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Abstract: When a drop impacts on a solid surface, a thin air film is entrapped first and later evolves into a spherical 

air bubble at the center inside the drop. The problem involves several complex physical processes, including two-

phase fluid flow interactions, moving and deforming interfaces in space and time. In this paper, we dissect the 

whole air entrapment and evolution process from drop release at a certain height above the substrate to finally a 

spherical air bubble formation by direct numerical simulation. A detailed quantitative analysis of the various 

dynamic phenomena occurring at different stages is performed. The complex physical phenomena revealed by 

current high-fidelity numerical simulations are validated qualitatively against theoretical estimations and previous 

experimental observations, followed by quantitative comparisons with the theories and available experiments for 

the dimple, kink and air film. Finally, a new cognition of vortex ring evolution is proposed to explore further 

insights into the underlying physical mechanisms associated with the evolution of the entrapped air film in liquid-

solid impact. 
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1. INTRODUCTION 

The impacts of liquid droplets onto solid surfaces are omnipresent in both the natural world and various 

industrial applications, for example, raindrops falling onto a windscreen, spray coatings, inkjet printing, rainfall 

and icing on aircraft surfaces (Josserand and Thoroddsen, 2016; Wu, 2018; Yarin, 2006). In some of such 

applications, one of the main focuses is how to suppress air bubbles inside the droplets, as the appearance of air 

bubble can cause large detrimental effects, e.g., decreasing the uniformity of spray coatings and the precision of 

splash control in inkjet-based manufacturing. Although the phenomenon of air entrapment during drop impact on 

a solid surface has already been observed in experiments several decades ago (Chandra and Avedisian, 1991; 

Esmailizadeh and Mesler, 1986; Pumphrey and Elmore, 1990; Sigler and Mesler, 1990), the important role that 

the entrapped air would play has still not fully been understood ever since the very early investigation on drop 

impact dynamics over a century ago (Worthington, 1877). 

Morphological evolution of the entrapped air is one of the most important considerations in the field. 

Thoroddsen et al. (2005) first described the overall evolution of the air disc with pinch-off of a droplet inside the 

bubble. Subsequently, Lee et al. (2012) verified the evolution by X-ray experiments. In summary, a full evolution 

process of air entrapment in drop impact on a solid surface can be divided into four phases, i.e., touchdown of the 

liquid drop, retraction and contraction of the entrapped air, pinch-off of the daughter droplet, and finally formation 
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of a spherical air bubble, as schematically depicted in FIGURE 1(a). The geometric characteristic parameters that 

will be employed later in this paper are illustrated in FIGURE 1(b).  

Initially, the drop falls freely from a certain height above the solid surface. Immediately before the drop 

contacts the substrate, the shape of the bottom of the drop deforms due to the combined effects of the inertial 

pressure force of the drop and the lubrication pressure force of the underlying air being pushed out radially, 

forming a dimple on the liquid-gas interface and a kink at the outer edge. This kink expands radially and touches 

down, entrapping a thin air film in the gap between the drop and the substrate (Bouwhuis et al., 2012; Korobkin 

et al., 2008; Li and Thoroddsen, 2015; Mandre et al., 2009; Mani et al., 2010). This phase is called “touchdown” 

in this paper.  

Subsequently, the entrapped air film is pulled by the surface tension and retracts rapidly towards the center 

of the air film, termed as “retraction”. The retraction speed is governed by the balance between the surface tension 

and inertia, thus is often named as “inertial retraction” (Lee et al., 2012; Thoroddsen et al., 2005). 

Following retraction, the air volume contracts in order to minimize the surface energy whilst the capillary 

waves are propagating towards the center, which is called “contraction”. The contraction process is dominated by 

the capillary waves generated during the retraction phase (Lee et al., 2012). The capillary waves move much faster 

than the retracting air film with their amplitudes growing. On the other hand, the top of the air film reverses by 

the compressed air after the crest arrives at the center. When the crest touches the solid, a three-dimensional 

toroidal air bubble is formed (Thoroddsen et al., 2005). This toroid further contracts until its top is coalesced like 

a hat, pinching off a small daughter droplet inside the bubble at the center. Subsequently, the daughter droplet is 

gradually squeezed out by the pressure in the bubble, resulting in a bubble attached to or detached from the solid, 

depending on the contact angle (Lee et al., 2012).  

 

FIGURE 1. (a) Schematic views of the whole evolution process of the air entrapment during a liquid drop impact on a dry, 

solid surface: touchdown of the drop to form an air film, inertial retraction of the air film, viscous contraction of the rim to 

form a toroid, pinch-off of a daughter droplet to form a bubble attached to (not shown here) or detached from the solid surface. 

(b) Definition of the characteristic parameters of the air bubble profile after drop-surface contact. r and h are the general radial 

and axial coordinates, respectively, with the origin located at the center of the air film. The subscripts “k” and “0” denote the 
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variables related to the kink and the initial air film, respectively. L, λ and δ are the radius of the air film, the length and height 

of the rim, respectively. Db is the diameter of the final spherical air bubble. The red curves stand for the interface between the 

air and the liquid drop, as well as the black lines for the solid surface and the black arrows for the drop falling and capillary 

wave propagation directions, respectively. 

 

In retrospect, there are far less existing researches in the public domain on the air movement than for the 

liquid drop (Gargi et al., 2019; Oishi et al., 2019; Schroll et al., 2010; Xu et al., 2005). Due to the very small 

length scale of the entrapped air film (e.g., its height is typically of an order of O(1)
 
μm and the radius of an order 

of O(100) μm, respectively), the majority of those published results related to air entrapment came either from 

drop impact experiments or theoretical analyses. Mehdi-Nejad et al. (2003) preliminarily characterized the air 

entrapment by solving the Navier-Stokes equations with a volume-of-fluid (VOF) method. Unfortunately, due to 

the limited computational resources at that time, the simulated morphology was not quite consistent with 

experimental observations. 

