
Designing Reusable Systems that Can Handle Change
Description-Driven Systems : Revisiting Object-Oriented Principles

Richard McClatchey, Andrew Branson and Jetendr Shamdasani
Centre for Complex Cooperative Systems, University of the West of England, Bristol, UK

{Richard.McClatchey, Andrew.Branson, Jetendr.Shamdasani}@cern.ch

Keywords: Description-driven systems, object orientation, reuse, system evolution

Abstract: In the age of the Cloud and so-called ‘big data’ systems must be increasingly flexible, reconfigurable and

adaptable to change in addition to being developed rapidly. As a consequence, designing systems to cater

for evolution is becoming critical to their success. To be able to cope with change, systems must have the

capability of reuse and the ability to adapt as and when necessary to changes in requirements. Allowing

systems to be self-describing is one way to facilitate this. To address the issues of reuse in designing

evolvable systems, this paper proposes a so-called description-driven approach to systems design. This

approach enables new versions of data structures and processes to be created alongside the old, thereby

providing a history of changes to the underlying data models and enabling the capture of provenance data.

The efficacy of the description-driven approach is exemplified by the CRISTAL project. CRISTAL is based

on description-driven design principles; it uses versions of stored descriptions to define various versions of

data which can be stored in diverse forms. This paper discusses the need for capturing holistic system

description when modelling large-scale distributed systems.

1 INTRODUCTION

A crucial factor in the creation of flexible object-

based information systems dealing with changing

requirements is the suitability of the underlying

technology in facilitating the evolution of the

system. The importance of clearly defined extensible

object oriented models as the basis of rapid systems

design has become a pre-requisite to successful

systems implementation. Exposing a system’s

internal architecture opens up its architecture

consequently allowing application programs to

inspect and alter implicit system aspects. These

implicit system elements can serve as the basis for

changes and extensions to the system. Making these

internal structures explicit allows them to be subject

to scrutiny and interrogation.

Related efforts to tackle the problem of coping

with design evolution have included, ‘active’ object

models (Yoder & Johnson 2002), the capture and

exploitation of so-called mesodata (de Vries &

Roddick, 2007), and schema versioning (Roddick,

2009). However, none of these approaches enables

the design of an existing system to be changed

dynamically and for those changes to be reflected in

a new running version of that design. We advocate a

design and implementation approach that is holistic

in nature, viewing the development object-oriented

software from a systems standpoint. It is based on

the systematic management of the description of

essential systems elements covering multiple views

of the system under design (including data and

process views) using object oriented techniques.

The approach advocated here is termed

description-driven; it involves identifying and

abstracting, at the outset, all the crucial elements

(such as business objects, processes, lifecycles,

goals, agents and outputs) in the system under

design and creating high-level descriptions of these

elements which are stored in a model, dynamically

modified and managed separately from their

instances. In many ways adhering to a description-

driven approach means following very closely the

original, and these days often neglected or poorly

applied, principles of pure object-oriented design

especially those of reuse, abstraction, deferred

commitment, inheritance and loose coupling.

A Description-Driven System (DDS) makes use

of so-called meta-objects to store domain-specific

system descriptions, which control and manage the

life cycles of meta-object instances, or domain

objects. In a DDS, descriptions are managed

independently to allow the descriptions to be

specified and to evolve asynchronously from

particular instantiations of those descriptions.

Separating descriptions from their instantiations

allows new versions of items (or item descriptions)

to coexist with older versions. This separation is

essential in handling the complexity issues facing

many computing applications and allows the

realization of interoperability, reusability and system

evolution since it gives a clear boundary between the

application’s basic functionalities from its

representations and controls.

The next section introduces description-driven

systems through an example of their use at the

European Centre for Nuclear Research (CERN). The

detail of the CRISTAL model is outlined in a later

section.

2 A DESCRIPTION-DRIVEN

SYSTEM IN PRACTICE

Scientists at CERN build and operate complex

accelerators and detectors whose construction

processes are very data-intensive, highly distributed

and ultimately require a computer-based system to

manage the production, assembly and calibration of

components. In constructing detectors like the

Compact Muon Solenoid (CMS, Chatrchyan et al.,

2008), scientists require data management systems

that can cope with complexity, with system

evolution over time and with system scalability.

