
1 

Interactive Ant Colony Optimization (iACO) for 

Early Lifecycle Software Design 

Christopher L. Simons, Jim Smith and Paul White 

Department of Computer Science and Creative Technologies 

University of the West of England 

Bristol  BS16 1QY  United Kingdom 

{chris.simons, james.smith, paul.white}@uwe.ac.uk 

 

Abstract 

Software design is crucial to successful software development, yet is a demanding multi-objective 

problem for software engineers. In an attempt to assist the software designer, interactive (i.e. 

human in-the-loop) meta-heuristic search techniques such as evolutionary computing have been 

applied and show promising results. Recent investigations have also shown that Ant Colony 

Optimization (ACO) can outperform evolutionary computing as a potential search engine for 

interactive software design. With a limited computational budget, ACO produces superior 

candidate design solutions in a smaller number of iterations. Building on these findings, we 

propose a novel interactive ACO (iACO) approach to assist the designer in early lifecycle software 

design, in which the search is steered jointly by subjective designer evaluation as well as machine 

fitness functions relating the structural integrity and surrogate elegance of software designs. 

Results show that iACO is speedy, responsive and highly effective in enabling interactive, 

dynamic multi-objective search in early lifecycle software design. Study participants rate the 

iACO search experience as compelling. Results of machine learning of fitness measure weightings 

indicate that software design elegance does indeed play a significant role in designer evaluation of 

candidate software design. We conclude that the evenness of the number of attributes and methods 

among classes (NAC) is a significant surrogate elegance measure, which in turn suggests that this 

evenness of distribution, when combined with structural integrity, is an implicit but crucial 

component of effective early lifecycle software design. 
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1 INTRODUCTION 

Software design is both fundamental to the successful development of software-

intensive systems and cognitively demanding for software engineers to perform. 

Indeed, in early-lifecycle software design, designers wrestle with numerous trade-

off judgments as they formulate candidate design solutions as a basis for 

subsequent down-stream development activities. In an attempt to assist the 
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software designer, interactive meta-heuristic search techniques such as 

evolutionary algorithms (EAs) with the software designer ‘in-the-loop’ have been 

recently studied and show promising results. After early empirical investigations 

incorporating designer preferences in search [1], [2], subsequent studies have 

combined quantitative machine-calculated fitness functions with qualitative 

designer evaluation of design elegance in a dynamic, multi-objective, interactive 

search [3]. These studies show that the precise balance of factors affecting the 

subjective judgments of the human software designer is highly significant but 

poorly understood – hence the oft-heard references to the “art” of software design.  

Interestingly, however, recent investigations comparing different meta-

heuristic search approaches have shown that ant colony optimization (ACO) can 

outperform evolutionary computation in quantitative search with respect to 

arriving at design solution candidates of superior fitness at earlier iterations / 

generations [4], [5]. This suggests that as an engine for interactive search, ACO 

has great potential. One major contribution of this paper is to exploit this potential 

by surveying a range of approaches to interactive multi-objective search, and then 

making an informed proposal for interactive ACO (iACO) for software design 

(Section 3). To evaluate the proposal, we describe the experimental methodology 

for an empirical study involving a number of software engineers in three case 

studies of early lifecycle software design (Section 4).  Results of empirical 

investigations are presented in Section 5, while threats to validity are discussed in 

Section 6. Finally in Section 7, we conclude by assessing the effectiveness of 

iACO in assisting the software designer in early lifecycle software design. 

2 BACKGROUND 

2.1  Search-Based Early-Cycle Software Design 

From its early roots using genetic algorithms to evolve software test sequences 

[6], [7], the idea that many aspects of software development are essentially 

optimization problems, and as such are amenable to automated search, has rapidly 

gained currency. In most cases the search suffers from combinatorial explosion, 

and the “fitness” landscapes are thought to exhibit discontinuities and multiple 

optima, motivating the use of meta-heuristics to perform the search.  The term 

“Search Based Software Engineering” (SBSE) was coined around the turn of the 
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millennium by Harman and Jones [8]. In the last decade applications of SBSE can 

be found across the spectrum of the software development lifecycle, including 

requirements analysis and scheduling [9], design tools and techniques [2], [10], 

software testing [11], automated bug fixing [12], and software maintenance [13].  

A comprehensive repository of publications in SBSE is maintained by Zhang [14]. 

In early-lifecycle software development, it is necessary to first define 

requirements for the software system-to-be relevant to the problem domain under 

investigation. Then the designer identifies and evaluates concepts and information 

relevant to the design problem domain. This is an intensely people-centric 

activity, and typically involves multi-objective trade-offs using competing criteria 

[15], [16], [17].        Clearly, such design trade-offs are largely subjective, 

depending greatly on the competence of the individuals performing the design. 

Using the object-oriented paradigm, the identified concepts and information are 

expressed as “objects” and “classes” and these constructs have crucial relevance 

to subsequent downstream software implementation and testing. The Unified 

Modelling Language (UML) [18] is widely used by software designers to 

visualize and specify classes as well as other aspects of software designs. Using 

the UML, classes are placeholders or groupings of attributes (i.e. data that need to 

be stored, computed and accessed), and methods (i.e. units of execution by which 

objects communicate with other objects, programs and users). Thus early lifecycle 

software design can be formulated as a search among possible design structures 

for those comprising an appropriate grouping of attributes and methods into 

classes.  

