using
Ĥ(otsvk∗) (i.e. the public key it got from its game) as a tag to obtain Ctbe, it then generates a signature
on the pseudo-attribute and constructs the proof π. It then forwards (π,Ctbe, otsvk∗) as the message
to its one-time signature signing oracle to get a one-time signature σots. F3 sends the signature σ :=
(σots, π, Ctbe, otsvk∗) to B.
The rest of B’s queries are answered normally as in Fig. 1.
Eventually, when B outputs its forgery, F3 aborts if the B’s forgery did not involve forging a one-time
signature that verifies w.r.t otsvk∗ it got from its game. The probability that B forges a one-time signature
that verifies w.r.t the same otsvk∗ is 1

δ(λ) .
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By the strong existential unforgeability of the one-time signature OTS, B has a negligible advantage in
wining this case.
This concluded the proof.

Lemma 7. The construction is traceable if the NIZK1 proof system is sound, and the digital signature DS
and the tagged signature TS are all existentially unforgeable.

Proof. Since the NIZK proof system NIZK1 is sound, the adversary has a negligible advantage in succeeding
by faking proofs for false statements. Thus, we proceed to show that if there exists an adversary that wins the
traceability game then we can construct adversaries F1 attacking the unforgeability of the tagged signature
scheme TS, and adversary F2 attacking the unforgeability of the digital signature scheme DS such that

AdvTrace
DTABS,B(λ) ≤ κ(λ) · AdvUnfor

TS,F1
(λ) + AdvUnfor

DS,F2
(λ),

where κ(λ) is a polynomial in λ representing an upper bound on the number of honest attribute authorities
B is allowed to use in the game.

The reductions are very similar to those in the full unforgeability game. The difference here is that B is
not allowed to make any CrptA or RevealA queries.
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