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ABSTRACT 
This paper explores the concept of end-user programming languages 
in music composition, and introduces the Manhattan system, which 
integrates formulas with a grid-based style of music sequencer. 
Following the paradigm of spreadsheets, an established model of 
end-user programming, Manhattan is designed to bridge the gap 
between traditional music editing methods (such as MIDI sequencing 
and typesetting) and generative and algorithmic music – seeking both 
to reduce the learning threshold of programming and support flexible 
integration of static and dynamic musical elements in a single work.  
   Interaction draws on rudimentary knowledge of mathematics and 
spreadsheets to augment the sequencer notation with programming 
concepts such as expressions, built-in functions, variables, pointers 
and arrays, iteration (for loops), branching (goto), and conditional 
statements (if-then-else). In contrast to other programming tools, 
formulas emphasise the visibility of musical data (e.g. notes), rather 
than code, but also allow composers to interact with notated music 
from a more abstract perspective of musical processes. 
   To illustrate the function and use cases of the system, several 
examples of traditional and generative music are provided, the latter 
drawing on minimalism (process-based music) as an accessible 
introduction to algorithmic composition. Throughout, the system and 
approach are evaluated using the cognitive dimensions of notations 
framework, together with early feedback for use by artists. 
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1. INTRODUCTION 
Several disjunctions exist between mainstream music editing 
packages, based on arranging and transcribing notes or musical 
events (e.g. sequencers, score editors), and music programming tools, 
based on defining abstract processes that dynamically generate music 
(e.g. SuperCollider, Max). The divide spans not only working 
methods and interaction styles (manual vs. generative, direct 
manipulation vs. programming, usability vs. virtuosity), but also 
artistic aesthetics, practices and communities (popular vs. avant-
garde, traditional vs. experimental). 
 Traditional low-level music editing (sequencing, transcribing, 
arranging) focuses on a static, concrete and detailed specification of 
music, where individual notes are addressable and manipulated 
manually. Based on the recording studio, sequencers focus on 
capturing a live performance and freezing it on a linear timeline, 
offering limited opportunities or tools to articulate abstract musical 
processes or concepts [2]. By contrast, music programming tools 
enable composers to define abstract processes, and programmatically 

generate music using dynamic composition techniques, as used in 
generative, procedural, aleatoric, or process-based music. However, 
by raising the abstraction level, composers concede low-level control 
of musical elements (e.g. individual notes or events); it becomes 
harder to deviate from the formal algorithm [16]. 
 The Manhattan project seeks to develop a unified environment 
supporting both contemporary and traditional music creativity, by 
flexibly combining low-level (concrete) and high-level (abstract) 
composition practices, in ‘mixed-mode’ works and workflows, 
supporting fusion and crossover music that bridges mainstream and 
avant-garde aesthetics (cf. [8]). Example scenarios include: 
sequenced music using dynamic elements (e.g. random values, 
harmonisation, context-sensitive phrases, non-linear musical forms); 
music using formulas to simplify or automate editing; generative 
processes outputting music that can be directly edited or manipulated; 
pieces with parallel or synchronised, but otherwise separate parts, 
each entered manually or generated programmatically. 
 Manhattan1 proposes a synthesis of sequencing and scripting 
elements, based on the concept of musical grids and formulas.  This 
paper draws on research into digital creativity (see [14]), end-user 
programming (see [13]), and the cognitive dimensions of notations 
[4] to explain how the spreadsheet paradigm successfully integrates 
end-user editing with programming functionality, and illustrate how 
the concept of formulas is adapted and extended for use in computer 
music, to create a system combining sequencer interaction and the 
core features of an imperative programming language, with support 
for conditional statements, loops, branching, variables, pointers, and 
arrays. The sequencing element draws on tracker notation, a general-
purpose, text-based approach for specifying detailed patterns of 
music, with an appearance and interaction style similar to 
spreadsheets, and musically similar to an advanced step sequencer or 
data list. A working prototype is detailed, using analogies to 
programming languages (such as BASIC) and music notation, with 
practical examples illustrating applications ranging from traditional 
music editing to generative music, revisiting two pieces of process-
based music, Steve Reich’s Piano Phase and Arvo Pärt’s Fratres. 