2.2  Interactive Meta-Heuristic Optimization 

Fundamentally, the aim of interactive meta-heuristic search in early lifecycle 

software design is to support rather than replace the designer.  Indeed, interactive 

EAs have been successfully applied in a wide range of applications to facilitate 

user-personalization. Typically the user is presented with a number of solutions, 

and rates them according to how well they meet their desiderata. This process 

implicitly captures the user's multi-objective decision making processes without 

the need for time consuming explicit knowledge-acquisition process [19]. Well 

known early applications include face-recognition [20], the evolution of computer 

graphics [21], and fitting Cochlear Implants [22].  
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Interactive multi-objective search techniques have also been widely used 

in the Multi-Criteria Decision Making (MCDM) community to gain insight into 

combinatorial optimization problems. Miettinen [23] provides a comprehensive 

survey of interactive search methods and distinguishes various methods of 

decision-maker involvement in multi-objective search, such as a priori methods:  

“where the decision maker must specify their preferences, hopes and opinions” 

before the automated search, as opposed to  a posteriori methods, which perform 

automated search to proceed without human guidance, then provide the decision 

maker with a selection of alternative solutions. Both these methods are 

differentiated from interactive search wherein the human actively participates in 

the on-going search process. Belton et al. [24] examine interactive multi-objective 

optimization from a learning perspective, and speculate on ways to enable mutual 

learning between decision makers and search processes while emphasizing the 

role of interactive decision making software tools and environments. Deb attempts 

to consolidate knowledge of the MCDM and SBSE communities to assess the 

state-of-the-art in evolutionary multi-objective optimization [25]. Deb also 

considers multi-objective user evaluation in search and highlights the need for a 

dynamic search process in which objectives, constraints and search parameters 

may change over time to suit the interaction of the individual (our emphasis).  

2.3  Reducing the Cognitive Burden of Interactive Search 

The reliance on human guidance and judgment to direct and control the search, 

presents both potential weaknesses and strengths. On one hand, human subjective 

assessment tends to have a component of inconsistency and non-linearity of focus 

over time [26], which creates a need for rapid convergence. On the other hand, the 

ability to swiftly maneuver the search interactively can be exploited as a powerful 

strategy for adapting an otherwise naive search process. There have been a 

number of studies addressing the issues related to minimizing fatigue, both 

physical and psychological, that can result from prolonged interaction times and 

the possible stress of the evaluation process. Discretizing continuous fitness 

values into five or seven levels was shown to facilitate decision making, without 

significantly compromising convergence [27]. This limit on capacity for 

processing information has been comprehensively discussed in Miller [28] where 
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he suggests organizing the information successively into a sequence of “chunks” 

to help stretch this limit on bandwidth. 

An alternative approach to reducing time taken to discover good solutions 

is combining larger population sizes with a screening mechanism in which only a 

few individuals showing superior fitness are displayed to the user. Several 

methods have been proposed as “surrogate models” of user-provided fitness by, 

for example, clustering individuals [29], [30] or using multiple fuzzy state-value 

functions to approximate the trajectory of human scoring [31]. Avigad et al. [32], 

propose a multi-objective EA in which a model-based fitness of sub-concept 

solutions (using a sorting and ranking procedure) is combined with human 

evaluation. Similar approaches are reported by Brintrup et al. [33]. Previously [3] 

we have used periodic qualitative (user-provided) evaluations of software designs 

to dynamically update a surrogate model that combined quantitative 

measurements of structural integrity and metrics relating to design symmetry to 

drive the evolution of elegant software designs with reduced need for human 

evaluations.  

Of course, a computationally efficient search engine is a prerequisite for a 

compelling interactive search experience. To minimize any frustration and/or 

fatigue for the user, and to maximize the consistency of user interaction, the 

underlying computational search must achieve a number of characteristics (see 

e.g. [19], [23]). Firstly, it must effectively explore the search space to arrive at 

candidate solutions of superior fitness, while at the same time allowing the search 

to be jointly steered by subjective user evaluation. Secondly, it must produce 

superior candidate design solutions in a minimum number of search iterations to 

provide a sense of positive progress for the user. Thirdly, it must be capable of 

multi-objective search, and be dynamically sensitive to user evaluation.  

2.4  Choice of Meta-Heuristics for Interactive Search 

Evolutionary computing is well understood and has a long history of success in 

interactive search, but history per se is not necessarily a good scientific 

motivation for investigation. With this in mind, the multi-objective performance 

of evolutionary algorithms (EAs, e.g. [34]) and ant colony optimization (Simple-

ACO or S-ACO [35], [36]) have been compared by Simons and Smith for 

software design, with respect to both structural integrity and surrogate elegance 
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metrics [4], [5]. The results are summarized as follows. Given a large 

computational budget (in terms of search iterations), an evolutionary algorithm 

with an integer-based representation emerges as superior. The evolutionary 

algorithm is also more robust for very large scale design problems where the 

number of classes in a software design is high. However, if the computational 

budget is limited (as is likely in interactive search), then a very different picture 

emerges. In this case, using a graph representation of software designs, ACO finds 

higher quality solutions, and in less search iterations. Moreover, in design 

solutions where the number of classes is fewer (but nevertheless typical of a 

realistic design problem) and the number of attributes and methods are high, ACO 

discovers candidate design solutions in approximately half the number of search 

iterations of the evolutionary algorithm. Simons and Smith conclude that ACO 

has significant potential as a search engine for interactive software design.  

   It is perhaps surprising to note that very few examples of interactive 

search involving ACO appear in the research literature. An early attempt to apply 

ACO to the design of constrained engineering design problems is reported in [37]. 

Some years pass before there is a report of interactive search with Particle Swarm 

Optimization used to design temperature profiles for a batch beer fermenter in 

2005 [38]. Xing et al. [39] report the use of interactive fuzzy ACO for Job Shop 

Problems in 2007, while Ugur and Aydin describe an interactive simulation for 

solving the TSP using ACO in 2009 [40]. More recently, Albakour et al. report 

the use of ACO to simulate and interact with user query logs to learn knowledge 

about user behavior in a collection of documents [41].  

