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Abstract 
 

 

The human nasopharynx is a reservoir of both commensal and pathogenic bacteria that can 

be easily transmitted from one individual to another. It has long been hypothesised that 

host commensal flora give protection from carriage of pathogens and invasive disease. The 

commensal Neisseria lactamica has previously been associated with protection against the 

closely related human pathogen Neisseria meningitidis, which is thought to be due to the 

acquisition of cross-reactive immunity to N. meningitidis. The objective of this study was to 

identify the extent of protection by N. lactamica in the absence of host immune cells, using 

an in vitro model of the human nasopharyngeal epithelium with the Detroit 562 (D562) cell 

line.  

N. lactamica has been demonstrated to attenuate the induction of innate inflammatory 

cytokines and chemokines from D562 cells challenged with N. meningitidis. For the first 

time in this study, N. lactamica was found to attenuate the induction of IL6, IL8 and TNFα 

from D562 cells challenged with the unrelated Gram-positive human pathogen 

Streptococcus pneumoniae. Attenuation by N. lactamica did not extend to suppression of 

MAPK pathways when stimulated with chemical agonists, but was able to suppress 

inflammation induced through the intracellular PAMP receptor TLR3, which is not involved 

in meningococcal or pneumococcal inflammation. This suggests a global mechanism of 

attenuation in host cells by N. lactamica. 

N. lactamica was further demonstrated to reduce association with and invasion of D562 

epithelial cells by N. meningitidis serogroup B (MenB) by up to 60% and 90%, respectively. 

This suppression was dependent on live N. lactamica and did not require invasion of host 

cells by the commensal, suggesting an active mechanism employed by N. lactamica. The 

occasional human commensal coloniser Neisseria polysaccharea was found to reduce 

adhesion and invasion of MenB to a similar degree, however the related commensal 

Neisseria cinerea was not. The reduction in MenB association with host cells protected host 

cells from MenB-induced apoptosis, which was mediated by activation of caspase 3. 

This study demonstrates that commensal Neisseria spp. N. lactamica and N. polysaccharea 

protect the host at the nasopharyngeal epithelium from experimental colonisation and 

invasive disease by MenB. Additionally, commensal neisseriae protect against inflammation 

and cell death induced by the unrelated pathogen S. pneumoniae. Therefore, commensal 

neisseriae warrant further study to evaluate their effectiveness for use as probiotics to 

protect against bacterial pathogens responsible for meningitis. 
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1.1 Background  

From the moment we are born we are being colonised with a plethora of micro-organisms 

that when combined make up our microbiome or microbiota (Human Microbiome Project 

Consortium, 2012). It has been estimated that the human body is populated by 

approximately 10 times the number of bacterial cells than eukaryotic cells with the majority 

of bacteria found in the gastrointestinal (GI) tract (Savage, 1977). However, more recent 

studies have found that approximately equal proportions of bacteria exist on the skin (21%) 

and in the oral cavity (26%) as are found in the GI tract (29%), with the airways (14%) being 

the next most colonised (Peterson et al., 2009). The microbiome during the first year or so 

of life has been found to be unstable and uneven, with a greater diversity in the gut, but 

with a more even distribution of microbial mass appearing through development (Capone 

et al., 2011). These are predominantly commensal organisms which compete for 

dominance within specialised human sites resulting in similarities in microbial flora in 

neighbouring sites and more diversity in genera between sites. For example, predominantly 

Bacterioides are found in the gut and Streptococcus within the oral cavity (Morgan, Segata 

& Huttenhower, 2013). In health, the interaction between microbes and host cells is 

balanced and relatively stable, described as being in a state of homeostasis. This 

homeostasis between host and microbiota can become disrupted causing the induction of 

disease, particularly through the use of oral broad spectrum antibiotics (Willing, Russell & 

Finlay, 2011). This is significant as disruption of the nasal microbiota may affect the host 

immune response, which has been shown to be modified by communication between 

innate host cells of the nasal mucosa and the host immune cells (Yeh et al., 2013). 
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Figure 1.1  Lateral wall of human oronasal cavity. 

Specific sites within the nasal cavity comprise of mucosa with epithelial types; a) skin at the 

nostril, b) squamous epithelium without microvilli, c) transitional epithelium with short 

microvilli, d) pseudostratified columnar epithelium with few ciliated cells, and e) 

pseudostratified columnar epithelium with many ciliated cells (Sahin-Yilmaz & Naclerio, 

2011). 

 

Earlier studies on the human microbiota used culture-dependent techniques to identify 

micro-organisms that could be isolated (Cartwright et al., 1987). However, this could lead to 

both misidentification of species and false negatives due to the difficulty in culturing certain 

organisms. More recently in addition to culture-dependent techniques, culture-

independent molecular techniques have been used to identifying organisms from samples 

(Hugenholtz, Goebel & Pace, 1998). This has been through the sequencing of specific genes, 

in particular the 16S ribosomal RNA gene (Patel, 2001; Peterson et al., 2009), or most 

recently metagenomic studies involving sequencing of many genes from the original sample 

taken (Bogaert et al., 2011; Belda-Ferre et al., 2012).  
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Of particular interest to this study is the microbiota of the upper respiratory tract. Many 

species of bacteria have tropism for the human oronasal cavity, an ecological niche that is 

inhabited within the first few months of infancy (Leiberman et al., 1999). Streptococcus, 

Neisseria and Haemophilus spp. are most predominant in the oro- and naso-pharynx in 

adults (Belda-Ferre et al., 2012), whereas Staphylococcus spp. resides at the anterior nares 

(Figure 1.1) and the nasopharynx (Human Microbiome Project Consortium, 2012). In 

children under the age of 5 years Moraxella and Haemophilus spp are most abundant in the 

oro- and naso-pharynx, with Streptococcus and Neisseria spp being less abundant than in 

adults (Bogaert et al., 2011). 

Within these genus of bacteria, are the pathogenic species Neisseria meningitidis, 

Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus, which are 

found as part of the microbiota of healthy carriers (asymptomatic) as well as carriers 

showing symptoms (symptomatic) of invasive disease (Cartwright et al., 1987; Bogaert et 

al., 2004). Once having colonised, any one of these species may migrate to, and cause 

localised inflammation in, the lung (pneumonia) or via the Eustachian tube (Figure 1.1) the 

middle ear (otitis media). Otitis media is predominantly caused by S. pneumoniae and H. 

influenzae (Revai, Mamidi & Chonmaitree, 2008). Additionally, the bacteria may move 

through the nasopharyngeal mucosa to cause invasive disease by entering the blood stream 

(bacteraemia), which may lead to systemic inflammation (sepsis). Once in the blood it may 

be able to invade the cerebral spinal fluid (CSF) and from there invade and cause 

inflammation in meningeal cells of the brain (meningitis). S. pneumoniae, N. meningitidis 

and H. influenzae have historically been the main causes of bacterial meningitis (Thigpen et 

al., 2011). 
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1.2 Nasopharyngeal pathogens 

1.2.1 N. meningitidis 

The genus Neisseria is comprised mainly of Gram-negative diplococci and contains two 

species of human pathogens. N. gonorrhoeae is primarily found in the urogenital tract of 

humans and is the causative agent of the localised infection gonorrhoea. N. meningitidis 

(Nmen; meningococcus) colonises the human upper respiratory tract, particularly the 

nasopharynx, and has been found to asymptomatically colonise the oronasopharynx of 

approximately 10% of the population (Cartwright et al., 1987), with the greatest carriage of 

between 25-40% occurring in older children and adults aged 15 to 25 years (Holten, Bratlid 

& Bøvre, 1978; Cartwright et al., 1987; Christensen et al., 2010). However, due to variations 

in sampling techniques this figure may be underestimated (Sim et al., 2000). There is 

evidence that invasive meningococcal disease may occur approximately seven weeks post-

colonisation in susceptible individuals (Neal et al., 1999; Ala’Aldeen et al., 2000), and that 

genetic factors in the host can increase susceptibility to invasive disease (Wright, Hibberd & 

Levin, 2009). Frequenting communal gatherings, cigarette smoking, intimate kissing and 

alcohol consumption can also influence acquisition of Nmen (Imrey et al., 1995, 1996; 

MacLennan et al., 2006). 

Nmen is classified into 13 different serogroups (A, B, C, D, 29E, H, I, K, L, Y, W-135, X and Z) 

based on the immunological recognition of antigenic variations in the polysaccharide (PS) 

capsule that surrounds the bacterium. However, this classification has very recently been 

revised to exclude serogroup D, leaving 12 serogroups, with serogroups 29E and W-135 

being renamed simply as E and W respectively (Harrison et al., 2013). Of these, 6 

serogroups (A, B, C, W, X, and Y) are associated with invasive disease (Rosenstein et al., 

2001). Further classification into serotypes is based on antibody recognition of the outer 

membrane protein (OMP) porin B (PorB), subserotypes by the OMP PorA and immunotypes 

by lipopolysaccharides (LPS) expressed by each strain or isolate (Frasch, Zollinger & 
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Poolman, 1985). In addition to encapsulated Nmen there are nongroupable strains that do 

not possess the siaD gene for expression of a PS capsule, which are only associated with 

carriage and not invasive disease (Claus et al., 2002). For example the antigenic type 

designated for Nmen serogroup B (MenB) strain MC58 is B:15:P1.7,16:L3,8 detailing the 

serogroup: serotype: subserotype: immunotype of the strain (Tzeng & Stephens, 2000).  

The presence of a PS capsule is associated with intracellular survival and therefore virulence 

(Spinosa et al., 2007) although the expression of capsule is known to be switched on and off 

during carriage (Ala’Aldeen et al., 2000). Single strains can acquire and switch capsular 

serogroups through genetic exchange (Lancellotti et al., 2006; Beddek et al., 2009) and lose 

the ability to synthesise capsule through genetic mutation (Weber et al., 2006). More 

recently PCR techniques have been used to classify Neisseria spp. Multilocus enzyme 

electrophoresis (MLEE) that produces electrophoresis types (ETs) based on the mobility of 

enzymes through starch gels (Selander et al., 1986), or multilocus sequence typing (MLST) 

of fragments of 7 neisserial housekeeping genes has been used to classify Neisseria spp. 

into sequence types (STs). Similar lineages are further classified into clonal complexes, each 

of which can include multiple serogroups (Maiden et al., 1998, 2013). Through these 

techniques hypervirulent or hyperinvasive lineages were identified that were responsible 

for the majority of invasive disease, which in Europe were the ST-41-44, ST-11, ST-32, ST-8, 

and ST-269 complexes (Brehony, Jolley & Maiden, 2007). 

The introduction of PS-conjugate vaccines to the major disease-causing serogroups, namely 

A, C, Y and W, has resulted in a large decline in these serogroups in the countries using 

vaccinations. For instance, ST-11 is predominantly associated with serogroup C Nmen 

(MenC), and an epidemic in the UK in the 1990s prompted the construction of a conjugate 

MenC vaccine (Ramsay et al., 1997). After its introduction in the UK for those under the age 

of 19 years there was a 75% reduction in MenC carriage (Maiden et al., 2008). In contrast, 

the capsular polysaccharide of MenB closely resembles polysialic acid in human neural cells, 
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and so concerns of inappropriate immune response to host antigens has restricted the use 

of MenB PS in vaccinations (Finne et al., 1987). Despite medical interventions including 

antibiotic treatments, meningococcal disease still has a fatality rate of 10% (Pollard et al., 

2007) and since the introduction of the MenC conjugate vaccine in the UK, MenB has 

become the most prevalent serogroup associated with invasive disease (Maiden et al., 

2008).  

MenB is also the serogroup most associated with epidemics worldwide and is the 

predominant serogroup for invasive meningococcal disease in Europe, North America and 

Australasia. Invasive disease from MenC is more prevalent in South America, and MenA 

accounts for over 90% of invasive meningococcal disease in Africa (Racloz & Luiz, 2010; 

Halperin et al., 2012). The incidence of invasive meningococcal disease is approximately 1 

case in 100,000 of the population worldwide, though 10-1000 times higher in areas of 

Africa known as the African meningitis belt (Halperin et al., 2012). Due to the reluctance to 

use vaccines derived against MenB PS, many protein based vaccines have been developed 

(Sadarangani & Pollard, 2010). For example, a MenB outbreak in Cuba in the 1980s drove 

the development of a MenC polysaccharide-MenB outer membrane vesicle (OMV) based 

vaccine that resulted in broad coverage of sequence types and reduction in carriage of 

MenB in the population (Climent et al., 2010). Similarly in the early 1990s in New Zealand 

there was an epidemic of ST-41/44 MenB that resulted in the development of a successful 

vaccine derived from the outer membrane proteins (OMPs) of that strain (Martin et al., 

1998; Oster et al., 2007). However, due to the large genetic variation found particularly in 

the circulating MenB population there is consequently a difficulty in developing a successful 

broad range protein based vaccine (Racloz & Luiz, 2010).  

MenB accounts for over 85% of meningococcal invasive disease in the UK (Ladhani et al., 

2012) and 88% in Europe (Halperin et al., 2012). Recently, a vaccine (4CMenB) derived from 

highly conserved meningococcal surface antigens has been developed, comprising 
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recombinant forms of; factor H binding protein (fHbp), neisserial adhesin A (NadA), 

Neisseria heparin binding antigen (NHBA) and OMVs derived from the New Zealand MenB 

outbreak strain. The vaccine has shown strong immunological response in trials in adults 

(Toneatto et al., 2011), adolescents (Santolaya et al., 2012) and infants (Vesikari et al., 

2013) and has recently been approved for use in Europe.  

 

1.2.2 H. influenzae 

H. influenzae is a small Gram-negative bacterium, which is an obligate human coloniser. The 

unencapsulated form is termed non-typeable (NTHi) and is most commonly associated with 

chronic and acute otitis media in infants and sinusitis in adults (Brunton, 2006). The more 

virulent encapsulated forms, are categorised into six serotypes (a-f), which as is the case 

with the meningococcus are based on the antigenic properties of their capsular 

polysaccharides (PS) (Pittman, 1931). Most invasive H. influenzae strains are serotype b 

(Hib), which accounts for 8-13 million serious illnesses worldwide and 370,000 deaths in 

children less than 59 months (Watt et al., 2009). After the introduction of Hib 

polysaccharide conjugate vaccines in the UK in 1992 there was a dramatic decline in the 

incidence of invasive Hib disease (Hargreaves et al., 1996; Moxon et al., 1999), which has 

been mirrored in other countries introducing Hib vaccines (Adegbola et al., 1999).   

The PS-conjugate Hib vaccine is considered to be highly successful and has achieved an 

approximately 90% reduction in cases of Hib infection in the UK (Ladhani et al., 2009). 

However, since the introduction of the Hib conjugated vaccine in Brazil there has been a 

substantial shift to H. Influenzae type a (Hia) invasive disease (Ribeiro et al., 2003, 2007). 

Unfortunately the Hib conjugate vaccine has failed in small numbers of vaccinated groups 

(McVernon, 2003; Ladhani et al., 2010) and is occasionally unable to prevent invasive 

disease in premature babies, the elderly and those with immunodeficiency disorders 

(Foster et al., 2009; Ladhani et al., 2010). There has been shown to be a positive correlation 
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for co-colonisation by H. influenzae and S. pneumoniae in the nasopharynx demonstrated in 

rats (Margolis, Yates & Levin, 2010) and healthy infants (Chien et al., 2012), whereas a 

negative correlation has been shown for co-colonisation by H. influenzae during S. 

pneumoniae infections (Pettigrew et al., 2008). This could suggest colonisation by H. 

influenzae can protect against S. pneumoniae invasive disease which may involve an 

attenuation of inflammation at the mucosa during co-colonisation (Lijek & Weiser, 2012) 

and/ or recruitment of S. pneumoniae targeting neutrophils in the presence of H. influenzae 

(Lysenko et al., 2005; Margolis, Yates & Levin, 2010). 

 

1.2.3 S. pneumoniae 

S. pneumoniae (pneumococcus) is a Gram-positive diplococcus that has host species and 

tissue tropism for the oronasopharynx of humans and other large mammals, with 91 

different serotypes identified by antibody recognition of its polysaccharide capsule (Park et 

al., 2007). S. pneumoniae is found in the nasopharynx of healthy individuals colonising 

around 70% of children (Auranen et al., 2010), but is associated with disease in those under 

5 years, peaking at around 12 months, (Lipsitch et al., 2005). It is also common in the 

elderly (>60 years of age) and in immune compromised individuals and it is a leading cause 

of morbidity and mortality worldwide (Schranz, 2009). It has been estimated that over 

800,000 infants under 5 years die from pneumococcal disease globally each year (Watt et 

al., 2009). 

Natural immunity against S. pneumoniae is believed to be directed against the major 

immunogenic cell-surface proteins such as pneumococcal surface protein A (PspA) (McCool 

et al., 2002) and appears to be serotype and possibly strain specific. Naturally acquired IgG 

antibodies against S. pneumoniae proteins increase in age with infants, but do not protect 

against colonisation (Prevaes et al., 2012). Maternal anti-pneumococcal protein IgG levels 

have also been found to not protect against colonisation of the infant, and may even 
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facilitate colonisation (Lebon et al., 2011). Prior to the introduction of vaccination, 

pneumococcal infections primarily occurred in those aged under 2 and over 65 years of age, 

though the incidence of pneumococcal meningitis was most prevalent in those under 2 

years old (Sleeman et al., 2001). However, since the introduction of 7-valent pneumococcal 

vaccine (PCV7) in the United States in 2002 and the United Kingdom in 2006 as well as 

many other countries, there has been a decline in invasive pneumococcal disease (Schranz, 

2009). Despite this, S. pneumoniae accounts for 9% of all deaths in the developing world 

(Myers & Gervaix, 2007) and 11% of deaths in children worldwide (Watt et al., 2009). 

Furthermore, there has been a global development of antibiotic resistance within 

pneumococcal isolates especially within virulence associated serotypes (Dowson et al., 

1989; Hsieh et al., 2006; Ding et al., 2009). 

It has long been known that some pneumococcal isolates have natural competence, 

enabling transfer of genetic material facilitating capsular switching where one isolate 

acquires a new capsule type from another (Griffith, 1928). Serotype replacement has been 

observed in S. pneumoniae with reduction in the levels of vaccine type (VT) serotypes 

isolated, but an increase in disease from non-vaccine type (NVT) serotypes. Since the 

introduction of PCV7, serotype replacement from VT to NVT has been seen in carriage 

isolates from infants in the United States, (Huang et al., 2005), Canada (Kellner et al., 2008), 

and Europe (Brugger et al., 2010). Whereas cases of invasive pneumococcal disease (IPD) 

have decreased in infants less than 5 years of age, incidences stayed largely unchanged in 

the elderly, even since the introduction of the 23-valent pneumococcal vaccine (PCV23) in 

Europe (Tyrrell et al., 2009). There is a greater incidence of mixed isolates of S. pneumoniae 

in the young than in the elderly (Brugger et al., 2010) suggesting a reservoir for S. 

pneumoniae in this age group. A more recent study demonstrated an overall reduction in S. 

pneumoniae carriage and invasive disease in both infants and the elderly despite a partial 

serotype replacement in the UK since the introduction of the PCV7 vaccine for those under 

2 years of age in 2006 (Miller et al., 2011) suggesting successful herd immunity. 
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Little change in overall pneumococcal carriage has been seen in infants in France since the 

introduction of PCV7 (Cohen et al., 2012a), though an overall reduction has been seen since 

the introduction of PCV13 (Cohen et al., 2012b). There has been an increase in NVT 

serotypes seen in cases of invasive pneumococcal disease (IPD) in Europe (Aguiar et al., 

2010; Miller et al., 2011; Spijkerman et al., 2012), Canada (Tyrrell et al., 2009) and Asia (Ho 

et al., 2011).  

It has however been observed that the introduction of the PCV7 vaccine has had some 

unforeseen effects on the nasopharyngeal microbiota. Studies in the United States have 

demonstrated that post-PCV7, in cases of acute otitis media in infants there is a reduced 

carriage of VT isolates, and an increase in NVT isolates, with additionally an increase in non-

typeable H. influenzae carriage in the nasopharynx and middle ear (Block et al., 2004; 

Casey, Adlowitz & Pichichero, 2010). The nasopharyngeal colonisation of both infants and 

their parents shows an increase in both H. influenzae and S. aureus following the 

implementation of the PCV7 vaccine in the Netherlands (Spijkerman et al., 2012). It has 

been suggested that colonisation by S. pneumoniae may give cross-reactive immune 

protection against S. aureus acquisition as shown in mice (Lijek et al., 2012). S. pneumoniae 

may also inhibit the growth of S. aureus by production of hydrogen peroxide (Regev-Yochay 

et al., 2006), though the protective effect of hydrogen peroxide production in an in vivo 

animal model contradicts this (Margolis, 2009). With the observations that H. influenzae 

may protect against invasive disease by S. pneumoniae (section 1.2.2) the polymicrobial 

interactions of these bacteria during commensal and pathogenic states may warrant further 

investigation. 

 

1.2.4 S. aureus 

S. aureus is a Gram-positive coccus identified as both coagulase and catalase positive, and 

capable of growth on high salt agar. It can also be sub-typed by plasmid restriction 



Page | 12  
 

endonuclease and immunotyping out of 11 recognised polysaccharide capsules (Karakawa 

et al., 1985; Sompolinsky et al., 1985). S. aureus was first discovered to be encapsulated in 

1931 with strains M and Smith (Gilbert, 1931). These were later recognised as having 

serotype 1 and 2 capsule respectively, with the other serotypes often referred to as being 

microcapsular having only a thin capsule (Sompolinsky et al., 1985). Serotypes 5 and 8 

account for 16-26% and 55-63%, respectively, of isolates recovered from humans with 60-

90% of invasive isolates expressing capsule (Sompolinsky et al., 1985; Hochkeppel et al., 

1987; Sutter et al., 2011). All invasive isolates in one study possessed either the cap5 or 

cap8 gene required for capsule production, but interestingly 82% of antibiotic resistant 

isolates did not express detectable levels of either capsule (Sutter et al., 2011).  

S. aureus colonises a range of animal hosts including humans, where it has tropism for the 

anterior nares (Figure 1.1) and skin with between 20 and 40% of people being nasal carriers 

(van Belkum et al., 2009; Sakwinska et al., 2010; Conlan, Kong & Segre, 2012). A more 

recent study reported only 5% of 11 month old infants were carriers but found similar levels 

(20%) to those previously reported in adults (Spijkerman et al., 2012). Individuals are 

considered to be either carriers or non-carriers of S. aureus in the nasopharynx (van Belkum 

et al., 2009).  

Only a small number of cases of bacteraemia or meningitis in infants are caused by S. 

aureus (4%), but there is approximately 25% incidence of morbidity (Shane et al., 2012). It 

has been demonstrated that S. aureus carriage is a risk factor for post-surgical infections 

(Lidwell et al., 1966; Pignatari et al., 1990) and is becoming difficult to control since the 

emergence of antibiotic resistant strains such as methicillin resistant S. aureus (MRSA) and 

vancomycin resistant S. aureus (VRSA) (Sievert et al., 2008).  

Since the introduction of Hib, pneumococcal and meningococcal vaccination programmes, 

S. aureus carriage has increased (Bogaert, De Groot & Hermans, 2004; Spijkerman et al., 

2012), which has primarily been associated with a decrease in pneumococcal carriage 
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(Regev-Yochay et al., 2004; Spijkerman et al., 2012). An increase in carriage would suggest 

that there may be an increase of invasive disease. Since the introduction of PCV7 in the US, 

S. aureus infections have increased by more than 60% and hospitalisations caused by MRSA 

have increased by more than 50% (Klein, Smith & Laxminarayan, 2007).  

Following this increase in S. aureus infections since the 1960s, particularly in neonates, it 

has been suggested that S aureus be the next target for vaccinations (Lee et al., 2010). A 

serotype 5 and 8 conjugate vaccine (StaphVAX) was able to raise IgG antibody response to 

type 5 and 8 capsular polysaccharide, but did not affect nasopharyngeal carriage of capsule 

positive S. aureus in a phase I clinical trial (Creech et al., 2010). It has been observed that 

naturally acquired IgG antibodies against S. aureus proteins does not protect against 

colonisation and antibody titre reduces with increased age in infants (Prevaes et al., 2012). 

Currently there are no viable vaccine candidates available (Huda et al., 2011). The 

polymicrobial interactions of these and other common inhabitants of the human 

nasopharynx have been cited as important in the maintenance of carriage without invasive 

disease, but such interactions are not thoroughly understood (Blaser & Falkow, 2009). 

 

1.3 Host-pathogen interactions 

1.3.1 Host immunity to bacterial capsular polysaccharide 

In the absence of damage, the skin provides an effective protection against invasion by 

microbes in healthy individuals. The mucosa of the gastrointestinal and respiratory tracts 

however, require more direct contact with nutrients and gases and subsequently are more 

exposed to direct contact with microbes than other sites and therefore possible invasion. 

To compensate for this man has evolved other mechanisms of protection at the mucosa to 

provide a barrier to infection. Innate mechanisms of protection include the epithelial 

barrier itself as well as secretion from the epithelial barrier of a heavily glycosylated family 
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of proteins called mucins that help to make up the gel-like substance mucous. Mucous 

along with serous fluid makes up saliva. Saliva also contains secreted anti-microbial 

compounds such as lysozyme (Feiner, Meyer & Steinberg, 1946), defensins (Zasloff, 1992), 

and exogenous vesicles called exosomes (Kesimer et al., 2009), amongst others. 

In addition to the innate immune mechanisms, B cells that differentiate to mature plasma 

cells are generated in response to predominantly exogenous antigens such as pathogen 

associated molecular patterns (PAMPs) to produce immunoglobulin (Ig) molecules that 

recognise these antigens and facilitate a targeted response by immune cells. The primary 

classes of Ig molecules at the mucosa are IgA, and to a far lesser extent IgG and IgM 

(Brandtzaeg, Fjellanger & Gjeruldsen, 1970; Nagura et al., 1979), whereas IgG is most 

predominant in the blood (Sirisinha & Charupatana, 1970). IgG is a monomeric molecule, as 

is IgA, though IgA is found primarily as a dimeric molecule at the mucosa (secretory IgA; 

sIgA), where two IgA molecules are connected by a j-chain (Wilson & Williams, 1969). Both 

are produced against specific antigens whereas IgM is a pentameric molecule with greater 

avidity to antigens, but less specificity than either IgA or IgG.  

Due to it being monomeric and therefore having lower mass, IgG can diffuse through the 

mucosal epithelium (Natvig et al., 1997). In contrast secretory IgA and IgM are actively 

transported through the epithelium by secretory epithelial cells, explaining the higher 

quantities of these molecules in the saliva (Brandtzaeg, Fjellanger & Gjeruldsen, 1970; 

Bouladoux et al., 2012). IgG is produced by B cells largely found systemically in the blood or 

spleen (Sirisinha & Charupatana, 1970), whereas IgA is predominantly generated locally by 

B cells in the nasopharyngeal associated lymphoid tissue (NALT; Ostergaard, 1977), being 

the tonsils and adenoids (Figure 1.1). Due to their localities induction of IgA may have 

greater protection against colonisation compared to induction of IgG, which may have 

greater protection against systemic infection. 
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Bacteria have evolved many mechanisms and structures to adapt to the environment that 

they occupy. It has been argued that many of these adaptations are to resist attack by 

bacteriophage (Sompolinsky et al., 1985; Labrie, Samson & Moineau, 2010) such as phase 

variation of surface proteins (Alexander, Richardson & Stojiljkovic, 2004; Zaleski, 

Wojciechowski & Piekarowicz, 2005) and restriction systems to protect against the uptake 

of exogenous DNA (Vovis & Lacks, 1977). The bacterial polysaccharide (PS) capsule may also 

have evolved to confer resistance to bacteriophage, as has been demonstrated in 

Escherichia coli (Scholl, Adhya & Merril, 2005) in addition to offering protection from 

desiccation after entering host cells (Crook et al., 1989; Spinosa et al., 2007).  

The presence of the PS capsule does not confer an advantage during mucosal association or 

invasion (Read et al., 1992) and expression is even down-regulated during mucosal 

colonisation (Deghmane et al., 2002), but it confers bacterial survival during invasive 

disease and systemic dissemination by shrouding otherwise exposed surface proteins and 

resisting cellular digestion (Crook et al., 1989; Virji et al., 1992b; Spinosa et al., 2007). It has 

even been postulated that N. meningitidis may utilise its ability to withstand phagocytic 

digestion by hijacking neutrophils to migrate to the cerebrospinal fluid (Criss & Seifert, 

2012). 

The PS capsules of H. influenzae, S. pneumoniae and N. meningitidis despite having varied 

molecular structures are alone poorly immunogenic in infants and do not induce generation 

of a significant antibody response (Monto, Brandt & Artenstein, 1973; MacDonald et al., 

1998). The former may be due to the B cell subsets that generate anti-polysaccharide 

antibodies not being fully developed in neonates and young infants (Mosier, Mond & 

Goldings, 1977). The latter may be due to PS inducing only a T cell-independent type 2 (TI-

2) activation of B cells that results in the mitogenic and rapid induction of cross-reactive 

IgM (Kehrl & Fauci, 1983), but less induction of the more specific IgG (Barrett & Ayoub, 

1986). It has been recently suggested that neutrophils may also play a role in TI-2 activation 
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of B cells and class switching of IgM producing B cells to IgG producing cells (Puga et al., 

2012). 