Li et al. (2017) experimentally investigated the effects of reduced pressure on the air entrapment during a 

drop impact on a solid surface and observed a first entrapment of a central air film followed by a second outer 

entrapment of a circular band of air within the rarefied gas regime. Recently, Jian et al. (2020a) studied the air 

film contraction for drop impact on a liquid surface and observed three modes of the air contraction based on the 

local Ohnesorge number of the air film, i.e., a single bubble, a toroidal bubble in a similar way to that occurring 

in liquid-solid impacts and vertical splitting.  

 

FIGURE 2. Evolution of an air film during the impact of a liquid (water) drop with a radius of 2 mm upon a dry, smooth, solid 

surface at an impact speed of V0 = 2.97 m/s. Note that the instant when the drop first contacts the substrate is defined as the 

impact moment with the time set to be t = 0 µs in the whole paper. The dark grey, light grey and black colors represent the 

drop, air and substrate, respectively. The length of the scale bar shown in the first subgraph is 50 μm. 

 

One of the biggest challenges faced by the implementation of computational fluid dynamics simulation of 

air entrapment lies in the large difference of the scales between the drop and the thin air film (Thoroddsen et al., 

2005), which makes the motivations of the present study. In this paper, the whole evolution process of the air 

entrapment during a water drop impact on a dry smooth solid surface is investigated by direct numerical simulation. 
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The full compressible Navier-Stokes equations are considered for solving each fluid motion, together with a VOF 

method to capture the interface between the two phases using the “compressibleInterFoam” solver in the open 

source package OpenFOAM
®

. As the air entrapment occurs at the very beginning of the impact, i.e. in the early 

kinematic phase (Rioboo et al., 2002), the dynamics is assumed to be of the axisymmetric pattern, which has been 

validated rational in other similar studies in the field (Hicks et al., 2012; Jian et al., 2018; Mehdi-Nejad et al., 

2003). The primary goal of this study is to conduct a much more detailed characterization of the whole entrapment 

and evolution process of the air film over a wide range of impact speeds. As an example, the whole air evolution 

at an impact speed of 2.97 m/s is shown in FIGURE 2. The characteristics of all the four phases are well captured 

and generally agree with the descriptions in FIGURE 1(a). The drop is released from a certain height above the 

substrate and later contacted with the substrate at t = 0 μs, entrapping a thin air film. Subsequently, the air film 

retracts inwards until the capillary wave arrives at the center at t = 42 μs and continues to contract until the top of 

the toroidal bubble coalesces at t = 62 μs. Following this, the toroidal bubble is gradually pinched off and 

eventually turns into a spherical bubble at t = 96 μs. All the four characteristic phases observed experimentally by 

Lee et al. (2012) have successfully been modeled in the present study. More quantitative results and details will 

be presented and analyzed in the later sections. 

 

2. NUMERICAL IMPLEMENTATION 

2.1. Physical model 

We consider a spherical water drop with a radius 2R
  

mm, density 1000l   k//m3 and dynamic 

viscosity 0.001l  Pa·s falling from a certain height above a solid surface and impacting normally to it at a 

velocity 0V , as shown in FIGURE 3(a). The drop dynamics can be described in the cylindrical coordinates r  

and z , where the z -axis is defined by the axis of symmetry of the problem, with the substrate located at 0z  , 

and r   is the radial coordinate. The surrounding gas is air with density 1.2g 
  

k//m3, dynamic viscosity 

51.776 10g
   Pa·s and ambient pressure 0 1p    atm. The impact conditions are kept identical to the 

experimental conditions of Liu et al. (2013). The gravity effects have been carefully evaluated by running 

precursor cases with gravity excluded and it was found that there is no significant change in the morphology of 

the air bubble during the whole evolution process except for a very small time difference (e.g. less than 1 μs for 

the 0 2.97V 
 

m/s case) at the end of the contraction phase, compared to the corresponding gravity-included 

case. Therefore, the gravity effects are not included in this study. 

Two dimensionless parameters are usually used to characterize drop impact dynamics: Reynolds number 

Re  and Weber number We , which are respectively expressed as, 

0l

l

V R
Re=




                                           (1) 

2
0lV R

We=



                                          (2) 

The lubrication of gas layer is controlled by the Stokes number St  defined as, 
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0

g

l

St =
V R




                                            (3) 

In this study, all material properties have been kept as constant, except for the varying drop impact velocity 

0 1.49 4.5V     m/s, corresponding to the Reynolds number 2980 9000Re=    and the Weber number 

88.8 810We=  , respectively. 

 

FIGURE 3. (a) Illustration of the impact model and the block-structured mesh topology adopted in this study. A two-

dimensional axisymmetric simulation strategy is adopted. An inner block highlighted by a rectangle enclosed with the blue 

dashed lines sufficiently encases the region where the drop is present and filled with the finest grids in the air entrapment zone. 

The rest of the domain is filled with non-uniform grids. The red curve represents the drop-air interface. (b) A thin air film upon 

contact is well captured with the current meshing strategy. A magnified view of the grid in the central air entrapment region is 

shown in the inserted sub-figure. 

 

2.2. Mathematical model 

Interface or free surface tracking of two or more fluids has been a challenging task in multiphase flow 

modelling and simulation. Various methods have been developed so far, such as the Particles on Interface method 

(Daly, 1969), Height Function method (Nichols and Hirt, 1973), Level Set (LS) method (Osher and Sethian, 1988), 

Particles on Fluid method (Harlow and Welch, 1965) and Volume of Fluid (VOF) method (Hirt and Nichols, 1981). 