Notwithstanding the above, it would seem that reports of interactive ACO 

used in any design domain are not abundant in the literature. Nevertheless, our 

previous encouraging results of ACO as a search engine strongly suggest that 

application of ACO for interactive software design shows great potential.      

3 PROPOSED APPROACH 

In this section, the software design problem and solution representations of the 

proposed approach are described, and this is followed by a specification of the 

fitness measures used. Next, the iACO search engine is described. Lastly, the 

proposed approach to software designer interaction is outlined to show how the 

designer’s qualitative evaluations are integrated with the iACO search engine. 
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3.1 Representation 

The software design problem is specified by means of UML use cases i.e. 

scenarios of usage of the software system-to-be described in terms of the 

interactions of humans (as actors) with the automated system [18]. The natural 

language text of the use case descriptions is analyzed as follows. Nouns are 

identified as data; verbs are identified as actions. If a datum is acted upon by the 

action, as is typical when the datum and action are co-located in a single 

interaction in the use case scenario, the action is said to “use” the datum. Thus in 

the language of UML, a software design problem is defined by a set of “methods” 

(actions), a set of “attributes” (data), and their corresponding “uses”. This 

mapping ensures traceability from the design problem to the design solution. A 

full description of this software design problem specification can be found at [2].    

The software design solution representation used is inspired by models for 

the Travelling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) 

[42]. A solution consists of a complete path through a graph whose vertices 

represent elements of a software design solution. These are all of the attributes 

and methods, and we also add “end of class” elements (akin to “return to depot” 

markers) to delimit the scope of individual classes in the design solution path.  

3.2 Fitness Measures 

To reflect the multi-objective nature of the ACO search, a combination of fitness 

measures is used. The first fitness measure provides an assessment of the 

structural integrity of a software design. Designers typically strive for high 

cohesion in classes (to reflect a clear purpose) and low coupling between objects 

(to ensure the design is robust yet flexible to change). Thus, the first fitness 

measure is inspired by the “Coupling Between Objects” (CBO) measure [43]. For 

each candidate solution path, the CBO is calculated as the proportion of all “uses” 

of attributes by methods that occur across class boundaries. Thus, conveniently, a 

completely de-coupled design (all uses occur inside classes) scores a CBO of 1.0 

while a completely coupled design scores a CBO of zero.  

The second and third fitness measures provide an assessment of the 

elegance of the software design. We have previously proposed and investigated 

four novel quantitative elegance metrics relating to the evenness of distribution of 

attributes and methods among classes within the design [3]. That analysis revealed 
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that two are particularly useful and effective, and it is these that we use as 

surrogates for human qualitative elegance evaluation. They are: 

 Numbers Among Classes (NAC) is the arithmetic mean of the standard 

deviations of the numbers of attributes, and of methods among the classes 

of a design. The notion here is that the lower the value for NAC elegance, 

the more symmetrical the appearance of attributes and methods among the 

classes in the design as a whole. 

 Attribute to Method Ratio (ATMR) is the standard deviation of the ratio of 

attributes to methods among the classes in a design. The notion here is that 

the lower the value of ATMR elegance, the more symmetrical the 

appearance of attributes and methods in individual classes of the design. 

Good solutions are obtained through the minimization of CBO, NAC and ATMR. 

3.3 iACO Search Engine 

The design of the proposed iACO search engine has been influenced by the results 

of previous recent studies [44], [45], [46] and also draws inspiration from the 

MAX-MIN Ant System (MMAS) [47]. Indeed, three aspects of the elitist MMAS 

have been incorporated into the proposed iACO search engine. Firstly, only the 

iteration-best ant, i.e. the ant that produced the best candidate solution path in the 

current iteration, deposits pheromone. Secondly, the possible range of pheromone 

trail values are limited to an interval [tmin, tmax], and thirdly, pheromone trails are 

initialized to the upper trail limit i.e. tmax. However, the variant of MMAS used in 

this study does differ from the original MMAS in two respects to meet the needs 

of the software design domain. Firstly, local search is not conducted at each 

iteration and secondly, the influence of pheromone update is controlled by an 

additional parameter, µ.  

3.4 Software Designer Interaction 

Providing effective interactive search for the software designer requires that we 

address the following questions: 

3.4.1 What implicit factors underlie the user’s value judgments? 

The underlying value judgment made by the software designer relates to 

the trade-off between structural integrity in terms of class cohesion and design 
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coupling, and design elegance. Having been presented with a visualization of a 

candidate software design solution, the software designer is invited to provide an 

overall evaluation on a scale of 1 to 100 where 1 is poor and 100 is good. With the 

twin aims of (i) reducing the number of interactions, and (ii) increasing our 

understanding of this value judgment process, the iACO uses a surrogate fitness 

model whose parameters are adapted in response to the periodic user evaluations. 

Historically interactive EAs have ranged between presenting a single individual 

for evaluation, to presenting the entire population for ranking [19], [23]. This 

continuum, especially ranking, clearly makes increasing cognitive demands of the 

user. Moreover, a single software design solution will typically be semantically 

rich in terms of design information, therefore since the iACO primarily uses the 

surrogate model for fitness,  we present a single solution for evaluation selected at 

random from the set of non-dominated solutions within the population. The 

specific method adopted for the surrogate model is multiple linear regression:  

Predicted_User_Evaluation = a0 + a1*CBO + a2*NAC + a3*ATMR           (1) 

where a0, a1, a2 and a3 are constants, initialized to 0, 0.34, 0.33,0.33 respectively 

and thereafter updated whenever new observations become available. The new 

weights for each fitness function are then calculated in proportion to their 

coefficient i.e. a weighted sum approach. 

