
Manhattan: End-User Programming for Music

Chris Nash

Department for Computer Science and Creative Technologies,
University of the West of England,

Frenchay Campus, Coldharbour Lane,
Bristol, BS16 1AH

chris.nash@uwe.ac.uk

ABSTRACT
This paper explores the concept of end-user programming languages
in music composition, and introduces the Manhattan system, which
integrates formulas with a grid-based style of music sequencer.
Following the paradigm of spreadsheets, an established model of
end-user programming, Manhattan is designed to bridge the gap
between traditional music editing methods (such as MIDI sequencing
and typesetting) and generative and algorithmic music – seeking both
to reduce the learning threshold of programming and support flexible
integration of static and dynamic musical elements in a single work.
 Interaction draws on rudimentary knowledge of mathematics and
spreadsheets to augment the sequencer notation with programming
concepts such as expressions, built-in functions, variables, pointers
and arrays, iteration (for loops), branching (goto), and conditional
statements (if-then-else). In contrast to other programming tools,
formulas emphasise the visibility of musical data (e.g. notes), rather
than code, but also allow composers to interact with notated music
from a more abstract perspective of musical processes.
 To illustrate the function and use cases of the system, several
examples of traditional and generative music are provided, the latter
drawing on minimalism (process-based music) as an accessible
introduction to algorithmic composition. Throughout, the system and
approach are evaluated using the cognitive dimensions of notations
framework, together with early feedback for use by artists.

Keywords
end-user programming, algorithmic composition, generative music,
minimalism, sequencers, trackers, digital music notations

1. INTRODUCTION
Several disjunctions exist between mainstream music editing
packages, based on arranging and transcribing notes or musical
events (e.g. sequencers, score editors), and music programming tools,
based on defining abstract processes that dynamically generate music
(e.g. SuperCollider, Max). The divide spans not only working
methods and interaction styles (manual vs. generative, direct
manipulation vs. programming, usability vs. virtuosity), but also
artistic aesthetics, practices and communities (popular vs. avant-
garde, traditional vs. experimental).
 Traditional low-level music editing (sequencing, transcribing,
arranging) focuses on a static, concrete and detailed specification of
music, where individual notes are addressable and manipulated
manually. Based on the recording studio, sequencers focus on
capturing a live performance and freezing it on a linear timeline,
offering limited opportunities or tools to articulate abstract musical
processes or concepts [2]. By contrast, music programming tools
enable composers to define abstract processes, and programmatically

generate music using dynamic composition techniques, as used in
generative, procedural, aleatoric, or process-based music. However,
by raising the abstraction level, composers concede low-level control
of musical elements (e.g. individual notes or events); it becomes
harder to deviate from the formal algorithm [16].
 The Manhattan project seeks to develop a unified environment
supporting both contemporary and traditional music creativity, by
flexibly combining low-level (concrete) and high-level (abstract)
composition practices, in ‘mixed-mode’ works and workflows,
supporting fusion and crossover music that bridges mainstream and
avant-garde aesthetics (cf. [8]). Example scenarios include:
sequenced music using dynamic elements (e.g. random values,
harmonisation, context-sensitive phrases, non-linear musical forms);
music using formulas to simplify or automate editing; generative
processes outputting music that can be directly edited or manipulated;
pieces with parallel or synchronised, but otherwise separate parts,
each entered manually or generated programmatically.
 Manhattan1 proposes a synthesis of sequencing and scripting
elements, based on the concept of musical grids and formulas. This
paper draws on research into digital creativity (see [14]), end-user
programming (see [13]), and the cognitive dimensions of notations
[4] to explain how the spreadsheet paradigm successfully integrates
end-user editing with programming functionality, and illustrate how
the concept of formulas is adapted and extended for use in computer
music, to create a system combining sequencer interaction and the
core features of an imperative programming language, with support
for conditional statements, loops, branching, variables, pointers, and
arrays. The sequencing element draws on tracker notation, a general-
purpose, text-based approach for specifying detailed patterns of
music, with an appearance and interaction style similar to
spreadsheets, and musically similar to an advanced step sequencer or
data list. A working prototype is detailed, using analogies to
programming languages (such as BASIC) and music notation, with
practical examples illustrating applications ranging from traditional
music editing to generative music, revisiting two pieces of process-
based music, Steve Reich’s Piano Phase and Arvo Pärt’s Fratres.