CMS is a general-purpose experiment that has

been constructed from around a million parts and

produced and assembled in the past decade by

specialized centres distributed worldwide. The

construction process was very data-intensive and

highly distributed, its production models evolved

and required a computer-based system to manage the

assembly of detector components. Detector parts of

different model versions must be handled over time

and coexist with other parts of different model

versions. Separating details of model types from the

details of parts allowed the model type versions to

be specified and managed independently,

asynchronously and explicitly from single parts.

Moreover, in capturing descriptions separate from

their instantiations, system evolution can be catered

for while production is underway and provide

continuity in the production process and for design

changes to be reflected quickly into production.

No commercial products provided the

capabilities required by CMS. Consequently, a

research project, entitled CRISTAL (Branson et al.,

2013) was initiated to facilitate the management of

the engineering data collected at each stage of

production of CMS. CRISTAL is a distributed

product data and workflow management system

which makes use of an OO-like database for its

repository, a multi-layered architecture for its

component abstraction and dynamic object

modelling for the design of the objects and

components of the system (Estrella, 2001). The DDS

approach has been followed to handle the

complexity of such a data-intensive system and to

provide the flexibility to adapt to the changing

scenarios found at CERN which are typical of any

research production system. Lack of space prohibits

detailed discussion of CRISTAL; a full description

can be found in Branson et al., 2013.

The design of the CRISTAL prototype required

adaptability over extended timescales for system

evolution, interoperability, complexity handling,

deferred commitment and for reusability. In

adopting a DDS approach the separation of object

instances from object description instances was

needed. This abstraction resulted in the delivery of a

three layer description-driven architecture. Our

CRISTAL approach is similar to the familiar model-

driven design concepts (OMG, MOF 2004), but

differs in that the descriptions and the instances of

those descriptions are implemented as objects

(Items) and most importantly, they are implemented

and maintained using exactly the same internal

model. Even though workflow descriptions and

instance implementations are different, the manner

in which they are stored and are related to each other

is the same in CRISTAL. This approach is similar to

the distinction between Classes and Objects in the

original definition of object oriented principles

(Wirfs-Brock et al., 1990). We have followed those

fundamental principles in CRISTAL to ensure that

we can provide the level of flexibility,

maintainability and reusability that object orientation

can enable to facilitate system evolution.

3 THE CRISTAL MODEL

CRISTAL is an application server that abstracts all

of its business objects into workflow-driven,

version-controlled 'Items' which are instantiated

from descriptions stored in other Items (Figure 1)

and are managed on-the-fly for target user

communities. Items contain:

Item

Workflow

History

Current versions

pointed to
Properties

Name

State

Type

Collection

Typed

Slot

Typed

Slot

ItemItem

Outcome

Viewpoint

Activity

Event

Generates Contains

Legend

Container

Object

Simple Value

Event

Viewpoint

Activity

Outcome

Collection

Figure 1. The components of an Item in CRISTAL

• Workflows, that comprise of Activities specifying

work to be done by Agents (either human users or

mechanical/ computational agents via an API),

which then generate:

• Events that detail each change of state of an

Activity. Completion events generate data

detailing the work done, known as:

• Outcomes which are XML documents from each

execution, for which:

• Viewpoints refer to particular versions (e.g. the

latest version or, in the case of descriptions, a

particular version number).

• Properties are name/value pairs that name and

type items, they also denormalize collected data

for more efficient querying, and

• Collections that enable items to be linked together.

These Item contents need to be defined when

domain systems are modelled in CRISTAL and are,

crucially, also modelled using the concept of Items.

This is a key difference between DDS and other

model driven systems: description items function in

exactly the same way as other Items; their

workflows consist of activities for managing the data

of the description, and also contain an instantiation

activity that creates new Items from that data in

addition to identifying information for the new

Items. The description and its instance share the

same implementation, which at any level is capable

of being either a model, or an instance, or both. The

construction of the specific CRISTAL model for the

domain under consideration therefore concentrates

on the essential enterprise objects of the system that

could be needed during its lifetime no matter from

which standpoint those objects are accessed. These

enterprise objects each have a creation/modification

/ deletion lifecycle and the CRISTAL model simply

keeps track of status changes to the objects (or

Items) over those lifecycles. This allows it to

orchestrate the execution of Workflows on Items by

Agents, log all Events, Outcomes and Viewpoints

and thereby capture all associated provenance

information associated with the domain system

under study.

