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Abstract We investigate the reality gap, specifically

the environmental correspondence of an on-board sim-

ulator. We describe a novel distributed co-evolution-

ary approach to improve the transference of controllers

that co-evolve with an on-board simulator. A novelty of

our approach is the the potential to improve transfer-

ence between simulation and reality without an explicit

measurement between the two domains. We hypothe-

sise that a variation of on-board simulator environment

models across many robots can be competitively ex-

ploited by comparison of the real controller fitness of

many robots. We hypothesise that the real controller

fitness values across many robots can be taken as in-

dicative of the varied fitness in environmental corre-

spondence of on-board simulators, and used to inform

the distributed evolution an on-board simulator envi-
ronment model without explicit measurement of the

real environment. Our results demonstrate that our ap-

proach creates an adaptive relationship between the on-

board simulator environment model, the real world be-

haviour of the robots, and the state of the real environ-

ment. The results indicate that our approach is sensi-

tive to whether the real behavioural performance of the

robot is informative on the state real environment.
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1 Introduction

Swarm robotics is regarded as being a difficult class of

robotic system to design. Multiple autonomous robots

are expected to produce useful group behaviour as an

emergent consequence of their interactions. From a de-

signer’s point of view, only a single robotic agent is

defined and the result of complex interactions must be

extrapolated outwards. Through decentralisation, self-

organising robotic systems they are cited as being ro-

bust, flexible, and scalable; although this is not without

caveats[1].

Evolutionary computation is an appealing design

approach to swarm robotics. The design outcome can be

defined as a group behaviour, and an evolutionary algo-

rithm addresses the hard problem of a solution for the

individual robot. Often a simulation is used and pro-

vides convenient access to group-level evaluative met-

rics [16][14][17][6][23].

The use of simulation in evolutionary robotics has

been heavily debated. To avoid a prohibitively slow sim-

ulation it must be designed to balance the accuracy

of the representation against the time of computation,

inherently encapsulating errors [13]. Inaccuracies in a

simulation can be exploited by the evolutionary pro-

cess, producing robotic solutions with a discrepancy

between simulated and actual performance. This issue

of discrepancy is referred to as the reality gap[7], and

discussed in terms of the transferability of solutions[9].

The alternative to utilising a simulation is to eval-

uate evolved solutions directly on a robot, termed em-

bodied evolution by Watson et al[24]. Eiben et al [3]

elaborate on embodied evolution and discuss three bi-

nary features to clarify where, when and how an em-

bodied evolutionary algorithm can be implemented:



2 Paul J. O’Dowd et al.

Online / Offline: whether the evolutionary algo-

rithm operates as part of their “real” operation, or

as a prior design phase of operation before actual

deployment.

On-board / Off-board : whether the algorithm exe-

cutes on the actual robot hardware, or is computed

external to the robot with only the resultant solu-

tion evaluated on the robot hardware.

Encapsulated / Distributed : whether a robot oper-

ates the evolutionary algorithm independently on

it’s own hardware, or if the evolutionary algorithm

is designed to operate across a group of robots.

There have been several recent investigations into

online, on-board, distributed evolutionary robotics mo-

tivated by the vision of a multi-robot system capa-

ble of continuous unsupervised evolutionary adapta-

tion [10][8][20][19] [4][5]. Whilst the online on-board dis-

tributed approach is suitable for swarm robotics, three

problematic issues are highlighted, and form part of the

underlying motivation to develop our work:

Spatial : Referred to as the boot-strapping problem.

The spatial mobility of robots is determined by the

solutions developed by the evolutionary algorithm.

Early explorative evolutionary development often

creates incorrect sensory-motor mappings, causing

robots to collide and spatially interfere with each

other. Therefore each successive evaluation occurs

in a new non-deterministic environment which can

disrupt the reliable evaluation of newly evolved so-

lutions.[10].

Temporal : Online evolution is proposed as a mech-

anism to produce functional behaviour to solve a

task, as opposed to a study of evolution in of itself.