3.4.2 How are candidate solutions presented to the designer? 

Candidate solutions are presented in the form of UML class diagrams. Since color 

has been found to play an important role in design visualization [2], [3] it is used 

to reflect one aspect of the relative fitness of classes presented. It is proposed to 

trial the use of two color metaphors in this study: ‘traffic lights’ and ‘water tap’. 

Classes with high, intermediate or low cohesion are coloured respectively in 

green/amber/red (traffic light) or red/amber/blue (water taps). Couples between 

classes are shown graphically as an unbroken line, with an arrowhead showing the 

direction of the couple. The stronger the coupling between classes, the thicker the 

line used. Examples of software design solution visualizations are available at 

[48]. 

3.4.3 When does the designer interact with search? 

The crucial issue here is that user fatigue and loss of consistency places a limited 

“budget” on the number of interactions, which must be spent wisely. The starting 
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point of the overall search process is the first iteration of MMAS wherein the 

generation of design solution paths is at random. However, previous work has 

shown that the multi-objective ACO search engine requires possibly 50 iterations 

to achieve reasonable fitness with respect to the three measures [5]. Moreover, 

using surrogate models makes it unnecessary for the designer to interact at each 

ACO iteration. Hence a better approach is to encourage a sense of positive 

progress in ACO search and enable designer interaction after an interval of several 

ACO iterations. Building on promising previous work [3], we employ an adaptive, 

fitness proportionate iteration interval.  When poor values are observed for fitness 

measures, the scheme produces a high iteration interval (corresponding to 10 to 15 

ACO iterations), as fitness measures improve, the iteration interval decreases. 

This allows the ACO search engine to speedily explore the search space, but also 

allows the designer evaluation to increasingly influence the direction of search as 

the interactive episode progresses.    

Miettinen ([23] p. 134) provides three stopping criteria: “Either the 

decision maker gets tired of the solution process, some algorithmic stopping 

(convergence) rule is fulfilled, or the decision maker finds a desirable solution 

and wants to stop. It is difficult to define precisely when a solution is desirable 

enough to become a final solution”. In this work, stopping is entirely at the 

discretion of the software designer. 

3.4.4 What means are provided to promote designer learning? 

Several mechanisms are provided to promote designer learning, and are centered 

on the notion of the designer having the opportunity to provide ‘hints’ to the 

iACO search engine. For example, it is possible for the designer to focus on 

individual classes of the design solution considered interesting and useful, and 

‘freeze’ the classes with respect to on-going search. In terms of the evolving 

search, the designer is mentally “anchoring” i.e. fixing their thinking on some 

bias or partial ‘chunk’ of the solution [49]. It is also possible for the designer to 

‘unfreeze’ class(es) at any interaction. This ‘freezing’ mechanism also provides an 

effective mechanism for the designer to address larger scale designs – smaller 

‘chunks’ of the solution can be controlled before moving onto further design 

chunks. An additional designer learning mechanism is the ability to place 

interesting and useful software design solutions into an archive as iACO search 

progresses. This archive recall and comparison of interesting design solutions 
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diminishes cognitive burden and promotes learning. A flow chart of the iACO 

algorithm is shown in Figure 1.  

  

Figure 1. Flow chart of proposed dynamic multi-objective iACO Search. Sequential activities are 

shown in rectangles with solid lines; decisions and optional activities are shown with dotted lines  

 

 

With respect to multi-objective ACO, a number of possibilities have been 
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iACO search engine be capable of dynamically adapting to the value judgments 

(evaluation) of the software designer during search while providing speedy 

search, computational straightforwardness and speed of execution is the priority 

and so the design choice of multiple ant colonies and multiple matrices has been 

rejected at this stage. In addition, empirical investigations to compare the 

performance of weighted sum versus weighted product pheromone update have 

been conducted for the three case studies used in the paper (see next section). For 

the sake of brevity, we can report that empirical results show that weighted sum 

update performance is marginally superior to weighted product update for the 

software design problem. (This finding is interesting insofar as it differs from the 

findings of Lopez-Ibanez and Stutzle on bi-objective TSP problem [46] with 

respect to approximation of the center of the Pareto front.) 

4 EXPERIMENTAL METHODOLOGY 

In this section, we first describe our choice of software design problem domains 

for use in our experiments. Then, secondly, we state algorithm parameters used. 

Lastly, we describe our methodology for an empirical investigation to assess the 

performance of iACO when used by software designers from a variety of 

backgrounds and experience.  

4.1 Software Design Problems 

A useful discussion on the choice of test problems for experimental comparison in 

meta-heuristic search is provided by Eiben and Smith ([50], pp.252-258), who 

compare and contrast the use of predefined problem instances (e.g. benchmark 

problems), problem instance generators, and ‘real world’ problems. Clearly, the 

use of predefined benchmark problems is preferable. Unfortunately, we are not 

aware of the existence of any recognized benchmark software design problems, 

either in the research literature or from industrial practice. It would be possible to 

generate instances of design problems, for example, with randomly defined 

attributes and methods. However, this presents the problem of semantics and 

understanding for the designer – it is likely that the generated design problem 

would be meaningless. Therefore, we have selected three real world software 

design problems from a variety of domains, with a range of scale. 
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The first problem is a generalized abstraction of a Cinema Booking 

System (CBS), which addresses, for example, making an advance booking for a 

showing of a film at a cinema, and payment for tickets on attending the cinema 

auditorium. A specification of the use cases of is available at [51]. The second 

problem is an extension to a student administration system performed by the in-

house information systems department at the authors’ university. The University 

sought to record outcomes relating to its Graduate Development Program (GDP). 