Compared with other methods, the VOF method is more computationally efficient because only the value of the 

volume fraction needs to be stored rather than the marker coordinates. So far, the VOF method has been widely 

used for drop impact simulations, such as air entrapment (Yeganehdoust et al., 2020), liquid sheet (Schroll et al., 

2010), droplet splashing (Jian et al., 2018), thus it is employed here to track the interface between the air and 

water phases based on an Eulerian mesh. The compressible governing equations for each phase are written as 

follows (Nguyen et al., 2020): 

     0
t





 


u                                              (4) 

         
 

  p
t







   


T

u
uu F                                  (5) 

where   ,   , u , t  , and p   denote the density, dynamic viscosity, velocity vector, time, and pressure, 

respectively.  = 2 -2 / 3  T S Iu   is the deviatoric viscous stress tensor where  = 0.5
T   

 
S u u   is 

the mean rate of strain tensor. = ijI is Kronecker delta function. F  is the surface tension force. 
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The interface represented by an indicator function, i.e. volume fraction   0 1   , can be captured by 

solving the scalar transport equation for   as: 

  0
t





 


u                                        (6) 

A cell with 1   means that it is fully occupied by water and that with 0   means it is fully occupied by 

air. Cells with volume fractions between unity and zero are considered to specify the interface between the two 

phases. Based on the cell volume fraction values, an interface is reconstructed by the Simple Line Interface 

Calculation (SLIC) technique (Noh and Woodward, 1976), which approximates the interface in each cell as a line 

parallel to one of the coordinate axes according to the value of the volume fraction. Taking a two-dimensional 

case as example, it results in two different situations: x-sweep and y-sweep, as shown in FIGURE 4 (b) and 4(c). 

To implement the SLIC method in multi-dimensions, it is necessary to use multiple one-dimensional sweeps to 

update the volume fraction at each time step. Concretely, the sequence of the sweeps normally alternates, e.g., if 

the x-sweep is done followed by the y-sweep at the present time step, then for the next step the sweep operation 

is done in the reverse order. It is worth noting that a new family of interpolation schemes based on the modern 

piecewise-linear interface calculation (PLIC) scheme (Youngs, 1984) is introduced in the latest version of 

OpenFOAM. This method represents the interface by surface-cuts splitting each cell to match the volume fraction 

of the phase in that cell, as shown in FIGURE 4(d). A comparison between the results obtained by both interface 

calculation schemes will be presented in the following subsection. For post-processing, the interface is described 

by the surface at 0.5  . 

 

FIGURE 4. Illustration of the SLIC and PLIC interface reconstruction methods. The dark and white regions represent the 

liquid and gas phases, respectively. The number in each cell represents the value of volume fraction of liquid in each cell. 

 

The VOF method assumes that the contributions of the liquid and gas variables to the evolution of the 

interface are proportional to the corresponding volume fraction of the respective fluid phase. The density   and 

viscosity   across the interface are respectively replaced by 

(1 )l g                                              (7) 

(1 )l g                                              (8) 

For interface-capturing methods, the interface is not tracked explicitly and thus its exact shape and location 

are unknown before simulation. There are two types of surface tension discretization methods that can be 

combined with VOF methods, i.e., the continuum surface force (CSF) method and the ghost fluid method (GFM) 

(Popinet, 2018). In the CSF model, the exact value of the phase volume fraction   is used and thus is closely 

related to the interface thickness, whereas the Heaviside function used in GFM takes the value of 1 only when 

0.5   and equals zero for other cases (Popinet, 2018). In this study the CSF method is employed to model the 
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surface tension force, which can be written as (Brackbill et al., 1992): 

 0.5 l g




   
 

   


F                            (9) 

where   is the surface curvature formulated by local gradients along the normal direction (Hemida, 2008): 

ˆ





 
      

n
n =

n
                               (10) 

The challenging aspect of the volume fraction transport equation (6) is to capture a sharp interface while 

maintaining both the boundedness and mass conservation in each single phase, as any small errors in the volume 

fraction across the interface can lead to considerable errors in the calculation of the physical properties. In the 

present study, the multi-dimensional universal limiter for explicit solution (MULES) scheme (Weller, 2008) is 

adopted, where an additional counter-gradient convective term originating from modeling the velocity in terms of 

weighted average of the corresponding liquid and gas velocities is introduced into the phase volume fraction 

transport equation to compress the interface thickness. Within the MULES scheme, the phase volume fraction 

transport equation (6) can be rewritten as 

 ( ) (1 ) 0t c       u u                                 (11) 

where cu  is called compression velocity (Berberović et al., 2009), which is calculated as 

c C








u u                                    (12) 

where C  is a user-defined variable determining the effect of the compression term and is set to 1 in this study 

to make the artificial compression term fully work. 







 denotes the unit vector normal to the interface. 

For the spatial discretization, the convection and diffusion terms in the momentum equation are respectively 

solved by using the linear upwind and linear corrected schemes (Greenshields, 2016), and the source terms are 

discretized with the same linearization as that in the work of Patankar (2018). The second and the third terms on 

the left-hand side of the phase volume fraction transport equation (11) are respectively discretized by the Gauss 

van Leer and the second-order linear differencing schemes. In addition, the PIMPLE algorithm (Greenshields, 

2016), which is a combination of the pressure-implicit split operator (PISO) and the semi-implicit method for 

pressure-linked equations (SIMPLE) algorithms, is used to solve the pressure-velocity equation (Márquez Damián, 

2010). 

For the temporal discretization, the first-order Euler implicit scheme is employed. The adaptable time step 

technique is used to ensure the stability of the solution procedure based on the Courant number Co . 

max t
Co

x






u
                                        (13) 

where maxu  is the maximum velocity in the whole computational domain, x  is the minimum mesh size.  

Using the values for 
0
maxu  and 

0t  from a previous time step, the maximum local Courant number 
0Co  

is calculated and thus a new time step can be evaluated by the following expression as: 

0 0 0max max
1 2 max0 0

min , 1 , ,n Co Co
t t t t t

Co Co
 

  
        

  
                      (14) 



8 

where maxCo  and maxt  are the maximum limit values for the Courant number and the time step, respectively. 