2. BACKGROUND
Most systems can be categorised as “low threshold and low ceiling”
(built for usability) or “high threshold and high ceiling” (built for
experts) [9], as seen in the design of music editors and programming
languages [2]. In music, end-user tools such as sequencers are based
on low-level data structures (notes, MIDI), manipulated through
preset abstractions, processes or metaphors from traditional practices
such as music performance and the studio [3], confining the creative
process to established paths and working styles [11]. By contrast,
programming enables the formal definition of more abstract musical
processes, but at the expense of access to low-level data and the
freedom to deviate from algorithms [16]. The goal of this project is to
find a flexible structure that permits both direct editing of low-level
data and the definition of dynamic elements and musical processes.

1 Named for the grid-like street layout of New York, used in

computing to describe rectilinear distances in grid-based geometry,
and the original setting for early minimal (process-based) music.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

2.1 Spreadsheets and End-User Programming
Spreadsheets are widely recognised as a successful paradigm in end-
user programming [7][13]; a programming language designed for
non-programmers [10] - it is “possible that more people program
with spreadsheets than any other programming environment.” [5]
 The spreadsheet UI is designed for usability, based on the simple,
flexible, and familiar structure of the table, extended by formulas that
allow users to define basic relationships between cells, through
mastery of only two concepts: cells as variables, and functions as
relations between cells [13]. Formulas are automatically recalculated
when their dependent values change, providing instant feedback that
enables users to “tinker” and experiment with “what-if” scenarios.
Users can also selectively learn and use formulas, providing a low
threshold for novices, who can plug values into cells manually, and a
scalable approach to more complex functionality that allows them to
appropriate and extend the notation for their own uses [5][10].
 Ko et al. [6] characterise the spreadsheet metaphor as a concrete,
human-centric approach to end-user programming, in contrast to
more abstract or computer-centric approaches (see Figure 1), but one
that does not extend well to general-purpose computation [13].
 Using the cognitive dimensions of notations [4],2 Hendry and
Green [5] discuss the spreadsheet’s concreteness as closeness of
mapping, allowing users to transfer knowledge and formulate
problems within the task domain (see [10]); using a familiar, visual
representation that allows users to feel as though they are working
directly on the task [7]. Additions and changes to the notation can be
made quickly and in any order, facilitating rapid editing (low
viscosity), reducing the need to plan (premature commitment),
enabling “idea sketching”, and offsetting error-proneness in
exploratory design contexts [5]. Formulas similarly support
progressive evaluation, allowing the testing of partial and incomplete
solutions [4], in contrast to tools where programmers must recompile,
re-execute, or re-enter data in order to test a change [7][10]. This
engenders a high “level of liveness”, facilitating tinkering,
exploratory creativity, and learning by experimentation [12].
 Spreadsheets offer a declarative, constraint-based model of
programming that avoids control flow (loops, branching), in favour
of data flow – similar to visual programming languages, a popular
approach to end-user and novice programming, also seen in music
(e.g. Max). However, cell dependencies and execution order can be
unclear, making it difficult to define events and processes over time,
which is needed in music [17]. In the this paper, the spreadsheet
model is extended to support the control and abstraction of time, in
an imperative programming style, based on familiar concepts of
musical time.

Figure 1. Programming Metaphors (from [6])

2 The framework was developed to describe usability factors in

programming languages, but has subsequently been adapted for
wider use in HCI, including computer music [2][11].