This applies pressure to generate solutions at a rate

comparable to the dynamic change within the task

environment [8].

Selection : The migration of solutions across the

group of robots is non-deterministic since the robots

are mobile. Furthermore, because of the noisy eval-

uation circumstances, the evaluative metric is not

reliable between robots[20].

The benefits and shortfalls of the simulated and em-

bodied approaches appears to be leading to a converged

methodology. Koos et al[9] define a category of evo-

lutionary robotics as robot-in-the-loop simulation-based

optimisation, encompassing a body of work that inves-

tigates the use of simulated evaluations with periods of

evaluation in reality to correct for transference prob-

lems.

Evolving robot controllers, Koos et al[9] develop a

‘Simulation To Reality disparity measure’ of transfer-

ence between an offline off-board simulator and periods

of evaluation in reality, used to bias the evolutionary

selection mechanism towards controller solutions with

better transference. Evolving walking gait behaviours,

Bongard et al[2] develop the ‘estimation-exploration’ al-

gorithm which utilises evaluations in reality to capture

limb-joint sensor data to adapt an offline off-board sim-

ulation of the robot morphology. Zagal et al[25] develop

the ‘Back To Reality’ algorithm, which co-evolves an of-

fline off-board simulation of a quadruped robot and a

walking gait controller, by using a single measure of

discrepancy between the achieved walking gait in sim-

ulation versus reality.

This work concerns advancing an online on-board

distributed approach suitable for application in swarm

robotics that maintains the vision of an unsupervised

evolutionary system. Motivated by the design context

of swarm robotics and the previously isolated problems

with the online on-board evolutionary approaches, we

propose a distributed robot-in-the-loop simulation-based

methodology. This work presents novelty in extending

previous online on-board distributed approaches with

an on-board simulator for each robot, allowing con-

troller evaluation to be encapsulated virtually per robot,

and selectively transferring a controller on to the same

robot for use in reality.

Zagal et al[25] describe the potential utility of an

on-board simulator in terms of an incorporated aspect

of an embodied robot controller, drawing analogy to

the faculty of dreaming in cognitive neuroscience. This

work proposes a different utility; an on-board simula-

tor may aid the aforementioned problems with an on-

line on-board distributed evolutionary approach. Spa-

tial problems could be minimised by conducting the

majority of evaluations within an on-board simulation;

temporal attributes could be accelerated by allowing

evaluations to happen within an on-board simulation;

selection could be improved by allowing a communi-

cated solution from one robot to be re-evaluated by the

recipient robot’s on-board simulator.

This work addresses the primary issue of the real-

ity gap associated with an on-board simulator. Zagal

et al[25] address the reality gap of an off-board simu-

lator with a co-evolutionary approach encapsulated on

a single robot. Their co-evolutionary approach uses the

difference in fitness of a robot controller between sim-

ulation and reality (a measure of transference) to steer

the evolution of the simulator. Importantly, their ap-

proach evaluates a population of controller solutions in

reality, and then the same controller population is eval-

uated within an evolving population of simulators to

create an explicit measure of transference. This paper

also proposes a co-evolutionary approach to the reality

gap, but has novelty in distributing the on-board sim-
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ulator evolution across a swarm of robots. Therefore

each robot owns only one on-board simulator at any

time, and the number of robots represents the total

evolutionary population of simulator genotypes. This

removes the need to correlate which controller is the

product of which simulator. Furthermore our approach

does not utilise an explicit measure of transference be-

tween the two. We propose that the on-board simula-

tor can gain improving transference by competitive dis-

tributed co-evolution between many robots, by taking

the success of a robots evolved real behaviour as an im-

plicit indicator of the fitness of the associated on-board

simulator. We are interested in investigating this dis-

tributed and implicit selection mechanism of on-board

simulators to avoid the need to evaluate multiple on-

board simulators per robot, and to leverage the variety

of evaluations across many robots against the possibil-

ity of uninformative circumstances of a single robot.