1 0.1   and 2 1.2   are damping factors deployed to prevent oscillations during the time advancement. In 

this study, the setting of maxt  can be arbitrary, as the time step can solely be adapted based on the setting of 

max 0.2Co    as suggested by Berberović et al. (2009). At each time step, the PIMPLE algorithm solves the 

pressure equation and momentum corrector for 8 times (i.e., sub-cycles) with maximally 1000 iterations per sub-

cycle to reach an order of 10-7 for the step residuals before advancing to the next time step.  

 

2.3. Mesh study and boundary conditions 

As mentioned above, grid resolution is one of the most important elements in determining the interface 

capturing quality by the VOF method. Accurate calculation of the phase volume fraction distribution is crucial for 

precise evaluation of the surface curvature of the interface in the air entrapment zone. To this end, a multi-block 

structured mesh topology is specially designed, as illustrated in FIGURE 3(a). An inner block (shown by the green 

dashed rectangle) is specified to encompass the air entrapment zone, where the smallest grid size is allocated 

uniformly to ensure the finest grid resolution for capturing the micrometric air film. In order to avoid the possible 

unfavorable effect of parasitic currents generated across the interface, a suboptimal block (the blue dashed 

rectangle) is extended from the upper-right ends of the air film block to surround the whole drop, with the grid 

sizes gradually growing outwards by up to a maximum factor of 2. Away from the drop block, an outmost block 

with the coarsest grid size is extended to comprise the whole computational domain of 4R×6R. This meshing 

strategy enables an economic computational demand while being able to capture the entrapped air film with a 

high grid resolution, as shown by the red curve in FIGURE 3(b).  

As shown in FIGURE 3(a), the no-slip wall condition ( 0u= ) is applied to the solid substrate and a fixed-

value pressure is specified with the “pressureInletOutletVelocity” boundary condition for flow velocity across the 

“Atmosphere” boundaries. The contact line dynamics is one of the deterministic factors in drop-liquid impact 

research. For a closely relevant phenomenon of a solid sphere impacting a liquid pool surface, Duez et al. (2007) 

found that the air entrapment and the resulted splash can only be generated at a velocity above a threshold value 

depending on both the static contact angle and the capillary velocity (i.e. the ratio between surface tension and 

fluid viscosity). Li et al. (2015) observed fine azimuthal undulations at the first contact on the mica due to the 

contact line dynamics, without which the contraction of the air film into a spherical bubble would not occur to 

reduce the surface energy (Josserand and Thoroddsen, 2016). For smooth surfaces, the relationship between the 

velocity at the edge of the liquid-gas interface and the dynamic contact angle has been studied experimentally 

(Ralston et al., 2008). In the stationary status where a liquid front moves with constant (non-zero) velocity with 

respect to a solid surface, a single curve can be obtained between the contact angle and the capillary number Ca  

( 0 /lCa= V  ) for different liquids. For smaller capillary numbers, the contact line moves under the Tanner’s 

law or its variants. For larger capillary numbers, the contact line finally turns unstable (Boelens et al., 2018; 

Boelens and de Pablo, 2018, 2019; Latka et al., 2018). The dynamic contact line model implemented in 

OpenFOAM is defined as (Andersson et al., 2010): 

 0 tanh wall
a r

u

u
   

 
     

 
                              (15) 
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where  , 0 , a  and r  are the dynamic, static, advancing and receding contact angles, respectively. u  

is the dynamic contact angle with a specified velocity scale. wallu  is the contact line moving velocity in parallel 

to the wall, which becomes a part of the solution when specifying the contact angle condition related to   at 

the contact line that is implicitly allowed to ‘slip’ in the local cell. 

The mesh independence was examined by calculating the interface using the SLIC scheme with the inner 

block mesh refined by the law Level i = 0.4/2i-1 µm, which implies that the Level-1 mesh has the coarsest grid 

size of 0.4 µm while the Level-5 mesh has the finest size of 0.025 µm for the air entrapment zone. FIGURE 5 

shows the time evolution of the minimum air layer thickness minh , which is one of the most sensitive quantities 

with the mesh size change, calculated with simulation results from the four-leveled meshes. Although small 

deviations can be observed between the different levels, a rapid convergence of the results is found for the Level-

3 mesh, as the difference of the results between the Level-3 and the meshes with higher resolutions are not 

significant. Therefore, the Level-3 mesh (with a cell size of 0.1 µm) is adopted for all the remaining simulations. 

To validate the accuracy of the SLIC scheme for the current study, a special calculation of the air film with the 

PLIC scheme on the finest mesh was also performed. From Figure 5(b) it is also seen that the results obtained by 

both interface calculation methods do not exhibit significant difference between each other, validating that the 

undulations at the rim of the air film comes from the capillary waves rather than the SLIC interface reconstruction 

scheme.  

     

FIGURE 5. Mesh independence examination for the present study: (a) Time evolution of the minimum air layer thickness hmin, 

for different mesh resolutions (Level i = 0.4/2i-1 µm) at V0 = 2.97 m/s. The inserted sub-figure shows an enlarged view of the 

profiles during the air drainage period. (b) The profile of the air film upon contact simulated by the five levels of meshes. Both 

figures indicate that mesh-independent simulation results can be achieved from the Level-3 mesh on.  

 

3. RESULTS AND DISCUSSION 

3.1. Dimple before contact ( 0t  ) 

FIGURE 6 shows the vertical coordinate ( , )h r t
 

and radial coordinate ( )r t  of the bottom of the liquid drop 

during free falling. While the drop is far away from the substrate, the pressure of air underneath the drop gp  

due to viscous drainage scales as 2
0 /g gp V R h  (Mandre et al., 2009), which is smaller than the ambient 

pressure 0p . As the drop continues to fall down, gp  rises. At several microseconds prior to the drop-solid 

contact when the pressure of the underlying air becomes comparable to the ambient pressure, i.e. 0gp p , the 
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drop deforms to form a dimple on the drop-air interface, which is bounded by a kink at the outer edge. The time 

for the dimple formation is around t = -4.3 μs, -2.5 μs and -0.91 μs for the three impact velocities in FIGURE 6(a)-

(c), respectively. The point of minimum separation between the droplet and substrate is decelerated by the air 

layer (Kolinski et al., 2012). For the 0 4.5V  m/s, the drop velocity rapidly decelerates from 3.15 m/s at -1.35 µs 

to almost rest upon contact, implying a deceleration rate of -2.33×106 m/s2, which is close to the experimental 

measurement under a similar impact condition (Li and Thoroddsen, 2015). 