As a consequence, many PS vaccines incorporate an immunogenic carrier protein, such as 

tetanus toxoid, diphtheria toxoid, CRM197 mutant diphtheria toxoid or the outer 

membrane protein complex of N. meningitidis (Nmen OMP) conjugated with the capsular 

PS. Such conjugate vaccines have been developed for several serogroups of N. meningitidis, 

several serotypes of S. pneumoniae and Hib, and induce a T cell-dependent immune 

response that primes the immune memory to future infections by the induction of IgG 

antibodies from memory B cells (Kurikka, 1996; MacDonald et al., 1998; MacLennan et al., 

2000). However, it has been observed that the generated memory B cells are dispersed 

systemically and only transiently found at the mucosa (Clarke et al., 2012) suggesting 

greater protection against invasion than colonisation. Older children and adults with 

immune compromising conditions can still be at risk of invasive disease from these 

pathogens, as are the elderly, due to a waning ability to produce long term antibody 

responses (Baxendale et al., 2010b, 2010a) and an increase in regulatory cytokine IL10 

producing activated B cells (Bancos & Phipps, 2010). 

 

1.3.2 Toll-like receptors 

The first line of defence from invasive microorganisms is not the long-term memory of 

acquired immunity, but the recognition of specific bacterial molecules by the innate 

immune system (Kawai & Akira, 2010). The epithelial mucosal barriers of the upper 

respiratory and gastrointestinal systems are the first point of contact in the innate immune 

system for mucosal colonisers. All cells in the human body possess pattern-recognition 

receptors (PRRs) that have evolved to specifically recognise conserved components of 

micro-organisms. These bacterial ligands are known as pathogen-associated molecular 

patterns (PAMPs) or commensal-associated molecular patterns (CAMPs). Examples of these 
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bacterial ligands include lipopolysaccharide (LPS) from the outer membrane of Gram-

negative bacteria, and lipoteichoic acid (LTA) found in the cell wall of Gram-positive 

bacteria (Takeuchi & Akira, 2001; Kawai & Akira, 2010).  

The primary bacterial receptors of most host cells are Toll-like receptors (TLRs), of which 10 

functional forms have been found in humans (Kawai and Akira, 2010). Mice have 12 

functional TLRs, TLRs 1-13 where TLR10 is non-functional, and have been used as models to 

identify which bacterial ligand is associated with each host cell TLR and determine the 

subsequent immune reaction (Kawai & Akira, 2010).  

TLRs are transmembrane receptor molecules found at the host cell surface as well as within 

intracellular compartments such as endosomes and lysosomes (Kawai & Akira, 2010). TLR 

activation leads to homo or hetero dimerization of the receptor and downstream activation 

of intracellular signalling molecules, such as, MyD88, TRIF, and TRAM, as well as activation 

of the MAPK pathways (Peroval et al., 2013). Such signalling leads to activation and/or 

suppression of transcription factors such as IRF3 and NFκB that control the expression of 

genes for inflammatory cytokines/chemokines and many other host cell responses (Figure 

1.2).  

Using over-expression of specific TLR's in a cell line, cell membrane expressed TLR4 has 

been shown to recognise LPS from Gram-negative bacteria such as MenB and Hib 

(Mogensen et al., 2006a), and in some studies the active pneumolysin from Gram-positive 

S. pneumoniae (Beisswenger, Lysenko & Weiser, 2009). The TLR4 homodimer associates 

with the co-receptor CD14, and the accessory molecules LPS-binding protein (LBP) and MD-

2 for LPS-induced signalling (Elson et al., 2007). LPS-induced activation of airway epithelial 

cells is dependent on CD14 which is mostly found soluble within the serum (Schulz et al., 

2002). 
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The cell membrane expressed TLR2 forms heterodimers with either TLR1 or TLR6 before 

interaction with ligands (Triantafilou et al., 2006). It has been shown to recognise PAMPs 

from all four pathogens evaluated in this study (Mogensen et al., 2006b; Schmaler et al., 

2009) and is the primary PRR for S. pneumoniae-stimulated cytokine responses 

(Beisswenger, Lysenko & Weiser, 2009). However, it is important to note that Gram-

positive bacteria also signal through the 23S ribosomal RNA (rRNA) receptor TLR13 in mice 

models (Oldenburg et al., 2012; Hidmark, von Saint Paul & Dalpke, 2012). Following 

interaction with ligands, TLR2 may further associate with co-receptors CD14 or CD36 which 

enhance the ligand-induced inflammatory response (Triantafilou et al., 2006). Once 

activated, TLR2 receptors co-localise forming clusters which then internalise in endosomal 

vesicles (Triantafilou et al., 2006). 

In contrast, TLR3 forms a homodimer and is expressed on endosomes within the host cell 

cytoplasm that recognises double stranded ribonucleic acid (dsRNA) to induce inflammation 

(Alexopoulou et al., 2001). Exposing mice to viral or synthetic dsRNA induced host cell 

death in intestinal epithelial cells (Zhou et al., 2007). Apoptosis has been shown to be 

induced by RNA released from neighbouring necrotic host cells interacting with TLR3 (Lai et 

al., 2010). When induced via TLR3 activation, apoptosis is dependent on signalling through 

TRIF, NFκB, the extrinsic initiator caspase 8 and the effector caspase 3 (Salaun et al., 2006). 

As well as inducing apoptosis, a TLR3 agonist induced the secretion of proinflammatory 

cytokines IL6 and IL1α, and the chemokine IL8 in nasopharyngeal epithelial cells (Matijevic, 

Marjanovic & Pavelic, 2009). IL6 induced by a TLR3 agonist can be inhibited by activation of 

TIRAP (also called MAL, Figure 1.2) (Kenny et al., 2009), which may explain the inhibition of 

TLR3 induced inflammation by Staphylococcus epidermidis LTA interaction with TLR2 (Lai et 

al., 2010).  
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Figure 1.2 Toll-like receptor (TLR) signalling and targeted inflammatory response 

The TLR4 homodimer primarily recognises LPS from the outer cell membrane of Gram-

negative bacteria, but has also been shown to recognise secreted pneumolysin from S. 

pneumoniae. TLR2/6 and TLR2/1 heterodimers recognise the cell wall component LTA from 

Gram-positive bacteria, as well as other ligands such as the membrane protein porin B 

(PorB) of pathogenic and commensal Neisseria (Massari et al., 2006; Toussi et al., 2012). 

The encircled molecules are TLR-associated intracellular signalling molecules that ultimately 

lead to inflammatory cytokine induction by transcription factors IRF3 and NFκB. TLR 

signalling can be MyD88-dependent or independent depending on the receptor and agonist 

(Kawai & Akira, 2010). 

 

1.3.3 Mitogen-activated protein kinases 

The addition of phosphate groups to cell signalling proteins (phosphorylation) is a 

mechanism of ‘switching on’ cell signalling pathways by protein kinases for recognition by 

phospho-binding proteins (Jin & Pawson, 2012). Within the host, mitogen-activated protein 

kinases (MAPKs) are a family of such serine/threonine-specific phosphorylating proteins 

involved in intracellular signalling from multiple extracellular signals. These include 
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cytokines, hormones, growth factors and bacterial ligands, which participate in cell 

functions such as induction (Johansen et al., 2006; Lee et al., 2011) and inhibition (Chen et 

al., 2003; Yang et al., 2011) of inflammation, apoptosis and internalisation of bacteria 

(Griffiss et al., 1999; Shinzawa et al., 2009). MAPKs are sub-divided into three main families 

named after the final kinase in the signalling pathway; extracellular signal-regulated kinases 

(ERKMAPK) 1 and 2, c-Jun N-terminal kinases (JNKMAPK) 1, 2 and 3, and p38 proteins (p38MAPK) 

α,β,γ and δ (Cano et al., 1995; Gupta et al., 1996; Davis, 2000). 

N. meningitidis was found to activate p38MAPK in endothelial cells independent of surface 

expression of the bacterial opacity protein Opc. Expression of Opc activated JNKMAPK which 

was found to be important in invasion of endothelial cells by N. meningitidis and was 

inhibited by blocking the host cell-cell adhesion, integrin receptor on endothelial cells 

(Sokolova et al., 2004). Neisserial PorB has been demonstrated to signal through TLR2/1 

and subsequently induce inflammation via ERKMAPK (Toussi et al., 2012). Pneumolysin from 

S. pneumoniae was shown to induce inflammation through ERKMAPK, JNKMAPK and p38MAPK in 

a TLR4-dependent manner in nasopharyngeal epithelial cells (Dogan et al., 2011), and H. 

influenzae induces over-production of mucins in epithelial cells by up-regulating p38MAPK 

(Komatsu et al., 2008). 

 

1.4 Peroxisome proliferator activated receptors 

Peroxisome proliferator activated receptors (PPARs) belong to the superfamily of nuclear 

receptors (NRs) involved in the transcriptional regulation of metabolism, growth, 

differentiation, inflammation and apoptosis in many different cell types. PPARs largely only 

found in the nucleus, bound to nuclear receptor response elements in the promoter regions 

of their target genes (Guan et al., 2005). The PPARs are maintained in a repressed state by 

nuclear receptor co-repressors until ligand binding, when the co-repressor protein complex 

is disassociated and co-activators are recruited (Guan et al., 2005). 
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There are three different subtypes of PPARs in humans, namely PPARα, PPARβ/δ and 

PPARγ. Each PPAR forms an obligate heterodimer with the retinoid-X-receptor (RXR) that 

allows cytoplasmic to nuclear shuttling, and each PPAR can interact with different ligands 

and target genes containing peroxisome proliferator response elements (PPREs) producing 

different biological responses (Braissant & Wahli, 1998).  

 

Figure 1.3 Structure of PPARγ and its functional domains 

PPARs consist of an N-terminal region with a transactivation domain, activation function 1 

(AF1), with a highly conserved DNA-binding domain (DBD) of two zinc fingers at this N-

terminal region. A short hinge region connects this region to a ligand-binding domain (LBD) 

at the C-terminal region, with an activation function 2 (AF2) domain at the C-terminus of 

the LBD. While the AF1 functions in a ligand-independent fashion the AF2 domain is 

generally ligand-dependent (Desvergne & Wahli, 1999).  

 

PPARγ is expressed in a wide range of cell types including colon (Fajas et al., 1997; Patel et 

al., 2005), lung (Dubuquoy et al., 2003) and nasal (Ogasawara et al., 2010) epithelial cells. 

PPARγ agonists are known to reduce inflammation in monocytes and macrophages by 

suppressing the production of inflammatory cytokines (Ricote et al., 1998; Jiang, Ting & 

Seed, 1998). PPARγ can be activated by both agonistic ligand binding and phosphorylation 

(Figure 1.3), which increases ligand-independent transcriptional activity (Diradourian, 

Girard & Pégorier, 2005). As well as its role as a transcription factor, ligand-dependent 

activation of PPARγ can also act as a transcriptional repressor, particularly of inflammatory 
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gene expression of IL-6 and TNFα in monocytes (Jiang, Ting & Seed, 1998), by antagonising 

pro-inflammatory transcription factors such as AP-1, STAT and NFκB (Ricote et al., 1998).  

 

Figure 1.4 Repression of NFκB-dependent gene transcription by PPARγ 

On ligand ( ) activation, the ligand-dependent sumoylation of PPARγ leads to PPARγ 

binding to DNA-bound repressor complexes of PPARγ-independent genes, lacking PPRE 

sequences. This prevents 19S proteosome degradation of the repressor complexes 

associated with these genes and continued repression of gene transcription in the presence 

of activated inflammatory transcription factors such as NFκB (Pascual et al., 2005). 

 

PPARγ can also act as a transcription repressor of genes with non-PPRE binding elements 

(Figure 1.4). PPARγ is a phosphoprotein that can be phosphorylated by activators of the 

MAPK pathway, such as ERKMAPK and JNKMAPK (Hu et al., 1996; Camp, Tafuri & Leff, 1999; 

Adams et al., 1997). This modification reduces the ligand-dependent transcriptional activity 

of PPARγ (Adams et al., 1997). In colon epithelial cells a PPARγ agonist induced transient 

phosphorylation of PPARγ through the MAPK pathway. Following this PPARγ reduced PPRE-

dependent transcriptional activity, whilst increasing PPARγ-NFκB interaction thus 

decreasing transcriptional activity at κB transcription sites (Chen et al., 2003). The effects of 

PPARγ on related pathways are also coming to light. Using PPARγ agonists increases 
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phosphorylation of protein kinase C (PKC) in human nasal epithelial cells (HNECs), and the 

expression of tight junction associated molecules. This was then prevented by both PPARγ 

and PKC inhibitors (Ogasawara et al., 2010).  

 

1.4.1 PPARγ and bacterial interactions 

It has been demonstrated that colon epithelial cells of patients with ulcerative colitis have 

impaired expression of PPARγ (Dubuquoy et al., 2003). Inducing PPARγ was shown to be 

dependent on TLR4 signalling by bacterial LPS and partially dependent on IκB kinase-β 

(IKKβ) (Dubuquoy et al., 2003). IKKβ phosphorylates the inhibitory IκB to release and 

activate NFκB, suggesting that colonic flora may utilise PPARγ to inhibit activation of NFκB.  

PPARγ  also protects mice against experimental colitis and inhibits the induction of IL6, 

TNFα and IL1β expression in colon epithelial cells (Adachi et al., 2006). Inducing PPARγ 

activity reduces both inflammation and apoptosis induced by Helicobacter pylori LPS in the 

gastic mucosa of rats by inhibition of genes transactivated by NFκB (Slomiany & Slomiany, 

2002). The suppression of NFκB by direct association with PPARγ has also been 

demonstrated in colon epithelial cells exposed to Bacteriodes thetaiotaomicron, a prevalent 

anaerobe of the human intestine (Kelly et al., 2004). N. lactamica has been shown to 

suppress inflammation induced by N. meningitidis, PAM3Cys (TLR2 agonist) and 

inflammatory cytokine IL1β, utilising PPARγ as shown by a PPARγ antagonist (Tezera et al., 

2011). This illustrates that some commensal bacteria may utilise PPARγ to inhibit the host 

inflammatory response induced by pro-inflammatory stimuli. 

 

1.4.2 Other host-microbe interactions 

In addition to evolved mechanisms of host cells to recognise and initiate responses to non-

host molecular patterns, bacteria have evolved multiple mechanisms of interacting with 
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host cells. Neisseriae possess type IV pili that are also found on a variety of both Gram-

positive and Gram-negative bacteria (Pelicic, 2008). Type IV pili are bacterial 

transmembrane structures that in neisseriae are predominantly comprised of pilin (or PilE) 

subunits, that form long filaments that bundle in threes to form spiralling tri-helical fibres 

(Hélaine et al., 2005; Craig et al., 2006). Pilin fibres associate with host epithelial and 

endothelial cells (Virji et al., 1992a), as do pilin associated PilC proteins (Kirchner & Meyer, 

2005).  

Bacterial pili are multifunctional structures that allow twitching motility (Merz, So & Sheetz, 

2000), walking and crawling on solid surfaces (Gibiansky et al., 2010), uptake of exogenous 

DNA (Long et al., 2003) and bacterial aggregation (Hélaine et al., 2005). They form 

interactions with host cells such as exerting retractile force to maintain association (Mikaty 

et al., 2009; Biais et al., 2010) and signalling through host receptors using retractile tension 

(Brissac et al., 2012).  

Neisserial type IV pili have been demonstrated to enhance meningococcal interaction with 

the mucosal epithelium, especially at sites of mucosal damage that can be induced by the 

pathogen (Virji et al., 1992a; Rayner et al., 1995). The pili of pathogenic neisseriae are 

required for cortical plaque formation that facilitates invasion (Merz, Enns & So, 1999; 

Morand et al., 2009) and may interact with the host receptor CD46 (Källström et al., 1997, 

1998; Sjölinder & Jonsson, 2007). However, another unidentified receptor has been 

suggested (Kirchner & Meyer, 2005), which may be the host integrin receptors which were 

found to co-immunoprecipitate with N. gonorrhoeae pili (Edwards & Apicella, 2005).  

Phosphorylcholine (ChoP or PCho) is a component of platelet-activating factor (PAF) which 

is the natural ligand for the receptor of PAF (rPAF) in humans. ChoP was first found to be 

incorporated into the cell-wall teichoic acid and lipoteichoic acid (LTA) of S. pneumoniae 

(Mosser & Tomasz, 1970). It has since been found to be incorporated in the 

lipopolysaccharide (LPS) of other human nasopharyngeal colonisers H. influenzae (Kolberg, 
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Høiby & Jantzen, 1997) and commensal Neisseria including N. lactamica, and as a 

modification to pili on pathogenic Neisseria (Serino & Virji, 2000). The incorporation of 

ChoP has been shown to enhance adhesion and invasion of H. influenzae and N. lactamica 

to airway epithelial cells, but increases complement and C-reactive protein mediated killing 

in the serum, suggesting an adaptation for typically commensal colonisers (Weiser et al., 

1998; Serino & Virji, 2002). 

Carcinoembryonic antigen-related cell adhesion molecules (CEACAM) are host receptors, 

expressed on a wide range of epithelial cells, that are utilised by many Gram-negative 

nasopharyngeal colonising bacteria for association with the host (Voges et al., 2010). In 

particular Neisseria spp. expressing the opacity protein Opa such as N. meningitidis (Virji et 

al., 1996) and N. lactamica (Toleman, Aho & Virji, 2001) or H. influenzae expressing the P5 

protein (Hill et al., 2001) have a greater association with CEACAM. Exposure to the 

proinflammatory cytokine interferon gamma (IFNγ) can increase NFκB activity, which in 

turn, upregulates CEACAM1 expression and N. meningitidis adhesion and invasion of 

epithelial cells (Griffiths et al., 2007). However, the purified Opa from N. meningitidis was 

found to inhibit inflammation induced through TLR2 when expressed by E. coli (Slevogt et 

al., 2008). Recently it has been suggested that N. meningitidis and therefore possibly other 

Neisseria spp. possess another means of interacting with CEACAM1 other than Opa 

(Kuespert, Roth & Hauck, 2011). 

The neisserial opacity protein Opc allows association of pathogenic neisseriae to primarily 

endothelial cells, but also epithelial cells in a serum-dependent manner, allowing 

interaction with host integrins using host serum proteins vitronectin and fibronectin (Virji et 

al., 1995b; Unkmeir et al., 2002). Additionally the neisserial minor adhesin NadA also 

adheres to host β1 integrins (Nägele et al., 2011). S. aureus is also known to utilise host 

fibronectin when expressing fibronectin-binding protein (FnBP) to adhere and invade host 

cells via α5β1 integrin (Agerer et al., 2003), and S. pneumoniae is known to utilise 
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vitronectin to engage α5β3 integrin of epithelial and endothelial cells for the same purpose 

(Bergmann et al., 2009). Internalisation of bacteria by this mechanism is dependent on 

integrin-linked kinase (ILK) activation (Bergmann et al., 2009), which is also upregulated in 

endothelial cells when challenged with Nmen (Schubert-Unkmeir et al., 2007) and 

promotes an inflammatory response (Assi et al., 2011). 

 

1.5 Pathogen-induced host-cell death 

Pathogenic bacteria have been shown to have greater association with damaged sites 

within the epithelium (Read et al., 1992; Rayner et al., 1995). Induction of host-cell death at 

the mucosal epithelium is a proposed mechanism of bacterial invasion and ultimately 

dissemination within the host (Gao & Abu Kwaik, 2000; Kim et al., 2010). Indeed N. 

meningitidis has been observed to cause greater loss of host cell viability than commensal 

N. lactamica in both endothelial and meningioma cells (Fowler et al., 2006; Slanina et al., 

2011).  

Necrosis is associated with host disease, predominantly resulting from chemical or 

mechanical disturbance and is recognised by swelling (oncosis), and lysis of, host cells 

(Kroemer et al., 2009). The presence of necrotic cells can induce inflammation in 

neighbouring epithelial cells and immune cells (Lai et al., 2009). The release of danger-

associated molecular patterns (DAMPs) by necrotic host cells stimulates macrophages and 

dendritic cells that can in turn activate immune cells (Chen et al., 2007). Although often 

considered an uncontrolled process, necrosis has recently been considered an orchestrated 

response by the host (Festjens, Vanden Berghe & Vandenabeele, 2006). 

 



Page | 27  
 

1.5.1 Apoptosis and the caspase cascade 

Apoptosis is the organised process of self-initiated host-cell death that can regulate 

homeostasis within tissues and mucosal sites (Kerr, Wyllie & Currie, 1972). It is 

characterised by rounding up of the cell, reduced cell volume (pyknosis), nuclear 

fragmentation (karryorrhexis), and plasma membrane blebbing (Kroemer et al., 2009). It is 

primarily induced by a family of cysteine proteases called caspases (Alnemri et al., 1996). 

Caspases are found in the cell in inactive (pro-) forms consisting of a large and small subunit 

connected by a linker region with a connected pro-domain. Proteolytic cleavage of the pro-

domain and the linker region results in an active caspase comprised of the large and small 

subunits (Nuñez et al., 1998). Caspases have been divided into upstream or initiator 

caspases (caspases 2, 8, 9 and 10), and downstream or effector caspases (caspases 3, 6 and 

7), depending on their position in the cascade (Nuñez et al., 1998). Initiator caspases are 

specific, proteolytic activators of effector caspases. These in turn cleave host cell structural 

molecules such as actin to form cell blebs called apoptotic bodies (Communal et al., 2002), 

as well as activating a range of further apoptotic molecules such as pro-poly(ADP-ribose) 

polymerase (PARP) to active PARP1 initiating DNA fragmentation (Williams, Little & Shipley, 

1974; Tewari et al., 1995). There are two main apoptotic pathways, the extrinsic and the 

intrinsic pathways (Figure 1.5).  

The pore forming proteins (porins), pneumolysin from S. pneumoniae and PorB from N. 

gonorrhoeae induce apoptosis in host cells by translocating to, and causing damage to, 

host-cell mitochondria (Müller et al., 1999; Braun et al., 2007). Induction of apoptosis by N. 

gonorrhoeae could be suppressed by increasing Bcl2 (Müller et al., 2000) an inhibitory 

protein of the intrinsic apoptotic pathway. S. pneumoniae-induced apoptosis was via 

activation of caspase 9, although this was induced through the MAPK pathways p38MAPK and 

JNKMAPK (N’Guessan et al., 2005). Though conversely the PorB of Nmen has been shown to 

translocate to mitochondria, interact with voltage-dependent ionic channel (VDAC) of 
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mitochondria, and inhibit the intrinsic induction of apoptosis and subsequent induction of 

caspase 9 (Massari, Ho & Wetzler, 2000; Massari et al., 2003).  

Caspases 1, 4, 5, 11 and 12 are not involved with apoptosis, but rather the transduction of 

innate inflammation (Taylor, Cullen & Martin, 2008). Of these the best understood pathway 

involves caspase 1 activation that cleaves the pro-IL1β and pro-IL18 cytokines to their active 

forms (Figure 1.5). These are then secreted from the host cell (Wilson et al., 1994). This is 

followed by the activation of inflammasomes such as nucleotide-binding oligomerization 

domain-like receptor (NLR), pyrin domain-containing 3 (NLRP3) following stimulation by 

multiple TLRs including TLR4, 2 and 3 (He, Franchi & Núñez, 2013). N. gonorrhoeae has 

been shown to activate NLRP3 in macrophages (Duncan et al., 2009) and pneumolysin 

expressing S. pneumoniae induce inflammation via caspase 1 and NLRP3 (Fang et al., 2011). 

Additionally, stimulation of TLR4 by Gram-negative bacteria activates caspase 11-mediated 

inflammation via NLRP3 and caspase 1 activation during sepsis (Rathinam et al., 2012).  

In contrast to the induction of apoptosis, some intracellular pathogens protect the host to 

maintain the environment. For example, Shigella flexneri prevents the induction of intrinsic 

apoptosis in epithelial cells by preventing cytochrome c release and subsequent activation 

of caspase 9 (Clark & Maurelli, 2007). Chlamydia trachomatis and C. pneumoniae also 

inhibit apoptosis in host cells by preventing activation of BAX and BAK (Fischer et al., 2004). 

Recently, a new classification of host-cell death induced by invasive pathogens, pyroptosis, 

has been defined (Fink & Cookson, 2005). It combines the morphological features of 

necrosis; cell swelling, cell lysis and inflammation, with programmed cell death and crucially 

activation of caspase 1 and subsequently IL1β (Fink & Cookson, 2005). It has been 

suggested to be a host survival mechanism to defend against intracellular bacteria, that has 

only been demonstrated in innate immune cells; macrophages, neutrophils (Fink & 

Cookson, 2006; Miao et al., 2010) and in skin keratinocytes activated through TLR3 (Lian et 

al., 2012). 
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Figure 1.5 The caspase cascade pathways. 

There are two canonical pathways that can each lead to induction of apoptosis in host cells. 

The extrinsic pathway is induced by extracellular signalling molecules interacting with host 

cell surface receptors, such as the death receptors, Fas (Itoh et al., 1991; Bennett et al., 

1999), TNFR1 (Mangan, Mergenhagen & Wahl, 1993) and TRAIL (Oshima et al., 2001) 

receptors. The extrinsic pathway is predominantly associated with activation of the initiator 

caspase 8, which mediates downstream activation of effector caspases such as caspase 3 

(Van Herreweghe et al., 2010; Neumann et al., 2012). The intrinsic pathway involves 

intracellular activation of the BH3-only family of proteins, which inhibit the anti-apoptotic B 

cell CCL/lymphoma 2 (Bcl2) protein family. Inhibition of Bcl2 allows activation of Bcl2 

homologous antagonist/killer protein (BAK) and Bcl2-associated X protein (BAX) to form 

pores within mitochondrial membranes allowing the release of intra-mitochondrial 

molecules, such as cytochrome c (Yin, Oltvai & Korsmeyer, 1994; Kluck et al., 1997; Fletcher 

et al., 2008). The Bcl2 family of proteins can inhibit intrinsic apoptosis by forming 

heterodimers with BAX, BAK or BH3-only proteins (Meijerink et al., 1995). Cytosolic 

cytochrome c forms a complex (apoptosome) with APAF1 and pro-caspase 9 which is 

activated through this formation and initiates downstream activation of caspases 3 and 7 

(Jiang & Wang, 2000). In addition to apoptosis innate inflammation can be induced via Toll-

like receptor (TLR) activation of pro-caspase 1 that in turn activates the cytokines pro-IL1β 

and pro-IL18 (Wilson et al., 1994). Activation of caspase 1 leads to activation of the NLRP3 

inflammasome and downstream NFκB signalling (Bauernfeind et al., 2009). 
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1.6 Commensal organisms 

Probiotics are live microorganisms acting beneficially towards the host’s health. They 

influence the stability of the surrounding microflora, inhibit colonisation by pathogens, 

influence the mucosal barrier and stimulate both adaptive and innate components of the 

immune system. The majority of research on probiotics has concentrated on commensal 

bacteria of the gastrointestinal (GI) tract and oropharynx. Several GI commensal bacteria 

have been identified that can attenuate pro-inflammatory responses in the intestinal 

epithelium (Kelly et al., 2004), including non-pathogenic enteric Salmonella spp. (Figure 1.6; 

Neish et al., 2000) and Bacteriodes thetaiotaomicron (Figure 1.6; Kelly et al., 2004). As well 

as several strains and species of Lactobacillus and Bifidobacterium (Claes et al., 2011). 

Additionally, commensal E. coli has been demonstrated to suppress agonist-induced 

apoptosis in the intestine of mice by inducing the production of IFNα by host cells (Mirpuri 

et al., 2010), and the flagella of commensal bacteria suppress radiation-induced apoptosis 

in the gut epithelium by inhibition of the JNKMAPK pathway (Jones et al., 2011). 

 

1.6.1 Oropharyngeal commensal and probiotic bacteria 

It has been demonstrated that the most abundant genera of bacteria in the oral cavity of 

healthy individuals are Streptococcus (Kazor et al., 2003) and Neisseria spp. (Belda-Ferre et 

al., 2012) and that Streptococcus spp. isolated from healthy individuals inhibit the growth of 

cariogenic oral bacteria (Belda-Ferre et al., 2012). More predominantly, the oral commensal 

Streptococcus salivarius strain K12 has been suggested as an oral probiotic strain as it has 

been shown to reduce halitosis due to the overpopulation of certain microorganisms 

(Burton, Chilcott & Tagg, 2005) and suppress inflammatory cytokines induced by 

Pseudomonas aeruginosa via suppression of NFκB in human bronchial epithelial cells 

(Cosseau et al., 2008).  
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Figure 1.6  Mechanisms of attenuation of NFκB by bacteria include;  

(a) blockade of IKK phosphorylation needed to release NFκB from IκB, as seen in pathogenic 

Yersinia (Schesser et al., 1998) (b) dephosphorylation of IκB preventing release of NF-κB, 

seen in enteric Salmonella (Collier-Hyams et al., 2002) (c) blockade of IκB ubiquitination and 

subsequent degradation, seen in enteric Salmonella (Collier-Hyams et al., 2002) (d) nuclear 

export of proinflammatory transcription factor NFκB by the transcription factor PPARγ to 

the cytoplasm, seen in Bacteriodes thetaitaomicron (Kelly et al., 2004) (e) aggregation of 

NFκB subunit RelA within the cytoplasm inhibiting nuclear translocation as induced by the 

chronic pathogen Bordetella bronchiseptica (Yuk et al., 2000). 