2. BACKGROUND 
Most systems can be categorised as “low threshold and low ceiling” 
(built for usability) or “high threshold and high ceiling” (built for 
experts) [9], as seen in the design of music editors and programming 
languages [2]. In music, end-user tools such as sequencers are based 
on low-level data structures (notes, MIDI), manipulated through 
preset abstractions, processes or metaphors from traditional practices 
such as music performance and the studio [3], confining the creative 
process to established paths and working styles [11]. By contrast, 
programming enables the formal definition of more abstract musical 
processes, but at the expense of access to low-level data and the 
freedom to deviate from algorithms [16]. The goal of this project is to 
find a flexible structure that permits both direct editing of low-level 
data and the definition of dynamic elements and musical processes. 

                                                                    
1 Named for the grid-like street layout of New York, used in 

computing to describe rectilinear distances in grid-based geometry, 
and the original setting for early minimal (process-based) music. 
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2.1 Spreadsheets and End-User Programming 
Spreadsheets are widely recognised as a successful paradigm in end-
user programming [7][13]; a programming language designed for 
non-programmers [10] - it is “possible that more people program 
with spreadsheets than any other programming environment.” [5] 
 The spreadsheet UI is designed for usability, based on the simple, 
flexible, and familiar structure of the table, extended by formulas that 
allow users to define basic relationships between cells, through 
mastery of only two concepts: cells as variables, and functions as 
relations between cells [13]. Formulas are automatically recalculated 
when their dependent values change, providing instant feedback that 
enables users to “tinker” and experiment with “what-if” scenarios. 
Users can also selectively learn and use formulas, providing a low 
threshold for novices, who can plug values into cells manually, and a 
scalable approach to more complex functionality that allows them to 
appropriate and extend the notation for their own uses [5][10]. 
 Ko et al. [6] characterise the spreadsheet metaphor as a concrete, 
human-centric approach to end-user programming, in contrast to 
more abstract or computer-centric approaches (see Figure 1), but one 
that does not extend well to general-purpose computation [13].  
   Using the cognitive dimensions of notations [4],2 Hendry and 
Green [5] discuss the spreadsheet’s concreteness as closeness of 
mapping, allowing users to transfer knowledge and formulate 
problems within the task domain (see [10]); using a familiar, visual 
representation that allows users to feel as though they are working 
directly on the task [7]. Additions and changes to the notation can be 
made quickly and in any order, facilitating rapid editing (low 
viscosity), reducing the need to plan (premature commitment), 
enabling “idea sketching”, and offsetting error-proneness in 
exploratory design contexts [5]. Formulas similarly support 
progressive evaluation, allowing the testing of partial and incomplete 
solutions [4], in contrast to tools where programmers must recompile, 
re-execute, or re-enter data in order to test a change [7][10]. This 
engenders a high “level of liveness”, facilitating tinkering, 
exploratory creativity, and learning by experimentation [12]. 
   Spreadsheets offer a declarative, constraint-based model of 
programming that avoids control flow (loops, branching), in favour 
of data flow – similar to visual programming languages, a popular 
approach to end-user and novice programming, also seen in music 
(e.g. Max). However, cell dependencies and execution order can be 
unclear, making it difficult to define events and processes over time, 
which is needed in music [17]. In the this paper, the spreadsheet 
model is extended to support the control and abstraction of time, in 
an imperative programming style, based on familiar concepts of 
musical time.  

 

Figure 1. Programming Metaphors (from [6]) 

                                                                    
2 The framework was developed to describe usability factors in 

programming languages, but has subsequently been adapted for 
wider use in HCI, including computer music [2][11].  

3. MANHATTAN 
Manhattan system is designed as an integrated composition 
environment combining direct music editing (i.e. sequencing) and 
end-user music programming. Section 3.1 introduces tracker 
notation, a textual, grid-based style of sequencer software, similar in 
form and function to the spreadsheet, which is extended to support 
formula expressions in Section 3.2. A variety of use cases are then 
detailed in subsequent sections. 