Note that the surface tension is initially unimportant compared to the much larger inertia of the drop, thus 

the pressure gradient of the compressed air accounts for the deceleration of the drop. However, the interfacial 

curvature diverges more quickly than the air pressure, leading to an enhancement of surface tension effect in the 

proximity to the substrate. In most of previous experimental studies, the interface was imagined to be a smooth 

gaseous surface, which is valid when surface tension is weak. With sufficient temporal resolution available in the 

present simulations, it is seen that the dimple surface is actually undulant due to the enhancement effect of surface 

tension near contact, as shown in FIGURE 6(d), which is similar to that observed by experiments (de Ruiter et al., 

2015) as well as the solutions based on the lubrication theory (Duchemin and Josserand, 2011; Hicks and Purvis, 

2010, 2013).. As can be discerned from a careful inspection of the motion, the center of the dimple rises rapidly 

near the contact instant, as shown in FIGURE 6(e). This rapid expansion remains for a while even after contact, 

as observed experimentally by Li and Thoroddsen (2015). The phenomenon of central air layer expansion is 

resulted from the high lubrication pressure in the region beneath the drop, producing a cushioning effect on the 

drop above. The evolution of the central air film thickness ( 0)h r   as a function of time t till contact is plotted 

in FIGURE 6(f). Increasing 0V  renders a smaller air film thickness upon touchdown ( 0t  ), as larger impact 

velocity means smaller Stokes number St   and the higher inertial pressure force of the drop balancing the 

cushioning effect of the compressed air. 

 

FIGURE 6. The deformation of the bottom of the water drop at impact velocities of (a) V0 = 1.49 m/s, (b) V0 = 2.97 m/s, (c) V0 

= 4.5 m/s, respectively. Dashed lines: unchanged shape during drop falling, dotted lines: air layer with a dimple, solid lines: 

air layer upon contact (t = 0 µs). The available experimental data are also shown by solid black circles. The solid surface is 

located at the zero axial coordinate. The labels on the curves show the time instants in the unit of µs while the unlabeled curves 
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are uniformly spaced. (d) Undulations present on the air film upon contact at V0 = 2.97 m/s, (e) Rapid rise of the center of the 

air film before contact at V0 = 2.97 m/s, (f) Time history of the air film thickness at the center of the film h(r = 0) at different 

impact speeds.  

 

The time histories of pressure on the air-water interface are plotted in FIGURE 7. At the initial stage of the 

impact, the pressure generally decreases towards the rim of the dimple, as there is no significant change in the 

curvature of the interface (green-colour curves in FIGURE 7(a)), and the pressure almost equals to the ambient 

air pressure, as shown in FIGURE 7(b). Subsequently, the pressure at the center gradually increases to be just 

above the ambient pressure of 1 atm to balance the inertia of the drop. When the interface curvature changes to 

generate a dimple at the interface, the pressure begins to rise from the center and reaches the peak at the kink (red-

colour curves in FIGURE 7(a)). This trend continues till the contact between the drop and substrate. Upon contact, 

the pressure reaches the highest at the contacting point and progressively recovers in the later retraction phase. 

These noticeable features are found in consistency with the three-dimensional results obtained by the boundary-

integral method (Hicks and Purvis, 2010). Also it can be seen from FIGURE 7(b) that the maximum pressure on 

the interface increases rapidly from about 4 μs before contact, reaches the maximum upon contact, and recovers 

at about 4 μs after contact. The maximum pressure is almost linearly proportional to the impact velocity, as shown 

later in FIGURE 10(b). 

     

FIGURE 7. (a) Evolution of the pressure on the water-air interface for drop impact at V0 = 1.49 m/s. The colorful arrows point 

out the temporal sequence movements. Green lines: pressure profiles with no dimple present on the interface, red lines: with 

dimples, black lines: upon the contact, blue lines: after the contact. The unlabeled curves are uniformly spaced in time. (b) 

Time histories of the maximum pressure on the air film layer for all the impact velocities of interest in this study. 

 

3.2. Kink before contact ( 0t  ) 

FIGURE 8(a) and 8(b) depict the axial and radial trajectories of the kink as a function of time, respectively. 

Both of the trajectories show approximately linear correlations with time, indicating that the axial velocity kV  

and radial velocity kU  of the kink are nearly constant during a short time period prior to contact. Through linear 

curve fitting, the two normalized velocities as a function of impact velocity are obtained, as shown in FIGURE 

8(c) and 8(d), respectively. It is indicated that the axial velocity kV  is of one order lower while the radial velocity 

kU  is of one order higher than the impact velocity in magnitude. Comparing with the maximum radial velocity 

132.5kU  m/s, the maximum axial velocity is only 1.5kV  m/s at 0 4.5V  m/s. Jian et al. (2018) proposed an 

assumption that 1t kh  , namely, kV   has a linear correlation with 0V  . Here, the assumption above is 
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manifested with the factors of 0.36 and 35.1 for the axial and radial velocities, respectively. 

By assuming that the drop contacts with the solid surface in a finite time along with the advection of the air 

radially inside the drop and neglecting the inertia of the air, the full Navier-Stokes equations can be simplified to 

the lubrication equation (Mandre et al., 2009). A self-similar solution of the simplified equation yields the 

following scaling for kV  and kU  (Li and Thoroddsen, 2015): 

0 1/3
0 0V /  ,    /k kV St U V St                                  (16) 

The data in the inserted sub-figures in FIGURE 8(c) and 8(d) shows good correspondence with the above 

scaling with two pre-factors of 0.31 and 0.39, respectively. Mandre and Brenner (2012) and Li and Thoroddsen 

(2015) showed the same power law for kU  with two pre-factors of 0.34 and 0.42, respectively. 

