Abstract

With the growth in requirement for a high reliability of power supply, stability of the power system and the minimum requirement for control systems becomes more and more significant. The most popular way to solve the problem of stability is to install power system stabilizers (PSSs) on synchronous generators in related power systems. The conventional methods for designing PSS are generally based on the compensation approach for the phase and eigenvalue of the generator model. In recent decades, H-norm based robust PSS has been developed because of the system uncertainty of power grids. In another aspect, wind power has evolved into a significant renewable energy source and increased at an outstanding rate. Stability problems of power system with large wind farms became more and more challenging. Some wind plant modelling methods, for which PSSs are not taken into consideration, have been developed and widely used in practical applications.

The present study is concerned with a comprehensive power system stability analysis based on an improved H-norm robust controller design method and a novel modelling approach for doubly fed induction generator (DFIG) wind turbines. Initially, one improved lemma, enhanced with LMI regional pole placement, is developed for linear matrix inequality (LMI) based H_2/H_{∞} robust output feedback controller design. Robust PSSs are designed based on the approach and they are tested in both single and multimachine systems. A novel DFIG wind turbine model is then built up and tested with the robust PSS in both single and multi-machine systems to see the oscillations damping ability. Finally, based on the robust PSS, a large multi-machine power system with wind parks is selected for a comprehensive stability analysis.

Simulated examples and case studies are employed in this study to demonstrate the effect of new PSSs. The simulation results clearly suggest that the proposed PSS can solve the stability problem of damping oscillations in power systems with large wind parks.

Acknowledgements

Firstly, I wish to express my gratitude to my parents for their constant support and love.

I gratefully acknowledge my supervisors, Professor Quanmin Zhu and Dr Hassan Nouri, who have carefully read all my manuscript and provided me with valuable comments and discussions regarding various aspects of this study. I also would like to thank them for their supervision throughout the period of this research work. Special thanks to my colleagues and friends, Dr Lifeng Zhang, Dr Lei Cheng, *et al*, for their help and useful discussions on many occasions.

Many thanks to Dr Catherine Hobbs, Dr Mokhtar Nibouche, Dr Sabir Ghauri, Dr John Edwards, Mr Matthew Guppy and other members of FET faculty.

List of publications based on this study

Conference papers

Peng, Y., Nouri, H., Zhu, Q. M., and Cheng, L., 2011(a), Robust controller design survey for damping low frequency oscillations in power systems, *Asia-Pacific Power and Energy Engineering Conference (APPEEC 2011)*, 27--29, March, 2011, Wuhan, China.

Peng, Y., Zhu, Q. M., and Nouri, H., 2011(b), Robust H₂ power system stabilizer design using LMI techniques, *The Proceeding of 2011 International Conference on Modelling, Identification and Control (ICMIC)*, 21--24, June, 2011, Shanghai, China.

Peng, Y., Zhu, Q. M., and Nouri, H., 2012(a), LMI based H_2/H_{∞} power system stabilizers fir large disturbances in power systems with wind plant, *The Proceedings of 2012 International Conference on Modelling Identification and Control (ICMIC)*, 24--26, June, 2012, Wuhan, China.

Peng, Y., Nouri, H., and Zhu, Q. M., 2012(b), Robust power system stabilizers for multimachine systems with large wind parks, *The 47th International Universities' Power Engineering Conference*, September 4--7, 2012, London, UK.

Peng, Y., Zhu, Q. M., and Nouri, H., 2013(a), LMI based robust PSS for grid-connected DFIG wind turbines, *The Proceedings of 2013 International Conference on Modelling Identification and Control (ICMIC)*, September, 2013, Cairo, Egypt.

Peng, Y., Nouri, H., and Zhu, Q. M., 2013(b), LMI based controller design for doubly-fed induction generator wind turbine systems, *The 48th International Universities' Power Engineering Conference*, September, 2013, Dublin, Ireland.

Journal papers

Peng, Y., Zhu, Q. M., and Nouri, H., 2013, Improved mixed H_2/H_{∞} power system stabilizer design using robust output feedback controller, submitted to Journal of Electrical Engineering.

Nouri, H., Peng, Y., and Zhu, Q. M., 2013, Power system small signal stability analysis of large DFIG wind parks in modern power grids, to be submitted.