3.1 Trackers as grid-based sequencers 
Trackers ([11], e.g. Figure 2) are a class of sequencer based on a 
concise text notation, edited using the computer keyboard. Music is 
represented in fixed grids (patterns), visually similar to a spreadsheet, 
where columns represent tracks and rows represent fixed time slices 
like a step sequencer. Each cell has spaces for: pitch, instrument, 
volume (or panning) and one of an predefined set of musical effects, 
for example:  C#5 01 64 D01  triggers [C#5], using voice [01], 
volume [64], with a slow [01] diminuendo [D].3 
 As in spreadsheets [5][10], the rapid editing interaction (low 
viscosity) and fast feedback cycle (progressive evaluation) supports a 
high degree of liveness, enabling sketching and flow [12]. In both 
cases, formulas offer a visual and interactive mode that easily 
integrated with the existing editing UI, emphasising the visibility of 
data, rather than code. Unlike spreadsheets, however, there is a linear 
time axis and sequential execution order, spatially illustrating the 
event timing, similar to a score or graphical views in sequencers. As 
detailed in Section 4, this engenders a shift from the declarative, 
data-flow programming style of spreadsheets, to an imperative 
programming style, with an explicit representation of time, while 
retaining the 2D grid layout that allows music relationships to be 
shown spatially (see [13]). Moreover, there is a high degree of 
parallelism implicit in the pattern, as in music generally; musicians 
are familiar with many complex concepts of concurrency, e.g. 
synchronisation of parts, counter-point, polyrhythms, polytempi; the 
interplay of parallel processes is visible in adjacent tracks of the 
pattern, where a sequential (left-to-right) execution order further 
simplifies concurrency, a major hurdle for novice coders [13].   

3.2 Integrating Formulas 
Like spreadsheets, scripting is introduced at the cell-level, where 
properties of individual notes or events are manually entered or 
defined by formula expressions written using mathematical operators 
(e.g. +, -, /, *), built-in functions (e.g. abs, rnd, mod), conditional 
statements (e.g. if-then-else), and references to data elsewhere in the 
piece. Unlike spreadsheets, each cell defines multiple values and 
formulas corresponding to different musical properties (pitch, 
instrument, volume, panning, effect). 
                                                                    
3 Manhattan is based on the reViSiT tracker (Figure 1), originally 

developed as a VST plugin for sequencers, extending the tracker 
paradigm to improve usability and musical expressivity [11]. 

 
Figure 2. The reViSiT tracker [11] 



 Formula evaluation occurs when cells are played, updating existing 
data in the cell. Resulting notes and values are thus both audible and 
visible, and also become editable, just like manually sequenced 
music. Outside of playback, formulas are evaluated upon editing, 
offering instant feedback and enabling experimentation. Partial or 
incomplete processes can thus be incrementally tested, supporting 
progressive evaluation and liveness (see Section 4.2.1 for example). 
 While relationships and constraints are declared as in spreadsheets, 
the serialised execution (playback) order of cells engenders an 
imperative style of programming, supporting control flow structures 
like loops (for, while) and both conditional (if-then-jump) and 
unconditional (goto) branching that can be used to control playback 
(e.g. musical form). While this increases the number of concepts to 
learn and cognitive effort in coding [10][15], music notations include 
analogous concepts – e.g. musicians know iteration (loops) as repeats 
and branching (goto) as jumps such as D.S. (dal segno).4 
 Like spreadsheets, all data is contained in the visible cells of the 
pattern and referenced using Cartesian-style x/y coordinates ([3:4]), 
but can be given a custom label to provide mnemonic handles in 
formulas (@Foo) that act like named variables (or pointers). 
Syntactic sugar is also provided to abbreviate references, such as 
defaulting to current column ([3]; row 3, current channel) or relative 
coordinates ([-1]; previous row). This exploits the locality of 
formulas [10], keeping expressions concise and portable, and 
allowing a formula and its referenced cells to be moved or copied as 
a block without breaking their function. The label mechanism also 
provides a form of secondary notation that can be used to annotate or 
comment sections of the music or formulas, which also support end-
of-line commenting (`). Like spreadsheets, unused cells in the grid 
provide space for informal descriptions of musical elements, 
processes, or other information such as section headers, lyrics, etc.  
 Data is ‘initialised’ by a conventional edit to the pattern, avoiding 
the confusion novice coders might have with variable declaration and 
initialisation, or memory allocation [13]. Labels and coordinates, 
however, support pointer arithmetic to provide array functionality 
(e.g. @Foo[2] adds two addresses to point to the second row below 
“Foo”). Users can thus enter a series of values in the pattern, label the 
series, and reference it as an array in code. The data is always visible, 
but can be placed in muted tracks to avoid playback, for use as 
formula constants or parameters. Muted cells are not evaluated, also 
allowing users to selectively execute and test formulas that are parts 
of a larger system. In unmuted channels, unused cell digits (e.g. 
volume, effect parameters) may also be repurposed to store 
intermediate values or formulas without being themselves audible.  
                                                                    
