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Abstract 

 

With the growth in requirement for a high reliability of power supply, stability of the 

power system and the minimum requirement for control systems becomes more and more 

significant. The most popular way to solve the problem of stability is to install power 

system stabilizers (PSSs) on synchronous generators in related power systems. The 

conventional methods for designing PSS are generally based on the compensation 

approach for the phase and eigenvalue of the generator model. In recent decades, H-norm 

based robust PSS has been developed because of the system uncertainty of power grids. 

In another aspect, wind power has evolved into a significant renewable energy source and 

increased at an outstanding rate. Stability problems of power system with large wind 

farms became more and more challenging. Some wind plant modelling methods, for 

which PSSs are not taken into consideration, have been developed and widely used in 

practical applications. 

The present study is concerned with a comprehensive power system stability analysis 

based on an improved H-norm robust controller design method and a novel modelling 

approach for doubly fed induction generator (DFIG) wind turbines. Initially, one 

improved lemma, enhanced with LMI regional pole placement, is developed for linear 

matrix inequality (LMI) based H2/H∞ robust output feedback controller design. Robust 

PSSs are designed based on the approach and they are tested in both single and multi-

machine systems. A novel DFIG wind turbine model is then built up and tested with the 

robust PSS in both single and multi-machine systems to see the oscillations damping 

ability. Finally, based on the robust PSS, a large multi-machine power system with wind 

parks is selected for a comprehensive stability analysis. 

Simulated examples and case studies are employed in this study to demonstrate the effect 

of new PSSs. The simulation results clearly suggest that the proposed PSS can solve the 

stability problem of damping oscillations in power systems with large wind parks. 
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