We are able to make a distinction in our approach

by the aspect of the reality gap we wish to address. We

propose that the reality gap can be decomposed in to

three elements of correspondence between reality and

simulation:

Robot-robot correspondence : Refers to physical robot

aspects, such as differences in morphology. The work

of Bongard et al[2] is a primary example of a robot

that is able to adapt a self-model of morphology.

Robot-environment correspondence : Refers to dif-

ferences in the dynamic interactions between a robot

and the environment, both sensory and through ac-

tuation. Bongard et al[2] demonstrates how the rela-

tionship between morphology and a known state of

the environment can be usefully exploited. Zagal et

al[25] co-evolve the physical dynamics of a simulator

coupled to walking gait evolution.

Environment-environment correspondence : Relates

the representation of salient features of the environ-

ment. Notably, such relationships are not intended

as a navigational map. Rather, it should represent

characteristics of the environment that can be alter

behaviours over time, such as spatial density.

To date we have found no examples that specifi-

cally adapt a simulator for environment-environment

correspondence. The environment is of special signifi-

cance for swarm robotics as it is often used as the cue,

memory or coordinating aspect of a system comprised

of self-organising agents[21]. This work documents an

experimental investigation on the environmental corre-

spondence of the reality gap using a swarm of physically

simplistic robots.

In this work a swarm of ten real e-puck robots are

used to investigate the distributed co-evolution of an

on-board simulator to adapt to a changing task en-

vironment through the coupled evolution of controller

solutions. The correspondence between simulation and

reality has a consequence on the transferability of con-

troller solutions. If the on-board simulator environment

model can be appropriately evolved, we can expect to

observe changes in the resultant behaviour from co-

evolved robot controllers to complete a task. A novelty

of the approach is the the potential to improve transfer-

ence between simulation and reality without an explicit

measurement between the two domains. We hypothe-

sise that the variation of on-board simulator environ-

ment models across many robots can be competitively

exploited by comparison of the real controller fitness of

many robots. We hypothesise that the real controller

fitness values across many robots can be taken as in-

dicative of the varied fitness in environmental corre-

spondence of on-board simulators, and used to inform

the distributed evolution an on-board simulator envi-

ronment model without explicit measurement of the

real environment. To test this hypothesis, the foraging

problem is selected, where a swarm of robots must dis-

cover and deposit food items to a designated nest site,

and have the potential to use a moving light source as

an environmental aid.

The remainder of this article is structured as follows:

Section 2 provides a brief overview of our distributed

co-evolutionary approach to the evolution of on-board

simulator and controller. Section 3 describes the hard-

ware used to conduct the experiments. Section 4 details

the specifics of the co-evolutionary algorithm used and

the settings used for the experiments. Section 5 details

the results gained and ends with a discussion. Section

6 draws conclusions from our presented work and gives

projections for future work.

2 Distributed Co-Evolution of an On-Board

Simulator and Controller

This section provides an overview, and specific details

of the implementation of these algorithms are detailed

in the following sections. The proposed co-evolutionary

method has two evolutionary components. One genetic

algorithm is encapsulated on each robot and evolves

a population of controller genotypes within a robot’s

on-board simulator. A second genetic algorithm is dis-

tributed across the physical swarm, where each robot

owns a single instance of an on-board simulator geno-

type, and the swarm of robots constitute an evolving

population of on-board simulators. These algorithms

execute concurrently with each other and the operation

of the mobile robot. Fig.1 illustrates the co-evolution-

ary algorithm in overview.
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Fig. 1 An illustration of the co-evolutionary implementa-
tion. Addressing numbered points: 1) A genetic algorithm
evolves a local population of controller genotypes through
the on-board simulator. 2) The best controller genotype from
simulation is transferred to the real robot. 3) A controller
fitness in reality, in this work foraging efficiency, is used to
indicate the fitness of the associated on-board simulator. 4)
A robot transmits and receives on-board simulator genotypes
and real fitness values. 5) Synchronised with the end of vir-
tual controller evaluation, the on-board simulator is evolved
against the robot’s own perceived fitness and any encountered
robots’ fitness values.