Contents

Chapter 1 Introduction	1
Introduction	1
1.1 Robust controller design technologies and wind plant modelling	1
1.2 Motivation	4
1.3 Contributions	6
1.4 Outline of the thesis	7
Chapter 2 Overview of Robust Control and Power System Stability	10
2.1 Introduction	10
2.2 Linear Matrix Inequality Approach	14
2.2.1 Fundamental LMI properties	14
2.2.2 Classification of LMI problems	16
2.2.2.1 LMI feasibility problems	17
2.2.2.2 Linear objective minimization problems	17
2.2.2.3 Generalized eigenvalue problems	18
2.3 H-norm based robust control.	19
2.3.1 H_{∞} robust control	20
2.3.1.1 H_{∞} performance analysis	20
2.3.1.2 Robust H_{∞} state feedback controller design	21
2.3.1.3 Robust H_{∞} output feedback controller design	23
2.3.2 H ₂ robust control	25
2.3.2.1 H ₂ performance analysis	25
2.3.2.2 Robust H ₂ state feedback controller design	27
2.3.2.3 Robust H ₂ output feedback controller design	
2.4 Low frequency oscillations in power systems	29
2.4.1 Reasons for low frequency oscillations	30
2.4.2 Methods to damp low frequency oscillations	32
2.5 Power system models for stability analysis	34

2.5.1 Mathematical model of synchronous generators	34
2.5.2 Mathematical model of excitation systems	35
2.5.3 Mathematical model of conventional power system stabilizers	37
2.6 Introduction to wind turbines	41
2.6.1 Wind turbine architectures	42
2.6.2 Impacts of wind generators to conventional power systems	44
2.7 Summaries	46
Chapter 3 Mixed H_2/H_{∞} Robust Controller Design based on LMI Techniques.	47

3.1 Introduction
3.2 Improved H_2/H_∞ output feedback controller design methodologies51
3.2.1 Power system mathematical model selection and comparison51
3.2.2 State space description
3.2.3 Mixed-sensitivity and weighting function selection61
3.2.4 LMI regional pole placement
3.2.5 Design of improved mixed H_2/H_∞ output feedback controller (IMOFC)69
3.2.5.1 Optimal location and set point selection for PSS design70
3.2.5.2 Weighting function selection criterions70
3.2.5.3 Mixed H_2/H_{∞} output feedback controller design algorithm73
3.2.5.4 Parameters tuning for the robust controller
3.2.5.5 A step by step procedure to design IMOFC78
3.2.5.6 Design tutorial: step-by-step implementation for a SMIB power system .78
3.3 Robust PSS validation for a single machine infinite bus system
3.3.1 SMIB system tests 184
3.3.2 SMIB system tests 2
3.3.3 SMIB system tests 391
3.4 Robust PSS validation for a multi-machine power system93
3.4.1 Multi-machine system tests 194
3.4.2 Multi-machine system tests 296
3.4.3 Multi-machine system tests 3
3.4.4 Multi-machine system tests 4

Chapter 4 DFIG Wind Turbine Modelling for Stability Analysis	
4.1 Introduction	104
4.2 A Novel modelling method for DFIG wind turbines	107
4.2.1 Modelling for the aerodynamic	109
4.2.2 Modelling for the pitch angle control system	112
4.2.3 Modelling for the drive train system	113
4.2.4 Modelling for the induction generator	116
4.2.5 Modelling for the rotor-side converter	118
4.2.6 Modelling for the DFIG wind turbine	120
4.2.7 A step-by-step procedure to validate IMOFC based PSS for the no	vel DFIG
wind turbine model	122
4.3 Wind turbine model validity tests using IMOFC based PSS	122
4.3.1 Model validation with gust wind disturbances	123
4.3.2 Model validation with gradually changed wind disturbances	126
4.3.3 Model validation with stochastic wind disturbances	128
4.3.4 Model validation with other types of disturbances	130
4.4 Conclusions	

Chapter 5 System Validation for a Large Power System with wind parks.....133

5.1	Introduction	.133
5.2	Small signal stability study for power system with large DFIG wind parks	135
	5.2.1 Location selection for DFIG wind parks connection	137
	5.2.2 Effect of wind parks for the multi-machine system	.139
5.3	Dynamic simulations for the power system with large wind parks	144
	5.3.1 System tests for synchronous generators with disturbances in power grid	144
:	5.3.2 System tests for synchronous generators with disturbances in wind parks	148
	5.3.3 System tests for DFIG wind turbines in the integrated power system	150
5.4	Conclusions	.156
Cha	apter 6 Conclusions and Further Work	.157

I		
6.1 Conclusions.	 	157

6.2 Further work
Appendix A Data for the power systems and wind turbines for robust PSS design and validation161
Appendix B Data of the New England power system and wind parks168
References174

Abbreviations

Abbreviations	Descriptions
AC	Alternating Current
ARE	Algebraic Riccati Equation
AVR	Auto-Voltage Regulator
CIGRE	International Council on Large Electric Systems
CPSS	Conventional Power System Stabilizer
DC	Direct Current
DFIG	Doubly Fed Induction Generator
EE	Energy to Energy
EMF	Electromotive Force
EP	Energy to Peak
FACTS	Flexible Alternating Current Transmission System
FMAC	Flux Magnitude and Angular Control
FRS	Feasibility Radius Saturation
FSIG	Fixed Speed Induction Generator
GEVP	Generalized Eigenvalue Problem
GWEC	Global Wind Energy Council
HVDC	High Voltage Direct Current