The basic functionality of CRISTAL is best

illustrated with an example: using CRISTAL a user

can define product types (such as Newcar spark

plug) and products (such as a Newcar spark plug

with serial number #123), workflows and activities

(to test that the plugs work properly, and mount

them into the engine). This allows products that are

undergoing workflow activities to be traced and,

over time, for new product types (e.g. improved

Newcar spark plug) to be defined which are then

instantiated as products (e.g. updated Newcar spark

plug #124) and traced in parallel to pre-existing

ones. The application logic is free to allow or deny

the inclusion of older product versions in newer ones

(e.g. to use up the old stock of spark plugs).

Similarly, versions of the workflow activities can

co-exist and be run on these products.

Item Description Items hold the templates for

new Items, and also dictate their type (see Figure 1).

These “Item Descriptions” are also declared as Items

(and thus the two can be treated in the same

manner), holding the description data as XML

outcomes managed through workflow activities.

Workflow and Property descriptions are stored as

XML serialized objects. Collection Descriptions are

themselves Collections, pointing to other Item

Descriptions. Outcome Descriptions contain XML

Schema documents which are used to validate

submitted outcomes and aid in data collection, for

instance to generate data entry forms in a stock GUI

for the end users. Also included in the descriptions

are Scripts, code invoked by workflows either

during a change of Activity state to enact

consequences of the execution such as updating a

Property or changing a Collection, or to assess

conditional splits in the Workflow.

As instances of descriptions can also be

descriptions, it is possible to create intermediate

description layers that specialize and simplify the

architecture of CRISTAL, creating domain specific

modelling languages which can flatten the learning

curve for domain users and ease adoption. The

Agilium system mentioned in section 4 is an

example of such a system – it implements BPM as a

set of CRISTAL descriptions, and their clients can

design and develop applications based on this

simpler design language. Writing to the CRISTAL

object model is impossible from a client process

other than through an activity execution, thus

providing full traceability of the system. Ordinary

activities only create Events and Outcomes, and

modify Viewpoints, so when a script needs to

modify some other part of the model it must invoke

special ‘Predefined Steps’ which are activities that

contain additional logic for modifying the Item’s

Properties, Collections or directory entries. These

Predefined Steps are hard-coded and do not often

change, making their presence in an Item’s history

reliably interpretable. The aim of this rigidity of

write control is to require the design of the lifecycle

of each Item type to explicitly define the full

behaviour of that Item. We see this as a return to the

principles of object modelling that many modern

languages and platforms have neglected in the name

of “rapid prototyping”, whereas a properly designed

meta-model should achieve those without sacrificing

the principles of object orientation.

At a low-level, the versioning mechanism that

gives provenance to the Item instance is the same

mechanism that enables concurrent versioning in the

descriptions. This means that any communication

between different CRISTAL servers can transfer

descriptions in exactly the same way as instances.

Also dependencies can be declared as easily between

abstraction layers as within them. All of these

advantages arise because CRISTAL extends the

original object orientation concept ideas, to more of

its data model than other model-driven systems, in

the same way that Java gains similar advantages

from implementing classes as Class objects. This is

the real benefit of the CRISTAL Item-based design.

A disadvantage to the CRISTAL design is that the

definition of ‘Object’ in the CRISTAL system is an

Item which, while adhering to many core concepts

of object orientation, does not follow the classic

Class/Object model. This is because all

Descriptions, and instances of Descriptions, are

defined as Items in the CRISTAL model. This was

necessary to extend the traceability of the system to

its design as well as its operation, and to simplify the

styles of objects for developers to master.

Some developers in practice find the abstraction

concepts of CRISTAL conceptually difficult to

understand. This is due to the large amount of

terminology involved in the design of CRISTAL as

well as the complexity of its concepts. New

personnel faced a steep learning curve before they

could usefully contribute to the code-base, though

this is not a problem for end-users, as complexity

may be hidden in intermediate description layers.

However, we feel that Items represent a return to the

core values of object orientation, at a time when

modern languages are becoming increasingly

profligate in their implementation of them in the

name of efficiency, thereby sacrificing many of the

benefits that object orientation can offer.