3. MANHATTAN
Manhattan system is designed as an integrated composition
environment combining direct music editing (i.e. sequencing) and
end-user music programming. Section 3.1 introduces tracker
notation, a textual, grid-based style of sequencer software, similar in
form and function to the spreadsheet, which is extended to support
formula expressions in Section 3.2. A variety of use cases are then
detailed in subsequent sections.

3.1 Trackers as grid-based sequencers
Trackers ([11], e.g. Figure 2) are a class of sequencer based on a
concise text notation, edited using the computer keyboard. Music is
represented in fixed grids (patterns), visually similar to a spreadsheet,
where columns represent tracks and rows represent fixed time slices
like a step sequencer. Each cell has spaces for: pitch, instrument,
volume (or panning) and one of an predefined set of musical effects,
for example: C#5 01 64 D01 triggers [C#5], using voice [01],
volume [64], with a slow [01] diminuendo [D].3
 As in spreadsheets [5][10], the rapid editing interaction (low
viscosity) and fast feedback cycle (progressive evaluation) supports a
high degree of liveness, enabling sketching and flow [12]. In both
cases, formulas offer a visual and interactive mode that easily
integrated with the existing editing UI, emphasising the visibility of
data, rather than code. Unlike spreadsheets, however, there is a linear
time axis and sequential execution order, spatially illustrating the
event timing, similar to a score or graphical views in sequencers. As
detailed in Section 4, this engenders a shift from the declarative,
data-flow programming style of spreadsheets, to an imperative
programming style, with an explicit representation of time, while
retaining the 2D grid layout that allows music relationships to be
shown spatially (see [13]). Moreover, there is a high degree of
parallelism implicit in the pattern, as in music generally; musicians
are familiar with many complex concepts of concurrency, e.g.
synchronisation of parts, counter-point, polyrhythms, polytempi; the
interplay of parallel processes is visible in adjacent tracks of the
pattern, where a sequential (left-to-right) execution order further
simplifies concurrency, a major hurdle for novice coders [13].

3.2 Integrating Formulas
Like spreadsheets, scripting is introduced at the cell-level, where
properties of individual notes or events are manually entered or
defined by formula expressions written using mathematical operators
(e.g. +, -, /, *), built-in functions (e.g. abs, rnd, mod), conditional
statements (e.g. if-then-else), and references to data elsewhere in the
piece. Unlike spreadsheets, each cell defines multiple values and
formulas corresponding to different musical properties (pitch,
instrument, volume, panning, effect).

3 Manhattan is based on the reViSiT tracker (Figure 1), originally

developed as a VST plugin for sequencers, extending the tracker
paradigm to improve usability and musical expressivity [11].

Figure 2. The reViSiT tracker [11]

 Formula evaluation occurs when cells are played, updating existing
data in the cell. Resulting notes and values are thus both audible and
visible, and also become editable, just like manually sequenced
music. Outside of playback, formulas are evaluated upon editing,
offering instant feedback and enabling experimentation. Partial or
incomplete processes can thus be incrementally tested, supporting
progressive evaluation and liveness (see Section 4.2.1 for example).
 While relationships and constraints are declared as in spreadsheets,
the serialised execution (playback) order of cells engenders an
imperative style of programming, supporting control flow structures
like loops (for, while) and both conditional (if-then-jump) and
unconditional (goto) branching that can be used to control playback
(e.g. musical form). While this increases the number of concepts to
learn and cognitive effort in coding [10][15], music notations include
analogous concepts – e.g. musicians know iteration (loops) as repeats
and branching (goto) as jumps such as D.S. (dal segno).4
 Like spreadsheets, all data is contained in the visible cells of the
pattern and referenced using Cartesian-style x/y coordinates ([3:4]),
but can be given a custom label to provide mnemonic handles in
formulas (@Foo) that act like named variables (or pointers).
Syntactic sugar is also provided to abbreviate references, such as
defaulting to current column ([3]; row 3, current channel) or relative
coordinates ([-1]; previous row). This exploits the locality of
formulas [10], keeping expressions concise and portable, and
allowing a formula and its referenced cells to be moved or copied as
a block without breaking their function. The label mechanism also
provides a form of secondary notation that can be used to annotate or
comment sections of the music or formulas, which also support end-
of-line commenting (`). Like spreadsheets, unused cells in the grid
provide space for informal descriptions of musical elements,
processes, or other information such as section headers, lyrics, etc.
 Data is ‘initialised’ by a conventional edit to the pattern, avoiding
the confusion novice coders might have with variable declaration and
initialisation, or memory allocation [13]. Labels and coordinates,
however, support pointer arithmetic to provide array functionality
(e.g. @Foo[2] adds two addresses to point to the second row below
“Foo”). Users can thus enter a series of values in the pattern, label the
series, and reference it as an array in code. The data is always visible,
but can be placed in muted tracks to avoid playback, for use as
formula constants or parameters. Muted cells are not evaluated, also
allowing users to selectively execute and test formulas that are parts
of a larger system. In unmuted channels, unused cell digits (e.g.
volume, effect parameters) may also be repurposed to store
intermediate values or formulas without being themselves audible.