 

The skin and occasional nasopharyngeal commensal Staphylococcus epidermidis has been 

shown to reduce inflammation in skin epidermal keratinocytes induced by S. aureus LTA via 

inhibition of NFκB signalling (Lai et al., 2009, 2010). Furthermore, inhibition of necrotic host 

cell RNA-induced TLR3-mediated inflammation has been demonstrated via an inhibitory 

activation of TLR2 by S. epidermidis LTA. S. epidermidis has also been shown to inhibit 

biofilm formation by S. aureus and host colonisation in human subjects by the production 

of S. epidermidis serine protease (Esp) (Iwase et al., 2010), and protects against group A 
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Streptococcus (GAS) in mice and human cell models by stimulating host production of β-

defensins via TLR2 activation (Lai et al., 2010). This reduction in inflammation is thought to 

help maintain barrier function and had been reported to reduce inflammatory bowel 

disease (Rembacken et al., 1999). However, the majority of described microbial anti-

inflammatory mechanisms revolve around preventing the release of active NF-κB from its 

cytosolic inhibitor IκB, or increasing export of active NF-κB from the nucleus (Figure 1.6). 

 

1.7 Commensal Neisseria spp. 

Commensal Neisseria possess many genes associated with virulence in pathogenic Neisseria 

(Marri et al., 2010) and transfer of genetic material has been demonstrated through natural 

competency and transformation (Saez-Nieto et al., 1990; Marri et al., 2010).  

 

1.7.1 N. lactamica 

MenB is known to colonise the URT of most healthy individuals without leading to invasive 

disease (Sim et al., 2000). The well-studied Neisseria commensal N. lactamica (Nlac), lacks a 

polysaccharide capsule (Kim, Mandrell & Griffiss, 1989), though is genetically very closely 

related with Nmen, and occupies the same nasopharyngeal niche (Snyder & Saunders, 

2006; Bennett et al., 2012). It can be highly cross-reactive with anti-meningococcal 

antibodies (Saez-Nieto et al., 1985), though can be differentiated by its ability to metabolise 

lactose (Hollis, Wiggins & Weaver, 1969). It colonises approximately 20-40% of infants and 

toddlers predominantly in males before and females after the age of 19 years (Gold et al., 

1978; Saez-Nieto et al., 1985; Bennett et al., 2005; Kristiansen et al., 2012). With increased 

age there is an increase in Nmen carriage (Cartwright et al., 1987) and a decrease in Nlac 

carriage (Gold et al., 1978; Olsen et al., 1991; Kristiansen et al., 2012), particularly during 

teenage years, when a peak in Nmen invasive disease occurs. 
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 Epidemiology has shown that prior colonisation of the URT with Nlac may correlate with a 

reduced susceptibility to invasive disease or carriage of MenB (Cartwright et al., 1987; 

Guzzetta et al., 2009; Evans et al., 2011), and it has been suggested that horizontal gene 

transfer of a non-coding intergenic region from Nlac may produce noncapsular Nmen in the 

host (Claus et al., 2002). It has also been suggested that the commensal Nlac could be used 

in the production of a meningococcal vaccine (Wyle et al., 1972; Gorringe et al., 2005). 

There is a strong correlation between successful meningococcal vaccines and development 

of lysis-inducing serum bactericidal antibodies (SBA; Borrow, Balmer & Miller, 2005). It was 

postulated that the protection afforded by Nlac colonisation was due to the development 

of SBA to Nlac antigens that are cross reactive to MenB antigens (Gotschlich, Goldschneider 

& Artenstein, 1969; Kremastinou et al., 1999; Troncoso et al., 2002), which has previously 

been shown to be the case with new carriers of Nlac (Gold et al., 1978). Outer membrane 

vesicles (OMVs) are portions of the bacterial membrane that bleb off to form extracellular 

membrane vesicles that contain many of the outer membrane proteins (OMPs) and other 

membrane components such as LPS or LOS. Intramuscular vaccination with outer 

membrane vesicles (OMVs) from Nlac (strain Y92-1009) with adjuvant have been shown to 

successfully protect mice against experimental invasive disease by MenB (Oliver et al., 

2002), as has intraperitoneal vaccination with live Nlac (strains L13 and Y92-1009) through 

stimulation of cross-reactive SBA production (Li et al., 2006). A phase I clinical trial observed 

that intramuscular vaccination with Nlac OMVs in 18-55 year old men induced a weak, but 

broad immunogenic response, that included cross-reactive SBA to several strains of MenB 

(Gorringe et al., 2009).  

A study of tonsillar B cells has shown that ex vivo stimulation with Nlac OMVs induced a 

non-specific IgM response from infants under 5 years of age (Vaughan et al., 2009), and 

proliferation of an innate B cell subset whereas Nmen OMV did not (Vaughan et al., 2010). 

A small study demonstrated that nasal inoculation in humans, more representative of 
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natural immunity, with live Nlac induced nasal secretions that were able to inhibit 

attachment of MenB and MenA to primary oroepithelial cells (Andrade, Marques & de 

Santa Rosa, 1986). Recently, it has been shown that nasal inoculations with live Nlac (strain 

Y92-1009) in 18-45 year olds induced systemic IgG and salivary IgA at the nasal mucosa, but 

negligible cross-reactive SBA to Nmen tested (Evans et al., 2011). This study also suggested 

that the presence of live Nlac, but not OMVs at the mucosa gives protection against 

acquiring colonising Nmen.  

Pathogenic Nmen and commensal Nlac differ in their ability to adhere to, invade and 

stimulate inflammatory mediators from meningeal cells (Fowler et al., 2006). More recent 

research conducted at the University of the West of England has confirmed that the 

differential ability of Neisseria spp. to stimulate the innate immune response extends to 

epithelial cells of the nasopharynx, where they colonise (Tezera et al., 2011). Furthermore 

commensal Nlac (strain NL4.1) was found for the first time to be able to attenuate the 

inflammatory response induced by pathogenic MenB, via an intracellular mechanism that 

requires intact live bacteria; and attenuates signalling through the Toll-like receptor 2 and 1 

(TLR2/1) heterodimer and involves PPARγ. This is the first time that such a mechanism has 

been reported in the upper respiratory tract.  

However, the anti-inflammatory effects of Nlac have not yet been evaluated against 

inflammation induced by other important upper respiratory tract pathogens. Furthermore, 

potential protective effects on mucosal barrier and host-pathogen association have not 

been measured.  

 

1.7.2 N. cinerea and N. polysaccharea 

Unlike Nlac, N. cinerea (Ncin) is commonly found in the oronasopharynx of approximately 

20% of adults and occasionally isolated from urogenital sites (Knapp & Hook, 1988). It is 
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non-encapsulated and produces a negative result for biochemical sugar metabolism tests 

(glucose, maltose, fructose and lactose) and has been known to be mistaken for a glucose-

negative N. gonorrhoeae (Knapp et al., 1984; Boyce & Mitchell, 1985).  

N. polysaccharea (Npoly) was first described in 1983 (Riou, Guibourdenche & Popoff, 1983), 

is non-encapsulated, and is distinguished by its ability to metabolise glucose and maltose, 

and crucially its ability to produce polysaccharide from sucrose (Riou & Guibourdenche, 

1987). It has often been mischaracterised as Nmen or non-typeable Nmen due to its similar 

sugar metabolism and cross-reactivity with predominantly anti-MenB antibodies (Boquete, 

Marcos & Sáez-Nieto, 1986), and is a genetically diverse species (Anand et al., 1991; 

Bennett et al., 2012). It is found in approximately 3% of healthy infants (Boquete, Marcos & 

Sáez-Nieto, 1986; Cann & Rogers, 1989). Proteomic analysis suggests similarity to Nlac in 

this respect although it is the most genetically related commensal to Nmen (Bennett et al., 

2012). The effect of the commensals Ncin and Npoly on nasopharyngeal pathogen 

interactions with the host is currently poorly defined. 

 

1.8 Aims and objectives 

It has been hypothesised that commensal bacteria within the host environment give 

protection against colonisation and invasion by, and the inflammation induced by, 

pathogenic organisms that may colonise the same host environment. Specifically, 

commensal N. lactamica has previously been demonstrated to protect against 

inflammation induced by pathogenic N. meningitidis in vitro. Additionally, epidemiological 

studies have suggested N. lactamica may also protect against colonisation by N. 

meningitidis in the hosts.  

The aim of this study was: 
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To identify if commensal Neisseria spp. give protection to the host from pathogenic 

bacteria commonly residing in the nasopharynx of humans, in the absence of an adaptive 

immune response.  

Objectives of this study are: 

To investigate if the commensal N. lactamica can attenuate the induction of inflammatory 

cytokines induced by human pathogens other than N. meningitidis, which commonly 

colonise the human nasopharynx and potentially cause meningitis. 

To further define the inflammatory signalling pathways attenuated by N. lactamica in 

human nasopharyngeal epithelial cells following pro-inflammatory agonist stimulation.  

To determine the effect of commensal Neisseria spp. including N. lactamica, on 

colonisation by N. meningitidis using an innate in vitro model of the host nasopharynx. 

To investigate the host cell signalling pathways involved in N. meningitidis-induced host cell 

death, and to determine the roll of commensal Neisseria spp. in modulation of induced host 

cell death. 
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Chapter 2 

2 Materials and Methods  
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2.1 Materials and Reagents 

Unless otherwise stated in the text, all reagents were obtained from Sigma-Aldrich, UK. All 

tissue culture plastic ware was obtained from Corning, UK and equipment used in this study 

is listed in Table 2.1 

Table 2.1 Equipment used and manufacturer 

Equipment  Function Software Manufacturer 

Biofuge Pico Microcentrifuge - Kendro Laboratory 

Products, Germany 

K40R Centrifuge - CenturionScientific, 

UK 

Consort E844 Electrophoresis Power 

Supply 

- Sigma-Aldrich, UK 

FluoStar Optima Fluorescent, 

Luminescent, 

Absorbance Microplate 

reader 

Optima BMG Labtech, 

Germany 

MiniBis System  UV Imaging  DNR Bio Imaging 

Systems, Israel 

Nanodrop 1000 

Spectrophotometer 

Microscale Absorbance 

Measurement 

ND-1000 Thermo Scientific, 

UK 

PTC-200 Peltier 

Thermal Cycler  

PCR Thermal Cycler - MJ Research, 

Canada 

Sonicator 

Ultrasonic 

Processor XL 

Probe Sonicator - Misonix Inc, USA 

SP50 Cuvette 

Spectrophotometer 

- Sanyo, Japan 
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2.2 Methods 

2.2.1 Bacterial strains and growth conditions 

Both commensal and pathogenic Neisseria spp. listed in Table 2.2 were grown on Brain 

Heart Infusion agar (BHI) (Fluka, Europe) supplemented with 10% heat-inactivated horse 

serum (HBHI) whereas the bioluminescent N. meningitidis strain MC58lux+ was grown on 

HBHI supplemented with 150 µg/ml kanamycin. All other strains of bacteria used in 

infection studies are listed in Table 2.3 of which strains of S. pneumoniae were grown in BHI 

broth (Oxoid, UK) containing 5% heat-inactivated FBS (PAA, UK). For enumerations (section 

2.2.2) bacterial suspensions of S. pneumoniae were plated onto columbia agar containing 

5% horse blood (blood agar). Strains of H. influenzae were grown on either columbia agar 

containing 5% horse blood heated to 70-80oC (chocolate agar) or on BHI agar supplemented 

with 2 µg/ml β-nicotinamide adenine dinucleotide hydrate (NAD) and 2 µg/ml hemin (sBHI). 

Liquid cultures were made in Levinthal’s broth (Nutrient broth [Oxoid] containing 5% horse 

blood, heated to 90oC to produce a clear broth which is separated from the precipitate). S. 

aureus strain RN4220 was grown on nutrient agar at 37oC whereas the MRSA strain Mu50 

was cultured on blood agar at 37oC in 5% CO2. All cultures were established from frozen 

stocks stored at -80oC in cryopreservation medium (Pro-Lab Diagnostics, UK). All bacterial 

strains were grown overnight at 37oC in 5% CO2 for 16-18 hours to reach mid-log phase of 

growth; except for H. Influenzae strains which were grown for 18-24 hours due to slower 

growth kinetics (Poje & Redfield, 2002). 

 

2.2.2 Correlation of optical density and viable bacterial counts for rapid enumeration of 

bacterial concentration 

Bacteria were grown overnight on the appropriate media (section 2.2.1) from which single 

colonies were then picked and suspended in 10mls Phosphate buffered saline (PBS) 

containing 0.5 mM calcium chloride and 0.9 mM magnesium chloride (PBS-B). The bacterial 
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suspension was left for 3 minutes to allow bacterial clumps to settle then the top 7mls were 

transferred to another universal for use.  

A spectrophotometer was calibrated using 1 ml of PBS-B and the optical density of 1 ml of 

the bacterial suspension was then measured at a wavelength of 600nm (OD600). If necessary 

the suspension was diluted to obtain an OD600 <0.5 which was found to give greatest 

accuracy. A series of dilutions were prepared by doubling dilutions from initial stock in 

order to generate a graph to extrapolate viable bacterial counts from OD600 readings 

(Watson et al., 1969).  

In order to assess viable bacterial counts, 10-fold serial dilutions were made from 200 µl of 

the above stock in a 96-well tissue culture plate from 100 to 10-7. Then 10µl of each dilution 

was spread onto a third of an agar plate, in triplicate, and incubated overnight. Individual 

colonies were counted and multiplied by the dilution factor (df) to give colony-forming 

units (cfu) per ml (Miles, Misra & Irwin, 1938). This experiment was then repeated at least 

twice more with fresh cultures, to produce the final graphs for conversion of optical density 

(OD600) into bacterial concentration (cfu/ml). Enumeration curves are presented in 

Appendix 1-4. 
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Table 2.2 The pathogenic and commensal Neisseria spp. used in this study 

Abbr. Used Bacterial Species 
Bacterial Strain 
(Alias) 

Serogroup Isolated From 
Sequence Type/ 
Clonal Complex 

References 

MC58       * N. meningitidis 
MC58 phenotypic 
variant #18.18 
(Z7176) 

Serogroup B Human blood ST-74/ cc32 
(McGuinness et al., 1991; 
Virji et al., 1995a; Tettelin 
et al., 2000) 

C751        * N. meningitidis C751 (Z2491) Serogroup A 
Human 
cerebrospinal 
fluid 

ST-4/ cc4 
Achtman et al, 1988; 
Crowe et al, 1989; Parkhill 
et al, 2000 

Z4701      ∆ N. meningitidis NG P20 (Z4701) Serogroup B 
Invasive (site 
unknown) 

ST-11/ cc11 
Caugant et al 1986; 
Brehony et al, 2009 

Z6417      ∆ N. meningitidis L93/4286 (Z6417) Serogroup C 
Invasive (site 
unknown) 

ST-11/ cc11 
Maiden et al, 1998; 
Brehony et al, 2009 

Nlac         * N. lactamica 
NL4.1 
Derivative of 
NCTC 10617 

Non-
encapsulated 

Human nose ST-3787 
(Hollis, Wiggins & Weaver, 
1969; Serino & Virji, 2000) 

Npoly       † N. polysaccharea 
LNP 462  
(NCTC 11858) 

Non-
encapsulated 

Human throat ST-3557 
(Riou & Guibourdenche, 
1987; Boquete, Marcos & 
Sáez-Nieto, 1986) 

Ncin         † N. cinerea 
194  
(NCTC 10294) 

Non-
encapsulated 

Human 
nasopharynx 

ST-3579 (Berger & Paepcke, 1962) 

 

* Provided as a generous gift from Professor Mumtaz Virji (University of Bristol, UK). 

∆ Provided as a generous gift from Professor Dominique Caugant (University of Oslo, Norway). 

† Obtained from the National Collection of Type Cultures (NCTC).  
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Table 2.3 Non-neisserial pathogenic bacteria used in this study 

Abbr. Used Bacterial Species Bacterial Strain (Alias) Serotype Isolated From References 

D39          * S. pneumoniae 
D39  
(NCTC 7466) 

Serotype 2 unknown 
(Avery, Macleod & McCarty, 1944; 
Lanie et al., 2007) 

Sp14        * S. pneumoniae unknown Serotype 14 
Human cerebrospinal 
fluid 

Not published 

Hib           ‡ H. influenzae Eagan Type b 
Human cerebrospinal 
fluid 

(Anderson, Johnston & Smith, 
1972) 

Hia           † H. influenzae 
620  
(NCTC 8466) 

Type a 
Human cerebrospinal 
fluid 

(Chapman & Osborne, 1942) 

Mu50       ∆ S. aureus 
Mu50  
(ATCC 700699) 

Serotype 5 Human abscess 
(Hiramatsu et al., 1997; Kuroda et 
al., 2001) 

RN4220   ∆ S. aureus RN4220 Non-encapsulated Laboratory Construct 
(Kreiswirth et al., 1983; Nair et al., 
2011) 

 

* Provided as kind gifts from Professor Adam Finn (University of Bristol, UK). 

‡ Provided as a kind gift from Professor J. Simon Kroll (Imperial College, UK). 

† Obtained from the National Collection of Type Cultures (NCTC). 

∆ University of the West of England Culture Collection. 
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2.2.3 Minimum inhibitory concentration and minimum death concentration of bacteria 

for antibiotics 

To identify bacterial sensitivity to antibiotics, serial dilutions of antibiotic in appropriate 

broth for the bacteria were made (section 2.2.1). Broth cultures were seeded with 1x106 

cfu/ml and cultured for 24 hours.  

After 24 hours the turbidity of the liquid medium was compared against 1ml of that 

medium containing no bacteria as a reference. The lowest concentration of antibiotic that 

prevented turbidity was considered to be the minimum inhibitory concentration (MIC) of 

that antibiotic for the corresponding bacteria (modified from Andrews, 2001). Because the 

MIC may be bacteriostatic the minimum bactericidal concentration (MBC) was further 

determined by spreading 100 µl of the non-turbid samples onto the corresponding solid 

medium in triplicate. The concentration of antibiotic that prevented growth of the bacteria 

was considered the minimum bactericidal concentration (MBC). Both MIC and MBC 

experiments were repeated in at least 2 separate experiments each performed in duplicate 

to confirm results. 

 

2.2.4 Generation of bacterial lysates, heat-killed bacteria and source of OMVs 

Overnight cultures of N. meningitidis or N. lactamica were suspended in PBS-B and adjusted 

to 2x109 colony forming units per ml (cfu/ml). For heat-killed bacteria, 1 ml aliquots of 

bacterial suspension were incubated in a pre-warmed 55oC waterbath for 35 minutes. Heat-

killing was confirmed by viable colony counts and heat-killed bacteria were stored at -20oC 

until required and were freeze-thawed once only.  

To generate bacterial lysates, 1ml aliquots of 2x109 cfu/ml bacterial suspension were 

sonicated (Ultrasonic Processor XL probe sonicator) on ice for 60 seconds, followed by 30 

seconds wait, to prevent heating of the lysate and denaturation of proteins, until the lysate 
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cleared (approximately 7 cycles). Aliquots of bacterial lysate were centrifuged at 10,000xg 

for 15 minutes. The supernatant was then aliquoted and labelled as the soluble fraction of 

the lysate and the remaining pellet was re-suspended in PBS-B to the original volume of the 

lysate and labelled as the insoluble fraction. Aliquots were then stored at -20oC until 

required and were freeze-thawed once only. Lysates and heat-killed bacteria were used in 

experiments according to the original concentration of the bacterial suspension. 

N. lactamica outer membrane vesicles (OMVs) were kindly provided by Professor Andrew 

Gorringe (Public Health England, UK) and were generated from strain Y92-1009. 

 

2.2.5 Natural bioluminescent transformation of N. meningitidis strain MC58 

Escherichia coli strain DH5α containing plasmid pLKMp (Sjölinder & Jonsson, 2007) was 

provided as a generous gift from Professor Ann-Beth Jonsson and Assistant Professor Hong 

Sjolinder (Stockholm University, Stockholm, Sweden). Plasmid pLKMp contains the 

luxCDABE operon from the bioluminescent organism Photorhabdus luminescens, the 

Neisseria-specific PorB promoter sequence from N. meningitidis strain FAM20, the 

Neisseria DNA uptake sequence (‘5-GCCGTCTGAA-3’) (Elkins et al, 1991), the kanR 

kanamycin resistant cassette and two DNA fragments homologous to non-coding regions of 

the FAM20 genome. 

E. coli containing plasmid pLKMp was grown overnight in 10ml LB broth containing 

kanamycin (50 mg/L) to select for plasmid-containing bacteria. The pLKMp plasmid was 

isolated from E. coli using the Pureyield plasmid prep kit (Promega, UK) according to the 

manufacturer’s instructions and stored at -20oC until required. Single colonies of overnight 

cultures of N. meningitidis strain MC58 were suspended in PBS-B. Meanwhile, 1 µg pLKMp 

DNA was spotted onto a HBHI agar plate, marked and left to dry in aseptic conditions at 

room temperature. Then 5x107 N. meningitidis was spotted over the dried plasmid DNA and 
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incubated for 24 hours at 37oC and 5% CO2. The resulting growth was suspended in 200 µl 

PBS-B and 100 µl was plated onto HBHI agar containing 150 mg/L kanamycin to select for 

transformants. Colonies that grew and were bioluminescent were designated MC58lux+ and 

were cultured on HBHI containing 150 mg/L kanamycin from frozen in all future 

experiments.  

 

2.2.6 Identification of bioluminescent transformants as N. meningitidis 

To confirm the transformed colonies as N. meningitidis, MC58lux+ colonies were picked and 

sub-cultured on HBHI containing 150 µg/ml kanamycin to select for bioluminescent 

transformants, with 20 µg/ml colistin to remove non-neisserial, Gram-negative bacteria. 

MC58lux+ colonies were also cultured onto chocolate agar and onto blood agar to select for 

Neisseria and other fastidious bacteria. Resulting growth was then applied to stab agar 

slants (2% peptone, 85 mM sodium chloride, 0.4% tryptone, 2.5% agar, pH 7.6, 0.08% 

phenol red) (modified from Cruickshank, 1975) containing 1% glucose, sucrose, maltose or 

lactose. Oxidation of specific sugars will cause a pH and thus colour change of the phenol 

red, and enabling confirmation of the bacteria as N. meningitidis by its ability to metabolise 

glucose and maltose, but not sucrose and lactose. 

 

2.2.7 Purification of genomic DNA from N. meningitidis for further analysis 

N. meningitidis strains MC58 and MC58lux+ were grown overnight in 5% CO2 at 37oC on 

HBHI agar or HBHI agar containing 150 mg/L kanamycin respectively. Single colonies were 

then suspended in PBS-B to approximately 1-2x109 cfu/ml. From this suspension, 1ml 

aliquots were made into 1.5 ml screw-cap micro-centrifuge tubes and centrifuged at 3500 

rpm for 15 minutes to pellet the bacteria.  
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Bacterial genomic DNA was isolated and purified using the Wizard Genomic DNA 

Purification Kit (Promega, UK) following the manufacturers protocol. In brief, each bacterial 

pellet was gently re-suspended by pipetting in 600 µl Nuclei Lysis Solution. The suspension 

was incubated at 80oC for 5 minutes to lyse the bacteria followed by 30 minutes incubation 

at room temperature. Once cooled, 3 µl of RNase solution (4 mg/ml in TE buffer [10 mM 

Tris-HCL (ph 7.4) and 1 mM EDTA (ph 8.0)]) was added to the lysate and mixed by inversion 

4 times, incubated at 37oC for 45 minutes, cooled for 20 minutes at room temperature. 

Then 200 µl of Protein Precipitation Solution was added to the lysate and the mixture was 

vortexed vigorously for 20 seconds and incubated on ice for 5 minutes. The mixture was 

then centrifuged at 13,000 rpm for 3 minutes and the supernatant was transferred to a new 

1.5 ml micro-centrifuge tube containing 600 µl of room temperature isopropanol.  

The supernatant-isopropanol solution was mixed by inversion until the DNA formed a 

visible mass. The mixture was centrifuged at 13,000 rpm for 2 minutes to pellet the DNA 

and the supernatant was removed. The DNA was washed by inversion in 600 µl of 70% 

ethanol and centrifuged at 13,000 rpm for 2 minutes and the ethanol was then aspirated. 

The tube was drained on clean absorbent paper and the pellet was air-dried for 15 minutes. 

The DNA was then rehydrated in 200 µl of nuclease-free water, incubated at 65oC for 1 

hour and stored at 4oC. 

To quantify the amount of DNA in solution and the purity of the DNA solution each sample 

was analysed using the Nanodrop 1000 spectrophotometer using nuclease-free water as a 

blank. 

 

2.2.8 Confirmation of bioluminescent transformed MC58lux+ by standard PCR 

The primers used in this study were manufactured by Eurofins MWG Operon, Germany, 

designed by Assistant Professor Hong Sjolinder (Stockholm University, Stockholm, Sweden) 
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and are listed in Table 2.4. Primers KS1 and luxEVS2 target sites within the designated 

integration sequence from plasmid pLKMp used to transform N. meningitidis strain MC58 

to the luxCDABE expressing strain MC58lux+. Primers UsF and DsR target the chromosomal 

DNA of N. meningitidis strain MC58 (NCBI accession # NC_003112.2) outside the integration 

site. 

Primers were re-suspended as per manufacturer’s instructions to a final concentration of 

100pmol/µl in nuclease-free water. PCR was performed using the GoTaq Hot Start 

Polymerase kit (Promega, UK) in a MJ Research PTC-200 Peltier Thermal Cycler according to 

the manufacturer’s suggestions. In brief, 0.2 µg of bacterial genomic DNA was added to a 

final volume of 20µl in 1x Green GoTaq Flexi Buffer containing 2mM MgCl2, 0.2 mM PCR 

Nucleotide Mix, 0.5 µM forward primer, 0.5 µM reverse primer and 1.25µM GoTaq Hot 

Start Polymerase. The PCR protocol included an initial denaturation step of 2 minutes at 

95oC followed by 35 cycles of denaturation for 1 minute at 95oC, annealing for 1 minute at 

52oC followed by an extension stage for 1 minute at 74oC before being refrigerated at 4oC 

until required. 

Next, 18 µl of each sample or 5 µl of Easyladder 1 DNA ladder (Bioline, UK) was added to 

relevant wells on a 14-well, 2% agarose gel, containing 15ng/ml ethidium bromide to stain 

the PCR products, in TAE buffer. The gel was run at 120V and 400amps for approximately 

30 minutes to separate PCR products. The gel was imaged with the MiniBis system. 

Standard PCR was repeated once to confirm results. 

Table 2.4 List of primers used in this study 

Primers Sequence (5’ – 3’) Direction Tm (oC) 

KS1  AATCATGCGAAACGATCCTCATC Reverse 58.9 

luxEVS2 (VS2) GTGCTCGTTGAAATTTTACGTCG Forward 58.9 

UsF ATTACGAAACCATTACTGCTGCC Forward 58.9 

DsR AATAATCCAGAAATGGTTGCAGC Reverse 57.1 
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2.2.9 Comparison of growth kinetics between N. meningitidis strain MC58 and the 

bioluminescent transformant MC58lux 

N. meningitidis strains MC58 and MC58lux were grown overnight for 16-18 hours on HBHI 

agar and HBHI agar containing 150mg/L kanamycin, respectively, at 37oC in 5% CO2. 

Resulting colonies were suspended in PBS-B as described previously (section 2.2.2). 

Bacterial cultures of each strain were made in both HBHI broth and M199 (2mM L-

glutamine, 2% FBS, without phenol red and pH was adjusted to 7.2-7.4 with sodium 

bicarbonate) to a final concentration of approximately 1x105 bacteria per 200µl. From each 

culture 200µl was added in triplicate to a 96-well µClear black-walled tissue culture plate 

(Griener-Bio One, UK, G655090) from which the optical density at 620nm (OD620) was 

measured every 30 minutes in 5% CO2 at 37OC using the Fluostar Optima (BMG Labtech) 

optical plate reader. 

 

2.2.10 Correlation between optical density, viable counts and relative light units for the 

bioluminescent N. meningitidis strain MC58lux 

Bioluminescent N. meningitidis strain MC58lux was grown overnight on HBHI containing 

150 mg/L kanamycin at 37oC in 5% CO2 for 16-18 hours. Resulting colonies were suspended 

in PBS-B as described previously (section 2.2.2). The bacterial solution was then added to 

Medium 199 without phenol red (M199) to a final OD600 of approximately 1. From this 

bacterial solution several two-fold dilutions were made in M199. From each dilution 200 µl 

was added in triplicate to a 96-well µClear black-walled tissue culture plate (Griener-Bio 

One, UK, G655090) from which relative light units (RLU) were immediately measured using 

the Fluostar Optima (BMG Labtech) bioluminescent plate reader. Simultaneously, the OD600 

of 1ml of each dilution of bacterial solution was measured with the spectrophotometer 

calibrated using M199 alone, and viable counts were plated onto HBHI agar in triplicate as 

described previously (section 2.2.2). 
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2.2.11 Culture and maintenance of Detroit 562 nasopharyngeal epithelial cells 

The human nasopharyngeal epithelial carcinoma cell line, Detroit 562 (D562), ECCAC# 

87042205, was cultured in Eagles Minimum Essential Media (EMEM) supplemented with 

10% heat-inactivated FBS, 0.1% lactalbumin hydrolysate (Oxoid, UK), 0.1mM non-essential 

amino-acids, 1mM sodium pyruvate and 2mM L-glutamine (complete media). Cells were 

cultured in T75 tissue culture flasks until ≥80% confluent. The cells were then passaged by 

trypsinization whereby the cells were incubated in pre-warmed 0.05% trypsin-0.02% EDTA 

for 7 minutes or until ≥90% of cells were in suspension. The cells were then washed by 

centrifugation at 500xg for 5 minutes and re-seeded at 3x106 per T75 flask for each passage 

of the cell line. For co-culture experiments, D562 cells were seeded into 24-well flat-

bottomed tissue culture plates at 4x105 cells per well, or in 96-well tissue culture plates at 

1x105 cells per well to establish confluent monolayers in 1-2 days. 