viii

Abbreviations	Descriptions
IE	Impulse to Energy
IEEE	Institute of Electrical and Electronics Engineers
IGBT	Insulated Gate Bipolar Transistor
IMOFC	Improved Mixed H_2/H_∞ Output Feedback Controller
LFO	Low Frequency Oscillation
LMI	Linear Matrix Inequality
LOEC	Linear Optimal Excitation Controller
NEC	Nonlinear Excitation Controller
PID	Proportional Integral Derivative controller
PP	Peak to Peak
PSS	Power System Stabilizer
PSS/E	Power System Simulation for Engineering
PTI	Power Technology International
PWM	Pulse Width Modulation
SAVNW	Name of the New England Power System
SDRE	State-dependent Riccati Equation
SMIB	Single Machine Infinite Bus
STATCOM	Static Synchronous Compensator
SVC	Static Var Compensator

ix

VSC

Voltage Source Converter

Symbols

Symbols	Descriptions
Δ	Deviation of the parameter (can be put before any symbol)
C _{dc}	DC capacity of the DFIG wind turbine
D_{pg}	Damping torque factor for synchronous generators
E_d	Internal electromotive force on d axis
E_q	Internal electromotive force on q axis
E'_{d}	Internal transient electromotive force on <i>d</i> axis
E'_{q}	Internal transient electromotive force on q axis
$E^{\prime\prime}_{q}$	Post-transient electromotive
E_{fd}	Electromotive force of exciter winding
i _d	Synchronous generator stator current on <i>d</i> axis
i _L	DFIG inductance current
i_q	Synchronous generator stator current on q axis
<i>i</i> ,	DFIG rotor current
I _{ds}	DFIG stator current on <i>d</i> axis
I_{qs}	DFIG stator current on q axis

Symbols	Descriptions
I _{dr}	DFIG rotor current on <i>d</i> axis
I _{qr}	DFIG rotor current on q axis
K _A	Gain of exciter
K_E	Self-excitation factor of exciters
K_{F}	Rotor feedback factor
K_{P1}, K_{I1}	Controller parameter of the outer PID controller of DFIG
K_{P2}, K_{I2}	Controller parameter of the inner PID controller of DFIG
L	DFIG converter inductance
L_s	DFIG stator inductance
L _r	DFIG rotor inductance
L_m	DFIG mutual inductance
M _e	Electrical torque of synchronous generator
<i>M</i> _{<i>m</i>}	Mechanical torque of synchronous generator
Q _{ref}	DFIG reference input of reactive power
R _s	DFIG stator resistance
R _r	DFIG rotor resistance

Symbols	Descriptions
S	Operator for Laplace transform
S _s	Slip of DFIG
S_E	Saturation factor of exciters
T_0	Transient time constant of DFIG
T_b	Time constant of DFIG pitch angle control system
T'_{d0}	Open circuit time constant on <i>d</i> axis
	Special time constant used in five-winding generator model
	Open circuit time constant on q axis
	Time constant of regulators
T_E	Exciter time constant
T_F	Time constant of rotor feedback section
T_{j}	Time constant of the one-mass drive train of DFIG
T	Inertia coefficient of synchronous generator
	DFIG rotor side mechanical torque
	Blade input mechanical torque
u _a	Voltage from the grid side controller of DFIG

Symbols	Descriptions
u _r	Reference voltage input to the exciter
u _{rw}	Voltage from the rotor side controller of DFIG
u _s	Output voltage from power system stabiliser
u _{sw}	DFIG stator voltage
u _{td}	Terminal voltage of synchronous generator on d axis
u _{tq}	Terminal voltage of synchronous generator on q axis
U _{dc}	DFIG DC capacitor voltage
U _{dcref}	Reference input of DFIG DC capacitor voltage
U _{ds}	DFIG stator voltage on d axis
U_{qs}	DFIG stator voltage on q axis
U _{dr}	DFIG rotor voltage on <i>d</i> axis
U _{qr}	DFIG rotor voltage on q axis
U _t	Terminal voltage of the generator
U _{REF}	Reference voltage input
	Leakage reactance
x _d	Stator reactance on <i>d</i> axis

Symbols	Descriptions
X_q	Stator reactance on q axis
x' _d	Stator transient reactance on <i>d</i> axis
x'' _d	Post-transient reactance on <i>d</i> axis
x' _q	Stator transient reactance on q axis
X',	DFIG transient reactance
	Impedance of transformer
Z _L	Impedance of transmission line
β	Pitch angle of DFIG
ω	Angular speed
ω_0	Synchronous speed of synchronous generator
$\omega_{\scriptscriptstyle ref}$	Reference input of the DFIG speed
ω _s	Synchronous speed of the DFIG
δ	Power angle
ψ_{ds}	DFIG stator flux on <i>d</i> axis
ψ_{qs}	DFIG stator voltage on q axis
ψ_{dr}	DFIG rotor flux on <i>d</i> axis

Symbols	Descriptions
ψ_{qr}	DFIG rotor flux on q axis
Ψ_d	Synchronous generator flux linkage on d axis
Ψ_q	Synchronous generator flux linkage on q axis
8	Kronecker Product