4 In trackers, repeats and jumps are supported by effects (Cxx, jump 

to row xx; SB0/SBx, repeat SB0 to SBx, x times), which can be con-
trolled via formulas and used with an if-then-else clause (x ? y : z) 
to enable conditional loops and branching, as seen in Section 4.2.2. 

   Since tracker notation is alphanumeric, it can be directly referenced 
in formula expressions, preserving closeness of mapping and 
consistency. For example, pitches can be entered as shown in the 
pattern (e.g. C#5 + 4). Cell properties are accessed like class 
members in object-oriented programming (e.g. [2].volume, 
@Foo.effect.type). Most properties are represented as integers or 
enumerated values (pitches, effect types), but processed using 
floating-point numbers, extended to also support complex types 
using NaN-tagging.5 This, for example, enables whole cells to be 
referenced, compared, and copied, e.g. [3:1] = [3:0]. 
 Formulas are visible only during editing, which can impact code 
readability, hide dependencies between elements, and make the flow 
of complex pieces hard to follow. Hendry and Green [5] suggest 
using alternative visual modes and secondary notation to address 
such issues. Thus, in addition to the label mechanism, an additional 
visual mode can be toggled to visualise dependencies between 
formulas and referenced data (see Figures 3 and 4). During editing, 
the current cell’s dependencies are shown; during playback, all 
currently playing cells’ dependencies are shown. While the 
‘spaghetti’ associated with non-structured programming (and visual 
programming, e.g. Max) is apparent for more complex processes, 
channels can be selectively muted and disabled to restrict formula 
evaluation and dependency visualisation, making it easier to inspect, 
learn, and debug expressions iteratively. Other visualisations are also 
supported: displaying all formulas in the pattern grid at once, or 
serialising them into an imperative-style code listing – which could 
later be extended to detect control flow structures (for, if-then-else, 
while) and automatically translate the listing to a BASIC-style 
pseudocode (e.g. Figure 4; cf. CogMap in [5]).  
 As an imperative programming environment, Manhattan is broadly 
equivalent to non-structured programming languages (e.g. BASIC), 
where code structure is largely inherent in the underlying machine – 
here, the grid of the pattern. Although non-structured programming is 
unsuited to major software projects, musical algorithms are less 
complex. The simplicity of the syntax and low-level structure make 
such languages easy for novices to learn, drawing on rudimentary 
maths skills while exposing the basic building blocks of coding [15]. 
Similarly, issues of maintainability, readability and correctness are 
arguably less critical in artistic expression; so long as artists can 
understand and read their own work, the removal of structural 
constraints grants them greater editing freedom (though become 
significant in collaborative scenarios and knowledge sharing). 
 The current lack of support for function definition means recursion 
is not directly supported, though its omission reduces the chance of 
stability issues or coding errors arising (e.g. infinite recursion). 
                                                                    
5 The process of setting a floating-point variable’s Not-a-Number bit, 

using remaining bits to encode custom binary data, thus supporting 
both fast math operations and extended data types. 

 
Figure 3. Formula Editing in Manhattan, with examples. 

 



However, Manhattan is Turing complete (see Video 1) and, in many 
cases, iteration offers a practical alternative to recursion, while also 
representing a concept more easily assimilated by novice coders 
[13][15] and familiar to musicians (see earlier).  

4. FORMULAS IN PRACTICE 
Formulas can be used for a variety of purposes, from isolated 
expressions that simplify or automate editing to more generative 
examples that use algorithms to define the content or structure of a 
piece. This section discusses several use cases for the system, 
illustrating how formulas can not only support and extend 
conventional music editing, but also enable generative processes; 
using two examples from process-based, minimalist music: Arvo 
Pärt’s Fratres and Steve Reich’s Piano Phase. 