 

2.2.12 Culture of Detroit 562 cells with pathogenic bacteria in the absence or presence 

of the commensal Neisseria spp. 

D562 cells were cultured as described previously (section 2.2.11). Once D562 monolayers 

were grown to confluence in tissue culture plates the complete media was replaced with 

Medium 199 containing 2% FCS and 2mM L-glutamine (M199) to maintain epithelial cells 

and minimise bacterial growth during experiments. 

D562 cells were incubated with pathogenic bacteria with or without commensal Neisseria 

spp. Bacteria were added to epithelial monolayers at a range of bacterial concentrations 

(0.2, 2, 20 to 200 bacteria per epithelial cell) referred to as multiplicity of infection (MOI). 

Following incubation at 37oC in 5% CO2 for 3 hours, media and unbound bacteria were 

removed from each well, and monolayers were washed three times with PBS. Unless 
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otherwise stated, M199 containing 200 µg/ml gentamicin was then added to each well and 

incubated for a further 21 hours at 37oC in 5% CO2 with humidity to kill the remaining 

bacteria, with the exception of experiments using S. aureus strain Mu50 where gentamicin 

was substituted for 100 U/ml penicillin and 100 µg/ml streptomycin for the final 21 hours of 

the incubation (Ellis, 2003). S. aureus strain Mu50 and N. lactamica strain NL4.1 co-cultures 

were found to have an MIC of less than 6.25 U/ml penicillin with 6.25 µg/ml streptomycin.  

 

2.2.13 Culture of Detroit 562 nasopharyngeal cells with inflammatory stimuli in the 

absence or presence of N. lactamica 

D562 cells were seeded in 96-well plates as previously described (section 2.2.11). D562 cells 

were cultured with and without N. lactamica strain NL4.1 at a range of bacterial 

concentrations (MOI 2- 2000) for 3 hours in M199, in the absence or presence of stimuli 

(Table 2.5). Following 3 hours incubation, D562 cells were washed with PBS to remove 

unbound bacteria and incubated for a further 21 hours in M199 containing gentamicin 

(without stimuli).  

Table 2.5 Stimuli used in this study 

Agonist name Abbreviation Agonist target Concentration used 

polyinodinic-
polycytidylic 
acid sodium salt 

poly(I:C) Toll-like receptor 3 (TLR3) 0.05 µg/ml – 5 µg/ml 

anisomycin ANI p38MAPK/JNKMAPK 2.5 µg/ml-5 µg/ml 

phorbol 12-
myristate 13-
acetate 

PMA ERKMAPK 0.1 µg/ml-1 µg/ml 
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2.2.14 Enzyme-linked immunosorbent assay for the quantification of secretory cytokines 

and chemokines from Detroit 562 cells 

D562 cells were treated with bacteria or stimuli as described previously (sections 2.2.12 and 

2.2.13). The resulting supernatants were collected after 24 hours incubation, aliquoted and 

stored at -80oC until required. The enzyme-linked immunosorbent assay (ELISA) recognising 

human IL6, IL8 or TNFα was used according to the manufacturer’s instructions (R&D 

Systems, UK) with minor modifications, to quantify the amount of cytokine/chemokine in 

the culture supernatants generated previously. In brief, 100 µl of capture antibody (360 

µg/ml mouse anti-human IL6 capture antibody, or 720 µg/ml mouse anti-human IL8 or 720 

µg/ml mouse anti-human TNFα) in PBS was added to each well of a 96-well immunoplate 

and incubated at room temperature (RT) overnight in order to coat the immunoplate. The 

immunoplate was then washed three times with an excess of wash buffer (0.05% Tween 20 

in PBS (0.1M sodium chloride, 8mM disodium hydrogen orthophosphate 2-hydrate, 50mM 

potassium phosphate, 2.5mM potassium chloride, pH 7.4)) to remove unbound antibody, 

and non-specific antibody binding was blocked by incubation in 300µl of reagent diluent 

(1% bovine serum albumin in PBS, pH 7.4) for 1 hour.  

Cytokine/chemokine standards were made by doubling dilutions of recombinant protein of 

600pg/ml to 4.7 pg/ml (IL6), 2000 pg/ml to 15.3 pg/ml (IL8) or 1000 pg/ml to 7.6 pg/ml 

(TNFα). All supernatants were freshly thawed and diluted appropriately prior to testing to 

bring the levels of cytokine/chemokine into the detectable range, in reagent diluent. Then 

100µl of samples or standards were added to each well and incubated at 4oC overnight to 

allow cytokine/chemokine in the samples to bind to the capture antibody.  

Each immunoplate was washed as before, to remove unbound cytokine/ chemokine then 

100µl biotinylated goat anti-human IL6 (36 µg/ml), goat anti-human IL8 (20 ng/ml) or goat 

anti-human TNFα (250 ng/ml) secondary antibody in reagent diluent was added to each 

well and incubated at RT for 4 hours to bind to captured cytokine/chemokine. The wells 



Page | 52  
 

were washed as before to remove any unbound detection antibody and 100 µl of 

streptavidin-conjugated horseradish-peroxidase (HRP) (1:200 dilution) was added to each 

well. Each immunoplate was kept in the dark to protect the light-sensitive HRP and was 

incubated at RT for 20 minutes. A final wash was performed to remove excess unbound 

HRP and 100µl of peroxidise substrate solution was added to each well to start the 

enzymatic reaction and incubated at RT in the dark for a further 30 minutes. Finally 50µl of 

stop solution (2N H2SO4) was added to each well and the optical density (OD) was read at 

450nm using the Fluostar Optima (BMG Labtech) absorbance plate reader, and at 540nm 

for correction. A standard 4-parameter logistic curve of log10OD against known 

cytokine/chemokine concentration was generated from the standards and used to calculate 

the levels of cytokine/chemokine in the supernatant using Graphpad Prism 5 software 

(Graphpad Software, San Diego, USA). These were then multiplied by the dilution factor to 

give the final concentrations of cytokine/chemokine. 

 

2.2.15 Fluorescent stains to monitor induction of cell death in nasopharyngeal epithelial 

cells and possible protection by commensal Neisseria spp. 

D562 monolayers were infected with pathogenic bacteria in the presence and absence of 

commensal Neisseria spp. as described previously (section 2.2.12). D562 cells were 

permeabilised with 1% saponin to allow maximal staining of DNA. In optimisation 

experiments D562 cells were also treated for 24 hours with either 10x PBS to induce 

necrosis or 1µM staurosporine (STRP) to induce apoptosis.  

To determine commensal Neisseria spp. effect on apoptotic inducers, D562 cells were 

incubated with commensal Neisseria spp. for 3 hours in the presence or absence of 1µm 

STRP or 20 ng/ml TNFα (Peprotech, UK) with 20 µg/ml cycloheximide (chx) to induce 

intrinsic or extrinsic apoptosis respectively (Liu, Wetzler & Massari, 2008; Deghmane et al., 
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2009). Epithelial cells were then washed in PBS, and then incubated in M199 containing 200 

µg/ml gentamicin with either STRP or TNFα/CHX for a further 21 hours. 

To quantify D562 cells present, after a total of 24 hours incubation, a final concentration of 

5 µg/ml of the DNA stain Hoechst 33342 was added to each well and incubated for 1 hour 

at 37oC in 5% CO2. The treatments were duplicated in wells stained with a final 

concentration of 1µM of the apoptotic marker Yopro-1 (Idziorek et al., 1995);(Plantin-

Carrenard et al., 2003) and 5 µg/ml of the necrotic marker propidium iodide (PI) was added 

for 30 minutes and 15 minutes respectively. The fluorescent intensity from each stain was 

measured using a Fluostar Optima plate reader (BMG Labtech, UK), using 350nm excitation 

and 460nm emission filters to measure Hoechst 33342 staining, 485nm excitation and 

570nm emission filters to measure Yopro-1 staining and 540nm excitation and 620nm 

emission filters to measure PI staining. 

 

2.2.16 Analysis of apoptotic cell death in Detroit 562 epithelial cells by detecting 

activated caspase-3 by flow cytometry 

D562 cells were cultured in 24-well tissue culture plates and challenged by bacteria as 

described previously (section 2.2.12). Following 18 hours incubation in M199 containing 

gentamicin, activated caspase 3 was labelled using the CaspGlow Fluorescein Active 

Caspase 3 Staining Kit (eBioscience, UK, 88-7004) according to the manufacturer’s 

instructions. In brief, a fluorescein (FITC)-labelled activated caspase inhibitor (FITC-DEVD-

FMK) that binds irreversibly and specifically to activated caspase 3, was added directly to 

each well (1:1000 dilution) and incubated at 37oC in 5% CO2 for 45 minutes. To include non-

adherent cells the supernatants were removed and transferred to labelled centrifuge tubes, 

then each well was washed in PBS and the PBS was also transferred to the corresponding 

centrifuge tubes. D562 cells were next incubated for 20 minutes in PBS containing 4mM 

EDTA at 37oC to disassociate epithelial cells, then transferred to centrifuge tubes containing 
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both supernatant and PBS wash. Cell suspensions were centrifuged at 500 xg for 5 minutes 

to pellet the cells and re-suspended in PBS to wash the cells, which was then repeated. The 

pelleted cells were re-suspended in chilled PBS containing 4% PFA. Following 20 minute 

incubation for fixation, the cells were centrifuged as before and re-suspended in PBS to be 

stored at 4oC until required. Where possible 10,000 events were collected per sample and 

FITC-caspase 3-labelled cells were then analysed using the Accuri C6 flow cytometer.  

 

2.2.17 Surface expression of Toll-like receptor 2 on Detroit 562 epithelial cells following 

bacterial challenge 

D562 cells were culture in the presence of N. meningitidis in the absence or presence of 

commensal Neisseria spp. for 3 hours as described in section 2.2.12. D562 cells were 

washed three times with PBS and disassociated with EDTA (4mM in PBS) for 20 minutes at 

37oC in 5% CO2. D562 cells were then pipette washed in the EDTA solution to remove cells 

and transferred to screw-capped microcentrifuge tubes and pelleted by centrifugation at 

500xg for 5 minutes. The EDTA solution was poured off and the remaining pellet was re-

suspended in chilled paraformaldehyde (PFA) (4% in PBS), incubated at room temperature 

for 20 minutes then topped up to 1ml with PBS. The PFA fixed cell suspension was stored at 

4oC until required. 

Half of the fixed cell suspension (approximately 2x105 cells) was transferred to a new 

microcentrifuge tube, pelleted by centrifugation and re-suspended in PBS. The D562 cells 

were again pelleted then re-suspended in blocking buffer (1% BSA, 0.1% NaN3 in PBS) and 

incubated at room temperature for 10 minutes to block non-specific binding. D562 cells 

were further incubated in blocking buffer containing a 1:250 dilution of mouse anti-human 

TLR2 (clone TL2.1, eBioscience, UK) antibody for 1 hour at room temperature. To remove 

unbound antibody, cells were washed twice by centrifugation followed by re-suspension in 

blocking buffer, then incubated for 1 hour at room temperature with a 1:500 dilution of 
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goat anti-mouse Alexa-fluor 647-conjugated secondary antibody (Life Technologies, UK). 

D562 cells were then washed twice by centrifugation as before, followed by re-suspension 

in PBS. The cells were analysed for fluorescence using the Accuri C6 flow cytometer.  

 

2.2.18 Dual-labelling of cell death and N. meningitidis in nasopharyngeal epithelial cells 

following challenge 

To determine if direct association by N. meningitidis with D562 cells is required for 

induction of cell death, D562 cells were challenged with an MOI of 2 or 20 bacteria per 

epithelial cell with N. meningitidis strain MC58. Unlike previous experiments, following a 3 

hour challenge with bacteria, D562 cells were washed with PBS and M199 (without 

gentamicin) was added for a further 18 hours. D562 cells were then labelled for the 

apoptotic marker, activated caspase 3 as described in section 2.2.16 according to 

manufacturer’s instructions. Cells were then washed three times by centrifugation in chilled 

PBS and fixed in 4% PFA for 20 minutes at room temperature. Cells were then labelled for 

adherent bacteria as described in section 2.2.21 then analysed using the Accuri C6 flow 

cytometer.  

 

2.2.19 Bioluminescent reporter for the detection of activated caspase in Detroit 562 

epithelial cells challenged with N. meningitidis with and without commensal 

Neisseria spp. 

To determine the effect of commensal Neisseria spp. on N. meningitidis-induced activation 

of caspase cell death pathways, D562 cells were seeded into 96-well, black-walled, clear-

bottomed tissue culture plates (Greiner Bio-One, UK). Following a 3 hour challenge with N. 

meningitidis strain MC58 (MOI 20) alone or in combination with commensal Neisseria spp. 

(MOI of 200 bacteria per D562 cell), each well was washed with PBS and M199 containing 



Page | 56  
 

200 µg/ml gentamicin (without phenol red) was added for the remainder of the assay. At 

indicated time points the caspase-glo 8 (Promega, UK) or the caspase-glo 9 (Promega, UK) 

assay reagent was added to separate wells and incubated at 37oC in 5% CO2 for 30 minutes. 

Each assay reagent contains a caspase-specific substrate that when cleaved by activated 

caspase, luminesces. Bioluminescence (relative light units; RLU) was measured using the 

Fluostar Optima. D562 cells were incubated with 1µM STRP for the duration of the 

experiment as positive controls for activated caspase 9, or 20 ng/ml TNFα as a positive 

control for activated caspase 8.  

 

2.2.20 Viable bacterial counts to measure association and invasion of Neisseria spp. with 

Detroit 562 epithelial monolayer 

To monitor association and invasion of bacteria to D562 cells, bacterial suspensions of N. 

meningitidis and N. lactamica were made (section 2.2.2). The bacteria were re-suspended 

in M199 to a final concentration of 200 bacteria per epithelial cell (MOI) and added to D562 

cell monolayers in triplicate wells of a 96-well tissue culture plate, per treatment. To 

confirm bacterial concentrations added to monolayers, bacteria were enumerated by serial 

10-fold dilutions and spreading onto HBHI agar to determine viable colony counts. To 

distinguish between N. meningitidis and N. lactamica, bacteria were spread onto HBHI agar 

containing 100 mg/L 5-Bromo-4-chloro-3-indoyl B-D-galactopyranoside (x-gal) (Bennett et 

al., 2005), a lactose derivative that is selectively metabolised by N. lactamica resulting in a 

blue colony colouring compared to off-white colony colouring of N. meningitidis. Following 

culture of D562 cells with bacteria for 3 hours at 37oC in 5% CO2, growth of bacteria was 

monitored by viable counts from the culture supernatant.  

Bacterial association to D562 monolayers was determined as described previously (Virji et 

al., 1992c). Briefly, cells were washed vigorously by pipetting with PBS-B to remove 

unassociated bacteria, and then incubated for 30 minutes at 37oC in 5% CO2 in PBS-B 
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containing 1% saponin to lyse epithelial cells. Duplicate wells containing bacteria without 

D562 cells were used to correct for non-specific binding to the exposed well area. Saponin 

at 1% was found not to affect viability of Neisseria by viable colony counts. 

To examine invasion of bacteria into D562 cells, a gentamicin protection assay was used 

(Shaw & Falkow, 1988; St Geme & Falkow, 1990) with minor modification (Virji et al., 

1992c). Monolayers were washed vigorously by pipetting with PBS-B prior to a 90 minute 

incubation in M199 containing 200 µg/ml gentamicin to eliminate extracellular bacteria 

(Vaudaux & Waldvogel, 1979). The cells were then washed in PBS-B, lysed with 1% saponin, 

and viable counts were made.  

To confirm that gentamicin effectively eliminates only extracellular bacteria, in selected 

experiments, D562 monolayers were pre-incubated for 1 hour with 2 µg/ml cytochalasin-D, 

to inhibit phagocytic internalization of Neisseria, prior to bacterial challenge (Bessen & 

Gotschlich, 1986; Virji et al., 1992c; Merz & So, 1997). After 3 hours incubation D562 cells 

were washed, incubated with gentamicin and lysed with saponin.  

 

2.2.21 Flow cytometry analysis of N. meningitidis adhesion to Detroit 562 epithelial cells 

in the presence and absence of commensal Neisseria spp. 

D562 cells were challenged with either N. meningitidis strain MC58 or C751 alone or in the 

presence of the commensal Neisseria spp; N. lactamica, N. cinerea or N. polysaccharea, 

(MOI 20 or 200 bacteria per epithelial cell) for 3 hours at 37oC in 5% CO2. D562 cells were 

then washed three times with PBS and incubated in PBS containing 4mM EDTA for 20 

minutes at 37oC in 5% CO2. D562 cells were then pipette washed in the EDTA solution to 

remove cells and transferred to screw-capped microcentrifuge tubes and pelleted by 

centrifugation at 500 xg for 5 minutes. The remaining pellet was re-suspended in chilled 

paraformaldehyde (PFA) (4% in PBS) for fixation, incubated at room temperature for 20 
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minutes then topped up to 1ml with PBS and stored at 4oC until required. The D562 cells 

were again washed by centrifugation in PBS to remove PFA and then re-suspended in 

blocking buffer (1% BSA, 0.1% NaNH3 in PBS) and incubated at room temperature for 10 

minutes to block non-specific antibody binding. D562 cells were further incubated in 

blocking buffer containing mouse anti- N. meningitidis serosubtype P1.7 antibody (1:250 

dilution) (NIBSC, UK) for 1 hour at room temperature. To remove unbound antibody, cells 

were washed twice by centrifugation in blocking buffer, then incubated for 1 hour at room 

temperature with goat anti-mouse Alexa-fluor 647 conjugated or goat anti-mouse Alexa-

fluor 488 conjugated secondary antibody (1:500 dilution) (Life Technologies, UK) in blocking 

buffer. D562 cells were then washed twice by centrifugation as before, followed by re-

suspension in PBS. Untreated, antibody-labelled cells were used as a background control. 

The cells were analysed for fluorescence using the Accuri C6 flow cytometer. 

 

2.2.22 Monitoring invasion into Detroit 562 nasopharyngeal epithelial cells by the 

pathogen, N. meningitidis, using a bioluminescent reporter 

To determine the effect of commensal Neisseria spp. on the ability of N. meningitidis to 

invade nasopharyngeal epithelial cells, D562 cells were seeded into 96-well black-sided, 

clear-bottomed tissue culture plate (Greiner Bio-one, UK) until 100% confluent as described 

in section 2.2.11. Complete media was replaced with M199 (without phenol red) to reduce 

background luminescence (Flentie et al., 2009). MC58lux+ at a MOI of 200 bacteria per 

epithelial cell was used to challenge D562 cells in the presence and absence of commensal 

Neisseria spp at a concentration of 20, 200 or 2000 bacteria per epithelial cell (MOI). 

Relative light units (RLU) emitted by the bioluminescent MC58lux+ were monitored every 60 

minutes using the Fluostar Optima plate reader (BMG Labtech). After 3 hours incubation at 

37oC in 5% CO2 appropriate wells were washed and M199 containing 200 µg/ml gentamicin 

was added to kill the extracellular bacteria. Following a further 90 minutes incubation at 
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37oC in 5% CO2, a final concentration of 1% saponin was added to permeabilise cells, and 

allow gentamicin mediated killing of intracellular bacteria. RLU’s from gentamicin and 

saponin treated wells were compared against treatments with gentamicin alone to give a 

measure of invasion. Untreated D562 cells were used to measure the lower limit of 

detection.  
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2.3 Statistical analysis 

For correlation between bacterial concentration (cfu/ml) as determined by viable colony 

counts and OD600 or relative light units (RLU) a single order polynomial line of 95% best fit 

was generated for x/y scatterplots and significance was analysed by Spearman correlation. 

For all other statistical comparisons when comparing two treatments, such as the effect of 

single concentrations of commensal neisseriae on pathogen-induced host cell death, paired 

student t-tests were used. When comparing growth curves between N. meningitidis strains 

unpaired student t-tests were used. When comparing three or more treatments, such as 

inflammatory or cell death response to a range of concentrations of bacteria or stimuli, a 

one-way ANOVA with Bonferroni’s post-test was used to compare between treatments. 

Values stated represent means ± standard error of the mean (SEM) unless otherwise stated 

and p-values less than or equal to 0.05 (p≤0.05) were considered statistically significant. All 

statistical tests were conducted using Graphpad prism version 5 (Graphpad Software, San 

Diego, California, USA). 
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3.1 Introduction 

The human mucosa plays a pivotal role in recruiting innate and adaptive immune cells to 

the site of infection and modulating the systemic response towards homeostasis or 

inflammation. For instance, epithelial cells exposed to DNA from commensal or pathogenic 

bacteria induce different responses in antigen presenting cells (Campeau et al., 2012). 

Conditioned media from nasopharyngeal epithelial cells exposed to bacterial or viral 

proteins influenced the proliferation of T cells and the production of specific IgA and IgG 

antibodies by human peripheral blood lymphocytes (Yeh et al., 2013). 

The meningitis-causing pathogens N. meningitidis and H. influenzae are potent inducers of 

inflammatory cytokines in meningeal cells, in contrast to S. pneumoniae (Fowler et al., 

2004). Despite comparable levels of association with meningeal cells, N. lactamica is poorly 

inflammatory compared to N. meningitidis (Fowler et al., 2006). 

Previous work by this group at the University of the West of England has demonstrated that 

N. meningitidis (strain MC58) is also a potent inducer of innate inflammation in human 

nasopharyngeal epithelial cells, and that this inflammation can be attenuated by N. 

lactamica (strain NL4.1) in a dose-dependent manner (Tezera et al., 2011). Further to this, 

N. lactamica was shown to attenuate inflammation induced via the Toll-like receptor (TLR) 

2/1 heterodimer and could also attenuate inflammation induced by the inflammatory 

cytokines IL1β and TNFα. Together this suggests that the ability of N. lactamica to attenuate 

inflammation was downstream of bacteria-receptor interaction (Tezera et al., 2011).  

Therefore the ability of N. lactamica to extend attenuation of pathogen-induced innate 

inflammation induced by the meningitis-causing Gram-negative pathogen H. influenzae, as 

well as the Gram-positive pathogens S. pneumoniae and S. aureus in nasopharyngeal 

epithelial cells was investigated. 
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TLR2 mediated inflammation induced by PAMPs activates the MAPK pathway via ERK1/2 in 

human airway epithelial cells (Martel, Bérubé & Rousseau, 2013). In mice, TLR2 agonists 

activate ERKMAPK and p38MAPK pathways leading to induction of IL6 and IL1β, whereas, 

JNKMAPK enhanced agonist-induced inflammation (Peroval et al., 2013). Neisserial PorB 

induces activation of ERK1/2MAPK in murine B cells (MacLeod, Bhasin & Wetzler, 2008) and in 

transfected HEK cells overexpressing TLR2 (Toussi et al., 2012), whereas the activation of 

JNK1/2MAPK and p38MAPK have been shown respectively to be involved in invasion and 

induction of cytokine responses by whole bacteria in human brain endothelial cells 

(Sokolova et al., 2004). Whether the presence of N. lactamica could affect innate 

inflammation induced by intracellular MAPK pathway agonists was therefore studied. 

Previous work by this group identified that N. lactamica could attenuate inflammation 

induced by specific agonists that are known to stimulate inflammation through surface 

bound receptors, namely TLR4, TNF receptor and IL1 receptor. TLR3 is a receptor found 

within the host cell cytoplasm bound to endosomes (Alexopoulou et al., 2001) and is 

therefore not associated with cell surface expression. Activation of TLR3 by viral or 

synthetic double-stranded ribonucleic acids (dsRNAs) or extracellularly derived RNAs from 

damaged host cells induces inflammation via MyD88 and TRAF6 in a similar fashion to TLR4 

(Lai et al., 2009). Hence it was determined to investigate the effect of N. lactamica on TLR3-

induced innate inflammation in this study. 
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3.2 Results 

3.2.1 Modulation of innate inflammatory response induced by ERK1/2MAPK and p38MAPK 

pathway ligands by N. lactamica 

To assess the effect of the commensal N. lactamica on innate inflammatory response in 

nasopharyngeal epithelial cells induced via activation of the mitogen-activated protein 

kinase (MAPK) pathways, levels of pro-inflammatory cytokine IL6 secreted from D562 cells 

were measured using an enzyme-linked immunosorbant assay (ELISA) in the presence and 

absence of agonists to different arms of the MAPK pathway. 

Epithelial cells were incubated with N. lactamica at concentrations of 20 and 200 bacteria 

per epithelial cell (MOI) (Figure 3.1). N. lactamica induced IL6 in a dose-dependent manner, 

and at a high dose (MOI 200) induced modest levels of IL6 (158pg/ml) compared to 

untreated monolayers (23 pg/ml). Equivalent monolayers were treated with the agonist 

phorbol 12-myristate 13-acetate (PMA) at 0.1 µg/ml and 1µg/ml to stimulate the 

extracellular signal-regulated kinase (ERK) 1 and 2 (ERK1/2) MAPK pathway (Figure 3.1a). 

Both concentrations of PMA poorly induced IL6 secretion (mean 66 and 73 pg/ml 

respectively), at less than 50% of the levels of IL6 induced by high dose of N. lactamica. 

When PMA at either 0.1 or 1 µg/ml was co-incubated with N. lactamica there was a dose-

dependent, additive increase in levels of IL6 induced by N. lactamica. 

To evaluate the effect of N. lactamica on inflammation induced via the p38MAPK /JNKMAPK 

pathway, monolayers were similarly incubated in the presence of the p38MAPK /JNKMAPK 

agonist anisomycin (ANI) (Figure 3.1b) at concentrations of 2.5 µg/ml and 5 µg/ml. ANI 

potently induced the secretion of IL6 from epithelial monolayers (means of 1103 and 2568 

pg/ml respectively). When ANI was co-incubated with N. lactamica there was a dose-

dependent, synergistic increase in IL6 secreted from epithelial cells above ANI alone. This 

result suggests that N. lactamica agonises this pathway in the presence of a stimulant.  
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Figure 3.1 The effect of N. lactamica on secretion of IL6 induced by ERKMAPK and 

p38MAPK /JNKMAPK agonists on Detroit 562 epithelial cells 

Epithelial monolayers were incubated for 3 hours with the MAPK pathway agonists a) 

ERKMAPK agonist (PMA) or b) p38MAPK /JNKMAPK agonist (ANI), in the absence and presence of 

N. lactamica (NL4.1). Supernatants were collected and concentrations of IL6 were 

measured by ELISA following a further 21 hours incubation in gentamicin supplemented 

media (200 µg/ml). The data represents the mean ± SEM from two independent repeats 

each replicated in triplicate.   
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3.2.2 The effect of N. lactamica on IL6 induced by the TLR3 agonist poly(I:C)- in Detroit 

562 epithelial cells 

To identify the effect of N. lactamica on innate inflammation induced via the TLR3 pathway, 

the agonist polyinosinic:polycytidylic acid (poly(I:C)) was used in the absence or presence of 

N. lactamica (Figure 3.2). As shown previously, N. lactamica alone induced little IL6 at MOI 

2 and MOI 20 with a modest induction of IL6 at MOI 200. Similarly, poly(I:C) at 

concentration of 0.05 µg/ml and 0.5 µg/ml induced moderate levels of IL6. However, the 

highest concentration of poly(I:C) (5 µg/ml) significantly increased (p<0.001) levels of IL6 

(mean 708 µg/ml) compared to untreated epithelial cells. When 5 µg/ml poly(I:C) was co-

incubated with N. lactamica at MOI 2 and 20 there was a dose-dependent reduction in 

levels of IL6, with a significant reduction (p<0.001) in levels of IL6 secreted in the presence 

of N. lactamica at MOI 20. 
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Figure 3.2 The effect of N. lactamica on IL6 induced by a TLR3 agonist from nasopharyngeal epithelial cells 

D562 nasopharyngeal epithelial monolayers were incubated with the TLR3 agonist polyinosinic:polycytidylic acid (poly(I:C) in the absence and presence of N. 

lactamica (NL4.1) at concentrations (MOI) of 2-200 bacteria per epithelial cell for 3 hours. Epithelial cells were incubated in media containing gentamicin (200 

µg/ml) for a further 21 hours, then supernatants were collected and IL6 concentrations were measured by ELISA. The data represents the mean ± SEM from 

three independent repeats each replicated in triplicate. ***p<0.001.  
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3.2.3 The effect of N. lactamica and H. influenzae on the induction of IL6 from Detroit 

562 epithelial cells 

To extend on previous findings that N. lactamica (strain NL4.1) attenuates N. meningitidis 

serogroup B (strain MC58)-induced IL6 stimulation from nasopharyngeal epithelial cells, 

responses to another Gram-negative pathogen, H. influenzae, was also examined for 

comparison (Figure 3.3). 

Stimulation with the commensal N. lactamica, at MOI 0.2 to MOI 20 did not significantly 

induce levels of IL6 above those of epithelial cells untreated with bacteria; although there 

was a trend towards a weak stimulation of IL6 with increased bacterial concentration. N. 

lactamica at MOI 200 stimulated a modest, but significant increase in IL6 (p<0.001) 

compared to untreated cells. In contrast, challenge with H. influenzae type a (Hia; Figure 

3.3a) or type b (Hib; Figure 3.3b) did not induce IL6 compared to untreated epithelial cells. 