4 In trackers, repeats and jumps are supported by effects (Cxx, jump

to row xx; SB0/SBx, repeat SB0 to SBx, x times), which can be con-
trolled via formulas and used with an if-then-else clause (x ? y : z)
to enable conditional loops and branching, as seen in Section 4.2.2.

 Since tracker notation is alphanumeric, it can be directly referenced
in formula expressions, preserving closeness of mapping and
consistency. For example, pitches can be entered as shown in the
pattern (e.g. C#5 + 4). Cell properties are accessed like class
members in object-oriented programming (e.g. [2].volume,
@Foo.effect.type). Most properties are represented as integers or
enumerated values (pitches, effect types), but processed using
floating-point numbers, extended to also support complex types
using NaN-tagging.5 This, for example, enables whole cells to be
referenced, compared, and copied, e.g. [3:1] = [3:0].
 Formulas are visible only during editing, which can impact code
readability, hide dependencies between elements, and make the flow
of complex pieces hard to follow. Hendry and Green [5] suggest
using alternative visual modes and secondary notation to address
such issues. Thus, in addition to the label mechanism, an additional
visual mode can be toggled to visualise dependencies between
formulas and referenced data (see Figures 3 and 4). During editing,
the current cell’s dependencies are shown; during playback, all
currently playing cells’ dependencies are shown. While the
‘spaghetti’ associated with non-structured programming (and visual
programming, e.g. Max) is apparent for more complex processes,
channels can be selectively muted and disabled to restrict formula
evaluation and dependency visualisation, making it easier to inspect,
learn, and debug expressions iteratively. Other visualisations are also
supported: displaying all formulas in the pattern grid at once, or
serialising them into an imperative-style code listing – which could
later be extended to detect control flow structures (for, if-then-else,
while) and automatically translate the listing to a BASIC-style
pseudocode (e.g. Figure 4; cf. CogMap in [5]).
 As an imperative programming environment, Manhattan is broadly
equivalent to non-structured programming languages (e.g. BASIC),
where code structure is largely inherent in the underlying machine –
here, the grid of the pattern. Although non-structured programming is
unsuited to major software projects, musical algorithms are less
complex. The simplicity of the syntax and low-level structure make
such languages easy for novices to learn, drawing on rudimentary
maths skills while exposing the basic building blocks of coding [15].
Similarly, issues of maintainability, readability and correctness are
arguably less critical in artistic expression; so long as artists can
understand and read their own work, the removal of structural
constraints grants them greater editing freedom (though become
significant in collaborative scenarios and knowledge sharing).
 The current lack of support for function definition means recursion
is not directly supported, though its omission reduces the chance of
stability issues or coding errors arising (e.g. infinite recursion).

5 The process of setting a floating-point variable’s Not-a-Number bit,

using remaining bits to encode custom binary data, thus supporting
both fast math operations and extended data types.