Object-orientation encourages the developer to

think about the entities involved in the system and

the operations required to provide the system’s

functionality, along with their context in the data

model, which together provide the methods of

identified data objects, resulting in an object model.

In recent years, newer programming languages have

tended to focus on object orientation as a means of

API specification, increasing the richness of library

specification and maximizing code reuse, but do

little to encourage proper object oriented design

amongst developers. Unfortunately, with the

increasing popularity of test oriented development

methodologies, developers are encouraged to hack

away in a deliver-early-and-often way from which a

well-thought out object model rarely emerges.

In contrast with CRISTAL the object model must

be designed as a set of Items with lifecycles. While

other non-Item oriented software components are

possible, they cannot store state in the system

without interacting with Item activities, and

therefore are encapsulated as Agent

implementations, and considered external to the Item

model, with a strictly designed outcome

specification stating what they must provide to the

system to have successfully completed their

function. The activities of an Item’s lifecycle are

roughly analogous to object oriented methods, since

they define a single action performed on that Item.

However, it is much harder for an Item’s lifecycle

design to grow out of control with many unused

methods since the lifecycle is defined as a workflow;

the activity set must always form a valid graph of

activities from the creation of the Item to its

completion. This clarity of design through

implementation constraints is a return to the

intentions of the early object oriented languages

such as Smalltalk (Goldberg et al, 1983), and the

initial restrictions of Java, which discouraged the

developer from using mechanisms that could result

in messy, overcomplicated, unmaintainable code,

and steer them towards a core object oriented design

with the system logic intuitively partitioned and

distributed in a manageable way.

The CMS Electromagnetic Calorimeter (ECal)

was constructed from tens of thousands of similar

parts, monocrystals of lead tungstate to be exact, all

needing characterizing and assembling in an optimal

configuration based on sets of detailed

measurements. These characterizations are used in

the final operation of the ECal to determine physical

measurements in the CMS detector. Every

component part was registered as an Item in the

CRISTAL database, each with its barcode as an

identifier. Each part had a type, which functioned as

the Item Description, and was linked to the

Workflow definition that each instance would follow

in order to collect its data and mount sub-parts

(Estrella, 2003). The part types also contained

subtype data as Properties and Collection

Definitions to make sure that parts were assembled

in assigned positions in ECal. All collected assembly

data were stored as Outcomes attached to Events,

and therefore, the entire history of every interaction

with the application was recorded. The result was a

set of Items representing the top level components of

the detector which contained five levels of

substructure, all with their full production history

and with all collected and calculated production data

attached in the correct context.

4 AN EVALUATION OF THE

APPROACH USED IN CRISTAL

Each ECal crystal generated between 2-3Mbytes of

information which was mainly gathered in an

automated data acquisition system which

characterised the crystals in batches over a period of

8-10 hours for each batch of 30 crystals. The whole

data acquisition process took around five years to

complete following an initial testing period which

itself took several months. It was the responsibility

of one CRISTAL application maintainer to ensure as

smooth operation as possible of the data acquisition

and to provide round-the-clock accessibility to the

CRISTAL database and to maintain the descriptions

handled by CRISTAL.

During the six years of near-continuous

operation, the descriptions went from beta to

production then through years of (relatively few)

alterations of the domain logic which necessitated

very little change in the actual server software,

illustrating the flexibility of the CRISTAL approach

(see Table 1). These alterations were minor and

included updates to descriptions of processes and

data sources which were handled by version

management capability of CRISTAL. The server

software only needed to be upgraded seven times,

and of those seven, only one was a required update

that needed to be made available to all users and

servers. This was necessary because some data

formats originally designed proved not to be as

scalable as required; therefore a client update was

required to read the new structures.

The application logic that needs to be executed

during the workflow will have its functionality

conveniently broken down along with the activities.

It is then simple to import these definitions into the

system where it can be immediately tested for

feedback to the users. Improvements can thereby be

quickly performed online, often by modifying the

workflow of one test item, which then serves as a

template for the type definitions. Items subject to the

improvements can co-exist with items generated

earlier and prior to the improvement being made and

both are accessed in a consistent, reusable and

seamless manner. All this can be done without

recompiling a single line of code or restarting the

application server, providing significant savings in

time and enables the users to work in an iterative and

reactive manner that suits their research. This shows

the flexibility of using a DDS approach.