In the presence of N. lactamica MOI 200 all concentrations (MOI 0.2-200) of H. influenzae 

type a significantly reduced N. lactamica-induced IL6 by approximately 50% (p<0.01). In 

contrast, only MOI 2 and 20 of H. influenzae type b reduced N. lactamica-induced IL6, 

though not significantly. These results suggest that H. influenzae type a, but not type b 

consistently reduces N. lactamica-induced innate inflammation. Differences were seen in 

levels of IL6 between assays (Figure 3.3a and b) with untreated epithelial cells producing 

122 µg/ml and 36 µg/ml, respectively, and high dose N. lactamica-treated epithelial cells 

producing 392 µg/ml and 133 µg/ml, respectively. 
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Figure 3.3 Levels of IL6 from Detroit 562 epithelial cells following stimulation with 

invasive H. influenzae and N. lactamica 

D562 epithelial cells were incubated for 3 hours in the presence of the pathogen H. 

influenzae a) type a strain 620 (Hia) or b) type b strain Eagan (Hib), at a range of 

concentrations from 0.2 to 200 bacteria per epithelial cell (MOI), with and without N. 

lactamica (NL4.1). Monolayers were further incubated for 21 hours in media containing 

gentamicin (200 µg/ml). Supernatants were then collected and concentrations of pro-

inflammatory IL6 (pg/ml) were measured by ELISA. The data represents the mean ± SEM 

from three independent repeats each replicated in triplicate. ***p<0.001 **p<0.01. 
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3.2.4 The effects of N. lactamica on S. aureus-induced IL6 secretion from Detroit 562 

cells 

The present study was extended to examine the effect of N. lactamica on the innate 

inflammatory response to Gram-positive pathogens that colonise the nasopharynx in 

humans. S. aureus (strain RN4220) (Figure 3.4a) stimulated monolayers showed a weak 

dose-dependent increase in secretion of IL6 that became significant (p<0.05) at MOI 200. 

Co-cultures of N. lactamica with S. aureus MOI 200 had comparable results to S. aureus 

alone. In comparison, S. aureus strain Mu50 (Figure 3.4b) did not induce significant levels of 

IL6 above untreated epithelial cells and was unable to reduce IL6 induced by N. lactamica 

MOI 200. Once again, differences were seen in levels of IL6 between assays (Figure 3.4a and 

b) with untreated epithelial cells producing 132 µg/ml and 50 µg/ml, respectively, and high 

dose N. lactamica-treated epithelial cells producing 402 µg/ml and 126 µg/ml, respectively.  
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Figure 3.4 Secretion of pro-inflammatory cytokine IL6 following challenge by S. 

aureus in the absence and presence of N. lactamica 

Epithelial cell monolayers were incubated for 3 hours with the commensal N. lactamica 

(strain NL4.1) or the pathogen S. aureus a) strain RN4220 or b) strain Mu50 at a range of 

concentrations from 0.2 to 200 bacteria per epithelial cell (MOI). Following a 21 hour 

incubation in media containing a) gentamicin (200 µg/ml) or b) penicillin (100 U/ml) and 

streptomycin (100 µg/ml), the supernatants were collected and levels of the secreted pro-

inflammatory cytokine IL6 (pg/ml) were measured by ELISA. The data represents the mean 

± SEM from a) three or b) two independent repeats each replicated in triplicate.  
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3.2.5 The effects of N. lactamica on S. pneumoniae-induced innate inflammatory 

response by Detroit 562 epithelial cells 

The study was further extended to examine the effect of N. lactamica on the innate 

inflammatory response to the unrelated Gram-positive upper respiratory tract, human 

pathogen S. pneumoniae (Figure 3.5). Detroit 562 (D562) epithelial cells challenged with S. 

pneumoniae strain D39 (Figure 3.5a) did not secrete levels of IL6 above untreated epithelial 

cells at any dose of bacteria (MOI 0.2-200). In co-cultures N. lactamica at MOI 200 with S. 

pneumoniae (MOI 0.2-20) there was a slight, but not significant reduction in N. lactamica-

induced IL6. To assess if the innate epithelial response was strain specific, the serotype 14 

S. pneumoniae isolate Sp14 was used (Figure 3.5b). S. pneumoniae at MOI 0.2-20 did not 

induce IL6, but in contrast, at MOI 200 there was a significant increase in IL6 (p<0.001) 

compared to untreated epithelial cells. When S. pneumoniae was co-cultured at MOI 200 

with N. lactamica, all doses except MOI 2 of N. lactamica significantly reduced S. 

pneumoniae-induced IL6. 
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Figure 3.5 IL6 secretion following challenge with pathogenic S. pneumoniae in the 

absence or presence of N. lactamica  

Epithelial cell monolayers were challenged for 3 hours with S. pneumoniae a) strain D39 or 

b) isolate Sp14 in the presence or absence of N. lactamica (NL4.1) at 0.2 to 200 bacteria per 

epithelial cell (MOI). Epithelial monolayers were further incubated for 21 hours in media 

containing gentamicin (200 µg/ml). Supernatants were collected at 24 hours and levels of 

the pro-inflammatory cytokine IL6 (pg/ml) were measured by ELISA. The data represents 

the mean ± SEM from three independent repeats each replicated in triplicate. ***p<0.001 

*p<0.05 ns= non-significant. 
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To further assess the induction of innate inflammation by S. pneumoniae isolate Sp14 and 

attenuation by N. lactamica, the secretion of pro-inflammatory cytokine TNFα (Figure 3.6a), 

and the chemokine IL8 (Figure 3.6a) secreted from nasopharyngeal epithelial cells was 

examined. Neither untreated nor N. lactamica alone treated cells induced detectable levels 

of TNFα in these experiments. In contrast, S. pneumoniae at MOI 200 strongly induced 

TNFα secretion from epithelial cells (91 pg/ml; Figure 3.6b). When epithelial cells were co-

incubated with S. pneumoniae and N. lactamica, all concentrations of N. lactamica except 

MOI 0.2 significantly reduced S. pneumoniae-induced TNFα secretion by 40% or more 

(p<0.05).  

Similarly, S. pneumoniae at MOI 200 strongly induced IL8 that was significantly increased 

compared to untreated epithelial cells (mean 21 ng/ml and 3 ng/ml respectively; p<0.01; 

Figure 3.6b). However, there was no significant change in the levels of S. pneumoniae-

induced IL8 by N. lactamica despite up to a 40% reduction in with MOI 0.2.  
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Figure 3.6 N. lactamica mediated suppression on S. pneumoniae-induced cytokine 

and chemokine secretion from Detroit 562 epithelial cells 

Epithelial cell monolayers were incubated for 3 hours with the commensal N. lactamica 

(NL4.1) at MOI 0.2 to 200 in the absence or presence of S. pneumoniae (Sp14) at MOI 200. 

Following a 21 hour incubation in media containing gentamicin (200 µg/ml) the 

supernatants were collected and levels of the secreted pro-inflammatory a) cytokine TNFα 

(pg/ml) or b) chemokine IL8 (ng/ml) were measured by ELISA. The data represents the 

mean ± SEM from three independent repeats each replicated in triplicate. **p<0.01 

*p<0.05 ns=non-significant. 
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3.3 Discussion 

It has previously been demonstrated that N. lactamica (strain NL4.1) suppresses 

inflammatory cytokine secretion from human nasopharyngeal epithelial cells stimulated 

with N. meningitidis challenge. Agonists that stimulate inflammation through TLR2, TNF 

receptor or IL1 receptor have shown a similar suppression (Tezera et al., 2011). In the 

experimental model used (medium containing 2% FBS), LPS poorly induces cytokine 

secretion suggesting TLR4 cannot be optimally stimulated.  

N. meningitidis-induced TNFα secretion in cell culture models has been implicated in the 

autocrine stimulation of IL6 (Lapinet et al., 2000). However, TNFα is poorly induced 

(≤30pg/ml) by N. meningitidis relative to the levels (>1ng/ml) required to induce IL6 

secretion from epithelial cells (Tezera et al., 2011). N. meningitidis stimulates inflammation 

via the activation of TLR2 and TLR4 in peripheral blood mononuclear cells (PBMCs), and to a 

lesser extent via TLR9 (Mogensen et al., 2006a). It was therefore hypothesised that the 

main TLR involved in the model used within this study was TLR2.  

N. lactamica suppresses inflammation induced by the TLR2 agonist PAM3Cys (Tezera et al., 

2011). Activation of TLR2 induces downstream activation of MAPK pathways in a diverse 

range of cell types (Peroval et al., 2013). Activation of MAPK pathways are involved in 

induction of inflammatory cytokine secretion from (p38MAPK or ERKMAPK), and invasion by 

(JNKMAPK), N. meningitidis into host cells (Sokolova et al., 2004; MacLeod, Bhasin & Wetzler, 

2008). However, the hypothesis that N. lactamica could suppress inflammation induced by 

intracellular p38MAPK or ERKMAPK pathway agonists was not supported in these experiments. 

ERKMAPK activation appears to poorly stimulate secretion of IL6 in Detroit 562 (D562) 

epithelial cells when induced by an ERKMAPK agonist (PMA). It would therefore be unlikely to 

be involved in N. meningitidis-induced inflammation, which is consistently induced to a far 

greater extent. However this does not rule-out its possible involvement in other N. 
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meningitidis-mediated events in epithelial cells, such as invasion or activation of host cell 

death. 

Anisomycin, in contrast to PMA, potently induced IL6 secretion from epithelial cells 

suggesting a more active pathway for induction of inflammation in the cell line used. 

However, this is not only suggestive of the involvement of p38MAPK in IL6 secretion as 

anisomycin has been found to also induce JNKMAPK (Ogawa et al., 2004) and ERKMAPK (Shafer 

& Slice, 2005) although to lesser extents, depending on the cell line or type used. 

Anisomycin could be interpreted as being a broad activator of the MAPK pathway, which N. 

lactamica was unable to suppress in epithelial cells when stimulated, and indeed appeared 

additive to either anisomycin or N. lactamica alone. This suggested that N. lactamica is 

unlikely to suppress inflammation induced via the MAPK pathway in this model regardless 

of any possible involvement of these pathways in N. meningitidis derived induction. If 

further investigation of the involvement of the MAPK pathways was warranted, then the 

use of specific inhibitors during challenge by pathogen or agonist, or analysis of the 

phosphorylation status of the MAPK components would be recommended. 

As well as surface exposed receptors such as TLR2 and TLR4, D562 cells produce a 

functional form of the intracellular receptor TLR3 (Matijevic, Marjanovic & Pavelic, 2009; 

Rydberg et al., 2009), which is stimulated by intracellular dsRNA typically from viruses or 

neighbouring necrotic host cells (Lai et al., 2009). Activation of TLR3 by dsRNA, such as the 

synthetic ligand poly(I:C), can induce both host cell death (Rydberg et al., 2009; McAllister 

et al., 2013) and inflammation (Matijevic, Marjanovic & Pavelic, 2009).  

As found in a previous study, poly(I:C) induced significant levels of IL6 in D562 cells at the 

same concentration used here (Matijevic, Marjanovic & Pavelic, 2009). However, 

concentrations of IL6 in this experiment were several times higher than reported 

previously. This discrepancy may be explained by a higher concentration of cells in this 
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experiment to that used in the previous study (1x105 cells compared to 2.5x104 cells per 

well, respectively).  

In this study there was a strong correlation between the concentration of N. lactamica and 

the inhibition in inflammation induced through TLR3. This could suggest the involvement of 

an intracellular mechanism of N. lactamica-induced suppression of inflammation as has 

been put forward (Tezera et al., 2011). However, the lipotechoic acid (LTA) of the Gram-

positive bacteria S. epidermidis has been demonstrated to reduce TLR3-mediated 

inflammation by interacting with surface TLR2 on keratinocytes (Lai et al., 2009, 2010). This 

is perhaps supported by the finding that strong activation of TLR2 activates the toll-like 

signalling molecule TIRAP (MAL), but is not dependent on the activation of TIRAP (MAL). 

However, activation of TIRAP (MAL) potentially by TLR2, suppresses the induction of IL6 

stimulated by the activation of TLR3 (Kenny et al., 2009).  

The hypothesis that N. lactamica inhibits inflammation via an inhibitory signal through TLR2 

may be supported by the finding that purified PorB from N. lactamica physically associates 

with TLR2 (Liu et al., 2010) and N. lactamica inhibits inflammation induced through TLR2 

(Tezera et al., 2011). This is in contrast to N. meningitidis PorB that associates with a 

different binding site on TLR2 receptor (Massari et al., 2006; Liu et al., 2010). An anti-TLR2 

antibody (clone TL2.1) can also inhibit TLR2 activation (Lien et al., 1999) possibly by binding 

to another binding site on TLR2 receptor to pro-inflammatory ligands (Tsukamoto et al., 

2012). There could also be a reduction in surface TLR2 by shedding of the receptor as found 

with TNF receptor (Deghmane et al., 2009) or internalisation, although this hypothesis 

would not explain the suppression of inflammation induced through other receptors 

(Tezera et al., 2011) unless it was a global mechanism.  

An unexpected finding in this study was the lack of induction of inflammation, as monitored 

by IL6 secretion, induced by common pathogens that reside in the upper respiratory tract 

of humans. Although H. influenzae type b (Hib) strain Eagan induces IL6 in human 
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meningioma cells (Fowler et al., 2004), neither this strain nor the H. influenzae type a (Hia) 

strain 620 was able to induce IL6 secretion from nasopharyngeal cells in this study. This may 

be explained by poor association of encapsulated H. influenzae with mucosal epithelial cells 

(Read et al., 1992) or by paracellular invasion of H. influenzae with epithelial monolayers 

(van Schilfgaarde et al., 1995), potentially avoiding inflammatory receptors localised to the 

apical surface. 

In contrast, the lack of induction of IL6 by S. pneumoniae strain D39 observed by Fowler et 

al. (2004) was supported in this study. As with H. influenzae this may be explained by the 

poor adherence (Gould & Weiser, 2002) and paracellular invasion (Beisswenger et al., 2007) 

of strain D39 to D562 cells, though these hypotheses would require further evidence to 

support them. 

For the first time herein N. lactamica was demonstrated to suppress inflammation induced 

by the unrelated, Gram-positive S. pneumoniae isolate Sp14. Although this isolate has not 

been characterised, the species is known to induce inflammation through both TLR2 and 

TLR4. However induction through TLR4 is dependent on the expression of pneumolysin, 

which may or may not be present in this isolate (Beisswenger, Lysenko & Weiser, 2009). 

Although further work is required to characterise the means by which N. lactamica is able 

to suppress S. pneumoniae-induced inflammation, this study does demonstrate that the 

ability of N. lactamica to suppress inflammation is not limited to one strain or species of 

pathogen.  
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Chapter 4 

4 Characterisation of bioluminescent N. 
meningitidis strain MC58lux 
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4.1 Introduction 

A key characteristic of pathogenic neisseriae is the ability to enter host cells. Brief exposure 

of cells with an antibiotic such as colistin, kanamycin or gentamicin (Tang et al., 1993), that 

does not enter host cells can be used to exclude extracellular bacteria. A conventional 

method to determine the numbers of internalised or invading bacteria into host cells is to 

count viable bacterial colonies from lysed host cells (St Geme & Falkow, 1990). To be able 

to measure any effect on invasion by N. meningitidis by commensal Neisseria spp., it is 

necessary first to distinguish between colonies derived from each species. Due to the 

strong similarity between colony morphology of both species cultured on HBHI recovery 

medium it would be necessary to modify this method. It is possible to distinguish between 

N. meningitidis and N. lactamica by introducing 5-bromo-4-chloro-indolyl-β-D-

galactopyranoside (xgal) into the media (Bennett et al., 2005) producing blue/green N. 

lactamica colonies compared to off-white N. meningitidis colonies (Figure 4.1), as xgal is a 

lactose derivative that is metabolised by N. lactamica, but not N. meningitidis (Hollis, 

Wiggins & Weaver, 1969). However, this method cannot be used to differentiate N. 

meningitidis from the commensals N. polysaccharea and N. cinerea, and subsequent 

identification of colonies by other tests, such as antibiotic susceptibility (Margolis, Yates & 

Levin, 2010) or colony immunoblots (Serino & Virji, 2000) is impractical due to cost and 

time.  

The bacterial derived luxCDABE operon has been utilised to construct light-emitting 

(bioluminescent) bacteria producing the luciferase enzyme, which do not require specific 

exogenous substrates to produce light. Bioluminescent transformed bacteria have 

previously been utilised as  biosensors for rapid, sensitive, real-time measurement of the 

effect of antibiotics on bacterial growth (Salisbury et al., 1999; Beard et al., 2002), 

dissemination of invasive bacteria within animal models (Contag et al., 1995; Sjölinder & 
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Jonsson, 2007) and invasion by bacteria in cell culture models (Forde, Parton & Coote, 

1998; Nelson et al., 2003; Flentie et al., 2009). 

 

 

Figure 4.1 Differentiation of N. lactamica and N. meningitidis on HBHI agar 

containing 5 bromo-4-chloro-indolyl-β-D-galactopyranoside 

N. lactamica (Nlac) and N. meningitidis (Nmen) were grown overnight (16-18 hours at 37°C 

in 5%CO2) on HBHI agar then a single colony was streaked onto one half of a HBHI agar 

plate containing 5-bromo-4-chloro-indolyl-β-D-galactopyranoside (xgal; 100 µg/ml) and 

incubated for 24 hours (at 37°C in 5%CO2). N. lactamica colonies can be seen to have 

developed a blue/green colour, compared to N. meningitidis that remain uncoloured. 

 

Transformation of N. meningitidis with a constitutively active bioluminescent operon to 

produce a bioluminescent reporter, has previously been performed for N. meningitidis 

serogroup C strain FAM20 (Sjölinder & Jonsson, 2007) and a non-encapsulated derivative of 

serogroup A strain C751 (unpublished Robinson, 2006). It was determined that construction 

of a stably transformed N. meningitidis serogroup B organism, could allow rapid 

determination of invasion by N. meningitidis in the presence of otherwise phenotypically 

similar commensal Neisseria spp. in real-time, without utilising viable counts. One 

mechanism to achieve this utilises the natural competency of Neisseria and its recognition 

of a 10 base pair DNA uptake sequence (DUS) that increases the transformation frequency 
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of Neisseria when present on exogenous DNA (Elkins et al., 1991). In this case the pLKMp 

plasmid containing the luxCDABE operon previously developed and utilised by Sjölinder & 

Jonsson (2007) was used to construct a N. meningitidis serogroup B organism (reference 

strain MC58). Once constructed the genetic and phenotypic characteristics of 

transformants need to be confirmed and compared to the untransformed parent strain.  
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4.2 Results 

4.2.1 Bioluminescent transformation of N. meningitidis 

N. meningitidis serogroup B (strain MC58) was transformed using the pLKMp plasmid 

containing the luxCDABE operon by natural transformation with the spotting method 

(section 2.2.5) to produce the bioluminescent derivative MC58lux. As expected, the 

resulting colonies were confirmed as a single culture of Gram-negative cocci when 

visualised by light microscopy following Gram-staining (Figure 4.2a). Transformants were 

further verified as N. meningitidis by confirming metabolism specifically of maltose and 

glucose. This was visualised by a red to yellow colour change of phenol red in sugar agar 

slopes containing 1% maltose or 1% glucose (Figure 4.2c), with no colour change observed 

for 1% lactose or 1% sucrose when compared to negative controls containing no bacteria 

(Figure 4.2b). Similar results were obtained for both the transformed (MC58lux) and parent 

strain (MC58). As future assays were to use gentamicin for extracellular killing of N. 

meningitidis, a minimum inhibitory concentration (MIC) and minimum bactericidal 

concentration (MBC) assay was conducted. The parental MC58 and the bioluminescent 

derivative MC58lux did not differ in sensitivity to gentamicin with a MIC of ≤12.5 µg/ml and 

an MBC of ≤25 µg/ml. 
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Figure 4.2 Gram-stain and results of sugar oxidation test to identify bioluminescent transformants as N. meningitidis 

Bioluminescent N. meningitidis strain MC58lux was cultured overnight (16-18 hours) on HBHI agar containing kanamycin (150µg/ml). Single colonies were (a) 

Gram-stained and imaged at x100 magnification with oil immersion showing Gram negative cocci. Agar slopes containing 1% glucose (GLU), 1% lactose (LAC), 

1% maltose (MAL) or 1% sucrose (SUC) were incubated overnight at 37°C (b) without bacteria (control) or (c) with streaking of a single colony of MC58lux. Agar 

slopes containing the parental strain MC58 were used as a positive control and showed identical results to transformed strain MC58lux. 
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4.2.2 Chromosomal integration of luxCDABE cassette into N. meningitidis strain MC58 

Integration and positioning of the luxCDABE operon-containing cassette from plasmid 

pLKMp was confirmed within the chromosomal DNA of the bioluminescent transformed N. 

meningitidis strain MC58lux by PCR (section 2.2.8).  

The hypothesised insertion site was predicted from corresponding sequences within the 

genome of strain MC58 (NCBI accession # NC_003112.2) to the upstream (UHS) and 

downstream (DHS) homologous sequence from non-coding regions of N. meningitidis strain 

FAM20. The UHS and DHS represent two complementary sequences in the region between 

genes NMB0090 and NMB0096 in MC58 genome. To confirm the position within the 

chromosome of MC58lux, the forward primer UsF and reverse primer DsR corresponding to 

DNA sequences from the chromosome of MC58lux either side of the hypothesized insertion 

site were used. To confirm integration of the luxCDABE operon, the reverse primer KS1 and 

the forward primer luxEVS2 corresponding to sequences within the bioluminescent cassette 

from plasmid pLKMp were used (Figure 4.3a). The PCR product of primers UsF and KS1 was 

hypothesised to be approximately 870bp and the product of primers of luxEVS2 and DsR 

were hypothesised to be approximately 1200bp. Both PCR fragments were able to be 

amplified from the bioluminescent derivative MC58lux and were absent in the non-

bioluminescent parent strain MC58 (Figure 4.3b). A DNA ladder with known sequence 

lengths was used to confirm the size of the PCR fragments as approximately 870bp and 

1200bp, respectively. PCR confirmed the integration of the luxCDABE plasmid pLKMp by 

homologous recombination into the genome of strain MC58lux between the genes 

designated NMB0090 and NMB0096. 
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Figure 4.3 Chromosomal integration of the bioluminescent cassette from plasmid pLKMp into the genome of N. meningitidis strain MC58 

The bioluminescence encoding lux cassette of plasmid pLKMp  contains (a) the luxCDABE operon, flanked by the Neisseria specific porA promotor (P) and gapdh 

terminator (T) sequences to allow constitutive luciferase expression. The kanamycin resistance gene, kanR, allows antibiotic selection of transformed bacteria. 

The upstream (UHS) and downstream homologous sequences (DHS) represent two complementary sequences in the region between genes NMB0090 and 

NMB0096 in the MC58 genome. (b) DNA was extracted from overnight cultures of N. meningitidis strain MC58 and MC58lux and the primer sets (UsF/KS1 or 

luxEVS2/DsR) were used to amplify sequences from the transformed strain MC58lux (lane 2 and 3). Strain MC58 was used as comparison (lane 4 and 5) and 

nuclease-free H2O was used as a non-specific control (lane 6). A DNA ladder with known sequence lengths was included to confirm the size of PCR products 

(lane 1). Images are representative of two independent repeats.  
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4.2.3 Correlation between bioluminescence, optical density and viable bacterial counts 

for N. meningitidis strain MC58lux 

To determine the relationship between bioluminescence, optical density and viable 

bacterial counts, N. meningitidis strain MC58lux was suspended in medium 199 (M199). 

This medium is suitable for use in bacteria-epithelial cell co-culture assays. To compare 

bioluminescence with conventional bacterial enumeration methods, optical density was 

determined by spectrophotometric readings of samples at 600nm (OD600) with concurrent 

enumeration of viable bacterial colony counts (cfu/ml). MC58lux showed a strong 

correlation between optical density and viable counts (R2 0.99; Figure 4.4a), which was 

accurate between a range of approximately 0.1 to 1.0 (OD600). Optical density was 

compared to MC58lux light output, measured in relative light units (RLU) (Figure 4.4b). 

Strong correlation was seen with optical densities between approximately 0.05 and 0.3 

(OD600), and light output between approximately 1 x105 and 8x105 RLU (R2 0.96). The 

relationship between light output from MC58lux and viable bacteria similarly showed 

correlation (R2 0.91;Figure 4.4c) within the range 1 x104 to 7x104 RLU, continuing to 

approximately 3.5x1010 cfu/ml. 
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Figure 4.4 Correlation between optical density, viable bacteria and bioluminescence from N. meningitidis strain MC58lux 

The bioluminescent N. meningitidis strain MC58lux was grown overnight (16-18 hours) on HBHI agar containing kanamycin (150 µg/ml) and single colonies 

were initially suspended in PBS-B. From this stock suspension serial dilutions were prepared in medium M199 (without phenol red). Each suspension the optical 

density was measured at a wavelength of 600nm (OD600) using a spectrophotometer (SP50). Viable bacterial concentrations were determined by colony counts 

from overnight cultures on HBHI agar and expressed as colony forming units per ml (cfu/ml). Bioluminescence from the bacterial suspension was measured 

using a plate reader (Fluostar Optima). Correlation between a) optical density and viable bacteria, (b) bioluminescence and optical density, or (c) 

bioluminescence and viable counts were assessed. Each point represents the mean ±SEM of triplicate values gathered from three independent repeats. Solid 

lines represent the line of best fit, whilst dotted lines represent the 95% confidence interval.  
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4.2.4 Comparison of growth between N. meningitidis strain MC58 and bioluminescent 

derivative MC58lux measured by optical density 

To identify whether integration of the luxCDABE operon into the genome of N. meningitidis 

incurred a fitness cost, growth curves were generated for both N. meningitidis parental 

stain (MC58) and bioluminescent derivative (MC58lux) (Figure 4.5). MC58lux consistently 

produced a higher optical density than MC58 in both media used. To correct for differing 

quantities in the starting culture, the growth rate was compared during the linear part of 

each growth curve, between 4-12hr in M199 medium (Figure 4.5a) and 4-18hr in HBHI 

broth (Figure 4.5b). In M199 the growth rate of MC58 (0.031± standard deviation of 0.001) 

and MC58lux (0.032± SD of 0.002) did not differ significantly when compared by unpaired 

student t-test. Similarly, in HBHI broth the growth rate of MC58 (0.028± SD of 0.0017) and 

MC58lux (0.025± SD of 0.0013) did not significantly deviate thus demonstrating comparable 

growth of both parental and transformed N. meningitidis in the media tested. 



Page | 92  
 

  

Figure 4.5 Growth of N. meningitidis strains MC58 and the bioluminescent derivative MC58lux 

N. meningitidis strains MC58 and MC58lux were grown overnight (16-18 hours) on HBHI agar in the absence or presence of kanamycin (150 µg/ml), 

respectively, and single colonies were suspended in PBS-B. Approximately 1x105 cfu/ml of bacteria was added to each well in either (a) M199 (without phenol 

red) or (b) HBHI broth. The optical density was read at 620nm (OD620) for each well every 30 minutes using an optical plate reader (Fluostar, Optima). Each half-

hourly time point represents the mean ±SEM from three independent repeats each replicated in triplicate. 

 



Page | 93  
 

4.2.5 Comparison of association and invasion of D562 cells by N. meningitidis strains 

MC58 and MC58lux 

To evaluate the effect of the bioluminescent transformation of N. meningitidis on bacterial 

interaction with nasopharyngeal epithelial cells, association and invasion assays of Detroit 

562 (D562) epithelial monolayers were performed in order to compare the N. meningitidis 

parental strain (MC58) with the bioluminescent transformant (MC58lux; Figure 4.6). 

Strain MC58 and MC58lux were added to separate monolayers as single cultures. The 

concentration of the initial inoculum (Time 0 hr) added to epithelial monolayers was shown 

to be comparable between MC58 (3.6x107 cfu/monolayer) and MC58lux (3.2x107 

cfu/monolayer). Following 3 hour incubation, the growth (Time 3 hr) of the two cultures 

showed a slight, but not significant increase for MC58 (1.3x108 cfu/monolayer) compared to 

MC58lux (9.2x107 cfu/monolayer). To determine association of bacteria with epithelial 

monolayers, each well was washed vigorously by pipetting and viable counts were 

performed using saponin lysed monolayers (section 2.2.20). At 3 hours post-infection there 

was a strong association of both MC58 and MC58lux with D562 cells (2.7x107 

cfu/monolayer for each) showing no significant difference between parent and transformed 

strains. Invasion of D562 cells by N. meningitidis was assessed by the gentamicin protection 

assay. There was a slight, but not significant reduction in invasion by MC58lux (3.2x104 

cfu/monolayer) compared to MC58 (4.2x104 cfu/monolayer). Overall there was no 

reduction in the ability of N. meningitidis strain MC58 to associate with, or invade epithelial 

monolayers following integration of the luxCDABE cassette.  
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Figure 4.6 Association and invasion of N. meningitidis strain MC58 or MC58lux with 

monolayers of Detroit 562 epithelial cells 

Confluent monolayers of D562 cells were challenged with N. meningitidis (MOI 200) for 3 

hours. Levels of associated bacteria were measured by viable counting. Invasion was 

assessed using the gentamicin protection assay. As controls viable counts were made at 0 

hours and at 3 hours. Data represents mean ±SEM from three independent repeats each 

replicated in triplicate. ns= non-significant. 
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4.3 Discussion 

The N. meningitidis serogroup B (MenB) reference strain MC58 was transformed in this 

study by homologous recombination using the pLKMp plasmid (Sjölinder & Jonsson, 2007) 

to create the derivative MC58lux. The transposable element of plasmid pLKMp contains the 

luxCDABE operon encoding the luciferase enzyme and fatty acid reductase complex 

required for the production of bioluminescent light in metabolically active organisms 

(Meighen, 1991). This is preceded by the constitutively expressed porA promoter sequence 

from N. meningitidis strain FAM20 that facilitates increased bioluminescent light output 

(Sjölinder & Jonsson, 2007). The transposable element was inserted into the genome of 

MC58 within a putative gene sequence as confirmed by PCR (Figure 4.3). 