Figure 3. Formula Editing in Manhattan, with examples.

However, Manhattan is Turing complete (see Video 1) and, in many
cases, iteration offers a practical alternative to recursion, while also
representing a concept more easily assimilated by novice coders
[13][15] and familiar to musicians (see earlier).

4. FORMULAS IN PRACTICE
Formulas can be used for a variety of purposes, from isolated
expressions that simplify or automate editing to more generative
examples that use algorithms to define the content or structure of a
piece. This section discusses several use cases for the system,
illustrating how formulas can not only support and extend
conventional music editing, but also enable generative processes;
using two examples from process-based, minimalist music: Arvo
Pärt’s Fratres and Steve Reich’s Piano Phase.

4.1 Traditional Music Editing
Formulas can be used to support, simplify, or automate traditional
music editing tasks. Such uses target productivity, rather than
creativity, but also represent intermediate and practical applications
that introduce end-users to basic functions, syntax, and coding
concepts, acting as a stepping stone to more complex uses (e.g.
generative music).
 Formulas can benefit usability by reducing hard mental operations,
offering users simpler ways to work with tracker notation, such as
entering values as fractions (64/7) or hex values (used in effect
settings) as decimals (#24=36). Defining simple relationships or
constraints ([3].volume/2, [-1].pitch+4) can reduce the knock-on
viscosity of editing, so that subsequent changes to referenced data are
automatically propagated to dependent cells. Basic formulas can thus
be used to define common musical devices and techniques, such as
arpeggios, echoes, transposition, or automatic harmonisation. In this
way, composition becomes a constraint-satisfaction problem [1],
where composers develop 'solutions by finding and solving
constraints that gradually restrict the set of possible solutions;
formulas allow them to fix known constraints and focus
experimentation on unresolved artistic decisions.
 Formulas can also be used to simulate elements of musical prosody
in live performances, by adding small, random variations to the
notated music (e.g. timing, volume, pitch). While this approach is
unlikely to rival the emotion or virtuosity of human rendition, it can
make textures sound richer and rhythms more natural, masking the
digital precision that can make digital music feel rigid or mechanical.
 By abstracting time, control flow statements can reduce the
diffuseness of music. Repeats and jumps are common in music
notation, allowing composers to abstract patterns and more concisely
represent music. Scores include simple conditional statements, such
as the first and second repeat endings or codas, which can be
encapsulated in formulas (e.g. if-then-else). Formulas can similarly
be used to abstract dynamic forms and progressions in many styles of
folk and popular music, from cumulative songs based on extending
and repeating short phrases (e.g. 12 Days of Christmas) to the
iterative layering and switching of elements in progressive music
(e.g. house, trance).

 In mathematics and programming, conciseness represents an
artistic aesthetic; solutions that are shorter or simpler are often seen as
more elegant or beautiful. A similar aesthetic exists in digital music
communities, such as tracking [11], which explicitly celebrate the
virtuosity involved in creating complex art using limited or minimal
resources (e.g. explicitly restricting file size or limiting polyphony).
These ‘minimal’ trends are not associated with experimental music,
but more mainstream genres, and practitioners may thus see formulas
as a new outlet for demonstrating technical virtuosity.

4.2 Generative Music
Formulas can be used to explore and develop techniques in
contemporary art music, such as algorithmic composition, aleatoric
music (e.g. using random function, rnd), atonal and serial music
based on alternative pitch systems, or otherwise derived from formal
or mathematical processes.
 While the examples here demonstrate how the system can be used
to define formal processes in generative music; the underlying
sequencer architecture enables integration with manually-edited
music, supporting crossovers between artistic styles. The minimalist
music of Steve Reich, himself a notable proponent of (re)integrating
disparate art and popular music cultures, has inspired many popular
artists and reversions of his process-based music (e.g. the Orb,
ColdCut, Brian Eno, David Bowie), and it is hoped that end-user
music programming tools can be used to bring generative processes
into mainstream music. Minimalism, specifically, is a school of
experimental music based on simple generative and process-based
works often routed in consonant tonality, offering a musical aesthetic
more accessible to composers and listeners accustomed to popular
and traditional styles. The style shifts the artistic focus from
individual notes and phrases to processes and more abstract concepts
in a way that can be supported and explored in a formula-based
editing environment like Manhattan.