Similar to Zagal et al[25], we utilise a fitness metric

of the evolved controller behaviour within both evolu-

tionary components. The encapsulated controller evolu-

tion is informed by evaluations within the on-board sim-

ulator. After each generation of encapsulated simulated

controller evolution, a controller is instantiated on the

real robot and a real fitness measure of the controller

is generated for use with the distributed simulator evo-

lution. The use of a controller fitness to assess the on-

board simulator is as opposed to an explicit measure-

ment of correspondence between the on-board simula-

tor environment model and reality, such as the exten-

sive set of sensor recordings used for the estimation-ex-

ploration algorithm developed by Bongard et al[2]. We

also do not explicitly compare the controller fitness be-

tween the on-board simulator and real performance of

a robot. Instead we create a competitive system based

on the variation of on-board simulators and real eval-

uations across many robots to attempt to remove the

need for explicit correlation.

Dissimilar to Zagal et al[25] we distribute the simu-

lator evolution. Therefore each robot owns and instanti-

ates only one on-board simulator genotype at any time,

and the number of robots represents the total evolu-

tionary population of simulator genotypes. This imple-

mentation detail removes the need to correlate which

controller is the product of which simulator, and we

make no explicit measure of transference. We hypothe-

sise that the inherent variation in on-board simulators

and the real behavioural performance between many

robots can be used to competitively co-evolute towards

improving simulator transference. From the encapsu-

lated controller evolution, we choose to use the con-

troller genotype with the highest fitness within the on-

board simulator to instantiate on the real robot, result-

ing in a single instance of real activity of a robot as the

sole indicator of the fitness of the on-board simulator.

These implementation choices are for an approach that

maximises the consistency of a robots real behaviour

by minimising the interleaving between simulator and

controller evaluations and correlation between the two.

Each robot evaluates a population of controller geno-

types within it’s on-board simulator. Within this same

time-frame the robot is operating in reality and con-

structs a real fitness measure. The real fitness measure

is broadcast with it’s current on-board simulator geno-

type as part of the distributed evolution of on-board

simulators. Therefore the swarm constitutes many real

fitness assessments (representative of the simulator) oc-

curring in parallel, which is sampled by communica-

tion encounters between mobile robots. An encounter

is defined by the communication range between robots

(25cm), which is necessarily short range for a decen-

tralised self-organising system. Each robot constructs a

temporary population of encountered simulator geno-

types and their associated real-world controller fitness.

The on-board simulator is subjected to it’s own evo-

lution once the current generation of controller evalua-

tions within the on-board simulator has elapsed. There-

fore the population of controller genotypes are evalu-

ated within the on-board simulator within a single real

world evaluation of a controller, and the computation of

evolution for a single generation of both the controller

genotypes and on-board simulator genotype is a mo-

mentary synchronisation event in the operation of the

robot.

3 Experiment Method

We use ten e-puck mobile robots (documented by Mon-

dada et al[15]) each equipped with a Linux extension

board for parallel computation and Wi-Fi connectiv-

ity (documented by Liu and Winfield[11]). The Linux

extension board is used to operate a noise-based[7] min-

imal simulation written in C (see prior work[18]), and

for all evolutionary computation. We use the e-puck

infra-red proximity sensors for obstacle avoidance, de-

termining ambient light levels, and for short range com-

munication between robots. The short range infra-red

communication is used to initiate further communica-

tion between robots over a Wi-Fi network. The Wi-

Fi communication provides superior bandwidth but re-

mains decentralised through the locality of the infra-
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Fig. 2 An illustration of the three environment scenarios.
Large circular outlines represent the arena enclosure. Small
green circles represent food. The blue semi-circle represents
the nest area. Yellow triangles represent a light source loca-
tion (when present).

red communication. A Vicon tracking system monitors

the position of e-pucks and is used in conjunction with

Wi-Fi to facilitate a virtual sensor by informing a robot

if it is spatially located within virtually superimposed

food items or the designated nest site.