Optical density of bacterial cultures has long been established as a reliable microbiological 

method for rapid determination of bacterial numbers when correlated with viable counts 

(Koch, 1961). Bioluminescence has since been demonstrated to have strong correlation 

with viable counts and optical density when constitutively expressed (Nelson et al., 2003). 

This was also demonstrated here with the newly constructed MC58lux (Figure 4.4), 

although there was a greater correlation between optical density and viable counts than 

between bioluminescence and viable counts. There was still a strong correlation between 

the latter demonstrating bioluminescence is a viable reporter for the presence of MenB as 

utilised in further invasion assays in the presence of otherwise largely indistinguishable 

Neisseria commensal spp. (chapter 5).  

Following the insertion of new genomic DNA and subsequent expression of novel protein 

complexes the transformed MenB was compared to the parent strain for both growth 

kinetics and interactions with host cells by conventional methods. Whether in medium for 

D562 epithelial cell co-cultures (M199) or medium for bacterial growth (HBHI broth), the 

growth rate of MC58lux did not deviate from parental MC58 (Figure 4.5). However, 

MC58lux consistently gave higher optical density values suggesting either consistently 
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higher quantities of bacteria in starting cultures or an increased mass of the bacterium. 

Perhaps this may be due to the addition of protein complexes within the bioluminescent 

construct. However, strongly comparable association and invasion of D562 cells, a process 

involving a diverse range of bacterial ligands and signalling pathways, suggests no lack of 

fitness due to bioluminescent transformation under these experimental conditions (Figure 

4.6). 

Therefore this MenB bioluminescent reference strain can be a useful tool for the rapid, 

real-time evaluation of the presence and the kinetics of MenB in a variety of conditions that 

would otherwise be difficult or impossible to monitor, such as determination of invasion of 

host cells by MenB in mixed cultures of bacteria (Chapter 5). 
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Chapter 5 

5 Bacterial association and invasion of 
nasopharyngeal epithelial cells by commensal 

and pathogenic neisseriae 
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5.1 Introduction 

The lining of the nasopharyngeal mucosa comprises an epithelial layer of mostly ciliated 

columnar epithelial cells with occasional mucus secreting goblet cells joined by tight 

junctions, that provide a protective barrier, and produce inflammatory substances, 

overlaying a submucosal layer (Sahin-Yilmaz & Naclerio, 2011). Polymicrobial communities 

of bacteria are known to survive within the mucosa of healthy individuals without causing 

disease (Rudney, Chen & Sedgewick, 2005). N. meningitidis can be found within the 

epithelial mucosa of healthy individuals at the nasopharyngeal niche (Greenfield, Sheehe & 

Feldman, 1971). N. meningitidis interacts mainly with non-ciliated epithelial cells (Stephens, 

Hoffman & McGee, 1983), maintains close association with epithelial cells of the human 

nasopharynx and has been hypothesised to survive within the mucosa, potentially avoiding 

killing by immune cells (Sim et al., 2000).  

To cause systemic disease N. meningitidis must passage through the epithelial barrier, and 

additionally the endothelium, to enter the bloodstream (bacteraemia) and disseminate to 

the cerebrospinal fluid (CSF) and meninges to cause meningitis (Stephens, Hoffman & 

McGee, 1983). However, routes of infection via the olfactory nerve to the brain (Sjölinder & 

Jonsson, 2010), and carriage to the CSF by attachment to neutrophils (Söderholm et al., 

2011; Criss & Seifert, 2012) have more recently been proposed. Invasion into epithelial cells 

is preceded by microcolony formation on the apical surface of the host cell (Stephens, 

Hoffman & McGee, 1983). It has been demonstrated that unlike S. pneumoniae and H. 

influenzae that traverse epithelial monolayers between the epithelial cells via a paracellular 

route (van Schilfgaarde et al., 1995; Beisswenger et al., 2007), N. meningitidis moves by 

transcytosis through the epithelial cells by internalisation into vesicles (Stephens, Hoffman 

& McGee, 1983; Sutherland et al., 2010) similar to the mechanism used by N. gonorrhoeae, 

following recruitment of host cell receptors and cortical plaque formation (Higashi et al., 

2007). These cortical plaques are comprised of host cell membrane protrusions called 
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microvilli that are the result of polymerisation of host cytoskeleton associated molecules 

such as actin and ezrin, and are predominantly induced by bacterial pili (Merz & So, 1997; 

Merz, Enns & So, 1999). This route is dependent on expression of pili and the presence of 

the polysaccharide capsule (Sutherland et al., 2010) despite down-regulation of both during 

invasion (Deghmane et al., 2002), perhaps suggesting the origins of N. meningitidis as a 

commensal with a small subpopulation being pathogenic. The expression of bacterial pili 

and Opa has been demonstrated to be important for neisserial association with epithelial 

cells, where Opa bind to host CEACAM1 receptor (Griffiths et al., 2007) and is important in 

invasion of epithelial monolayers (Wang et al., 1998). 

This mechanism of invasion into epithelial cells is in contrast to N. meningitidis invasion into 

endothelial cells. In endothelial cells N. meningitidis interacts with the host β2-

adrenoceptor which recruits host cell to host cell adhesion molecules from tight junctions 

within the cortical plaque (Coureuil et al., 2010). This allows microvilli formation to 

surround Neisseria microcolonies protecting them from blood flow shear stress within 

blood vessels (Mikaty et al., 2009). The re-recruitment of cell adhesion molecules loosens 

host cell-cell contact allowing paracellular invasion following endothelial barrier 

dysfunction (Coureuil et al., 2012). 

It has been suggested that the loss of commensal organisms, even those that may become 

pathogenic, from the human microbiota may be detrimental in the long-term and that we 

should learn to control rather than eliminate them (Blaser & Falkow, 2009). Even 

potentially pathogenic colonisers of the nasopharyngeal niche can establish harmonious 

communities or prevent future colonisation by unrelated species or even strains of the 

same species (Margolis, Yates & Levin, 2010). A possible role for commensal organisms 

within the microbiota is to protect the host.  

The oral commensal Streptococcus salivarius is one of the most studied oral commensals 

and has been shown to maintain a reduction in oral malodour-causing bacteria on the 
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tongue (Burton, Chilcott & Tagg, 2005). S. salivarius also prevents adhesion of the fungal 

pathogen Candida albicans by binding directly to the hyphae of the pathogen, and can 

protect against candidiasis in mouse models (Ishijima et al., 2012). Additionally S. salivarius 

protects against adhesion of the pathogen Streptococcus pyogenes to nasopharyngeal cells 

and has thus been suggested as an oronasopharyngeal probiotic (Guglielmetti et al., 2010). 

In a study of adults, oral administration of a probiotic Lactobacillus, Bifidobacterium and 

Streptococcus cocktail reduces the nasal carriage of Gram-positive pathogens S. aureus and 

S. pneumoniae (Glück & Gebbers, 2003).  

To date, comparative studies have been undertaken to look at adhesion and invasion of 

pathogenic N. meningitidis and commensal N. lactamica individually, and there have been 

two studies observing the potential protective properties of live N. lactamica on 

colonisation by N. meningitidis in the host (Andrade, Marques & de Santa Rosa, 1986; Evans 

et al., 2011). It was therefore decided to evaluate the effect of commensal Neisseria spp; N. 

lactamica and N. cinerea and N. polysaccharea as comparison, on the interaction of N. 

meningitidis with nasopharyngeal epithelial cells.  
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5.2 Results 

5.2.1 N. meningitidis serogroup B strain MC58 and N. lactamica strain NL4.1 adhesion 

and invasion of Detroit 562 nasopharyngeal epithelial monolayers 

Detroit 562 (D562) epithelial monolayers were challenged with N. meningitidis serogroup B 

(MenB; strain MC58), N. lactamica (Nlac; strain NL4.1) or equivalent numbers of both to 

assess the effect of mixed cultures on the ability of each strain to associate with, and invade 

human nasopharyngeal epithelial cells (Figure 5.1). The initial inoculum (Time 0 hr) was 

enumerated and showed comparable numbers of N. meningitidis (Figure 5.1a) and N. 

lactamica (Figure 5.1e) when added alone or in mixed culture. After 3 hours’ incubation 

(Time 3 hr) there was a slight, but not significant reduction in N. meningitidis (Figure 5.1b) 

and N. lactamica (Figure 5.1f) numbers when in mixed culture relative to numbers when 

cultured alone. 

There was approximately 50% of the initial inoculum (Figure 5.1a) of N. meningitidis 

associated with epithelial cells at 3 hours (Figure 5.1c), which was approximately 300 times 

greater than N. lactamica (Figure 5.1g). When in mixed culture, there was a significant 

reduction (p<0.001) of more than 60% in N. meningitidis association relative to N. 

meningitidis alone. Conversely, there was a significant increase (p<0.01) in N. lactamica 

association in the presence of N. meningitidis compared to in the absence, though still 

approximately 300 times less than N. meningitidis (Figure 5.1g). 

N. meningitidis (Figure 5.1d) displayed approximately 40-fold greater invasion into 

epithelial cells than N. lactamica (Figure 5.1h). In the presence of N. lactamica, N. 

meningitidis invasion decreased significantly (p<0.01; Figure 5.1d) by approximately 90%, 

whereas invasion by N. lactamica increased (p<0.001; Figure 5.1h) by approximately 80% in 

the presence of N. meningitidis. This increase in invasion by N. lactamica when in mixed 

culture was however still approximately 30 times lower than that of N. meningitidis 

invasion when in single culture. 
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Figure 5.1 Association and invasion of Detroit 562 epithelial cells by N. meningitidis strain MC58 and N. lactamica alone and in mixed culture 

D562 monolayers were challenged for 3 hours with MenB (strain MC58) or N. lactamica (strain NL4.1; Nlac) alone or in mixed culture at equivalent doses. 

Viable MC58 (a, b, c and d) or Nlac (e, f, g and h) were enumerated by viable counts and differentiated on HBHI agar containing xgal (100 µg/ml). Controls for 

the amount of bacteria initially added (Time 0hr) and bacterial growth during the assay (Time 3hr) are included. Associated bacteria were enumerated from 

washed and lysed monolayers, and invaded bacteria were enumerated using the gentamicin protection assay (section 2.2.20). Data represents the mean ± SEM 

of three independent repeats each replicated in triplicate. *** p<0.001 ** p<0.01 ns= non-significant. 

Time 0hr Time 3hr Association Invasion 
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5.2.2 The effect of heat-killed N. lactamica and N. lactamica outer membrane vesicles 

on association of N. meningitidis with Detroit 562 epithelial cells 

The influence of dead (heat-killed) N. lactamica or N. lactamica outer membrane vesicles 

(OMVs) to the association of N. meningitidis (strain MC58) with D562 epithelial cells was 

assessed (Figure 5.2). The initial inoculum (Time 0 hr) was enumerated and although there 

were consistently lower numbers of N. meningitidis in the presence of OMVs and heat-

killed N. lactamica relative to N. meningitidis alone, there was no significant difference in 

the amount of N. meningitidis in each treatment. Following 3 hours’ incubation (Time 3 hr), 

again numbers of N. meningitidis were slightly reduced in the presence of OMVs and heat-

inactivated N. lactamica compared to N. meningitidis alone, though this was not statistically 

significant. Consistent with previous experiments (Figure 5.1) approximately 50% of N. 

meningitidis incubated with host cells associated with them following 3 hours’ incubation. 

Although there was a slight increase in association of N. meningitidis in the presence of 

heat-killed N. lactamica, N. meningitidis association was not significantly influenced in the 

presence of either N. lactamica OMVs or heat-killed N. lactamica.   
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Figure 5.2 Association of N. meningitidis with Detroit 562 epithelial cells in the absence and presence of heat-inactivated N. lactamica or outer 

membrane vesicles 

Confluent monolayers of D562 cells were challenged with MenB (strain MC58) alone or in the presence of N. lactamica outer membrane vesicles (Nlac OMV) or 

heat-inactivated N. lactamica (Nlac HI) for 3 hours. Controls for the concentration of bacteria initially added (Time 0hr), growth during the assay (Time 3hr) and 

levels of bacteria associated with monolayers were measured by viable counts. Data represents mean ±SEM from three independent repeats each replicated in 

triplicate. ns= non-significant. 
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5.2.3 The effect of N. lactamica on association of a clonal complex ST-11 N. 

meningitidis serogroup B strain with Detroit 562 epithelial cells 

To confirm the ability of N. lactamica (Nlac; strain NL4.1) to inhibit N. meningitidis 

association with D562 epithelial cells, N. meningitidis serogroup B (MenB; strain Z4701) of 

the ST-11 clonal complex was used (Figure 5.3). The initial inoculum of N. meningitidis 

(Figure 5.3a) and N. lactamica (Figure 5.3d) were comparable when alone and in mixed 

culture. After 3 hours’ incubation (Time 3 hr) numbers of N. meningitidis in single culture 

(Figure 5.3b) increased by more than three times compared to the initial inoculum (2.3x107 

cfu/monolayer to 7.2x107 cfu/monolayer), whereas N. lactamica (Figure 5.3e) more than 

doubled (4.1x107 cfu/monolayer to 8.7x107 cfu/monolayer). Numbers of N. meningitidis 

and N. lactamica in mixed culture also increased following three hours incubation, however 

significantly fewer organisms were recovered compared to when cultured alone (p<0.05 

and p<0.01, respectively). 

N. meningitidis strain Z4701 (Figure 5.3c) adhered poorly with less than 0.1% of the initial 

inoculum found to be associated with epithelial cells (2x104 cfu/monolayer) following three 

hours incubation. In the presence of N. lactamica there was a significant reduction 

(p<0.001) of approximately 25% in N. meningitidis association (1.5x104 cfu/monolayer). 

Similarly, N. lactamica association (Figure 5.3f), though more than 10-fold greater than N. 

meningitidis (2.5x105 cfu/monolayer) was significantly reduced (p<0.05) in the presence of 

N. meningitidis (9.6x104 cfu/monolayer).  
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Figure 5.3 N. meningitidis serogroup B strain Z4701 and N. lactamica association 

with Detroit 562 epithelial monolayer, alone and in mixed culture 

D562 monolayers were challenged for 3 hours with either N. meningitidis (strain Z4701) or 

N. lactamica (strain NL4.1; Nlac) alone or in mixed culture. Viable Z4701 (a, b and c) or Nlac 

(d, e and f) were enumerated by viable counts and differentiated on HBHI agar containing 

xgal (100µg/ml). Controls for the amount of bacteria initially added (Time 0hr) and growth 

during the assay (Time 3hr) are included. Associated bacteria were enumerated from 

washed and lysed monolayers. Data represents the mean ± SEM of three independent 

repeats each replicated in triplicate. *** p<0.001 ** p<0.01 * p<0.05 ns= non -significant. 

 

Time 0hr Time 3hr Association 
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5.2.4 The effect of N. lactamica on association of a clonal complex ST-11 N. 

meningitidis serogroup C strain with Detroit 562 epithelial cells 

This study was extended to investigate the effect on N. lactamica on adhesion of another 

serogroup of N. meningitidis. The serogroup C strain Z6417, which is of the ST-11 clonal 

complex, was utilised (Figure 5.4). Epithelial monolayers were challenged with a 

comparable inoculum (Time 0 hr) of N. meningitidis (Figure 5.4a) and N. lactamica (Figure 

5.4d) whether alone or in mixed culture. Following 3 hours’ incubation, growth (Time 3 hr) 

of cultures was measured. When alone, the amount of N. meningitidis (Figure 5.4b) almost 

tripled compared to the initial inoculum (2.4x107 CFU/monolayer to 6.8x107 

CFU/monolayer). In the presence of N. lactamica there was a significant inhibition of 

growth (p<0.01) in viable N. meningitidis at 3 hours of approximately 30% compared to 

bacteria cultured alone. Similarly, there was a significant inhibition in growth (p<0.05) of N. 

lactamica at 3 hours in the presence of N. meningitidis (Figure 5.4e) compared to single 

culture. N. meningitidis poorly adhered to epithelial cells (Figure 5.4c) with approximately 

0.01% of the initial inoculum associated. Unlike previous strains of N. meningitidis assayed, 

there was a significant increase (p<0.05) in association with host cells in the presence of N. 

lactamica. Conversely, N. lactamica association with host cells (Figure 5.4f) was significantly 

reduced (p<0.01) in the presence of N. meningitidis.  
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Figure 5.4 N. meningitidis serogroup C strain Z6417 and N. lactamica association 

with Detroit 562 epithelial monolayer, alone and in mixed culture 

D562 monolayers were challenged for 3 hours with either N. meningitidis (strain Z6417) or 

N. lactamica (strain NL4.1; Nlac) alone or in mixed culture at equal doses. Viable Z6417 (a, b 

and c) or Nlac (d, e and f) were enumerated by viable counts and differentiated on HBHI 

agar containing xgal (100µg/ml). Controls for the amount of bacteria initially added (Time 0 

hr) and growth during the assay (Time 3 hr) are included. Associated bacteria were 

enumerated from washed and lysed monolayers. Data represents the mean ± SEM of three 

independent repeats each replicated in triplicate. ** p<0.01 * p<0.05 ns= no significance. 

 

Time 0hr Time 3hr Association 
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5.2.5 The effect of other commensal Neisseria spp. on adhesion by serogroup B N. 

meningitidis with Detroit 562 nasopharyngeal epithelial cells 

This study has demonstrated the presence of N. lactamica inhibits association of N. 

meningitidis strain MC58, and to a lesser extent N. meningitidis strain Z4701, with D562 

nasopharyngeal epithelial cells. To identify if this inhibition is shared by other commensal 

Neisseria spp. adhesion of N. meningitidis serogroup B (strain MC58) at low (MOI 20) and 

high dose (MOI 200) was compared in the absence and presence of N. lactamica (Nlac), N. 

cinerea (Ncin) or N. polysaccharea (Npoly) at similar doses and analysed by flow cytometry 

(Figure 5.5). 

When N. meningitidis was incubated in the presence of N. lactamica there was a dose-

dependent reduction of both low (Figure 5.5a) and high dose (Figure 5.5d) N. meningitidis. 

This reduction in N. meningitidis adhesion became significant with the highest dose of N. 

lactamica (p<0.01 and p<0.05, respectively), and was greatest when N. lactamica was at a 

10-fold higher dose than N. meningitidis (MOI 200 and MOI 20, respectively; Figure 5.5a).  

In the presence of N. cinerea there was no significant change in adhesion of either low 

(Figure 5.5b) or high dose (Figure 5.5e) N. meningitidis. However, similarly to N. lactamica, 

N. polysaccharea showed a dose-dependent reduction in low (Figure 5.5c) and high dose 

(Figure 5.5f) N. meningitidis adhesion that was significant with the highest dose of N. 

polysaccharea (p<0.05). 
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Figure 5.5 N. meningitidis serogroup B strain MC58 adhesion to Detroit 562 

epithelial cells in the absence and presence of commensal Neisseria spp. 

Detroit 562 (D562) epithelial cells were challenged with N. meningitidis (strain MC58) at 20 

(a, b and c) or 200 bacteria per epithelial cell (MOI; d, e and f) in the absence or presence of 

N. lactamica (strain NL4.1; Nlac; a and d), N. cinerea (strain 194; Ncin; b and e) or N. 

polysaccharea (strain LNP 462; Npoly; c and f) at MOI 20 or 200. After 3 hours epithelial 

cells were washed and dissociated with EDTA (4mM). MC58 was labelled with mouse anti- 

N. meningitidis serosubtype P1.7 primary antibody and goat anti-mouse Alexa-fluor 647 

secondary antibody. When possible 10,000 events were analysed by flow cytometry using 

the Accuri C6 flow cytometer and median fluorescent intensity (MFI) was measured. Data 

represents the mean ± SEM of three independent repeats ** p<0.01 * p<0.05.  

N. lactamica N. cinerea N. polysaccharea 



Page | 111  
 

5.2.6 The effect of commensal neisseriae on adhesion of N. meningitidis serogroup A 

with Detroit 562 nasopharyngeal epithelial cells 

This study was further extended to investigate the effect of commensal neisseriae on 

adhesion of N. meningitidis serogroup A (strain C751) with D562 epithelial cells using 

antibody labelling of N. meningitidis and analysis by flow cytometry (Figure 5.6). D562 

epithelial cells were challenged with N. meningitidis (MOI 200) alone or in the presence of 

N. lactamica (Nlac; Figure 5.6a), N. cinerea (Ncin; Figure 5.6b) or N. polysaccharea (Npoly; 

Figure 5.6c) at MOI 20 or MOI 200. 

N. meningitidis showed inconsistent levels of adhesion in these experiments as represented 

by SEM. Never-the-less in the presence of N. lactamica (Figure 5.6a) at MOI 200 but not 

MOI 20, there was a strong, though not significant reduction in N. meningitidis adhesion to 

host cells compared to single cultures. N. cinerea (Figure 5.6b) however did induce a dose-

dependent reduction in N. meningitidis adhesion at both MOI 20 and MOI 200. N. 

polysaccharea at both MOI 20 and MOI 200 reduced adhesion of N. meningitidis with both 

concentrations being comparable in reducing adhesion to host cells. MOI 200 of each 

commensal Neisseria spp. tested showed a large, but not significant reduction in N. 

meningitidis adhesion with host cells (mean MFI 3.2x104 to mean MFI<1.4x104). 
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Figure 5.6 N. meningitidis strain C751 adhesion to Detroit 562 epithelial cells in the absence and presence of commensal Neisseria spp. analysed by 

flow cytometry 

Detroit 562 (D562) epithelial monolayers were challenged with N. meningitidis (strain C751) at 200 bacteria per epithelial cell (MOI) alone or in the presence of 

N. lactamica (strain NL4.1; Nlac; a), N. cinerea (strain 194; Ncin; b) or N. polysaccharea (strain LNP 462; Npoly; c) at MOI 20 or 200. After 3 hours epithelial cells 

were washed and dissociated with EDTA (4mM). C751 was labelled with mouse anti- N. meningitidis serosubtype P1.7 primary antibody and goat anti-mouse 

Alexa-fluor 647 secondary antibody. When possible, 10,000 events were analysed by flow cytometry using the Accuri C6 flow cytometer and median 

fluorescent intensity (MFI) was measured. Data represents the mean ± SEM of three independent repeats  

N. lactamica N. cinerea N. polysaccharea 
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5.2.7 The effect of commensal neisseriae on invasion of Detroit 562 epithelial cells by 

serogroup B N. meningitidis 

To monitor the effect of the commensal neisseriae on invasion of nasopharyngeal epithelial 

cells by N. meningitidis, the bioluminescent N. meningitidis construct (strain MC58lux) was 

utilised in a gentamicin protection assay, since N. cinerea and N. polysaccharea cannot be 

differentiated on x-gal containing medium. Epithelial monolayers were challenged with 

bioluminescent N. meningitidis at MOI for 3 hours, alone or in the presence of the non-

bioluminescent commensal Neisseria spp; N. lactamica, N. cinerea or N. polysaccharea 

(Figure 5.7).  

In the presence of N. lactamica (Figure 5.7a) at MOI 20 there was no significant change in 

N. meningitidis invasion within host cells compared to N. meningitidis alone. In the 

presence of N. lactamica at MOI 200 and 2000 there was a significant, dose-dependent 

reduction (p<0.01 and p<0.001, respectively) in invasion by N. meningitidis of 

approximately 40% and 60% , respectively. Lower levels of bioluminescence were detected 

from N. meningitidis in experiments with N. lactamica compared to those detected in 

experiments with N. cinerea (Figure 5.7b) and N. polysaccharea (Figure 5.7c) due to a 

change in the type of tissue culture plate used. 

When epithelial cells were challenged with N. meningitidis in the presence of N. cinerea 

(Figure 5.7b) at MOI 20 and 200, there was no significant change in N. meningitidis invasion 

within host cells. However, when N. cinerea was at MOI 2000 there was a significant 

reduction (p<0.001) in invasion of epithelial cells by N. meningitidis of approximately 60% 

relative to N. meningitidis alone.  

Similar to that seen with both previous Neisseria commensals, in the presence of N. 

polysaccharea (Figure 5.7c) at MOI 20 there was no significant change in invasion by N. 

meningitidis compared with N. meningitidis alone. However, at MOI 200 and MOI 2000 

there was a significant, dose-dependent reduction (p<0.001) in invasion by 40% and 75%, 
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respectively. These results indicate that both N. lactamica and N. polysaccharea are capable 

of inhibiting invasion by N. meningitidis at an equal number of bacteria, but all commensal 

Neisseria tested were able to inhibit N. meningitidis invasion when at a 10-fold higher 

concentration than N. meningitidis.  
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Figure 5.7 Bioluminescence as a reporter for invasion of N. meningitidis into Detroit 562 epithelial monolayers in the absence or presence of 

commensal Neisseria spp. 

Detroit 562 epithelial monolayers were challenged with bioluminescent N. meningitidis (strain MC58lux) at 200 bacteria per epithelial cell (MOI) alone or in the 

presence of commensal a) N. lactamica (strain NL4.1; Nlac), b) N. cinerea (strain 194; Ncin) or c) N. polysaccharea (strain LNP 462; Npoly) at MOI 20, 200 or 

2000. After 3 hours, monolayers were washed and M199 containing gentamicin (200µg/ml) was added for a further 90 minutes to kill extracellular bacteria. 

Saponin (final 1%) was then added to permeabilise epithelial cells facilitating gentamicin-mediated killing of invaded bacteria. Bioluminescence (relative light 

units; RLU) from MC58lux was compared between gentamicin treated, and gentamicin with saponin treated cells at 5 hours, to measure invasion. Data 

represents the mean ± SEM of three independent repeats replicated in triplicate. *** p<0.001 ** p<0.01. 

N. lactamica N. cinerea N. polysaccharea 
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5.2.8 The effect of N. lactamica on viability of N. meningitidis in co-cultures 

In previous experiments with mixed cultures of N. meningitidis (strain MC58) and N. 

lactamica, at 3 hours when invasion was measured, there was no difference in numbers of 

bacteria whether alone or in mixed culture (Figure 5.1). However, bioluminescent traces 

using the luxCDABE expressing N. meningitidis (strain MC58lux) showed a reduction in 

bioluminescence when N. meningitidis was cultured in the presence of N. lactamica after 

approximately 8 hours, when compared to N. meningitidis alone (Figure 5.8a).  

To confirm the reduction in bioluminescence was both an indication of loss of viable 

bacteria, and to confirm the effect was representative of parental N. meningitidis (strain 

MC58), the cultures were enumerated by viable counts. The initial inoculum (Time 0 hr) was 

enumerated to confirm a comparable quantity of bioluminescent N. meningitidis (Figure 

5.8b) and parental N. meningitidis (Figure 5.8c) were added in single cultures and in mixed 

cultures with N. lactamica. The same was shown for N. lactamica (Figure 5.8d) whether in 

single cultures or mixed cultures with parental or bioluminescent N. meningitidis.  

Following 18 hours incubation (Time 18 hr) there were comparable numbers of both 

bioluminescent (Figure 5.8e) and parental (Figure 5.8f) N. meningitidis with approximately a 

10-fold increase in viable bacteria. In the presence of N. lactamica there was a substantial 

and significant decrease (p<0.001) in viable N. meningitidis that was comparable between 

bioluminescent and parental N. meningitidis.  

In the presence of bioluminescent and parental N. meningitidis there was a significant 

reduction (p<0.001 and p<0.01) in viable N. lactamica, compared to N. lactamica alone 

(Figure 5.8g). However, this reduction in viable N. lactamica was a greater in the presence 

of bioluminescent N. meningitidis (60%) compared to the presence of parental N. 

meningitidis (30%) which was also statistically significant (p<0.05). 
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Figure 5.8 Viability over time of N. meningitidis and N. lactamica in mixed culture, 

measured with a bioluminescent reporter and viable counts 

Parental N. meningitidis (strain MC58) and bioluminescent derivative (strain MC58lux) were 

incubated in M199 alone or in mixed culture with N. lactamica (strain NL4.1; Nlac). (a) 

Bioluminescence (Log10 relative light units; RLU) from MC58lux was monitored over 20 

hours and representative luminometer traces are shown. Viable counts (log10 cfu/ml) were 

taken at 0 hours for (b) MC58lux, (c) MC58 and (d) Nlac, and at 18 hours (e, f and g 

respectively), alone and in mixed culture. Data represents mean ± SEM from three 

independent repeats each replicated in triplicate. *** p<0.001 ** p<0.01 *p<0.05 ns= non-

significant. 

MC58lux MC58 Nlac 
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5.3 Discussion 

Epidemiological data indicates that nasopharyngeal carriage of N. lactamica reduces the 

incidence of N. meningitidis serogroup B (MenB) carriage and subsequently invasive disease 

(Cartwright et al., 1987). This has been hypothesised to be due to an adaptive immune 

response acquired during N. lactamica carriage that cross-reacts with N. meningitidis to 

protect against systemic invasion (Oliver et al., 2002). However, a recent study suggests 

that nasopharyngeal carriage of live N. lactamica rather than the development of a cross-

reactive immune response, may confer protection against N. meningitidis carriage (Evans et 

al., 2011).  

The aim of this work was to investigate the effect of N. lactamica and as a comparison, 

other commensal Neisseria spp; N. cinerea and N. polysaccharea, on the interaction of N. 

meningitidis with nasopharyngeal epithelial cells. N. lactamica colonies can be 

differentiated from N. meningitidis colonies by the inclusion of xgal in the media (Bennett 

et al., 2005), so viable counts were used with the gentamicin protection assay to measure 

association and invasion of both pathogenic and commensal bacteria in mixed cultures. 