The extension was implemented and deployed in 2008. A specification of the use 

cases used in the development is available from [52]. The third problem is based 

on an industrial case study – Select Cruises (SC) - relating to a company selling 

nautical adventure holidays on tall-masted ships. The automated system handles 

quotation requests, cruise reservations, payment and confirmation via paper letter 

mailing. A specification of the use cases is available at [53]. Manual software 

designs have been performed by appropriate experienced software designers from 

the three industrial problem domains and are available from [54]. The manually 

performed designs for CBS and GDP show 5 classes while the manually 

performed design for SC shows 15 classes, and so the numbers of classes in the 

design solutions presented in the iACO environment is the same.  Table 1 shows 

the number of attributes, methods and uses for each design problem and the values 

for different fitness metrics for the manual design. 

Table 1. Scale of Software Design Problems and fitness value for manual design 

Problem Attributes Methods Uses CBO NAC ATMR 

CBS 16 15 39 0.154 0.821 0.199 

GDP 43 12 121 0.297 2.592 2.617 

SC 52 30 126 0.452 1.520 1.848 

 

4.2 Algorithm Parameters 

Values in Table 2 for the parameters N, α, µ, σ, are derived from the promising 

performances reported in [5], while those for MMAS-specific tmin and tmax are 

based on [47] and empirical evaluation with respect to the chosen representation. 
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Table 2. Algorithm Parameter Values. 

Parameter Description Value 

N Number of ants in colony 100 

α Attractiveness of pheromone trails 1.5 

µ Update of pheromone trails  3.0 

σ Evaporation rate of pheromone trails 0.035 

tmin Minimum trail value within MMAS. 0.5 

tmax Maximum trail value within MMAS.  3.5 

4.3 Empirical Methodology 

Eleven software development professionals with experience of early lifecycle 

software design were invited to participate in trials using the proposed iACO 

approach. Relevant information concerning their background is given in Appendix 

1. The total experience of software development of the participants amounts to 

228 years in both academia and industrial practice. Participants 4 and 9 are 

authors of this paper. Details of the Research Ethics process can be found at [55]. 

In brief, the iACO approach is explained to participants and use of the iACO 

environment is presented using a dummy design problem. Each of the three 

software design problems is then described. Once underway, each interactive 

design episode is allowed to proceed until the participant decides to halt. 

However, to prevent user fatigue, each participant session is curtailed after one 

hour whether or not the planned schedule of five episodes had been completed. 

In order to test the effect of design problem (CBS, GDP and SC), the 

‘freeze’ and ‘archive’ capability, as well as the effect of the color scheme, an 

experimental schedule of five episodes was devised and is shown in Appendix 2. 

At each ACO iteration, a record is stored containing enough details to fully 

identify the specific run, along with the best values for CBO, NAC and ATMR 

achieved by the colony in that iteration. In addition, at each ACO iteration where 

designer interaction occurs, all details of the user’s interaction (value of 

evaluation, classes frozen/unfrozen, archive) along with the updated values for the 

weights of CBO, NAC and ATMR are also recorded. Lastly, at the end of the 

iACO design session, each participant is invited to provide any comments on their 

overall human experience of the trial. Such comments might include any 
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satisfying aspects, any aspects that generated user fatigue, and any suggestions for 

enhancement of the overall human experience. 

5 RESULTS 

All experimental data are available at [56]; we next report key findings.   

5.1 Number of Interactions 

Table 3 shows the number of interactions during design episodes for each 

participant and each design problem. Where a participant did not conduct a design 

episode due to time constraints, this is shown as “-”. Participants evaluated 

candidate software designs on a total of 962 interactions. Immediately apparent is 

the great variation in the number of interactions among the participants, reflecting 

a variety of individual approaches. Numbers for CBS and GDP are higher than SC 

as the experimental design meant that most participants undertook two design 

episodes for these design problems. Thus to analyze these figures, the numbers of 

interactions for each design problem have been examined further, and the results 

are summarized in Table 4 where standard deviations are shown in parentheses.  

The highlights of Table 4 are twofold: firstly, there is a high variation in number 

of interactions for the CBS and GDP design problems when compared to SC, and 

secondly, the mean number of interactions for CBS and GDP are similar and 

much higher than that for SC. Wilcoxon Signed Ranks Test confirms that while 

the differences between CBS and SC, and GDP and SC are significant (p = .027 

and p = .028 respectively), the differences between CBS and GDP are not. To 

explain these outcomes, if we look to the numbers of classes in each of the design 

problems, we find that the number of classes in candidate design solutions for 

CBS and GDP is 5, whereas for SC the number is 15. Therefore, it seems likely 

that the cognitive load on the software design is higher for the SC design problem, 

accounting for the significant differences in the number of interactions.  

5.2 Example Fitness Values  

A typical example of the fitness values curves achieved in an interactive iACO 

design episode is shown in Figure 2. A mid-scale design problem i.e. GDP has 

been chosen for illustration from a design episode for Participant 2. Figure 2 

shows that the iACO search engine appears highly effective in achieving superior 
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fitness values for all three design measures, performing well within 35 iterations. 

Thereafter, at the end of the design episode, all three fitness measures are superior 

to values for the corresponding manual design. However, while this is a typical 

example, a degree on variation in the design episodes has also been observed, not 

least in the number of iterations reached before halting. 

Table 3. Number of Interactions for each Participant. 