4 Experiments

We investigate the distributed evolution of an on-board

simulator environment model against a dynamic task

environment through the co-evolution of controller so-

lutions. If the on-board simulator environment model

can be appropriately adapted, we can expect to observe

changes in the resultant behaviour from co-evolved robot

controllers to complete a task. The proposed method

does not rely on an explicit measure of transference

between simulation and real operation. Rather, it is

proposed that the inherent variation in on-board sim-

ulators and the real performance between many robots

can be used to competitively co-evolve on-board simula-

tors with improving controller transference. To test this

hypothesis, the foraging problem[12] is selected, where

robots must discover and deposit food items to a desig-

nated nest site, and have the potential to use a moving

light source as an environmental aid.

4.1 Experimental Setup

Around the foraging problem, three basic environment

scenarios are applied (Fig.2); a light source over the

nest site (A), no light source (B), or the light source op-

posite the nest site (C). The presence of a light source

should act as a navigational aid, improving the forag-

ing efficiency of a robot through phototaxis behaviour.

The three basic environment scenarios are combined

into five experiment cases, and a sixth control of fixed

random movement obstacle avoidance behaviour with-

out the co-evolutionary approach:

1. No Light Source

2. Light Fixed Over Nest

3. Light Fixed Opposite Nest

4. Light Over Nest → Light Opposite Nest

5. Light Opposite Nest → Light Over Nest.

6. Random Movement

In the first five experiment cases, the hypothesised

outcome is that the distributed on-board simulator evo-

lution should adapt relative to the light stimulus avail-

able in the real environment, and the encapsulated con-

troller evolution should exploit the on-board simulator

model to evolve behaviours with improving foraging ef-

ficiency in the real environment.

4.2 Encapsulated Evolution of Robot Controller

The encapsulated evolution of controllers occurs only

within the on-board simulator of each robot. For each

robot controller genotype to evaluate, one robot is sim-

ulated to forage for 60 virtual seconds. Each robot op-

erates a steady state genetic algorithm to adapt a geno-

type mapping of sensory input to behavioural output,

with the following parameters:

– Genotype Length: 2 (G0, G1)

– Gene values: in range [0.00:0.99]

– Population Size: 10

– Mutation Rate: 20%

– Mutation: Gaussian noise, mean=0 s.d=2

– Cross-over : None

– Selection: Rank-based elitist, top 4 seed lower 6

An internal Food state signifies if a robot is in pos-

session of a food item. G0 corresponds to state Food =

True. G1 corresponds to state Food = False. The values

of G0, G1 are mapped to select a behaviour, as per ta-

ble 1. These values were chosen for an equal distribution

between the possible behaviours.

Value G0 (Food = True) G1 (Food = False)

[0.00 : 0.32] negative phototaxis negative phototaxis
[0.33 : 0.65] random search random search
[0.66 : 0.99] positive phototaxis positive phototaxis

Table 1 Genes G0, G1 mapping of state to behaviour se-
lection, providing a variety of possible responses to the state
Food of the robot.

Selection for reproduction is rank based and elitist.

40% of the population is used to overwrite the lower

ranking percentage. Each gene of the child genotype is

subjected to a 20% chance of a random mutation on a

Gaussian distribution (mean = 0, s.d. = 2). Mutation
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is the only mechanism to introduce variation. We take

these operator parameters from prior related work[18].

The fitness of each genotype is determined by evalu-

ating the performance of the controller phenotype as

a single simulated robot in the on-board simulator as

summation of deposited food as a function of time:

F =

DTotal∑
D=1

TMax − TD (1)

where F is the derived fitness metric, D is a de-

posited food item, TMax is the evaluation time limit of

60 seconds, TD is the recorded time to successfully de-

posit a food item. Time is used rather than quantity

of food for stronger differentiation between efficiency in

solutions. When all 10 genotypes have been evaluated

in the on-board simulator, the genotype with the high-

est simulated fitness value is immediately instantiated

for use on the real robot.