However, flow cytometry and the newly constructed and characterised bioluminescent N. 

meningitidis were required to investigate the effect of N. cinerea and N. polysaccharea on 

N. meningitidis association and invasion.  

The MenB strain MC58 associated and invaded epithelial cells to approximately the same 

extent as has been found in previous studies (Virji et al., 1992a, 1995a; Tezera et al., 2011). 

This study has demonstrated for the first time that N. lactamica inhibits both association 

(approximately 60%) and invasion (approximately 90%) of nasopharyngeal epithelial cells by 

MenB strain MC58 when measured by viable counts. Conversely, N. lactamica association 

increased in the presence of MC58, however approximately 100-fold more N. meningitidis 

were displaced than were replaced by N. lactamica. This could suggest prevention of N. 

meningitidis association with a crucial epithelial cell receptor and subsequent micro-colony 
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formation. For instance N. gonorrhoeae has been demonstrated to form microcolonies over 

clusters of host CD46 receptor, which has been putatively implicated in meningococcal 

association with host cells (Weyand et al., 2006).  

Alternatively, the upregulation of CEACAM1 receptor on host cells increases association and 

invasion of Opa-expressing neisseriae with host cells including N. meningitidis strains MC58 

and C751 (Griffiths et al., 2007; Rowe et al., 2007). Opa is an adhesin known to also be 

expressed by a range of commensal Neisseria spp. including N. lactamica (Toleman, Aho & 

Virji, 2001). It has however been suggested that a second unknown neisserial adhesin also 

associates with host CEACAM1 (Kuespert, Roth & Hauck, 2011). 

The porB of both N. meningitidis and N. lactamica interacts with host TLR2/1 receptor 

(Toussi et al., 2012), and inflammation induced via this receptor is inhibited by N. lactamica 

(strain NL4.1; Tezera et al., 2011). Inhibition of TLR2/1 signalling could be a mechanism of 

reducing internalisation of N. meningitidis-bound TLR2/1 or subsequent clustering of host 

receptors and bacterial microcolony formation (Triantafilou et al., 2006). However what 

role TLR2/1 receptor plays in association, invasion or merely in inflammation is speculative 

at this point.  

Another mechanism to prevent association of N. meningitidis with host cells could also be 

bacteria-bacteria association such as co-aggregation of both bacteria (Cisar, Kolenbrander 

& McIntire, 1979; Kolenbrander & Andersen, 1986). Neisseriae and other bacteria are 

known to associate strongly with each other via physical association particularly via pili-pili 

interaction in neisseriae (Virji et al., 1995a). Whatever the mechanism may be, the ability of 

N. lactamica to inhibit N. meningitidis association with epithelial cells is dependent on live 

organisms as there was no inhibition of MC58 association when in the presence of either 

heat-killed N. lactamica or outer membrane vesicles from N. lactamica. In the model used 

in this study, both N. lactamica and N. polysaccharea predominantly are able to inhibit 

association and therefore potentially colonisation in the whole host by a mechanism not 
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dependent on acquisition of adaptive immunity and development of antibodies as has been 

suggested previously by a small scale human experiment (Andrade, Marques & de Santa 

Rosa, 1986). However, this does not exclude the modulation of other secretory products 

from epithelial cells by commensal neisseriae as a means of preventing colonisation by N. 

meningitidis, such as defensins (McGillivary et al., 2009), mucins (Brodeur et al., 1986), 

exogenous vesicles (Kesimer et al., 2009) or host receptors (Deghmane et al., 2009). 

The inhibition of association by N. meningitidis to epithelial cells was further expanded to 

include the serogroup B ST-11 strain Z4701 using viable counts, and the serogroup A strain 

C751 by flow cytometry. Flow cytometry analysis confirmed the results obtained using 

viable counts, illustrating the inhibition of N. meningitidis strain MC58 association 

(approximately 50%) with epithelial cells by N. lactamica. The variation in levels of 

inhibition by N. lactamica when analysed by viable counts or flow cytometry could be due 

to viable counts only measuring viable bacteria, whereas flow cytometry does not 

discriminate between viable and non-viable bacteria. 

However, when the ST-11 MenC strain Z6417 was used to challenge D562 cells in the 

presence of N. lactamica, converse to findings herein with the previously mentioned Nmen 

strains, there was a slight but significant increase in association of MenC compared with 

MenC alone. This increase in association by MenC was accompanied by a decrease in 

association with D562 cells of N. lactamica compared with N. lactamica alone. The decrease 

in association by N. lactamica, as measured by viable counts, was approximately 4 times as 

great as the increase in association by MenC. As with the opposite results found with MenB 

strain MC58, this suggests a mechanism other than direct competition for receptors 

between the two strains. In previous studies, the effect of meningococcal capsule on 

interaction with host cells has been investigated using capsule-deficient mutant strains 

(Unkmeir, 2002; Sokolova et al., 2004). Down-regulation of capsule by meningococci is 

associated with carriage strains of meningococci rather than invasive strains (Claus et al., 
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2002; Beddek et al., 2009). The polysaccharide capsule of Nmen has previously been 

thought to be poorly antigenic, yet more recent findings have demonstrated the 

polysaccharide capsule may stimulate host cells through Toll-like receptor pathways 

(Zughaier, 2011). The use of capsule deficient mutants could be used to identify if the 

reduction or increase in association of meningococci by N. lactamica is dependent on the 

presence of particular polysaccharide capsule in the meningococcal strains used in this 

thesis. 

This work demonstrated for the first time that the occasional human coloniser N. 

polysaccharea inhibited association of MenB strain MC58 and MenA strain C751 to an equal 

or greater extent than did N. lactamica. In both instances the greatest inhibition was in the 

presence of 10-fold greater ratio of commensal neisseriae to pathogenic N. meningitidis. 

The inhibition was dose-dependent and significant in the presence of equal doses of each 

species at MOI 200. Additionally, the related commensal N. cinerea in contrast did not 

inhibit association by MenB strain MC58 even when at a 10-fold greater ratio to MC58, 

though N. cinerea did inhibit association of the MenA strain C751. This suggests N. 

lactamica and N. polysaccharea may share a common mechanism to inhibit association of 

N. meningitidis to epithelial cells that is not shared by N. cinerea, which primarily inhibits 

association of some strains of N. meningitidis only at 10-fold greater ratio to N. 

meningitidis. To identify if competition for receptors is involved in the inhibition of N. 

meningitidis association a comprehensive inventory of adhesins present on the commensal 

Neisseria strains used in this study would be required. Alternatively, blocking antibodies or 

ligands could be used to elucidate the role of epithelial cell receptors involved. 

The newly constructed bioluminescent derivative of strain MC58 was utilised to monitor 

invasion by MenB in the presence of each commensal Neisseria spp. As demonstrated by 

viable counts with MenB strain MC58, N. lactamica inhibited invasion by the 

bioluminescent derivative MC58lux, though not to the extent monitored by viable colony 
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counts (approximately 90% and 40% respectively) or by inhibition of metabolism in invading 

N. meningitidis. This may be attributable to the real-time monitoring of bioluminescence 

versus the long-term monitoring by viable counts. However, the inhibition was dependent 

on concentration of N. lactamica and as with association; this phenomenon was mirrored in 

the presence on N. polysaccharea. Both N. lactamica and N. polysaccharea were able to 

inhibit association or invasion by N. meningitidis at lower or equal numbers during culture, 

whereas, in these experiments only a ten-fold greater ratio of N. cinerea was able to inhibit 

invasion by MC58lux. 

Furthermore, N. lactamica was able to reduce the viability of MenB strain MC58 and the 

bioluminescent derivative MC58lux during co-cultures. Using the bioluminescent MC58lux, 

N. lactamica at an equal concentration reduced MenB bioluminescence after 8 hours co-

culture. By 18 hours following co-culture N. lactamica had significantly reduced viable 

MenB compared to single cultures by approximately a third, in the absence of epithelial 

cells. This could be due to competition for nutrients, production of toxic by-products or 

secretion of antibacterial substances. The use of N. lactamica conditioned media could help 

to identify if the factor is produced by N. lactamica in contrast to competition for nutrients. 

Interestingly, although viable N. lactamica only slightly, but significantly reduced in the 

presence of MenB, there was a greater reduction in viable N. lactamica in the presence of 

the bioluminescent strain MC58lux. This raises the possibility that N. lactamica is sensitive 

to either metabolic by-products of bioluminescent metabolism or to the light emanating 

from MenB itself. 

In conclusion, both N. lactamica and N. polysaccharea suppress association of, and invasion 

by MenB strain MC58 with nasopharyngeal epithelial cells. Additionally, N. lactamica was 

able to suppress association of the ST-11 MenB strain Z4701 to human epithelial cells. This 

suggests a shared mechanism of inhibition. However, both commensal Neisseria spp. with 

the addition of N. cinerea, were able to suppress association of MenA strain C751, 
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suggesting more than one mechanism may be utilised by commensal Neisseria to protect 

against colonisation by potentially pathogenic N. meningitidis.  
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Chapter 6 

6 Induction of host-cell death by pathogenic 
bacteria and modulation by commensal 

neisseriae 
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6.1 Introduction 

Induction of host cell death by pathogenic bacteria is a proposed mechanism for invasion 

through the mucosal barrier. Using proliferation and microscopy assays, it has been 

demonstrated that both commensal N. lactamica (strain NL4) and pathogenic N. 

meningitidis (strains MC58 and C311) induce cytotoxicity in endothelial cells in a LPS and 

type IV pili-dependent manner, though this was in the presence of a high (5%) serum 

concentration in culture medium (Dunn, Virji & Moxon, 1995), with a requirement for TLR4 

signalling in conjunction with soluble CD14 and LPS binding protein (LBP). In contrast, 

experiments with meningeal cell lines showed low induction of host cell death with N. 

lactamica (NCTC 10617), compared to higher levels by N. meningitidis (strain MC58) despite 

equivalent levels of adhesion and invasion between bacteria in a low (1%) serum 

concentration (Fowler et al., 2006). 

It has been identified that the outer membrane porin protein PorB of N. gonorrhoeae plays 

a major role in the induction of host cell death in cervical epithelial cells (HeLa cells) 

through induction of apoptosis by localising with host mitochondria (Müller et al., 1999, 

2000). This suggests that neisserial induction of apoptosis in host cells is via the intrinsic 

apoptotic pathway, which was supported by a reduction in apoptosis when the suppressor 

of intrinsic apoptosis Bcl2, was overexpressed in host cells (Müller et al., 2000).  

In contrast, in the same cell line the purified PorB of N. meningitidis did not induce 

apoptosis (Massari, Ho & Wetzler, 2000), but localised to host mitochondria and inhibited 

host cell intrinsic apoptosis induced by staurosporine, but not extrinsic apoptosis induced 

by TNFα with cycloheximide (Massari et al., 2003, 2010). There was also a reduction in 

caspase 3 and 9 activation that was not dependent on Bcl2 expression. 

However, comparison of carriage and pathogenic isolates of N. meningitidis found that 

pathogenic isolates induced apoptosis in host cells via autocrine activation of TNF receptor, 

which did not require invasion by N. meningitidis, but was reduced in the absence of pili 
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(Deghmane et al., 2009). This suggests that association with host cells is required for 

pathogenic N. meningitidis-induced apoptosis. However, carriage isolates of N. meningitidis 

did not induce apoptosis and were found to suppress both pathogen and TNFα-induced 

host cell death through inducing shedding of TNF receptor from host cells and subsequent 

lack of autocrine stimulation. 

The effect of commensal neisseriae and pathogenic N. meningitidis on host cell death has 

previously been investigated, but the effect of both in co-culture has not. The role of the 

extrinsic TNFα and intrinsic staurosporine-induced apoptotic pathways will be investigated, 

as will the involvement of the caspase cascade and the effect of commensal N. lactamica, 

N. cinerea and N. polysaccharea on epithelial cell death. S. pneumoniae has also been 

included as a Gram-positive comparison of pathogen-induced epithelial cell death. 
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6.2 Results 

6.2.1 Host cell death induced by N. meningitidis or S. pneumoniae, in the absence or 

presence of commensal Neisseria spp 

To investigate the ability of pathogenic N. meningitidis (strain MC58) or S. pneumoniae 

(isolate Sp14) to induce cell death in Detroit 562 (D562) epithelial cells in the absence or 

presence of commensal Neisseria spp; N. lactamica (Nlac), N. cinerea (Ncin) or N. 

polysaccharea (Npoly), three fluorescent nucleic acid stains were used (Figure 6.1).  

To determine if any significant loss of epithelial cells occurred between treatments the cell 

permeable nucleic acid stain Hoechst was used. There was no significant difference in 

epithelial cell numbers when challenged with any of the commensal Neisseria spp. alone 

(Figure 6.1a). There was however approximately a 25% reduction compared to untreated 

epithelial cells when challenged with N. meningitidis alone (p<0.05) or in the presence of N. 

polysaccharea (p<0.01; Figure 6.1a). No significant loss of cells was observed when 

epithelial cells were challenged with N. meningitidis in the presence of N. lactamica or N. 

cinerea. Similarly, S. pneumoniae challenge significantly reduced epithelial cell number 

(p<0.05) by 20% compared to untreated epithelial cells, however this reduction was also 

seen when in the presence of N. lactamica (p<0.01) and N. cinerea (p<0.05; Figure 6.1b).  

To assess the levels of apoptosis in epithelial cells the cell impermeable, nucleic acid stain 

Yopro-1 was used. None of the commensal Neisseria spp. induced detectable levels of 

apoptosis above untreated epithelial cells (Figure 6.1c). N. meningitidis in contrast strongly 

induced apoptosis (p<0.01). In the presence of N. lactamica and N. polysaccharea there was 

a significant reduction (p<0.05) in apoptosis induced by N. meningitidis, which was not seen 

in the presence of N. cinerea (Figure 6.1c). Similarly, S. pneumoniae strongly induced 

apoptosis in epithelial cells (p<0.001), which was significantly reduced in the presence of N. 

lactamica (p<0.001), and to a lesser extent N. cinerea (p<0.01) and N. polysaccharea 

(p<0.01; Figure 6.1d).  
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The live cell impermeable, nucleic acid stain propidium iodide (PI) was used to assess 

necrosis in treated epithelial cells. None of the commensal Neisseria spp. alone induced 

necrosis in epithelial cells compared to untreated (Figure 6.1e). However, N. meningitidis 

strongly induced necrosis (p<0.001). This was reduced in the presence of N. lactamica and 

N. cinerea (p<0.05), and strongly reduced (p<0.001) in the presence of N. polysaccharea 

(Figure 6.1e). Necrosis was also significantly induced in epithelial cells by S. pneumoniae 

alone (p<0.01), and was significantly reduced (p<0.01) when in the presence of N. 

lactamica, N. cinerea and N. polysaccharea (Figure 6.1f). 

Though consistent, high levels of apoptosis and necrosis were shown for untreated 

epithelial cells (approximately 25%). This may have been due to sub-optimal 

permeabilisation by 1% saponin, as triton-x 100 was later used and produced greater total 

staining with Yopro-1 and PI. 
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Figure 6.1 The effect of commensal neisseriae on N. meningitidis and S. 

pneumoniae-induced host cell death 

Detroit 562 (D562) epithelial cells were challenged for 3 hours with N. meningitidis strain 

MC58 (a, c and e) or S. pneumoniae isolate Sp14 (b, d and f) in the absence or presence of 

N. lactamica (Nlac), N. cinerea (Ncin) or N. polysaccharea (Npoly) at 200 bacteria per 

epithelial cell (MOI). D562 cells were incubated in M199 media containing gentamicin 

(200µg/ml) for a further 21 hours. Fluorescence was measured after D562 epithelial cells 

were stained with Hoechst (a and b), the apoptotic stain Yopro-1 (c and d) or the necrotic 

stain propidium iodide (PI; e and f) on a microplate reader (Fluostar Optima). Data 

represents mean ± SEM from three independent repeats each replicated in triplicate. *** 

p<0.001 ** p<0.01 *p<0.05.  
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6.2.2 The effect of commensal Neisseria spp. on N. meningitidis-mediated activation of 

caspase 3 in Detroit 562 epithelial cells 

To further investigate the apoptotic pathways stimulated in the presence of N. meningitidis 

activation of the downstream effector caspase 3 was analysed by flow cytometry.  

N. lactamica at low (MOI 20) and high dose (MOI 200) did not activate caspase 3 above 

untreated epithelial cells, whereas N. meningitidis showed a strong, dose-dependent 

activation (Figure 6.2a). Caspase 3 activation by low dose N. meningitidis was significantly 

reduced (p<0.05) in the presence of high dose N. lactamica. Caspase 3 activation by high 

dose N. meningitidis was reduced by N. lactamica in a dose-dependent manner, though not 

significantly. 

Similarly, N. cinerea did not activate caspase 3 above untreated epithelial cells (Figure 

6.2b). In the presence of N. cinerea there was a dose-dependent, though not significant, 

reduction in both low and high dose N. meningitidis-mediated activation of caspase 3.  

N. polysaccharea alone did not increase activation of caspase 3 compared to untreated 

epithelial cells (Figure 6.2c). In the presence of both low and high dose N. polysaccharea 

there was a significant reduction (p<0.05 and p<0.01, respectively) in activation of caspase 

3 by low dose N. meningitidis. In the presence of high dose N. meningitidis there was a 

dose-dependent decrease in caspase 3 activation by N. polysaccharea that was significant 

(p<0.05) at high dose. 
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Figure 6.2 Activated caspase 3 as a marker for apoptosis in host cells challenged by N. meningitidis in the absence and presence of commensal 

neisseriae 

Detroit 562 (D562) cells were challenged for 3 hours with N. meningitidis strain MC58 at 20 or 200 bacteria per epithelial cell (MOI) for 3 hours in the absence 

or presence of commensal neisseriae; a) N. lactamica (Nlac), b) N. cinerea (Ncin) or c) N. polysaccharea (Npoly) at MOI 20 or 200, followed by 18 hours 

incubation in M199 media containing gentamicin (200µg/ml). Staurosporine (STRP; 1µM) was used as a positive control. D562 cells were disassociated with 

EDTA (4mM) and activated caspase 3 was stained with the FITC-conjugated caspase 3 inhibitor (FITC-DEVD-FMK). Fluorescence was analysed by flow cytometry 

with the Accuri C6 flow cytometer. Data represents the mean ± SEM from three independent repeats. **p<0.01 *p<0.05.  
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6.2.3 The effect of commensal Neisseria spp. on N. meningitidis-induced activation of 

caspase 8 and 9 in Detroit 562 epithelial cells 

To investigate the apoptotic pathways involved with N. meningitidis-induced host cell death 

in Detroit 562 (D562) epithelial cells, activation of the extrinsic death receptor associated 

initiator caspase 8 was measured by bioluminescent reporter assay. After 3 hours’ 

challenge with the positive control TNFα (with cycloheximide) there was a significant 

increase (p<0.001) in activation of caspase 8 (Figure 6.3a) compared to untreated epithelial 

cells. N. meningitidis at MOI 20 induced a significant increase (p<0.01) in caspase 8 

activation compared to untreated epithelial cells. This was reduced (p<0.01) almost to the 

level of untreated epithelial cells in the presence of N. polysaccharea, but not N. lactamica 

or N. cinerea at MOI 200. However, by 6 hours (Figure 6.3b) N. meningitidis-induced 

caspase 8 levels were no longer significantly different even in the presence of commensal 

Neisseria spp. 

After 9 hours (Figure 6.3c) activated caspase 8 was still significantly increased in epithelial 

cells challenged with N. meningitidis (p<0.001), compared to untreated cells. However, in 

the presence of all commensal neisseriae levels were reduced; there was a significant 

reduction in the presence of N. lactamica (p<0.01) and N. polysaccharea (p<0.001) with 

levels reduced approximately to that of untreated cells. However, at all time-points 

measured N. meningitidis poorly induced activation of caspase 8 (mean 680 RLU) compared 

to the positive control TNFα (mean 3800 RLU). 

To further investigate the apoptotic pathways involved in N. meningitidis-induced host cell 

death the intrinsic mitochondrial associated initiator caspase 9 was measured by 

bioluminescent reporter assay. After 3 hours’ challenge (Figure 6.3d) there was a significant 

increase (p<0.001) in activated caspase 9 by the positive control staurosporine (STRP) 

compared to untreated epithelial cells, but not in epithelial cells challenged with bacteria. 

After 6 hours’ (Figure 6.3e) although N. meningitidis-induced activation was not 
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significantly increased compared to untreated cells, there was a significant reduction in the 

presence of N. lactamica (p<0.005) and N. polysaccharea (p<0.01), but not N. cinerea. By 9 

hours’ post challenge with N. meningitidis there was a significant increase (p<0.01) in 

activated caspase 9 compared to untreated cells. Levels were reduced to that of untreated 

cells in the presence of both N. lactamica (p<0.001) and N. polysaccharea (p<0.001), but 

were unaffected by the presence of N. cinerea (Figure 6.3f). 
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Figure 6.3 Activated caspase 8 and 9 in Detroit 562 cells challenged with N. 

meningitidis in the absence and presence of commensal neisseriae 

Detroit 562 (D562) cells were challenged with N. meningitidis strain MC58) at 20 bacteria 

per epithelial cell (MOI) for 3 hours in the absence or presence N. lactamica (Nlac), N. 

cinerea (Ncin) or N. polysaccharea (Npoly) at MOI 200. D562 cells were then incubated in 

M199 media containing gentamicin (200µg/ml). Activated caspase 8 (a, b and c) and 

caspase 9 (d, e and f) were measured with the respective caspase-glo bioluminescent 

reporter assay kits (Promega, UK) at 3 hours (a and d), 6 hours (b and e) and at 9 hours (c 

and f) post challenge. TNFα (20ng/ml) with cycloheximide (chx; 20µg/ml), or staurosporine 

(STRP; 1µM) was used as positive control. Relative light units (RLU) were measured with a 

microplate reader (Fluostar Optima). Data represents mean ± SEM from three independent 

repeats each replicated in duplicate. *** p<0.001 *p<0.05 
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6.2.4 The effect of commensal neisseriae on the induction of host cell death by 

extrinsic or intrinsic inducers 

As shown previously, all of the commensals N. lactamica, N. cinerea and N. polysaccharea 

challenged epithelial cells showed comparable Hoechst staining to untreated epithelial cells 

(Figure 6.4a and b). Treatment of epithelial cells with the extrinsic host cell death inducer 

TNFα with cyclohexamide (chx; Figure 6.4a), or the intrinsic host cell death inducer 

staurosporine (Figure 6.4b) resulted in a significant reduction of Hoechst staining (p<0.01 

and p<0.001, respectively) by up to 20% in epithelial cells. This was unaltered by the 

presence of commensal Neisseria spp. 

TNFα/chx significantly induced levels of apoptosis (p<0.001) of approximately 30% 

compared to untreated epithelial cells at approximately 10% in these experiments (Figure 

6.4c). There was a significant increase (p<0.001) in TNFα/chx-induced apoptosis in the 

presence of each of the commensal Neisseria spp. with the greatest increase observed in 

the presence of N. lactamica to approximately 40%. Staurosporine also significantly induced 

apoptosis (p<0.01) in epithelial cells compared to untreated to nearly 40% (Figure 6.4d). 

Staurosporine-induced apoptosis was unaltered in the presence of N. lactamica.  

There was a slight, but significant induction of necrosis with both TNFα/chx (p<0.01; Figure 

6.4e) and staurosporine (p<0.05; Figure 6.4f). When in the presence of commensal 

Neisseria spp. there were comparable levels of necrosis to either TNFα/chx or 

staurosporine alone. Commensal neisseriae did not have any suppressive effect on these 

extrinsic or intrinsic pathways.  
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Figure 6.4 The host cell death induced by TNFα with cyclohexamide, or 

staurosporine in the absence or presence of commensal Neisseria spp. 

Detroit 562 (D562) epithelial cells were incubated for 3 hours with TNFα (20ng/ml) and 

cyclohexamide (chx; 20µg/ml; a, c and e) in the absence or presence of commensal 

neisseriae; N. lactamica (Nlac), N. cinerea (Ncin) or N. polysaccharea (Npoly) at 200 bacteria 

per epithelial cell (MOI), or staurosporine (STRP; 1µg/ml; b, d and f) in the absence and 

presence of N. lactamica at MOI 20 or 200. Fluorescence was measured after D562 cells 

were stained with the nucleic acid stain Hoechst (a and b), the apoptotic stain Yopro-1 (c 

and d) or the necrotic stain propidium iodide (PI; e and f) using a microplate reader 

(Fluostar Optima). Data represents mean ± SEM from three independent repeats each 

replicated in triplicate. *** p<0.001 ** p<0.01 *p<0.05.  
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6.2.5 The effect of cytochalasin D on N. meningitidis-induced host cell death, and 

protection by N. lactamica 

To investigate the involvement of invasion on N. meningitidis’s ability to induce host cell 

death, Detroit 562 (D562) epithelial cells were pre-incubated with the actin inhibitor 

cytochalasin D (CytoD) that prevents invasion by Neisseria spp. As the carrier solution for 

cytochalasin D, DMSO was used in controls. Host cell death was assessed using the 

fluorescent nucleic acid stains Hoechst, Yopro-1 and propidium iodide (PI). 

Epithelial cells were challenged with N. meningitidis (strain MC58) at low dose (MOI 20) in 

the absence and presence of N. lactamica at high dose (MOI 200). Hoechst staining showed 

comparable levels of epithelial cells following treatment with N. lactamica, N. meningitidis 

or both together (Figure 6.5a). Neither DMSO nor cytochalasin D affected epithelial cells. 

As seen previously, N. lactamica did not induce apoptosis, compared to DMSO control, 

even in the presence of cytochalasin D (Figure 6.5b). N. meningitidis significantly induced 

apoptosis (p<0.001) to approximately 35% compared to DMSO control (20%), and showed a 

slight yet significant increase in apoptosis (p<0.001) in the presence of cytochalasin D. As 

expected, there was a significant reduction (p<0.001) in apoptosis induced by N. 

meningitidis in the presence of N. lactamica. The presence of cytochalasin D did not affect 

N. lactamica’s ability to suppress N. meningitidis-induced apoptosis in epithelial cells.  

As expected, N. meningitidis significantly induced necrosis (p<0.001) to approximately 50%, 

which was synergistically and significantly increased (p<0.001) in the presence of 

cytochalasin D (Figure 6.5c). N. lactamica, once again reduced N. meningitidis-induced 

necrosis (p<0.001). N. meningitidis-induced necrosis was still reduced to near DMSO control 

levels by N. lactamica when in the presence of cytochalasin D, suggesting N. lactamica does 

not require invasion into host cells to suppress N. meningitidis-induced host cell death.  
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Figure 6.5 Host cell death induced by N. meningitidis in the presence of cytochalasin D 

Detroit 562 (D562) epithelial cells were pre-incubated for 1 hour with cytochalasin D (CytoD; 2µg/ml) in DMSO. D562 cells were then challenged with N. 

meningitidis strain MC58 at 20 bacteria per epithelial cell (MOI), N. lactamica (Nlac) at MOI 200 or both for 3 hours, followed by 21 hours incubation in M199 

media containing gentamicin (200µg/ml). D562 cells were stained with the nucleic acid stain Hoechst (a), the apoptotic stain Yopro-1 (b) or the necrotic stain 

propidium iodide (PI; c). Fluorescence was measured with microplate reader (Fluostar Optima). Data represents mean ± SEM from three independent repeats 

each replicated in triplicate. *** p<0.001 ** p<0.01 *p<0.05 ns= non-significant. 
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6.2.6 The effect of heat-killed N. lactamica and N. lactamica lysates on N. meningitidis-

induced host cell death 

To ascertain if live N. lactamica was required to suppress N. meningitidis-mediated host cell 

death, Detroit 562 (D562) epithelial cells were challenged with N. meningitidis (strain 

MC58) at a low dose (MOI 20) in the absence or presence of either heat-killed N. lactamica 

(Nlac HI) at an equivalent of low (MOI 20) and high dose (MOI 200), or N. lactamica lysates 

(Nlac Lys). Both the soluble (Sol) and insoluble (InS) fractions of lysates were tested.  

As seen previously, there was a slight, but significant reduction (p<0.01) in Hoechst staining 

of about 10% from N. meningitidis challenged cells (Figure 6.6a and b). Hoechst staining 

was further reduced (p<0.001) when epithelial cells were challenged by N. meningitidis in 

the presence of heat-killed N. lactamica (Figure 6.6a) or N. lactamica lysates (Figure 6.6b). 

As demonstrated previously with live N. lactamica, there was no induction of apoptosis by 

heat-killed N. lactamica or N. lactamica lysates compared to untreated epithelial cells. As 

expected, compared to untreated cells N. meningitidis significantly induced apoptosis 

(p<0.001) in epithelial cells. However, in contrast to previous experiments with live N. 

lactamica, neither heat-killed N. lactamica (Figure 6.6c) nor N. lactamica lysates (Figure 

6.6d) were able to affect N. meningitidis-induced apoptosis.  