 Design Problem  

Participant CBS GDP SC Total 

1 98 149 12 259 

2 36 30 - 66 

3 47 29 13 89 

4 35 13 8 56 

5 44 107 17 168 

6 36 18 10 64 

7 45 - - 45 

8 17 6 - 23 

9 27 27 - 54 

10 30 32 12 74 

11 64 - - 64 

Total 479 411 72 962 

 

Table 4. Numbers of Interactions for each Design Problem. 

 N Minimum Maximum Mean 

CBS 11 17 98 43.545  (21.786) 

GDP 9 6 149 45.666  (48.610) 

SC 6 8 17 12.000  (3.033) 
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Figure 2. Progression of Fitness Values for CBO, NAC and ATMR in an 

iACOdesign episode for a mid-scale design problem (GDP). 

5.3 Variation in Fitness Values at End of Episodes 

Table 5 shows the best values obtained for the three fitness metrics at the last 

interaction of each participant episode.  In table 5, ‘N’ indicates the number of 

participant episodes at the end of which fitness values have been recorded. The 

‘Best’ row shows the single best value achieved in all episodes for each design 

problem, while the ‘Mean’ row shows the mean of all best values at the end of 

episodes for each design problem, with the standard deviation shown in 

parentheses. Fitness values for the manually produced software designs are shown 

in italic font for comparison. Bold font is used to indicate that fitness values 

achieved (either single best or mean best) using iACO are superior to those of the 

manually produced design. To establish if the differences between mean values 

are statistically significant, the single sample t-test has been used to compare the 

sample means (i.e. of the manual designs) against the means for the target designs.  

 

 

 

 

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100  120  140  160  180

F
IT

N
E

S
S

 V
A

L
U

E
S

ITERATION NUMBER

CBO

NAC

ATMR



18 

Table 5. Best fitness values for CBO, NAC, ATMR at end of participant episodes. 

  Design Problem 

  CBS (N=22) GDP (N=17) SC (N= 6) 

CBO Best 0.175  0.234  0.562  

 Manual 0.154  0.297  0.452  

 Mean 0.265 (0.045) 0.298 (0.062) 0.602 (0.029) 

 T-Test p < .001    p < .001  

NAC Best 0.200  0.490  1.038  

 Manual 0.821  2.592  1.520  

 Mean 1.599 (1.291) 1.902 (1.966) 1.292 (0.169) 

 T-Test     p = .222  

ATMR Best 0.036  0.249  0.406  

 Manual 0.199  2.617  1.848  

 Mean 0.044 (0.040) 0.679 (0.333) 0.602 (0.110) 

 T-Test p < .001  p < .001  p < .001  

 

For the sake of brevity, p values are only shown where differences are significant 

at the alpha = 0.05 level. Analyzing each fitness measure in turn, we firstly see 

that for CBO, mean values for CBS and SC are a little inferior to values for the 

manually produced design, and this difference is statistically significant. 

However, the mean CBO value for the GDP problem is very similar to that 

produced for the manual design, and the best CBO value is superior. Secondly, for 

NAC, it is evident that the best value achieved is superior to the manual design 

value for all design problems, and the mean values are also superior for GDP and 

SC, the difference being statistically significant for the SC problem. Thirdly, for 

the ATMR metric, all best values and the mean values are superior for all design 

problems, and the differences for the mean values are statistically significant. 

Overall, the results appear to indicate that candidate design solutions 

produced by participants using the iACO environment can be superior to the 

manually produced design with respect to NAC and ATMR values, although a 

little inferior for CBO. With regard to design problem, results obtained for GDP 

are excellent, but although still good, perhaps less so for CBS and SC. The 

character of the results may be to some extent explained by the multi-objective 

nature of the design evaluation, and the increased scale of the SC problem (15 
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classes to the 5 for CBS and GDP). Overall, these results are interesting, and 

appear to suggest not only that iACO is effective overall in searching for software 

design solutions, but also that elegance does indeed play an important role in 

software design. Of course, the superior elegance values arrived at during 

participant designer episodes could be caused by a number of factors, not least the 

multi-objective value judgments made by the participants. However, it is also 

highly likely that these results are influenced by the iACO learning mechanisms 

during interactive search, and this is discussed in section 5.5.  

5.4 Effect of Designer Hints 

To examine the effect of freezing and color scheme, we conducted a 2 x 2 mixed 

analysis of variance with freezing (on, off) as a 2 level between subjects variable 

and color scheme (traffic lights, water tap) as a 2 level repeated measures factor 

with outcomes CBO and NAC at the last designer interaction. However, there are 

two important considerations in our analysis. Firstly, because the sample size is 

restricted, the largest design problem CBS (N=22) has been chosen as for 

analysis. GDP and SC, with sample sizes of 17 and 6 respectively, have therefore 

not been analyzed. (Of course, if significant results are not obtained for CBS, 

there seems little point in proceeding to analyze GDP and SC.) Secondly, we find 

that the ATMR data presents a curious distribution. Of the 22 data values for 

ATMR at the end of iACO design episodes for the CBS, further inspection reveals 

that the value 0.036 presents 20 times. Indeed, there are only 2 discrepant values, 

i.e. 0.224 and 0.044 (which explains the low standard deviation obtained for 

ATMR in table 6). This suggests that ATMR is less sensitive as a measure in the 

multi-objective evaluation performed by participants in this investigation, and 

possible causes and consequences of this are discussed in the following sections.  