4.2.1 Steve Reich’s “Piano Phase” Revisited
Piano Phase is a 1967 minimalist composition by Steve Reich, based
on a repeated phrase of twelve notes played by two pianists at
different tempi. Over several minutes, cycles of each phrase
gradually move out of phase, before returning to synchronisation.
During the piece, melodic interaction between the two parts creates
interesting counterpoints that dramatically change the character of
the music; the listener unconsciously merging the parts, chunking the
evolving stream of notes into distinct melodies or harmonic textures.
 In Manhattan, the piece is replicated by encoding the twelve-note
phrase as an array, then offsetting playback to simulate the phase
change. For the first part, the original phrase (@Notes array) is
played back looped. Each cycle, a counter increments to shift the
phase of the second part. To refine the phase shift, each increment
plays 16 times, each time delaying the second part by a sixteenth of a
row, using the note delay effect (SDx, where x is delay), slowly
edging to the next row and array offset. The pattern and formulas are
shown in Figure 3, and execution in Video 2.

Figure 4. Steve Reich’s Piano Phase
in Manhattan, with formula listing.

 In an imperative model of programming, code manipulates the
state of the program (e.g. memory). In Manhattan, this state is
preserved in the visible pattern data, and remains after playback ends,
making it easy to stop, edit, and continue – enabling the user to
interactively test and tinker with variable and formulas without
restarting from the beginning, thus improving the liveness of coding
and debugging. For example, in a long and slowly-evolving
progression like Piano Phase, the user can edit the pattern data (i.e.
@Phase.volume) to jump to an arbitrary stage of the piece.
 The example also highlights limitations of the grid-based formula
system. In Figure 3, phase is modelled explicitly, in order to simulate
polytempi, which is hard to visualise in a grid that imposes a unified
tempo. This limitation is an inherent trade-off imposed by the linear
timeline of sequencers, which surrenders some of the abstractive
power with respect to musical time, in order to preserve a more
concrete, traditional paradigm for manual editing.

4.2.2 Arvo Pärt’s “Fratres” Revisited
Fratres is a series of pieces written between 1977 and 1992 by Arvo
Pärt, based on a formal process that generates a melodic progression,
which is used to produce a three-part harmony. The melody is built
of four phases: (1) beginning on a given pitch, (2) stepping along a
diatonic scale away from the pitch, then (3) stepping in the same
direction along the scale towards the pitch, until (4) returning to the
pitch. The sequence repeats three times, each time increasing the
steps taken along the scale (see Figure 5). The entire process is
repeated several times in the piece, alternating between stepping
down and up the scale.
 The harmony comprises a lower voice using the melodic
progression, a parallel upper voice transposed 9 scale steps up
(diatonically) and a middle voice determined by the tintinnabuli

method, based on the other parts. This method selects a pitch by
stepping away from the given note a set number of times, exclusively
using pitches of a chosen chord. In Fratres, Pärt uses the A minor
triad, restricting steps to A, C, E. In the first half of each sequence,
where the progression begins and steps away (1, 2), Pärt takes two
steps up from the lower voice (second position superior). In the
second half of the sequence, where the melodic progression steps
toward and ends (3, 4), he takes two steps down from the upper voice
(second position inferior).
 In Manhattan, the melodic progression is modelled using a single,
looped pattern, divided into two halves that alternate between falling
and rising versions of the sequence. Each half is divided into four
row sections corresponding to the phases of the sequence, repeated
three times. On each iteration, the second and third sections are
extended by incrementing their repeats (SBx), allowing their formulas
to step further along the scale. Within the these sections, the repeat
iteration is found by querying an internal counter (.repeat) for the
repeat effect (SBx). At the third iteration, the instruction to jump back
to the beginnging (Cxx) is cleared, allowing playback to proceed to a
rising version of sequence. The current iteration of the whole
sequence is tracked using a counter that increments when played
(@Phase.volume). This musical structure and melodic progression is
encapsulated by the first two tracks of the pattern shown in Figure 4,
used for repeats/jumps and the progression in numeric values,
respectively.