4.3 Distributed Evolution of On-Board Simulator

The distributed evolution on-board simulators operates

across the swarm of mobile robots. A simplistic genetic

algorithm operates on each robot, drawing from a tem-

porary population of simulator genotypes constructed

through communication encounters with other robots.

After each evolution, each robot retains one simulator

genotype, discarding the temporary population which

is reseeded through subsequent encounters with robots.

The following parameters are used:

– Genotype Length: 1 (S0)

– Gene value: in range [0.00:0.99]

– Population Size: variable, maximum 10

– Mutation Rate: 100%

– Mutation: Gaussian noise, mean=0 s.d=2

– Cross-over : None

– Selection: Rank-based elitist, 1 retained, others dis-

carded

The environmental model of the on-board simula-

tor is determined by the single gene value mapping

of S0 (see table 2). The mapping values of S0 to the

environment scenarios are chosen for an equal distri-

bution. Each robot maintains the value of S0 for the

duration of a complete generation of controller eval-

uations within the on-board simulator, after which it

is subjected to distributed evolution operators, and the

on-board simulator is subsequently re-instantiated with

the new mapping. The real robot operates and is eval-

uated for 60 real-time seconds, which also serves as the

time period to encounter other robots and accumulate

foreign S0:FR pairs. Concurrently, an average of 34 real-

time seconds are taken to conduct the necessary ten

instances of sixty simulated second evaluations of con-

troller genotypes within the on-board simulator.

Value S0

[0.00 : 0.32] Light Opposite Nest
[0.33 : 0.65] No Light
[0.66 : 0.99] Light Over Nest

Table 2 Gene S0 mapping to the embedded simulator sce-
nario.

As the robot operates in the real world it broad-

casts it’s current S0 and current real world fitness value

FR, and receives the S0 and FR values of encountered

robots, over a maximum distance of 25cm. FR is deter-

mined as the robot operates by the same equation used

in the encapsulated simulated evaluation (see Eqn.1).

A temporary population of 10 S0:FR pairs are stored

and updated by each robot, representing the variation

and fitness of environment models across the swarm.

The population size of 10 has been selected for a con-

veniently matched proportion to the number of robots

used in our investigation, and has not been empirically

evaluated. Selection from the S0:FR pairs is rank based

elitist, and always subjected to a random mutation on

a Gaussian distribution (mean = 0, s.d. = 2).

An individual robot compares its own S0:FR pair

against the S0:FR values encountered from other robots.

Therefore, with fewer than two robots there is no selec-

tive pressure to form the distributed evolution of S0. A

robot’s accumulated population of foreign S0:FR pairs

and it’s own controller FR value are cleared at the up-

date transition of controller and on-board simulator en-

vironment model.

4.4 Robot Controller

A set of discrete behaviours are pre-defined: obstacle

avoidance, random search, positive phototaxis and neg-

ative phototaxis. The modular behaviours are arranged

in a hierarchy of priority within the subsumption archi-

tecture illustrated in fig. 3. A behaviour based approach

is used to reduce the number of variables in the exper-

iment and maintain a focus on the adaptation of con-

troller solutions with respect to the simulator environ-

ment model. A summary of the controller illustrated in

fig. 3 is as follows. Obstacle avoidance is activated with

the highest priority when triggered by a robot’s proxim-

ity sensors. Negative phototaxis and positive phototaxis

can be activated depending on the Food State and the
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Fig. 3 An illustration of the robot controller as an imple-
mentation of the subsumption architecture.

controller genotype mapping. The random search is al-

ways active, but can be over-ridden by any of the previ-

ous behaviours. The same controller mechanism is used

for both the simulated robot within the on-board simu-

lator and the real robot. The controller can be adapted

by changing the genotype mapping of the Food state to

enable the negative phototaxis or positive phototaxis

behaviours.