For both CBO and NAC, the analysis reveals no statistically significant 

differences between results obtained with freezing on and freezing off, or for the 

color scheme used. Nevertheless, it does appear that when freezing is on, better 

results are obtained with the water tap color scheme. On the other hand, when 

freezing is off, it appears that better results are obtained with the traffic light color 

scheme. However, mixed analysis of variance indicates that this potential 

statistical interaction effect is not statistically significant. Thus while this 

appearance is indicative of the effect of freezing and color scheme, it is not 
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conclusive. In an attempt to explain these findings, we suggest that the variability 

in participant interaction with the iACO environment for the given sample size is 

a factor. It was also observed that while some participants made heavy use of the 

freeze capability, others did not despite being aware of its presence. With regard 

to color scheme, participants seemed able to use both effectively, and results of 

the participant questionnaire are reported in section 5.6, “Human Experience”.     

5.5 Learning of Fitness Weights 

Mean values of the weights for CBO, NAC and ATMR (WCBO, WNAC, WATMR 

respectively) learned by the iACO environment at the final interaction at the end 

of episodes are shown with standard deviation in parentheses in table 6. Table 6 

reveals the overall balance obtained between the learned weights, and also the 

impact of scale of design problem. Firstly, it is evident that WCBO emerges as the 

highest learned weight for all three design problems. It is also evident that WNAC 

appears as the lowest learned weight overall, although not for SC. This strongly 

suggests that the balance between the three learned weights is problem dependent. 

Table 6. Weight Values for CBO, NAC, ATMR at end of Participant Episodes. 

Design Problem WCBO WNAC WATMR 

CBS (N=22) 0.588  (0.208) 0.097  (0.058) 0.314  (0.233) 

GDP (N=17) 0.742  (0.251) 0.075  (0.062) 0.182  (0.227) 

SC (N=6) 0.817  (0.073) 0.096  (0.073) 0.086  (0.063) 

Total (N=45) 0.677  (0.229) 0.088  (0.061) 0.233  (0.233) 

 

Secondly, we see that WNAC is similar across all scales of design problem whereas 

WCBO increases and WATMR decreases with scale. We conjecture that as the 

cognitive load of the design problem increases, the iACO environment learns that 

participants are placing less emphasis on qualitative design elegance and rely 

more on the quantitative measure of Coupling Between Objects (CBO).  

To further explain the above characteristics, we draw on the findings 

related to the ATMR measure discussed in previous sections, wherein the data 

suggested that ATMR is not as sensitive a measure at CBO or NAC. Interestingly, 

it was observed during design episodes that from time-to-time, the participants 

were presented with visualizations of candidate software design solution paths 

that show the “God Class” anti-pattern [57]. This is generally regarded by  
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Figure 3. Example of candidate software design solution with a “God Class”. 

 

software designers as a most inelegant design solution to be avoided, wherein a 

single class acts as an incoherent grouping of a large number of attributes and 

methods, typically leaving other classes with ineffectively small numbers. An 

example of a “God Class” solution for the GDP problem is shown in Figure 3. 

The values of CBO, NAC and ATMR fitness for this solution are 0.439 (0.297), 

8.691 (2.592) and 0.194 (0.199) respectively, with values from the manual design 

in parentheses for comparison. It is evident that for this candidate software design, 

although CBO and ATMR are approaching or better than the manual design, the  
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Figure 4. Example of best fitness value curves for a software design solution with a “God Class”. 

 

value of NAC is inferior. It is, of course, fundamental to multi-objective search 

that the fitness metrics used in search conflict. However, when a God Class is 

present, it seems likely that the CBO and ATMR metrics are not in conflict, as the 

God Class creates high values for both measures. To help shed further light on 

this behavior, Figure 4 shows the best fitness value curves obtained when a ‘God 

class’ comes to predominate a design solution. This shows that best fitness values 

for all three measures initially progress well until generation 95 when a 

simultaneous improvement in CBO and dramatic decrease in NAC are evident. At 

this point, it seems possible that the improvement in CBO comes at the expense of 

NAC, although ATMR appears steady. This behavior appears consistent with (i) 

ATMR being less sensitive and (ii) a lack of sufficient conflict between the CBO 

and ATMR measures. 

Together, the results of Figures 3 and 4 suggest that the influence of NAC 

on steering the search can be diminished, which accounts for the low WNAC values 

learned by the iACO environment. Furthermore, given the lack of sensitivity of 

ATMR as a surrogate elegance measure, we conjecture that in future work, a bi-
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objective search using CBO and NAC measures alone can be effective to achieve 

elegant candidate software design solutions with interactive ACO.  

5.6 Human Experience 

Ten of the eleven participants responded to the questionnaire [55] and the results 

are as follows. Asked to rate how compelling they found the interactive ACO 

design experience on a scale from 1 (“Not at all compelling”) to 5 (“Very 

Compelling”), five participants rated the interactive design experience at 5, while 

the other five participants rated the experience at 4. We applied 95% confidence 

levels for proportion (using the Pearson Clopper intervals) and found this to be a 

statistically significant positive rating (p = .002). Participants were also asked to 

rate how effective they found the iACO design experience at achieving useful and  

relevant software design solution paths, (scale as before with “effective” replacing  

“compelling”) Three participants rated the effectiveness at 5, four participants 

rated the effectiveness at 4, and a further three participants rated the effectiveness 

at 3. Although 7 ratings are positive and three ratings are neutral, 95% confidence 

levels for proportions does not show statistical significance. We conjecture that 

this is consistent with, and reflects the participants’ perception of the findings in 

the previous section. It seems possible that although the iACO environment 

achieves design solutions of superior fitness, the lack of sensitivity of the ATMR 

metrics might be implicitly perceived as constraining the effectiveness of 

interactive search.  