Figure 5.
 Arvo Pärt’s Fratres in

Manhattan with formulas
(right) and BASIC-style

pseudocode (left).

Figure 6. Melodic and harmonic progression in Fratres.

 The next three tracks (03-05) use these values to index arrays
stored in muted channels, containing the notes for playback. The
@DMinor array contains the scale of D Minor, used for lower and
upper voices: the lower directly indexes the array; the upper adds 9 to
the original offset, transposing the part. Lastly, depending on the
phase (2 or 3), the middle voice uses either the lower or upper voice’s
offset to index one of two arrays of pre-calculated tintinnabuli values,
for notes in the adjacent scale: second position superior
(@2ndPosSup) and inferior (@2ndPosInf) respectively.
 Video 3 shows the script in action, and Figure 4 shows the pattern
and formulas with equivalent BASIC-style pseudocode. The
comparison highlights the close mapping between music (repeats,
jumps) and programming concepts (conditional clauses, iteration,
branching), though broader musical processes are notably clearer in
the pseudocode, and partially-obfuscated by the dispersal and
selective visibility of formulas in the pattern. While this can again be
seen as a trade-off against the increased visibility of music data
(notes), it would be feasible to automatically-translate pattern
formulas into code-style listings, as in Figure 4, within the editing
environment itself (cf. [5]).

5. DISCUSSION & FUTURE WORK
This paper has presented end-user programming as an approach to
unifying computer-based composition practices based on more
concrete, low-level direct editing interfaces and more abstract and
formal programming languages, and described a system integrating
formulas in a grid-based sequencer. As in spreadsheets, formulas
lower the threshold for, and enable graduated levels of, programming
by extending rather than replacing conventional workflows,
supporting applications in both mainstream and experimental music,
plus fusions of the two. The visibility of data keeps the results of code
processes apparent, while the mapping of code elements to a linear
timeline and execution order engenders a flexible imperative-style
programming language with control flow structures based on familiar
concepts from music, mathematics, and spreadsheet use.
 Early feedback from artists using the system has been both positive
and informative, and the design of the system has already been
shaped by responses from users. However, a more in-depth study of
user experiences is planned, to collect feedback from non-musicians,
traditional sequencer users, and composers in experimental music.
 Formulas could enable end-user programming in other types of
music software, though it remains to be seen if a suitable reference
system can be developed when the UI is not based around a unified
notation (e.g. sequencer) or grid (e.g. score editor). Sequencers may
pose a challenge, where the prosody in live performance already
raises issues for translating data to notation [3][12].
 Research in end-user programming (and spreadsheets) offers
directions for extending Manhattan, including: graphical debugging,
meta-programming (code macros), self-modifying code (formulas as
cell properties), function calling and recursion [15], modularity
(custom abstractions or groupings) [7], and external bindings to other
tools (e.g. DAWs, Max/MSP/Jitter), protocols (MIDI, SysEx, OSC,
IP) and both general-purpose and live coding programming
languages (C/C++, Java, SuperCollider, Max).
 As users gain experience, extensions can offer more flexible
coding styles, supporting advanced programming. Ultimately, scripts
could be situated in the music (in cells) with capabilities, syntax, and
interaction styles similar to general-purpose programming languages,
with the ability affect data in any part of the pattern, significantly
increasing the expressivity of the notation and spreadsheet model.
While any extension adding complexity risks raising the threshold for
novices, so long as the music remains visible and editable, scripting
functionality optional, and formulas exist to provide stepping-stones
for beginners, the provision of multiple end-user programming
approaches may illustrate a mechanism for scaling the challenge and
offering a graduated learning experience, raising the creative ceiling
of the notation as the user develops ability.