4.5 Experiment Settings

The five experiment cases outlined are each run 10

times for a duration of 50 minutes. If the light sourced

is moved, this occurs at the 25 minute mark. The light

source is placed either directly behind the nest site or

exactly opposite on the other side of the arena. Exper-

iments are conducted within an enclosed circular arena

measuring 120cm diameter. The arena is free from ob-

structions. A single circular nest site is superimposed

with a radius of 20cm to intersect the arena bound-

ary and maintains the same coordinates through all ex-

periment runs. Seven food items are randomly placed

within the arena. These food items always appear out-

side the nest area. A total of 10 e-puck robots are used

which are randomly positioned and orientated at the

beginning of an experiment. All e-pucks are activated

by an on-board switch. A photograph of this setup is

shown in fig. 4.

5 Results and Discussion

Fig.5 plots the mean foraging rate for each experiment

case. Using the control case Random Movement, which

does not use the co-evolutionary approach, the Stu-

dent’s t-test (sample size 50, taking mean foraging effi-

ciency at 60 second intervals) indicates that the case No

Fig. 4 A photograph of the real e-pucks within the arena,
and the light source box located in the top left of the picture.
The blocks around the arena enclosure are lead-acid batteries
used to keep the arena in place.

Fig. 5 Graph plotting the foraging rate, calculated as mean
food deposited in 250 second intervals during each experiment
case.

Light had no significant difference from random move-

ment (p>0.5), whilst the other experiment cases differ

significantly from Random Movement (p<0.005). This

suggests that the co-evolutionary approach is able to

make beneficial adaptation to the on-board simulator

when a light source is present, and improving the trans-

ference of controllers. However there is a stark contrast

in foraging efficiency dependent on the location of the

light source. The light source over the nest appears to

double the effective foraging efficiency. The following

sections investigate each experiment case.

5.1 No Light Source

Fig. 6 shows that the mean value of S0 maps to no

light source within the on-board simulator consistently

throughout the experiment. Another simulator environ-
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Fig. 6 No Light Source: Three graphs plotting the mean
value of the genes S0, G0 and G1 over time. The error bars
are the standard deviation of the results. The green horizontal
bands mark the mapping of the gene value to the controller
behaviour or simulator model.

ment mapping would likely lead to the co-evolution of

controllers utilising phototaxis within simulation and a

poor transference. In this case the on-board simulator

has been co-evolved with a strong correlation to the real

environment. The plots for G0 and G1 show a wide dis-

tribution centred on random search behaviours when

with or without food. A wide distribution in G0 and

G1 controller mapping is representative of a poor con-

sensus of which behaviours lead to efficient searching

without a light source.

5.2 Light Source Fixed Over Nest

Fig. 7 shows that the evolved value of S0 averages around

the boundary mapping value of 0.66 with a distribu-

tion that indicates a co-evolved simulator model with a

light source over the nest or no light source. G0 shows a

clear trend towards the use of positive phototaxis when

with food, and G1 trends toward negative phototaxis

to search for food. The narrow distribution of G0 and

G1 controller mapping indicates that these behaviours

provided a consistent means to inform the distributed

evolution of S0, and that S0 gives a strong controller

transference. In this experiment case, the co-evolution-

Fig. 7 Light Fixed Over Nest : Three graphs plotting the
mean value of the genes S0, G0 and G1 over time. The er-
ror bars are the standard deviation of the results. The green
horizontal bands mark the mapping of the gene value to the
controller behaviour or simulator model.

ary approach appears to converge on and exploit the

environment circumstance. The evolutionary develop-

ment in fig.7 is consistent with the superior foraging

efficiency shown in fig.5.

5.3 Light Source Fixed Opposite Nest

Fig. 8 shows a mean value of S0 to map to an on-board

simulator environment model with no light source for

the duration of the experiment, which does not corre-

spond to the actual position of the light source in this

experiment case. Using the no light simulator model,

the G0 and G1 evolve for controllers on average in ran-

dom search behaviour but with a wide distribution. De-

spite generally evolving random search behaviour, fig.5

gave a statistical difference in foraging efficiency for this

experiment case against the Random Movement con-

trol. Importantly, there is a light source in this scenario,

and it is the wide distribution of evolved controller be-

haviour mappings that is able to stochastically utilise

the light source. In which case, an extra foraging ef-

ficiency shown in fig.5 can be explained through the

explorative behaviour of the controller genotype evolu-

tion, rather than a strong controller transference from
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Fig. 8 Light Fixed Opposite Nest : Three graphs plotting the
mean value of the genes S0, G0 and G1 over time. The er-
ror bars are the standard deviation of the results. The green
horizontal bands mark the mapping of the gene value to the
controller behaviour or simulator model.