In our experience, the process of factoring the

lifecycle and dataset of the new item type into

activities and outcomes helps to formalize the

desired functionality in the user's mind; it becomes

more concrete - avoiding much of the vague and

often inconclusive discussion that can accompany

user requirements capture. Because it evolved from a

production workflow specification driven by user

requirements, rather than a desire simply to create a

‘workflow programming language’, CRISTAL’s

style of workflow correlates more closely to the

users’ concept of the activities required in the

domain item’s lifecycle. The degree of granularity

can be chosen to ensure that the user feels it provides

sufficient control, with the remaining potential

subtasks rolled up into a single script. This is one

important aspect of the novel approach adopted

during CRISTAL development that has proven of

benefit to its end-user community. In practice this

has been verified over a period of more than 10 years

use of CRISTAL at CERN and by its exploitation as

the Agilium product (Agilium, 2008) across many

different application domains in industry (see

discussion in the later conclusions section).

After its development at CERN, many different

features have been added to CRISTAL. One example

of this is to facilitate the extensibility of CRISTAL

by having a pluggable architecture based on

modules. Originally, CRISTAL could support only

one domain application per instance, but using

CRISTAL modules, many different groupings of

functionalities can be loaded in the same instance.

Modules may declare themselves dependent on each

other when they rely on or extend functionality from

other modules, thereby, allowing extensibility of the

system. The module itself is abstracted as an Item in

each system into which it is loaded, and so is

versioned and traced. This mechanism makes it

possible to have description-driven libraries. This

extensibility is arguably the main contribution since

the CRISTAL developments carried out at CERN. It

has provided us with a means to have a pluggable

architecture and is closer to the definition of reuse in

the original OO model. Certainly the main lesson

learnt from the CRISTAL project in coping with

change was to develop a data model that had the

capacity to cover multiple types of data (be they

products or activities, atomic or composite in nature)

and at the same time was elegant in its simplicity. To

do this a disciplined and rigorously applied object-

oriented approach to data modelling was required:

designers needed to think in a way that would

ultimately facilitate system flexibility, would enable

rapid change and would ease the burden of

maintenance from the outset of the design process.

The approach that was followed in designing

CRISTAL was to concentrate on the essential

enterprise objects and descriptions that could be

needed during the lifetime of the system no matter

from which standpoint that data is accessed.

Thus the system was allowed to be open in

design and flexible in nature and the elegance of its

design was not compromised by being viewed from

one or several application-led standpoints (such as

Business Process Management (BPM Weske, 2007),

Workflow Management Systems (WfMS

Georgakopoulos, 1995) or many others. Rather we

enabled the traceability of the essential enterprise

objects over the lifetime of the system as the primary

goal of the system and left the application-specific

views to be defined as and when they became

required. The ability of description-driven systems to

both cope with change and to provide traceability of

such changes (i.e. the ‘provenance’ of the change)

we see as one of the main contributions of the

CRISTAL approach to building flexible and

maintainable systems and we believe this makes a

significant contribution to how enterprise systems

can be implemented. For more detail, consult our

previous paper (McClatchey, 2013) which discusses

this in a practical application. Recently a start-up

company called Technoledge has been established to

develop applications of CRISTAL.

These design skills were not simple; designers

needed to be able to think conceptually, abstracting

the characteristics of everyday objects into ‘items’

with associated metadata and to be able to represent

that complexity in a concrete data model. Great

benefits in terms of maintainability and flexibility

resulted from being able to treat many different

system objects in a single standardised manner.

Savings over the lifetime of the ECAL project at

CERN are estimated at several man years of effort.

The importance of instantiation and description in

formulating a generic CRISTAL data model cannot

be overemphasised. We propose that the description-

Table 1 - Statistics of CRISTAL operation at CERN CMS ECal

 Global ECal CRISTAL Statistics

Total number of centres (servers) 9 (6 at CERN, 1 in Taiwan, 2 in Greece)

Runtime August 2003 – August 2009 (6 years)

Total data size (at CERN) 210GB

Total number of Items in one ECAL 450,000

Minor version upgrades (required client update) 1

Total number of kernel builds 22

Kernel builds requiring server software upgrade 7

driven design approach that emerges from this study

is a genuinely new approach to designing for change.