     

     

FIGURE 8. Kinematics of the kink during the touchdown phase. (a) time history of the height hk and (b) the radius rk. (c) the 

axial velocity Vk and (d) the radial velocity scale Uk
 
as a function of the impact velocity. The best linear fitted results are shown 

by the solid green line. The CFD results are also compared with the scaling law of equation (16) in the subfigures. 

 

3.3. Air film upon contact ( 0t  ) 

Prior to contact, the kink expands radially outwards and approaches towards the substrate simultaneously 

under the balance between the lubrication pressure in the air trying to escape the oncoming drop and the inertial 

pressure of the drop trying to entrap the air inside (Korobkin et al., 2008; Mandre et al., 2009; Mani et al., 2010). 

This process is repeated even at smaller distances until the contact is made and a thin air film is entrapped. The 

pressure in the entrapped gas gp  and the inertial pressure in the liquid lp
 

can be derived and are respectively 

written as follows (Mandre et al., 2009): 
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Balancing the two pressures above and using the simple geometric arguments for the radius of the air film 

r Rh , the scaling laws of the height 0h  and radius 0r  of the initial air film can respectively be obtained in 

relation to the St number as 

2/3
0 /h R St  and 

1/3
0 /r R St                             (18) 

FIGURE 9 shows the results of the thickness and radius of the initial air film obtained by the above scaling 

laws. It is worth noting that both (Liu et al., 2013) and the present study assume that the drop remains spherical 

upon contact with the solid. Li and Thoroddsen (2015) took the factor of droplet deformation due to its oscillation 

during free falling into consideration and measured the radius of curvature at the bottom of the drop bR  at the 

onset of cushioning. In order to evaluate the influence of drop oscillation on the agreement between available test 

results and the scaling law, we also calculate three cases of 3.2, 4.1  8.2bR  ，  mm and
 0 4.05, 1.06, 2.43V   

m/s respectively, with the equivalent spherical drop radius of 2.6 mm for all the three cases (Li and Thoroddsen, 

2015). The results are shown in FIGURE 9 as well. Due to the difficulty of acquiring the accurate shape of the 

oscillating drop from Li and Thoroddsen’s experiment, here we adopted a quasi-reference method by setting 

bR R  for a spherical drop upon contact in the simulation based on the self-similarity property of the scaling 

law. It is seen that the current CFD results can well be scaled by the scaling law of equation (18), with the pre-

factors of 4.57 and 6.28, respectively. A much better agreement with the scaling law is obtained by scaling with 

the radius of curvature at the bottom of the drop under moderate oscillation conditions associated with a much 

higher video frame rate used in the experiment of Li and Thoroddsen (2015). However, it is also seen that as bR
 

increases to the highest value of 8.2bR  mm (i.e. 
79.2 10tS   ), 0h  significantly deviates from the scaling 

law (i.e. the blue point at the left bottom of FIGURE 9(a)). In this case, the oscillation of the drop is quite intense 

with the dynamic effect rapidly transferred to the thickness of the air bubble due to the short distance to the solid 

surface while gradually dissipated within the long distance of the spreading kink. 

     

FIGURE 9. The dimensionless (a) central height and (b) radius of the initial air film plotted with the Stokes number in 

logarithmic scales. The results fitted by equation (18) with the CFD data and the experimental data from (Liu et al., 2013) and 

(Li and Thoroddsen, 2015) are associated. 

 

FIGURE 10(a) shows the instantaneous pressure field around the air film upon the liquid-solid contact for 
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0 2.97V  m/s. As the drop attempts to contact with the solid surface, there is a rapid increase in the air pressure 

towards the rim of the air film (Mandre et al., 2009; Mani et al., 2010). The dynamics of this pressure rise are 

important to understanding the underlying physical mechanism behind the droplet splashing (Aboud et al., 2020; 

Mandre and Brenner, 2012; Riboux and Gordillo, 2014), despite that splashing is not the primary topic of this 

study. FIGURE 10(a) clearly indicates that the pressure on the initial air film has an analogously parabolic increase 

from the center towards the rim, rather than a uniform distribution. The average pressure in the air film gp  is 

overall much higher than the ambient pressure 0 1p 
 

atm in such a small compressed region. By setting 

0 0r Rh  in equation (17), gp  can be obtained and written as 

2
0 1 0 0 0/g lp p C V r h                                  (19) 

For water, the pre-factor 1 0.33C   can be obtained through data fitting. 

According to (Mandre et al., 2009), the maximum pressure maxp  can be expressed using the parameters 

defined in the present study as 

1/23
0 0

max 2 0
0

= +kV RU
p C C

RSt h

  
  
 

                            (20) 

where 0C  and 2C  are the two fitting coefficients. 

     

FIGURE 10. (a) Pressure contour near the initial air film for the drop impact at V0 = 2.97 m/s. The red curve shows the profile 

of the initial air film as well as the black curve the radial pressure distribution on the air film. (b) The pressure distribution on 

the initial air film for all the impact cases of interest. The solid black circles represent the average value of the CFD predictions 

with the error bars denoting the minimum pressure pmin at the center and the maximum pressure maxp  at the rim of the air 

film, The green triangles, red squares and line denote the experimental measurements (Liu et al., 2013), theoretical estimations 

by equation (19) and the scaling law in equation (20), respectively. 