4.1 Traditional Music Editing 
Formulas can be used to support, simplify, or automate traditional 
music editing tasks. Such uses target productivity, rather than 
creativity, but also represent intermediate and practical applications 
that introduce end-users to basic functions, syntax, and coding 
concepts, acting as a stepping stone to more complex uses (e.g. 
generative music).  
 Formulas can benefit usability by reducing hard mental operations, 
offering users simpler ways to work with tracker notation, such as 
entering values as fractions (64/7) or hex values (used in effect 
settings) as decimals (#24=36). Defining simple relationships or 
constraints ([3].volume/2, [-1].pitch+4) can reduce the knock-on 
viscosity of editing, so that subsequent changes to referenced data are 
automatically propagated to dependent cells. Basic formulas can thus 
be used to define common musical devices and techniques, such as 
arpeggios, echoes, transposition, or automatic harmonisation. In this 
way, composition becomes a constraint-satisfaction problem [1], 
where composers develop 'solutions by finding and solving 
constraints that gradually restrict the set of possible solutions; 
formulas allow them to fix known constraints and focus 
experimentation on unresolved artistic decisions. 
 Formulas can also be used to simulate elements of musical prosody 
in live performances, by adding small, random variations to the 
notated music (e.g. timing, volume, pitch). While this approach is 
unlikely to rival the emotion or virtuosity of human rendition, it can 
make textures sound richer and rhythms more natural, masking the 
digital precision that can make digital music feel rigid or mechanical. 
 By abstracting time, control flow statements can reduce the 
diffuseness of music. Repeats and jumps are common in music 
notation, allowing composers to abstract patterns and more concisely 
represent music. Scores include simple conditional statements, such 
as the first and second repeat endings or codas, which can be 
encapsulated in formulas (e.g. if-then-else). Formulas can similarly 
be used to abstract dynamic forms and progressions in many styles of 
folk and popular music, from cumulative songs based on extending 
and repeating short phrases (e.g. 12 Days of Christmas) to the 
iterative layering and switching of elements in progressive music 
(e.g. house, trance). 

 In mathematics and programming, conciseness represents an 
artistic aesthetic; solutions that are shorter or simpler are often seen as 
more elegant or beautiful. A similar aesthetic exists in digital music 
communities, such as tracking [11], which explicitly celebrate the 
virtuosity involved in creating complex art using limited or minimal 
resources (e.g. explicitly restricting file size or limiting polyphony). 
These ‘minimal’ trends are not associated with experimental music, 
but more mainstream genres, and practitioners may thus see formulas 
as a new outlet for demonstrating technical virtuosity. 

4.2 Generative Music 
Formulas can be used to explore and develop techniques in 
contemporary art music, such as algorithmic composition, aleatoric 
music (e.g. using random function, rnd), atonal and serial music 
based on alternative pitch systems, or otherwise derived from formal 
or mathematical processes.  
   While the examples here demonstrate how the system can be used 
to define formal processes in generative music; the underlying 
sequencer architecture enables integration with manually-edited 
music, supporting crossovers between artistic styles. The minimalist 
music of Steve Reich, himself a notable proponent of (re)integrating 
disparate art and popular music cultures, has inspired many popular 
artists and reversions of his process-based music (e.g. the Orb, 
ColdCut, Brian Eno, David Bowie), and it is hoped that end-user 
music programming tools can be used to bring generative processes 
into mainstream music. Minimalism, specifically, is a school of 
experimental music based on simple generative and process-based 
works often routed in consonant tonality, offering a musical aesthetic 
more accessible to composers and listeners accustomed to popular 
and traditional styles. The style shifts the artistic focus from 
individual notes and phrases to processes and more abstract concepts 
in a way that can be supported and explored in a formula-based 
editing environment like Manhattan. 