Great importance was placed on the involvement

of users at all stages of the development of

CRISTAL, following many of the principles of

participatory design (Kensing and Blomberg, 1998).

We regard this as one of the prime reasons for the

eventual success of the project. The research nature

of the environment in which CRISTAL was

formulated and developed led to both advantages and

disadvantages. Although initially it was hoped that

high-end expert users would be able to develop

workflows themselves, in practice this was not

possible. Instead the users collaborated closely with

the designers from the outset of the project to

establish a much clearer idea of the implications of

their requirements, and with a full understanding of

the functionality that their workflow must provide.

This could then be implemented with verifiable

accuracy to what the user originally specified.

Essentially this approach led to a very simple

way of representing new requirements and absorbing

them rapidly into the evolving data model, as and

when they emerged. On the negative side users

necessarily did not always know at the outset what

their final requirements would be for data and

process management, leading to disruptive changes

in design decisions and an evolutionary approach to

prototyping. On the positive side, the users were not

locked into a ‘static’ product: the CRISTAL model

evolved to cater for their requirements and was made

responsive to their needs.

Control of evolving user requirements was a

particularly challenging problem. New requirements

needed to be addressed at the application level

which, as a consequence, induced requirements at

the domain implementation level which in turn

passes its own requirements down to the kernel level.

The result of this was that there could be a

considerable number of potential feature

configurations of the CRISTAL kernel needed to

meet all possible requirements from the user. Since

CRISTAL was originally conceived as an object-

based system and an object-oriented approach was

adopted in its design, an attempt was made to follow

as far as was practically possible best software

engineering practice in implementing features

associated with object oriented models in order to

ensure reuse and extensibility. Whenever a new

design modification was needed, the approach taken

was always to implement as open and flexible a

solution as the design allowed in order not to

constrain future extensions.

In practice, however, this quickly led to spiralling

complexity and to a risk of compromising the system

development process. To address this situation the

approach that we adopted was to make the

implementation of new requirements as intuitive as

possible with as simple functionality as necessary to

cope with the requirements, thereby preserving the

elegance of the original (description-driven) design.

This led to a closely connected set of system

functionalities which was easy to maintain and to

dynamically extend when required. In addition this

much simpler system has the virtue of being a lot

easier for users, developers and administrators new

to the system to pick up and start working with.

Further evidence of the benefits accruing from

use of CRISTAL comes from its commercialization

as the Agilium product. Since 2004 an early version

of the CRISTAL Kernel has been exploited by the

M1i company (based in Annecy, France) for the

purpose of supporting BPM and the integration and

co-operation of multiple business processes

especially in business-to-business applications. M1i

have taken CRISTAL and added applications for

BPM that benefit from the description-driven aspects

of CRISTAL, i.e. its flexibility, reusability,

complexity handling and system evolution

management. Their product addresses the

harmonization of business processes by the use of a

CRISTAL database so that multiple potentially

heterogeneous processes can be integrated and have

their workflows tracked in the database. Agilium

also integrates the management of data coming from

different sources and unites BPM with Business

Activity Management (BAM) (Kolar, 2009) and

Enterprise Application Integration through the

capture and management of their designs in the

CRISTAL system. Using the facilities for description

and dynamic modification in CRISTAL, Agilium is

able to provide modifiable and reconfigurable

business workflows. Details of Agilium can be found

at (Agilium, 2008).

5 CONCLUSIONS

The study described in this paper has

demonstrated the benefits of a self-describing

description-driven design approach to both designer

and to users in practice. It has shown that describing

a proposed system explicitly and openly from the

outset of the project enables the developer to change

aspects of it responsively as users’ requirements

evolve. This enables seamless transition from

version to version with (virtually) uninterrupted

system availability and facilitates full traceability

throughout the system lifecycle.