6. ACKNOWLEDGEMENTS
Many thanks to Sam Aaron, Darren Edge, TOPLAP, and the
[livecode] mailing list for valuable insights and feedback on the
project. Thanks also to composers Esa Ruoho (aka Lackluster),
Maarten van Strien, and Phill Phelps for ongoing user feedback.

7. SUPPORTING MATERIALS / VIDEOS
The following videos available from: http://video.revisit.info:

Video 1. Manhattan: Conway’s Games of Life.
A video of the system running Conway’s Game of Life, a cellular
automaton known to be Turing complete.

Video 2. Manhattan: Steve Reich’s Piano Phase.
A video of the system simulating a piece of process-based,
minimalist music based on repeated playback of the same phrase,
gradually moving in and out of phase.

Video 3. Manhattan: Arvo Pärt’s Fratres.
A video of the system simulating a piece of process-based,
minimalist music based on a mathematical melodic prog-ression,
harmonised using Pärt’s tintinnabuli method.

8. REFERENCES
[1] J. Alty. Navigating though Compositional Space: The

Creativity Corridor. Leonardo, 28, 3 (1995), 215-9.
[2] A. Blackwell and N. Collins. The programming language as a

musical instrument. Proc. of PPIG 2005, 120-130.
[3] M. Duignan. Computer mediated music production: A study of

abstraction and activity. PhD thesis, Victoria University of
Wellington, 2007.

[4] T. Green and M. Petre. Usability Analysis of Visual
Programming Environments: a ‘cognitive dimensions’
framework. Journ. of Vis. Lang. & Comp. 7:131-74, 1996.

[5] D.G. Hendry and T. Green. Creating, comprehending and
explaining spreadsheets: a cognitive interpretation of what
discretionary users think of the spreadsheet model. Int. Journal
of Human-Comp. Studies, 40, 1994, 1033-1065.

[6] A.J. Ko, B.A. Myers, and H.H. Aung. Six Learning Barriers in
End-User Programming Systems. Proceedings of VL/HCC
2004, 2004, 199-206.

[7] C. Lewis and G.M. Olson. Can Principles of Cognition Lower
the Barriers to Programming? Empirical Studies of
Programmers: Second Workshop, 1987, 248-263.

[8] A. McLean. Artist-Programmers and Programming Languages
for the Arts. PhD Thesis, Goldsmiths, 2011.

[9] B. Myers, S.E. Hudson, and R. Pausch. Past, Present, and
Future of User Interface Software Tools. ACM Trans. on
Computer-Human Interaction, 7(1): 3–28, 2000.

[10] B.A. Nardi. A Small Matter of Programming: Perspectives on
End User Computing. 1993.

[11] C. Nash and A. Blackwell. Tracking Virtuosity and Flow in
Computer Music. Proceedings of ICMC 2011, 575–82.

[12] C. Nash and A. Blackwell. Liveness and Flow in Notation
Use. Proceedings of NIME 2012, 28–33.

[13] J.F. Pane and B.A. Myers. Usability Issues in the Design of
Novice Programming Systems. Carnegie Mellon University,
Technical Report CMU-CS-96-132, 1995.

[14] M. Resnick et al. Design Principles for Tools to Support
Creative Thinking. Creativity Support Tools (ed. Shneiderman
et al.), 2005, 25-36.

[15] J. Rogalski and R. Samurçay. Acquisition of Programming
Knowledge and Skills. Psychology of Programming (ed. J.-M.
Hoc et al.), 1990, 157-174.

[16] R. Rowe et al. Putting Max in Perspective. Computer Music
Journal 17, 2, 1993, 3-11

[17] G. Wang. A History of Programming and Music. Cambridge
Companion to Electronic Music (ed. N. Collins and J.
d’Escriván), 2007