When asked to comment on their preferred color scheme, 7 out of 10 

participants stated a preference for ‘traffic lights’, whereas the remaining 3 

participants expressed a preference for the ‘water tap’ scheme. Although this 

indicates a greater preference for the ‘traffic lights’ scheme, the results of the 

previous section seem to indicate that the color scheme does not have a 

statistically significant effect on the participant performance using iACO 

environment. We also found no statistically significant difference between the 

mean values for CBO, NAC and ATMR between the preferred and the least 

preferred color scheme. This suggests that participants perform well with either 

color scheme and that the iACO search is robust with respect to the 

implementation of color scheme visualization.   
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Many of the “free text” participant comments about the iACO experience 

were positive e.g. “the tool looks good and works well”, and “the tool did seem to 

help quickly arrive at an optimal class design”. Other participants commented on 

the effectiveness of the design visualization e.g. “the visibility of the cohesion and 

coupling” and the use of a color scheme that “speeded up the decision process”. 

When asked for suggestions for improving the iACO experience, participants 

suggested even more interactivity, such as a visual indication of a frozen class 

(perhaps an ice cube icon on top of the class), the ability to backtrack along the 

history of the episode and restarting search from a particular design variant, and 

the capability to hint to the iACO environment by ‘drag and drop’ of attributes 

and methods from one class grouping to another. 

6 THREATS TO VALIDITY 

With respect to the interval validity of results, the iACO design experience is 

highly dependent on the design context, and so every attempt has been made to 

make a consistent design context for all participants. The same briefing has been 

received by all participants and all trials have been conducted in the same iACO 

environment. An additional threat to internal validity is the Hawthorn affect, in 

which participant behavior may be changed by the special situation and social 

treatment they received during the experiment. To counter this, participation was 

conducted as consistently as possible; furthermore it was explained to participants 

that the halting of interactive design episodes was entirely at their discretion and 

that there was no expectation in relation to the particular designs arrived at. 

Two other threats to internal validity include the learning affect and the 

fatigue affect. The learning effect threatens validity in the sense that participant 

capability improves during the episodes through learning by repetition. To counter 

this, the experimental setup includes a period of familiarization with a dummy 

design problem first, so that knowledge of how to use the iACO environment is 

instilled prior to proceeding with the three design problems. The fatigue effect is 

mitigated by ensuring that design episodes are halted after one hour’s duration.  

With respect to external validity of results, the outcomes of the 

investigations depend on the number and experience of the participants being 

representative of some segment of the software design community. The 228 years’ 

experience of professional software development among the 11 participants 
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includes 149 years of academic experience. It also includes 79 years of industrial 

software design and development experience for participants 1, 7 and 10 who 

have architected and developed software across a wide variety of software design 

domains, within object-oriented and service-based technical architectures 

worldwide. While a greater number of participants would have lent greater 

robustness to the statistical analysis of the study, the years of experience of the 

trial participants suggests a level of credibility for their evaluations of the 

candidate software designs presented by the interactive ACO environment.   

7 CONCLUSIONS 

As judged from the quantitative results and participant feedback, we conclude that 

ACO is highly effective as a search engine for interactive, dynamic multi-

objective interactive search in early lifecycle software design. Indeed, with speedy 

discovery of useful candidate software design solution paths, study participants 

rate the interactive ACO search experience as compelling. While the results into 

the influence of color scheme and designer ‘hints’ such a freezing have proved 

statistically inconclusive, the sample size is relatively small and great variation in 

participant behavior during interaction is evident. Nevertheless, study participants 

have provided positive ratings and comments for both ‘hint’ capabilities, and we 

plan their incorporation in any future investigations.  

Results of machine learning of fitness measure weightings are interesting 

and indicate that software design elegance does indeed play a significant role in 

designer evaluation of candidate software design. Furthermore, we conclude that 

the surrogate elegance measure of the ratio of attributes to methods (ATMR) is 

less effective in multi-objective search, as it fails to steer the search away from the 

“God class” anti-pattern. This is significant as it seems likely that the evenness of 

the distribution of attributes and methods among classes (NAC) is the more 

significant surrogate elegance measure, which in turn suggests that this evenness 

of distribution, when combined with structural integrity, is an implicit but crucial 

component of effective early lifecycle software design.   
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Appendix 1: Participants 

Details of the gender, profession and years’ experience of each participant of the 

study are as follows: 

   

 

Participant 

 

Gender 

Current 

Profession 

Years in 

Industry 

Years in 

Academia 

Total 

Years 

1 Male Lecturer 31 2 33 

2 Male Lecturer 12 23 35 

3 Female Lecturer 5 24 29 

4 Male Researcher 1 20 21 

5 Male Researcher 2 16 18 

6 Male Designer 0 20 20 

7 Male Engineer 6 19 25 

8 Male Help Desk 1 0 1 

9 Female Lecturer 10 13 23 

10 Male Lecturer 10 12 22 

11 Male Student 1 0 1 

  TOTAL 79 149 228 
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Appendix 2: Participant Schedule 

In the following participant schedule, TL refers to the ’Traffic Lights’ color 

scheme, while WT refers to the ‘Water Tap’ color scheme.   

 

  Episode 

Participant  1 2 3 4 5 

 Problem CBS CBS GDP GDP SC 

1 Freeze off off off on on 

 Color TL WT any any TL 

2 Freeze off off on off off 

 Color WT TL any any TL 

3 Freeze off off off on On 

 Color TL WT any any WT 

4 Freeze off off on off off 

 Color WT TL any any WT 

5 Freeze off off off on on 

 Color TL WT any any TL 

6 Freeze on on off on On 

 Color TL WT any any WT 

7 Freeze on on on off off 

 Color WT TL any any WT 

8 Freeze on on off on on 

 Color TL WT any any TL 

9 Freeze on on on off off 

 Color TL WT any any TL 

10 Freeze on on off on on 

 Color TK WT any any WT 

11 Freeze on on on off off 

 Color WT TL any any WT 

 