 

FIGURE 10(b) plots the pressure in the initial air film obtained by the current CFD simulation, the 

experiment (Liu et al., 2013), the theoretical analysis in equation (19) and scaling equation (20) of maxp  at all 

the impact velocities. The mean values between the pressure at the center (i.e. lower limit) and the pressure at the 

rim (i.e. upper limit) obtained by CFD agree well with the experimental measurements and the theoretical 

estimates. The numerical predicted maximum pressure maxp  is also in good agreement with the scaling law in 

equation (20), with the coefficients 0=299.66C
 

and 2=0.00048C . Meanwhile, the CFD results generally show 
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the same trend as the experimental measurements and the theoretical estimations, i.e. at small impact velocity 0V , 

gp  approaches the ambient air pressure 0p  and rises rapidly along with the increase of 0V . Liu et al. (2013) 

attributed this to the large geometric factor 0 0/r h . Indeed, it is obtained that 0 0/ 71 86r h   from the present 

simulations and 0 0/ 60 82r h   from the experiment (Liu et al., 2013), both of which do not present such large 

difference as that occurs on gp . The rapid rise of pressure in the initial air film should be more attributed to the 

impact velocity since it has a square multiple effect on the growth of gp . 

 

3.4. Air film after contact ( 0t  ) 

The detailed evolution process of the air film requires further clarification. Here, the parameters 

characterizing the evolutionary shape, i.e., the size of the base ( )t , the height ( )t  of the rim and the radial 

extent of the film ( )L t  shown in FIGURE 1(b) are measured and plotted as a function of time in FIGURE 11(a) 

to 11(c), respectively. From the almost overlapping curves within approximately the first 25 μs, it can be seen that 

the size and height of the rim base do not show significant difference between the different impact velocities 

during the retraction phase. As the crest of the capillary wave touches the substrate, ( )t
 

experiences a rapid 

increase till the maximum point. The thickening trend of the rim is almost identical to that behaves in the 

experiment by Liu et al. (2013), and the magnitude of the maximum ( )t  is of the same order but a slightly 

larger than Liu et al.’s experimental results. This is mainly because the thick rim calculated in this study is not an 

ideally hemispheric shape which was assumed in Liu et al.’s experiment.  

Following this, the toroidal air bubble is formed, contracted and detached from the substrate (i.e. represented 

by the open symbols). Furthermore, it also can be seen that there is a noticeable increase in the axial acceleration 

during the contraction phase (see, e.g. FIGURE 11(b)). Thoroddsen et al. (2005) suggested a formulation to 

estimate an instantaneous radius of the air film after contact, which is expressed as 

0 exp( / ( ) )l bubbleL r C V t                              (21) 

where 0r  is the radius of the air film upon contact. bubbleV  is the volume of the final spherical air bubble and 

hereby in this paper it can be calculated from the bubble diameter which is plotted in FIGURE 11(d). C  is a 

proportionality constant.  

It is seen from FIGURE 11(c) that the simulated results of the radius are in good agreement with the 

theoretical results by equation (21) till the end of the retraction phase, except for a small deviation by 

approximately the same order of magnitude at the beginning (i.e., the solid symbols). From the contraction phase 

when the toroid is formed, the results begin to deviate from the theoretical values (i.e., the empty symbols), 

implying an increase in the radial acceleration of the bubble compared to that in the retraction phase. The above 

finding reveals a differential characteristic between the retraction and contraction phases which were not 

distinguished previously (Thoroddsen et al., 2005). 

As already described above, the daughter droplet is pinched off after contraction and a spherical air bubble 

is formed. According to a previous study (Thoroddsen et al., 2005), a relation 
2

0 0/ ( )bh V r  can be obtained, 

in which bV  is the total volume of the air bubble. Associating equation (18) with equation (21), a relationship 
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between the diameter of the final air bubble bD
 

and the impact velocity 0V
 

can be derived as 

4/9
0bD V

                                     (22) 

FIGURE 11(d) depicts the best fitted results by the scaling law of equation (22), for which both the trend and 

magnitude are generally in good agreement with that by present direct numerical simulations. On the other hand, 

within the range of impact conditions of interest in this paper, increasing the impact speed will result in smaller 

air bubbles eventually. In addition, it is also found that the pressure in the final air bubble is much lower than that 

in the initial air film. For example, the mean pressure in the initial air film is about 670.6 kPa for 0 4.5V  m/s 

(see FIGURE 10). However, it decreases to 133.7 kPa in the final spherical air bubble, suggesting that the air 

evolution is overall a decompression process.  

     

     

FIGURE 11. Evolution of the entrapped air in the retraction and contraction phases. (a) The length λ(t) and (b) height δ(t) of 

the rim, (c) the radial extent L(t) of the air film. The values from the time instant when the toroidal air bubble is formed are 

represented by open symbols. For L(t), the fitted results using equation (21) are also shown. (d) Values of the final air bubble 

diameter directly from current CFD simulation and by using the scaling law of equation (22). 

 

In order to more precisely discern between the retraction and contraction phases, the transition point and time 

span of each phase need to be determined quantitatively. Here, the retraction is defined to start immediately after 

contact and end right before a full capillary wave is formed at the center, followed by the contraction starting and 

ending as soon as the top of the toroidal bubble is coalesced. The time periods of the retraction phase rtT  and of 

the contraction phase ctT  are obtained and shown in FIGURE 12(a). Both periods decrease monotonously with 

the impact speed in linear relationship shown in FIGURE 12(a). Having determined the time periods for each 

phase, it would be straightforward to further calculate the average values of the retraction and contraction speeds. 
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The mean retraction speed is about twice of the mean contraction speed and neither has significant dependence 

on the impact speed, as shown in FIGURE 12(b). 

     

FIGURE 12. Kinematics of the air bubble in the retraction and contraction phases. (a) The retraction time period rtT  and the 

contraction time period ctT  . (b) The mean retraction velocity rtU   and contraction velocity ctU   for all impact speeds 

studied. The symbols denote the values directly obtained from the current CFD simulations while the solid lines represent the 

best linear fitting results. 