Similarly, heat-killed N. lactamica (Figure 6.6e) and N. lactamica lysates (Figure 6.6f) alone 

failed to induce necrosis. N. meningitidis induced significant levels of necrosis (p<0.001) of 

nearly 30% compared to untreated epithelial cells at approximately 15%. N. meningitidis-

induced necrosis was not affected by low dose heat-killed N. lactamica. However there was 

a slight, but significant increase (p<0.01) in the presence of high dose heat-killed N. 

lactamica. N. lactamica lysates had no observable effect on N. meningitidis-induced 

necrosis in epithelial cells. 
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Figure 6.6 Host cell death induced by N. meningitidis in the absence or presence of 

heat-killed N. lactamica and N. lactamica lysates 

Detroit 562 (D562) cells were challenged for 3 hours with N. meningitidis (strain MC58) at 

20 bacteria per epithelial cells (MOI) in the absence or presence of heat-killed N. lactamica 

at an equivalent MOI 20 or 200 (Nlac HI; a, c and e), or the soluble (Sol) or insoluble (InS) 

fraction of N. lactamica lysates (Nlac Lys; b, d and f) at an equivalent MOI 200. Following 21 

hours incubation in M199 containing gentamicin (200µg/ml) epithelial cells were stained 

with the nucleic acid stain Hoechst (a and b), the apoptotic stain Yopro-1 (c and d) or the 

necrotic stain propidium iodide (PI) (d and f). Fluorescence was measured with a microplate 

reader (Fluostar Optima). Data represents mean ± SEM from three independent repeats 

each replicated in triplicate. *** p<0.001 ** p<0.01. 
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6.2.7 Adhesion of N. meningitidis induces cell death of Detroit 562 epithelial cells 

To identify if induction of apoptosis in host cells was only induced in epithelial cells 

associated with N. meningitidis, challenged epithelial cells were dual-labelled and analysed 

by flow cytometry.  

Following 21 hours incubation approximately 5% of untreated D562 epithelial cells were 

labelled positively for apoptosis using the active caspase 3 fluorescent-labelled inhibitor 

(Figure 6.7a). When challenged with N. meningitidis (strain MC58) MOI 2 (Figure 6.7b) 

apoptotic positive epithelial cells increased by approximately 15%, of which all were also 

labelled positive for N. meningitidis. When challenged with N. meningitidis MOI 20 (Figure 

6.7c) approximately 80% of epithelial cells were labelled positive for N. meningitidis. 

Apoptotic epithelial cells increased to approximately 80%, of which more than two thirds 

were also labelled positive for adherent N. meningitidis. Overall, this data demonstrates 

that there is an increase in apoptosis positive epithelial cells with a greater dose of N. 

meningitidis, and that this increase is associated with adhesion by N meningitidis. 
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Figure 6.7 Dual-labelling for adherent N. meningitidis and activated caspase 3 

Detroit 562 (D562) epithelial cells were unchallenged (a) or challenged for 3 hours with N. meningitidis (strain MC58) at a concentration of 2 (b) or 20 (c) 

bacteria per epithelial cell (MOI). D562 cells were then washed and incubated for a further 18 hours in M199 media (without gentamicin). D562 cells were then 

disassociated with EDTA (4mM) then labelled with the FITC-labelled caspase 3 inhibitor FITC-DEVD-FMK and adherent N. meningitidis was labelled with mouse 

anti-N. meningitidis P1.7 antibody and rabbit anti-mouse Alexa-fluor 647 (AF647) conjugated secondary antibody. Fluorescence was analysed by flow cytometry 

(Accuri C6). Active caspase 3-FITC was measured in FL1 and MC58-AF647 was measured in FL4. Representative dotplots of two independent repeats. Q2-

LL=unlabelled Q2-UL=active caspase 3-labelled Q2-LR= MC58-labelled Q2-UR= MC58 and active caspase 3-labelled. 
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6.3 Discussion 

The purpose of this section of this study was to investigate the induction of host cell death 

by upper respiratory tract dwelling pathogens and the potential effects of commensal 

Neisseria spp. on modulation of this induction of host cell death. Both viability stains and 

specific stains were used to analyse this. 

N. meningitidis induces host cell death by multiple pathways depending on the cell type or 

line used. N. meningitidis induces apoptosis by stimulating TNFα secretion from host cells 

that induces autocrine-TNFα-induced apoptosis (Deghmane et al., 2009), or through toxicity 

induced through pili or LPS interactions with the host cells (Dunn, Virji & Moxon, 1995). 

Unlike a previous study also using endothelial cells in higher serum concentration medium 

(Dunn, Virji & Moxon, 1995), N. lactamica did not induce host cell death in epithelial cells in 

this study, nor did the Neisseria commensals N. cinerea and N. polysaccharea, when 

measured by viability stains and activation of caspase 3. However, N. meningitidis and S. 

pneumoniae were both potent inducers of apoptosis and necrosis using viability stains. 

These observations suggest that induction of host cell death within the nasopharynx is 

possibly a mechanism for invasion of the mucosa by pathogenic bacteria, but is not a 

mechanism employed by commensal bacteria.  

All three commensal Neisseria spp. reduced apoptosis and necrosis induced by S. 

pneumoniae, with the greatest reduction in apoptosis by N. lactamica when measured after 

24 hours. This was however still in the presence of a reduction in total epithelial cells. All 

three commensal Neisseria spp. also reduced necrosis induced by N. meningitidis, though 

N. polysaccharea was most effective at reducing necrosis.  

N. meningitidis was a potent inducer of apoptosis in nasopharyngeal epithelial cells when 

measured by the viability stain Yopro-1 and activation of caspase 3. N. lactamica and N. 

polysaccharea were able to reduce Yopro-1 staining nearly to the level of untreated 
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epithelial cells which did not occur in the presence of N. cinerea. Both N. lactamica and N. 

polysaccharea were also able to reduce activation of caspase 3 when N. meningitidis was at 

low concentration (MOI 20), but only N. polysaccharea was able to reduce activation of 

caspase 3 induced by a high concentration (MOI 200) of N. meningitidis. N. cinerea was not 

able to reduce the induction of host cell death by N. meningitidis. These observations 

suggest that only N. lactamica and N. polysaccharea may share a common mechanism to 

prevent N. meningitidis-induced host cell death. 

The extrinsic induction of apoptosis by agonisation of surface receptors such as TNFα 

involves activation of caspase 8 (Mangan, Mergenhagen & Wahl, 1993; Van Herreweghe et 

al., 2010), whereas intrinsic induction of apoptosis via the mitochondrial pathway leads to 

activation of caspase 9 (Jiang & Wang, 2000). Activation of either initiator caspase leads to 

activation of the effector caspase 3 in host cells. The same pattern of suppression by N. 

lactamica and N. polysaccharea was found with activation of the initiators caspase 8 and 

caspase 9 after 9 hours. This suggests N. meningitidis may induce apoptosis via both 

activation of surface receptors and via the mitochondrial pathway. However, TNFα-, 

staurosporine- and N. meningitidis- treated epithelial cells gave similar Yopro-1 staining in 

separate experiments, whereas TNFα and staurosporine induced 4 times and 10 times 

greater activation of caspase 8 and caspase 9, respectively. This suggests activation of these 

caspases is a minor component of N. meningitidis-induced apoptosis in epithelial cells.  

This is further supported by experiments involving activation of host cell death by TNFα or 

staurosporine. Massari et al (2010) demonstrated protection by meningococcal porB 

against apoptosis induced by the potent intrinsic inducer staurosporine through its 

interaction with mitochondria. In this study N. lactamica was unable to modulate host cell 

death induced by staurosporine suggesting a different mechanism was employed. Also 

carriage strains of N. meningitidis protect epithelial cells from invasive meningococci by 

inducing shedding of TNF receptor and thus prevention of autocrine TNFα signalling 
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(Deghmane et al., 2009). Again N. lactamica, as well as N. cinerea and N. polysaccharea, 

were unable to suppress host cell death induced by TNFα (with cyclohexamide), and even 

synergistically enhanced apoptosis in the presence of TNFα. This enhancement may be due 

to the synergistic effect of death receptors such as TNF receptor with Toll-like receptors to 

activate caspase 1 and caspase 11 (Hisahara et al., 2000), of which TLRs can be activated by 

commensal as well as pathogenic bacteria.  

To identify if invasion by N. meningitidis was required to induce cell death in epithelial cells, 

cytochalasin D, an inhibitor of actin re-arrangement and subsequently neisserial invasion, 

was used. Interestingly in the presence of cytochalasin D there was a significant increase in 

both apoptosis and necrosis induced by N. meningitidis suggesting that prevention of 

invasion by the pathogen enhances its ability to kill epithelial cells and that damaging the 

mucosal barrier in this manner is an alternative means of invading the host to transcellular 

invasion. It may also suggest that modifications to surface ligands of the minor invasive 

subpopulation of bacteria that facilitates invasion may also be required for host cell death 

pathways activation. 

The protection by N. lactamica on N. meningitidis-induced host cell death was dependent 

on live N. lactamica as has been previously found with the suppression of inflammation 

induced by N. meningitidis (Tezera et al., 2011). As neither heat-killed nor lysates of N. 

lactamica protected against N. meningitidis-induced epithelial cell death, the induction of 

apoptosis and interaction of N. meningitidis with epithelial cells was investigated. Using 

lower doses (MOI 2 and 20) of N. meningitidis over 21 hours without antibiotic, there was a 

dose-dependent increase in both association of bacteria and apoptosis measured by 

activated caspase 3 with the largest population of epithelial cells being dual-labelled for 

both association of bacteria and active caspase 3. This lends argument to the hypothesis 

that N. meningitidis interaction with the surface receptors of epithelial cells signals the 

induction of apoptosis by these bacteria. This may involve signalling through both autocrine 
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activation of TNF receptor and TLRs as putatively suggested by TNFα cell death 

experiments, or some other mechanism that involves caspase 8 and caspase 9 in a minor 

role. 

To summarise; N. lactamica and N. polysaccharea, but not N. cinerea prevent association of 

N. meningitidis with nasopharyngeal epithelial cells. Association with epithelial cells is 

required for induction of apoptosis by N. meningitidis. Both N. lactamica and N. 

polysaccharea, but not N. cinerea reduce apoptosis induced by N. meningitidis in epithelial 

cells, suggesting the suppression in association is the mechanism involved in suppression of 

apoptosis by commensal Neisseria spp.  

To further evaluate the mechanism of protection by both N. lactamica and N. 

polysaccharea the involvement of caspase 1 should be further investigated. A recent study 

has revealed caspase 1 is required for induction of apoptosis by the related pathogen N. 

gonorrhoeae (Duncan et al., 2009) potentiating its involvement in N. meningitidis-mediated 

apoptosis. The mechanism by which commensal Neisseria prevent association of N. 

meningitidis with epithelial cells whether agglutination, aggregation or competition for 

receptors, should also be investigated. 

 

  



  Page | 147  
 

 

 

 

Chapter 7 

7 General discussion and further work 
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7.1 General discussion 

Experiments herein were designed to investigate the host-bacterial interactions during 

colonisation by pathogenic and commensal bacteria whose natural habitat is the human 

nasopharynx (Cartwright et al., 1987; Oh et al., 2008; Sleeman et al., 2001; Kluytmans, van 

Belkum & Verbrugh, 1997). Although many studies include both epithelial cells and 

endothelial cells from multiple human tissues, a study by Virji et al. (1992a) identified 

differential association of N. meningitidis with epithelial and endothelial cells. This has 

more recently been investigated and found to utilise different mechanisms of host cell 

signalling (Lécuyer, Nassif & Coureuil, 2012). Even TLR expression differs between upper 

and lower respiratory epithelial cells (Rydberg et al., 2009) and therefore responses to 

bacteria and bacterial ligands would be expected to also. For example, microarray analysis 

of bronchial epithelial cells challenged with N. lactamica (strain Y92-1009) or N. 

meningitidis (strain MC58) showed an upregulation in transcriptional activation of pro-

inflammatory cytokines following challenge with N. lactamica, but not N. meningitidis 

(Wong et al., 2011). This contrast in findings to other studies (Griffiths et al., 2007; Tezera 

et al., 2011) could be tissue specific, though a study on another bronchial epithelial cell line 

(BEAS-2B) suggests that it is time, strain or cell line-dependent (Massari et al., 2010). 

To this end, many studies to investigate the colonisation of N. meningitidis in particular, 

with the human nasopharynx, have used primary human nasopharyngeal cells (de Vries et 

al., 1996) and explants of mucosal tissues (Stephens, Hoffman & McGee, 1983; Rayner et 

al., 1995; Read et al., 1999). These are often difficult to source and create greater variability 

in results than do cell lines. Tumourogenic epithelial cell lines undergo genetic and 

epigenetic changes, such as upregulation of the transcription factor NFκB (Li et al., 2006a), 

which can affect their behaviour compared to non-tumourogenic cells (Rydberg et al., 

2009). Two human pharyngeal epithelial cell lines are commercially available; the Detroit 

562 (D562) and Fadu cell lines. The Fadu cell line has previously been used to characterise 
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N. meningitidis colonisation and invasion (Sutherland et al., 2010) primarily due to its origin 

and characteristics of polarizing and forming tight junctions. However, unlike both primary 

epithelial cells and the D562 cell line, Fadu cells do not possess a functional TLR3 (Matijevic, 

Marjanovic & Pavelic, 2009; Rydberg et al., 2009) and D562 cells have a similar though 

greater response to TLR agonists (Rydberg et al., 2009). The D562 cell line has been more 

frequently used in meningococcal studies (Bradley et al., 2005; Griffiths et al., 2007; Sa E 

Cunha et al., 2009; Tezera et al., 2011). Therefore, all experiments herein that required 

host-bacterial interactions were conducted with the human nasopharyngeal carcinoma cell 

line D562. 

N. lactamica strain NL4.1 has previously been demonstrated to suppress the transcription 

and secretion of inflammatory cytokines and chemokines (IL6, TNFα and IL8) induced by the 

closely related pathogenic N. meningitidis strain MC58 in D562 human nasopharyngeal 

epithelial cells. Additionally, strain NL4.1 has been demonstrated to suppress the induction 

of cytokines induced by the host cell surface receptor agonists IL1β, TNFα and the TLR2/1 

agonist PAM3Cys, in the absence of pathogenic bacteria (Tezera et al., 2011). This suggests 

that strain NL4.1 possesses the capacity to suppress inflammation induced in host cells via 

differing signalling pathways. This suppression correlated with a reduction in the 

transcriptional activation of NFκB and involved, in an undefined capacity, the nuclear 

receptor PPARγ. However, microarray analysis of bronchial epithelial cells challenged with 

N. lactamica (strain Y92-1009) or N. meningitidis (strain MC58) identified an increase in 

inflammatory mediators only following N. lactamica challenge (Wong et al., 2011), though 

there was also an increase in genes that regulate and prevent proinflammatory responses. 

This could suggest host site-specific responses or perhaps differing roles for N. lactamica 

strains in the human microbiota, to induce inflammation and stimulate a cross-reactive 

immune response (strain Y92-1009), or to reduce inflammation induced by pathogens to 

protect the mucosal barrier (strain NL4.1). 
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Induction of inflammation via TLR2, a key meningococcal inflammatory receptor in D562 

cells, is induced through activation of multiple MAPK pathways and involves NFκB 

activation (Rydberg et al., 2009). It was therefore hypothesised that NL4.1 suppresses some 

if not all MAPK pathways in D562 cells. Conversely, data presented in chapter 3 of this 

thesis suggests NL4.1 synergistically enhances MAPK pathway-induced inflammation. 

However, NL4.1 did suppress inflammation induced through the intracellularly localised 

TLR3. Inflammation induced through TLR3 in D562 cells does not require the MAPK 

pathways, but does require NFκB activation, further supporting the findings of Tezera et al. 

(2011). The notion that NL4.1 possesses a global anti-inflammatory mechanism may also be 

supported by suppression of TLR3-mediated inflammation. The TLR3 receptor is not found 

on the host cell surface, avoiding bacterial interaction, and has not been implicated in 

neisserial inflammation (Figure 7.1). 

 

Figure 7.1  Representation of suppression of IL6 induced via TLR3 by N. lactamica.  
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N. lactamica suppressed inflammation measured by the proinflammatory cytokine IL6, 

induced by the intracellular TLR3 agonist poly(I:C), in human nasopharyngeal epithelial cells 

by as yet an unknown mechanism.  

Both N. meningitidis and N. lactamica express porB, which is a ligand for TLR2. Differences 

in the molecular structure of porB from each species can modify the specific site on TLR2 to 

which each species interacts. TLR2 has both inflammatory and inhibitory signalling 

pathways depending on the ligand interaction, which has been demonstrated to inhibit 

inflammation induced through TLR3 for example (Lai et al., 2009). Modulated surface 

labelling of TLR2 (Appendix 5) in the presence of N. lactamica (as well as other commensal 

Neisseria spp.) could suggest modulation of surface receptors as a means of N. lactamica-

mediated inflammatory suppression. Alternatively, it may suggest competition for a TLR2 

binding site, which is also recognised by the antibody used to label TLR2, a known inhibitor 

of TLR2-induced inflammation (Flo et al., 2000). However, this data is merely suggestive on 

its own and requires further evaluation. It could suggest commensal Neisseria spp. that are 

poorly inflammatory and do not cause invasive or localised disease in the host, may have 

adapted (or retained) molecular structures to conserved neisserial proteins to this end, in 

contrast to invasive Neisseria spp. which have adapted (or retained) alternate molecular 

structures.  
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Figure 7.2  Representation of host cell responses to S. pneumoniae by N. lactamica. 

N. lactamica suppressed inflammation measured by the proinflammatory cytokines IL6 and 

TNFα, and host cell death induced S. pneumoniae isolate Sp14, in human nasopharyngeal 

epithelial cells by as yet unknown mechanisms.  

Additionally, N. lactamica has been observed in this study to suppress inflammation 

induced by an unrelated Gram-positive human pathogen for the first time (Figure 7.2). 

Although this project did not extend to demonstrate the pathways involved in the induction 

of inflammation in D562 cells by the S. pneumoniae isolate used, other strains of S. 

pneumoniae have been demonstrated to induce inflammation through TLR2, and to a lesser 

extent TLR4 (Mogensen et al., 2006a). 

Both pathogenic N. meningitidis and commensal N. lactamica exclusively colonise humans 

with a preference for the nasopharyngeal niche. It has long been hypothesised that N. 

lactamica may confer protection to the host against carriage and/or invasive disease 

elicited by N. meningitidis (Gold et al., 1978; Cartwright et al., 1987; Oliver et al., 2002). This 
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was often considered to be due to the generation of antibodies by the host to N. lactamica 

that cross-reacted with N. meningitidis as has been observed previously (Gold et al., 1978). 

However, recent findings suggest that it is primarily a non-specific IgM antibody response 

that is generated by N. lactamica (Vaughan et al., 2010), and that live N. lactamica or OMV 

induce antibody responses that are poorly cross-reactive with the meningococcus and do 

not significantly induce increased serum bactericidal antibody in human participants (Evans 

et al., 2011). It has been proposed that live N. lactamica is required within the 

nasopharyngeal niche of the host to give protection via a means other than the induction of 

adaptive immunity (Tezera et al., 2011; Evans et al., 2011). 

In chapter 5 of this thesis, several methods were utilised to measure the association and 

invasion of N. meningitidis to D562 nasopharyngeal epithelial cells in the absence of 

immune cells, and the effect of N. lactamica primarily on this in vitro model of colonisation. 

N. lactamica strain NL4.1 reduced both association and invasion by two strains of N. 

meningitidis serogroup B, the reference strain MC58 and the ST-11 strain Z4701, but not 

the ST-11 serogroup C strain Z6417. Though Z4701 was poorly adherent, the hyper-

adherent strain MC58 was suppressed from adhering to D562 cells by up to 60% and 

invasion was reduced by 90% in the presence of N. lactamica. However, neither N. 

lactamica adherence nor invasion increased by equivalent amounts when measured by the 

sensitive colony count method, suggesting direct competition for host receptors was not 

involved, but a more complicated or indirect means of suppression was employed by N. 

lactamica. Additionally, the involvement of bacterially-induced secretion of host factors to 

protect against association by N. meningitidis was not evaluated in this study and may 

warrant further work (Andrade, Marques & de Santa Rosa, 1986). 

Initially as comparison to N. lactamica the neisserial commensals N. cinerea and N. 

polysaccharea were also used to modulate N. meningitidis association and invasion of host 

nasopharyngeal cells. To this end N. meningitidis serogroup B strain MC58 was manipulated 
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by homologous recombination to express the luxCDABE operon allowing rapid 

measurement by the production of bioluminescent light and thus discrimination from 

commensal Neisseria. The bioluminescent construct (strain MC58lux) was compared to the 

parental strain for evaluation as an appropriate reporter in chapter 4.  

Along with antibody labelling of N. meningitidis and flow cytometry analysis, modulation of 

N. meningitidis invasion and association, respectively, was measured. Using viable colony 

counts obtained from N. meningitidis and N. lactamica co-cultures mentioned above, 

comparisons could be made between methods to support the validity of the results 

obtained by bioluminescent reporter and antibody labelled assays.  

Using the bioluminescent reporter of N. meningitidis, there was less suppression of invasion 

in the presence of N. lactamica. This could be accounted for by the real-time measure of 

bioluminescence measuring metabolically active bacteria present as opposed to viable 

counts measuring bacteria that survive after 24hr culture. None-the-less, a similar and 

dose-dependent suppression of N. meningitidis invasion of epithelial cells was measured. 

Similarly, N. polysaccharea was also able to suppress N. meningitidis invasion of epithelial 

cells in a dose dependent manner. N. polysaccharea has not previously been implicated in 

protection from N. meningitidis though these experiments suggest there may be a role for 

it in host protection. This protection was further demonstrated by a reduction in 

association of N. meningitidis in the presence of N. polysaccharea. This strongly suggests 

that some, but not all commensal Neisseria spp. have the ability to suppress association 

and possibly therefore invasion of pathogenic N. meningitidis with the host.  

In chapter 6 both viability stains and reporters for activation of specific host caspases were 

used to evaluate host cell death induced by N. meningitidis serogroup B and to a lesser 

extent S. pneumoniae serotype 14. Both N. meningitidis and S. pneumoniae were potent 

inducers of host cell death in contrast to commensal Neisseria spp. that did not elicit 

cytotoxicity in host cells. This supports the hypothesis that pathogenic bacteria of the 
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nasopharynx may use induction of host cell cytotoxicity as a mechanism of invasion through 

the mucosa. 

This study demonstrates for the first time that all three commensal Neisseria spp. are 

capable of suppressing cytotoxicity induced by the unrelated Gram-positive pathogen S. 

pneumoniae in nasopharyngeal epithelial cells. This suggests that commensal organisms 

that normally occupy the same niche as pathogens can give cross-species protection, that is 

not dependent on immunological ligand similarities due to genetic relatedness.  

In contrast only N. lactamica and N. polysaccharea were able to effectively suppress 

epithelial cell cytotoxicity induced by N. meningitidis, as measured by both viability stains 

and monitoring activation of specific host caspases, in particular the activator caspase 3. 

The inability of N. cinerea to inhibit N. meningitidis-induced host cell death suggests that a 

common mechanism for suppression of host cell death by both Gram-negative and Gram-

positive pathogens may not be present. Or that the mechanism utilised by N. cinerea is less 

effective against N. meningitidis than S. pneumoniae. In the case of N. lactamica, the ability 

to suppress host cell death was reliant on the live organism, as neither whole heat-killed N. 

lactamica, nor homogenised lysates were effective at suppressing N. meningitidis-induced 

host cell death. 



  Page | 156  
 

 

Figure 7.3  Representation of commensal neisseriae protection against N. 

meningitidis serogroup B-induced host cell death. 

Both N. lactamica (Nlac) and N. polysaccharea (Npoly) reduced association of N. 

meningitidis serogroup B (MenB) with host cells by a currently unknown mechanism. Both 

commensals also protected against host cell death induced by MenB, which required MenB 

association with host cells. 

An apparent similarity in the trend in suppression of both association with, and induction of 

host cell death, by N. meningitidis in the presence of commensal Neisseria spp. was 

observed. Therefore induction of host cell death and association by N. meningitidis was 

evaluated by flow cytometry. The majority of host cells induced to undergo apoptosis, as 

measured by active caspase 3, were also found to have N. meningitidis association. This 

suggests a strong correlation and that meningococcal interaction with host cell receptors is 

required for induction of cell death, as opposed to invasion by meningococci or secretion of 

bacterial products such as LPS (Figure 7.3). Therefore the mechanism of suppression of 
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meningococcal-induced host cell death by commensal N. lactamica and N. polysaccharea is 

most probably tied to their ability to reduce association of the pathogen with host cells.   

The data herein supports the hypothesis that a single commensal Neisseria spp. such as N. 

lactamica or N. polysaccharea, or a combination of species could be utilised as potential 

probiotics for the prevention of meningococcal colonisation and carriage. 

 

7.2 Future work 

One significant limitation of this body of work is the use of one carcinoma cell line for all 

host-bacterial interaction studies. The limitation has largely been due to the limited 

availability of epithelial cell lines of the nasopharynx, which the primary organisms of this 

study colonise. To further corroborate this data it is vital that other pharyngeal cells lines 

such as Fadu (Rangan, 1972; Sutherland et al., 2010), primary or immortalised oral or 

nasopharyngeal epithelial cells, such as those used in cancer studies (Sun et al., 1992; Li et 

al., 2006a) be used to replicate this work. This is particularly important since differences 

between primary cells and cell lines have previously been reported (Rydberg et al., 2009). 

Additionally, microarrays have been utilised by other researchers to profile the induction or 

suppression of relevant genes, such as those involved with apoptosis and inflammation, 

often to reveal opposing results to those found herein (Linhartova et al., 2006; Wong et al., 

2011). This could be due to differences in host cell type or bacterial strains used, but could 

also be due to methodological differences, so could warrant further investigation, especially 

as mixed bacterial co-cultures were not conducted. 

In the same vein, it has previously been reported that vast differences have be seen in the 

responses from host cells between different strains of meningococci (Deghmane et al., 

2009). Therefore it is reasonable to assume that differences would be found both between 

different species of commensal neisseriae, as has been found in this work, and between 
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different strains of each species. For instance the N. lactamica strain used herein belongs to 

the ST-3787 clonal complex and is therefore unique among isolates that have been MLST 

typed. Whereas, ST-624, ST-613, ST-640 and ST-595 have been found to be more commonly 

isolated from infants (Bennett et al., 2005), and therefore strains of these clonal complexes 

could be worth investigating, such as the N. lactamica reference strains Y92-1009 (ST-613) 

and 020-06 (ST-640). If differences in host cell responses and suppression of meningococcal 

association with host cells were found between different strains of N. lactamica or N. 

polysaccharea, then further proteomic and genomic studies could be conducted. Two-

dimensional electrophoresis or far-western blots could be used to identify variation in 

proteomic expression between strains of protective and non-protective commensal 

Neisseria, and to potentially identify meningococcal ligands, if indeed any do exist. To 

identify genetic factors differentiating protective and non-protective strains, subtractive 

hybridization has previously been used with success (Lewis et al., 2005) and may be useful 

to further this work.  

Aside from identifying potential commensal neisserial bacterial products that may give 

protection against meningococcal infection, the mechanisms and dynamics of commensal 

protection against meningococcal colonisation should be further studied. Sequential 

blockade and identification of host cell receptors and bacterial ligands should be conducted 

to ascertain the crucial interactions in this model. A systematic analysis of neisserial 

proteins on the strains of N. cinerea and N. polysaccharea used in this study, and 

comparisons to the N. lactamica strain used, would be an effective route to evaluating the 

interactions. Furthermore, herein the ability of N. lactamica to inhibit association by N. 

meningitidis to D562 cells was not globally recognised by all meningococcal strains tested 

as N. lactamica increased association of MenC strain Z6417. However, as no vaccines are 

currently in use against MenB, but are against other serogroups it could be of interest to 

expand the study of N. lactamica's inhibition of meningococcal association with host cells to 
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other common meningococcal clonal complexes, in particular ST-41/44 being the most 

commonly isolated in Europe.  

Association and invasion assays presented in this thesis were all conducted with mixed 

cultures of N. meningitidis and commensal neisseriae added to host cells at the same time 

point. Therefore coagglutination and coaggregation assays may be a recommended choice 

of assay to help identify potential mechanisms of commensal protection against 

meningococci (Kolenbrander & Andersen, 1986; Whittaker, Klier & Kolenbrander, 1996). 

Additionally the dynamics of protection should be investigated. Do protective commensal 

neisseriae give greater protection when pre-associated with host cells, or do they 

disassociate meningococci that have already associated with host epithelial cells? The 

answers to these questions will help to evaluate the effectiveness of these commensal 

Neisseria spp. for use as live probiotics to protect against colonisation and potentially 

disrupt carriage of meningococci in the human nasopharynx. 
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Appendix 1 Enumeration curves from strains of commensal Neisseria 
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Appendix 2 Enumeration curves from strains of N. meningitidis 
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Appendix 3 Enumeration curves from strains of H. influenzae 
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Appendix 4 Enumeration curves from strains of S. aureus and S. pneumoniae 
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Appendix 5 Surface labelling of TLR2 following bacterial challenge 

Detroit 562 (D562) cells were challenged for 3 hours with N. meningitidis strain MC58 at 20 or 200 bacteria per epithelial cell (MOI) for 3 hours in the absence or 

presence of commensal Neisseriae; a) N. lactamica (Nlac), b) N. cinerea (Ncin) or c) N. polysaccharea (Npoly) at MOI 20 or 200. D562 cells were disassociated with 

EDTA (4mM) in PBS and surface TLR2 was labelled with a mouse anti-human TLR2 primary antibody and rabbit anti-mouse Alexa-Fluor 647 conjugated secondary 

antibody. Fluorescence was analysed by flow cytometry with the Accuri C6 flow cytometer. Data represents the mean ± SEM from three independent repeats in 

treatments involving MC58 and two independent repeats with treatments with commensals only. 