4.2.1 Steve Reich’s “Piano Phase” Revisited 
Piano Phase is a 1967 minimalist composition by Steve Reich, based 
on a repeated phrase of twelve notes played by two pianists at 
different tempi. Over several minutes, cycles of each phrase 
gradually move out of phase, before returning to synchronisation. 
During the piece, melodic interaction between the two parts creates 
interesting counterpoints that dramatically change the character of 
the music; the listener unconsciously merging the parts, chunking the 
evolving stream of notes into distinct melodies or harmonic textures. 
 In Manhattan, the piece is replicated by encoding the twelve-note 
phrase as an array, then offsetting playback to simulate the phase 
change. For the first part, the original phrase (@Notes array) is 
played back looped. Each cycle, a counter increments to shift the 
phase of the second part. To refine the phase shift, each increment 
plays 16 times, each time delaying the second part by a sixteenth of a 
row, using the note delay effect (SDx, where x is delay), slowly 
edging to the next row and array offset. The pattern and formulas are 
shown in Figure 3, and execution in Video 2. 
 

Figure 4. Steve Reich’s Piano Phase 
in Manhattan, with formula listing. 



 In an imperative model of programming, code manipulates the 
state of the program (e.g. memory). In Manhattan, this state is 
preserved in the visible pattern data, and remains after playback ends, 
making it easy to stop, edit, and continue – enabling the user to 
interactively test and tinker with variable and formulas without 
restarting from the beginning, thus improving the liveness of coding 
and debugging. For example, in a long and slowly-evolving 
progression like Piano Phase, the user can edit the pattern data (i.e. 
@Phase.volume) to jump to an arbitrary stage of the piece. 
 The example also highlights limitations of the grid-based formula 
system. In Figure 3, phase is modelled explicitly, in order to simulate 
polytempi, which is hard to visualise in a grid that imposes a unified 
tempo. This limitation is an inherent trade-off imposed by the linear 
timeline of sequencers, which surrenders some of the abstractive 
power with respect to musical time, in order to preserve a more 
concrete, traditional paradigm for manual editing. 

4.2.2 Arvo Pärt’s “Fratres” Revisited 
Fratres is a series of pieces written between 1977 and 1992 by Arvo 
Pärt, based on a formal process that generates a melodic progression, 
which is used to produce a three-part harmony. The melody is built 
of four phases: (1) beginning on a given pitch, (2) stepping along a 
diatonic scale away from the pitch, then (3) stepping in the same 
direction along the scale towards the pitch, until (4) returning to the 
pitch. The sequence repeats three times, each time increasing the 
steps taken along the scale (see Figure 5). The entire process is 
repeated several times in the piece, alternating between stepping 
down and up the scale. 
 The harmony comprises a lower voice using the melodic 
progression, a parallel upper voice transposed 9 scale steps up 
(diatonically) and a middle voice determined by the tintinnabuli 

method, based on the other parts. This method selects a pitch by 
stepping away from the given note a set number of times, exclusively 
using pitches of a chosen chord. In Fratres, Pärt uses the A minor 
triad, restricting steps to A, C, E. In the first half of each sequence, 
where the progression begins and steps away (1, 2), Pärt takes two 
steps up from the lower voice (second position superior). In the 
second half of the sequence, where the melodic progression steps 
toward and ends (3, 4), he takes two steps down from the upper voice 
(second position inferior). 
 In Manhattan, the melodic progression is modelled using a single, 
looped pattern, divided into two halves that alternate between falling 
and rising versions of the sequence. Each half is divided into four 
row sections corresponding to the phases of the sequence, repeated 
three times. On each iteration, the second and third sections are 
extended by incrementing their repeats (SBx), allowing their formulas 
to step further along the scale. Within the these sections, the repeat 
iteration is found by querying an internal counter (.repeat) for the 
repeat effect (SBx). At the third iteration, the instruction to jump back 
to the beginnging (Cxx) is cleared, allowing playback to proceed to a 
rising version of sequence. The current iteration of the whole 
sequence is tracked using a counter that increments when played 
(@Phase.volume). This musical structure and melodic progression is 
encapsulated by the first two tracks of the pattern shown in Figure 4, 
used for repeats/jumps and the progression in numeric values, 
respectively. 

Figure 5. 
 Arvo Pärt’s Fratres in  

Manhattan with formulas 
(right) and BASIC-style 

pseudocode (left). 

 

 
Figure 6. Melodic and harmonic progression in Fratres. 