Following the principles of object-oriented

design the approach encourages reuse of code,

configuration data and scripts/methods. Indeed, the

description-driven design approach takes this one

step further and provides reuse of meta-data, design

patterns and maintenance of items and activities (and

their descriptions). Practically this results in a higher

level of control over design evolution and simpler

implementation of system improvements and easier

maintenance cycles. Many system elements have

gained in conceptual simplicity and consequent ease

of management thanks to loose typing and the

adoption of a unified approach to their online

manipulation: activities/scripts and their methods;

member types and instances; properties and

primitives; items and collections; and outcome

schemas and views. One logical consequence of

providing such a unified design and simplicity of

management is that the CRISTAL software can be

used for a wide spectrum of application domains.

Future work is being to model domain semantics

e.g. the specifics of a particular application domain

e.g. healthcare, public sector, finance, and

aerospace. This will essentially transform CRISTAL

into a self-describing model execution engine,

making it possible to build applications directly on

top of the design, without code generation. The

design will be the framework for all of the

application logic – without the risks of misalignment

and subsequent loss that code generation can bring –

and for CRISTAL to be configured as needed to

support the application logic whatever it may be.

What this means is that the CRISTAL kernel will be

able to capture information about the application

area in which a particular instance is being used.

This will allow usage patterns to be described and

captured, roles and agents to be defined on a per-

application basis, and rules and outcomes specific to

particular user domains to be managed. This will

enable multiple instances of CRISTAL to discover

the semantics required to inter-operate and to

exchange data. Research into the further extension

and uses of CRISTAL continues. There are plans to

enrich its kernel (the data model) to model not only

data and processes (products and activities as items)

but also to model agents and users of the system

(whether human or computational). It is planned to

investigate how the semantics of CRISTAL items

and agents could be captured in terms of ontologies

and thus mapped onto or merged with existing

ontologies for the benefit of new domain models.

The emerging technology of cloud computing and its

application in complex domains, such as medicine

and healthcare, provide further interesting

challenges.

ACKNOWLEDGEMENTS

The authors wish to highlight the support of their

home institute across all of the projects that led to

this paper.

REFERENCES

Agilium product, 2008. See http://www.agilium.com Last

accessed October 2013.

Branson, A et al. 2014, CRISTAL : A Practical Study in

Designing Systems to Cope with Change, Journal of

Information Systems, Accepted for publication.

Chatrchyan S et al. 2008, The CMS Experiment at the

CERN LHC. The CMS Collaboration, The Journal of

Instrumentation Vol 3 361 pages IoP Publishers

Estrella, F et al., 2001 Meta-Data Objects as the Basis for

System Evolution. Lecture Notes in Computer Science

Volume 2118, p. 390-399 ISBN 3-540-42298-6

Springer-Verlag, 2001

Estrella, F et al., 2003 Pattern Reification as the Basis for

Description-Driven Systems. Journal of Software and

System Modeling Volume 2 Number 2, pp 108-119

Springer-Verlag, 2003.

Georgakopoulos, D et al. 1995. An Overview of

Workflow Management, Journal of Distributed and

Parallel Database Systems 3 (2), pp119-153.

Kensing, F. and Blomberg, J. 1998. Participatory Design :

Issues and Concerns. Journal of Computer Supported

Cooperative Work VoL 7 No 3-4 pp 167-185. Kluwer

Academic Publishers, 1998.

Kolar., J. 2009 Business Activity Monitoring. PhD Thesis,

Faculty of Informatics, Masaryk University. Brno,

Czech Republic. 2009.

McClatchey, R et al, 2013 Providing Traceability for

Neuroimaging Analyses. International Journal of

Medical Informatics, 82 pp 882-894

OMG Meta-Object facility, MOF, 2004.

http://www.omg.org/mof/ Last accessed October 2013.

Roddick, J.F., 2009 Schema Versioning, Encyclopedia of

Database Systems 2009: 2499-2502

de Vries, D. and Roddick J.F., 2007. The case for

mesodata: An empirical investigation of an evolving

database system. Information & Software Technology,

49(9-10): 1061-1072.

Weske, M. 2007, Business Process Management.

Concepts, Languages, Architectures. Springer

Publishers, 2007.

Wirfs-Brock R et al. 1990 Designing Object Oriented

Software. Prentice Hall.

Yoder, J. and Johnson, R 2002. The Adaptive Object

Model Architectural Style. Proceedings of the

Working IEEE/IFIP Conference on Software

Architecture 2002 (WICSA3 '02)

http://www.agilium.com/