 

3.5. Vortex rin/ accompanyin/ shape evolution 

The phenomenon of vortex generation and formation of a vortex ring has been observed when a liquid drop 

impinges on a liquid pool (Behera et al., 2019; Jian et al., 2020a; Thoraval et al., 2012). Here, we will show that 

the air entrapment process can also be dictated by the vorticity generated at the free surface during the impact of 

the drop onto the substrate. The strength of vorticity for a stationary two-dimensional free surface is defined as: 

2

c

q

R
                                       (23) 

where   is the vorticity produced by flow circulation q  within a local radius of curvature cR . It can be seen 

from equation (23) that the variation of the air-water interface curvature accounts for the generation, change in 

the strength and dynamics of the vortex ring. FIGURE 13 shows the interaction between the vortex ring and the 

air-water interface in the evolution process. At the beginning of the retraction phase, a core vortex emerges at the 

high-curvature rim of the air film and gradually moves towards the center together with the air film. Meanwhile, 

another smaller vortex is also generated at the trough of the capillary wave generated during the retraction of the 

air film, which magnifies along with the core vortex. In the contraction phase, the core vortex is gradually pinched 

towards the right position relative to the air bubble due to the coalescence at the top of the toroidal bubble. Besides, 

the smaller vortex at the trough of the capillary wave undergoes a series of splitting and coalescence. As the air 

bubble moves upwards in the pinch-off phase, the core vortex is further pinched downwards relatively to the 

bottom of the drop. During pinch-off, a secondary local vortex emerges at the rugged curvature position of the 

interface, further smoothing the local surface of the air bubble. All above manifests that the generation and 

evolution of these vortex rings are closely related to the deformation of the water-air interface, implying some 

physical mechanisms between both that have not been realized previously. On the other hand, it can be seen from 

the whole process that the core vortex ring is at the periphery of the air film/bubble, while its core is always located 

in the liquid domain, indicating that the core vortex is originated from the liquid phase. Therefore, according to 
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the principle of force interaction, the core vortex ring shall in turn push the evolution of the air film/bubble. 

Meanwhile, the smaller vortex rings will assist the core vortex to smooth the local regions and promote the 

evolution of the entrapped air into a spherical bubble as well. Recently, Jian et al. (2020b) also discovered the 

phenomenon of vortex shedding during the contraction of a air sheet in a surrounding liquid via two-dimensional 

CFD simulations. From both of their and the present studies, it is reasonable to speculate that the vortex shall play 

an import role in the evolution of air entrapment, although further studies are needed to understand the effect of 

the vortex rings if they were absent. 

 

FIGURE 13. The shape of the entrapped air film/bubble (red lines) and the surrounding streamlines (black lines with arrows 

indicating the direction) showing the formation and propagation of the vortex ring within the various evolution phases of the 

entrapped air at impact velocity V0 = 2.97 m/s. The profiles from left to right in the upper row (i.e. the retraction phase): 20 μs, 

30 μs, and 42 μs; in the middle row (i.e. the contraction phase): 45 μs, 56 μs, and 62 μs; in the bottom row (i.e. the pinch-off 

phase): 68 μs, 74 μs, and 96 μs, respectively. The length of the scale bar on the bottom right is 25 μm. 

 

The values of the radial and axial displacements of the core vortex are presented in FIGURE 14. It can be 

obtained that the core vortex gradually moves inwards at an almost uniform radial speed of 2.63 m/s (i.e. the slope 

shown in FIGURE 14(a)) till the end of the retraction phase, which is close to the radial speed of the core vortex 

ring ( 2.64rtU  ) shown in FIGURE 12(b), indicating a synchronization of both evolutions of the entrapped air 

and the core vortex ring. Simultaneously, the core vortex slowly moves upwards at a small axial speed of 0.42 m/s 

(i.e. the slope shown in FIGURE 14(b)). The quite good regularity exhibiting on the kinetics of the core vortex 

ring further validates the accuracy of the numerical simulation approach in the present study. 
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FIGURE 14. Time history of (a) the radial displacement rcv and (b) the axial displacement hcv of the core vortex ring during 

the whole air evolution process for the impact speed V0 = 2.97 m/s. The solid green lines denote the best linear fitting results. 

 

4. CONCLUSION 

In this study, a direct numerical simulation of the whole evolution process of the air entrapment occurring in 

a water drop impact on a dry smooth solid surface is performed. It is found that as the drop is released from a 

certain height above the substrate, the air in the region beneath the drop is continuously compressed, resulting in 

the formation of a dimple bounded by a kink at the outer edge at a time-scale of microseconds prior to the liquid-

solid contact. The dimple and the kink descend to approach the substrate. As the kink contacts the solid surface, a 

thin air film is entrapped beneath the drop. The air film retracts towards the center under the balance between the 

surface tension and the inertial forces, contracts to a hatted toroid with a daughter droplet beneath to minimize the 

surface energy from the capillary waves developed during the retraction phase, and finally turns into a spherical 

air bubble at the center after a pinch-off process. Detailed quantitative characterizations of each phase described 

above have been presented and discussed in detail. Lastly, it is shown that the shape of the air film induces a core 

vortex ring together with some smaller vortex rings intermittently, which develops synchronously with the air 

film. The core vortex ring pushes the evolution of the overall shape and the smaller vortex rings smooth the local 

regions of the air film/bubble, promoting the evolution of the air entrapment. 

The results and findings in this research can further be extended to more scaling analyses in the future. 

Meanwhile, the present numerical method also allows identifying the influence of the air by varying its density 

and viscosity. Recent experimental measurements by Li et al. (Li et al., 2018) have revealed a string of teeth-like 

undulations which can cause uneven vortex-induced ejecta around the periphery in the azimuthal direction in 

liquid-liquid impacts at relatively large Re and We, breaking the assumption of axisymmetry that is commonly 

adopted by many researchers in the field. Although there are no such researches in the liquid-solid impact scenario, 

three-dimensional simulations are necessary in the future to confirm the azimuthal evolution of the air entrapment 

and the role of the accompanying vortex structures in the process. 
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