 The next three tracks (03-05) use these values to index arrays 
stored in muted channels, containing the notes for playback. The 
@DMinor array contains the scale of D Minor, used for lower and 
upper voices: the lower directly indexes the array; the upper adds 9 to 
the original offset, transposing the part. Lastly, depending on the 
phase (2 or 3), the middle voice uses either the lower or upper voice’s 
offset to index one of two arrays of pre-calculated tintinnabuli values, 
for notes in the adjacent scale: second position superior 
(@2ndPosSup) and inferior (@2ndPosInf) respectively. 
 Video 3 shows the script in action, and Figure 4 shows the pattern 
and formulas with equivalent BASIC-style pseudocode. The 
comparison highlights the close mapping between music (repeats, 
jumps) and programming concepts (conditional clauses, iteration, 
branching), though broader musical processes are notably clearer in 
the pseudocode, and partially-obfuscated by the dispersal and 
selective visibility of formulas in the pattern. While this can again be 
seen as a trade-off against the increased visibility of music data 
(notes), it would be feasible to automatically-translate pattern 
formulas into code-style listings, as in Figure 4, within the editing 
environment itself (cf. [5]). 

5. DISCUSSION & FUTURE WORK 
This paper has presented end-user programming as an approach to 
unifying computer-based composition practices based on more 
concrete, low-level direct editing interfaces and more abstract and 
formal programming languages, and described a system integrating 
formulas in a grid-based sequencer. As in spreadsheets, formulas 
lower the threshold for, and enable graduated levels of, programming 
by extending rather than replacing conventional workflows, 
supporting applications in both mainstream and experimental music, 
plus fusions of the two. The visibility of data keeps the results of code 
processes apparent, while the mapping of code elements to a linear 
timeline and execution order engenders a flexible imperative-style 
programming language with control flow structures based on familiar 
concepts from music, mathematics, and spreadsheet use. 
   Early feedback from artists using the system has been both positive 
and informative, and the design of the system has already been 
shaped by responses from users. However, a more in-depth study of 
user experiences is planned, to collect feedback from non-musicians, 
traditional sequencer users, and composers in experimental music. 
 Formulas could enable end-user programming in other types of 
music software, though it remains to be seen if a suitable reference 
system can be developed when the UI is not based around a unified 
notation (e.g. sequencer) or grid (e.g. score editor). Sequencers may 
pose a challenge, where the prosody in live performance already 
raises issues for translating data to notation [3][12]. 
 Research in end-user programming (and spreadsheets) offers 
directions for extending Manhattan, including: graphical debugging, 
meta-programming (code macros), self-modifying code (formulas as 
cell properties), function calling and recursion [15], modularity 
(custom abstractions or groupings) [7], and external bindings to other 
tools (e.g. DAWs, Max/MSP/Jitter), protocols (MIDI, SysEx, OSC, 
IP) and both general-purpose and live coding programming 
languages (C/C++, Java, SuperCollider, Max). 
 As users gain experience, extensions can offer more flexible 
coding styles, supporting advanced programming. Ultimately, scripts 
could be situated in the music (in cells) with capabilities, syntax, and 
interaction styles similar to general-purpose programming languages, 
with the ability affect data in any part of the pattern, significantly 
increasing the expressivity of the notation and spreadsheet model. 
While any extension adding complexity risks raising the threshold for 
novices, so long as the music remains visible and editable, scripting 
functionality optional, and formulas exist to provide stepping-stones 
for beginners, the provision of multiple end-user programming 
approaches may illustrate a mechanism for scaling the challenge and 
offering a graduated learning experience, raising the creative ceiling 
of the notation as the user develops ability. 
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7. SUPPORTING MATERIALS / VIDEOS 
The following videos available from: http://video.revisit.info: 

 

Video 1. Manhattan: Conway’s Games of Life. 
A video of the system running Conway’s Game of Life, a cellular 
automaton known to be Turing complete.  
 

Video 2. Manhattan: Steve Reich’s Piano Phase.  
A video of the system simulating a piece of process-based, 
minimalist music based on repeated playback of the same phrase, 
gradually moving in and out of phase. 
 

Video 3. Manhattan: Arvo Pärt’s Fratres.  
A video of the system simulating a piece of process-based, 
minimalist music based on a mathematical melodic prog-ression, 
harmonised using Pärt’s tintinnabuli method. 
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