the on-board simulator. In which case, the success of

a stochastic deviation in controller genotype evolution

would not be an exploitation of the on-board simu-

lator, and would not correlate to and inform the dis-

tributed evolution of the on-board simulator genotype.

This may indicate that there is a problem of precedence

between the co-evolution of an on-board simulator and

controller, and whether one can provide a reliable fit-

ness indication of the other through our distributed co-

evolutionary approach.

5.4 Light Source Over Nest to Light Source Opposite

Nest

In this experiment case the light source is initially lo-

cated over the nest site, and then moved to opposite

the nest half way through the experiment. Fig.9 shows

the mean value of S0 correctly evolving the on-board

simulator to the Light Over Nest scenario for the first

half of the experiment, and the mean values of G0 and

G1 co-evolve appropriately. This relates to the strong

initial foraging efficiency shown in fig.5, and also the

strong foraging efficiency for the Light Fixed Over Nest

experiment case.

Fig. 9 Light Over Nest to Light Opposite Nest : Three graphs
plotting the mean value of the genes S0, G0 and G1 over time.
The error bars are the standard deviation of the results. The
green horizontal bands mark the mappings of the gene value
to the controller behaviour or simulator model. The vertical
blue line represents the point of light source relocation.

Fig.9 shows a slow adaptation of S0 after the en-

vironment transition point in time, which would cause

the evolution of poorly transferring controller solutions

and would relate to the sharp drop in foraging efficiency

shown in fig.5. Whilst the S0 mapping of the light sce-

nario does not successfully converge to the correspond-

ing state of the environment, it does alter in value be-

yond the time of the environmental change. This is as

opposed to the co-evolutionary exploitation shown in

the results for the Light Fixed Over Nest experiment

case. Therefore, we can draw that the exploitation in

Light Fixed Over Nest was related to the stability of the

environment, and this transitional Light Over Nest to

Light Opposite Nest experiment case provokes explo-

rative behaviour from the distributed co-evolutionary

approach.

5.5 Light Source Opposite Nest to Over Nest

In this experiment case the light source is initially lo-

cated over the nest site, and then moved to opposite

the nest half way through the experiment. Before the

environment transition, the mean value of S0 moves to-
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Fig. 10 Light Opposite Nest to Light Over Nest : Three
graphs plotting the mean value of the genes S0, G0 and G1

over time. The error bars are the standard deviation of the re-
sults. The green horizontal bands mark the mappings of the
gene value to the controller behaviour or simulator model.
The vertical blue line represents the point of light source re-
location.

wards the boundary value of the mapping between a

simulator environment model with no light source and

a light source opposite the nest site. The exact reason

for the adaptation towards the correct simulator envi-

ronment scenario in this instance and not in the ex-

periment case Light Fixed Opposite Nest (fig.8) is not

known, and may relate to a potential problem of prece-

dence between the evolution of an on-board simulator

and subsequent evolution of controllers, noted earlier.

This suggests a larger number of experiment iterations

are required to isolate the anomaly in future work. How-

ever, despite the apparent convergence of S0 toward an

appropriate environment correspondence, G0 and G1

evolve for a wide distribution of controller behaviour

mappings. This indicates that the controller evolution

did not provide a clear behavioural advantage between

random search behaviour and negative phototaxis to

inform the simulator evolution.

5.6 Discussion

The correspondence between simulation and reality has

a consequence on the transferability of controller solu-

tions. We hypothesise that the variation of on-board

simulators across many robots can be competitively ex-

ploited via the associated real controller fitness of each

robot to inform the evolution of an on-board simula-

tor environment model without explicit measurement of

the real environment. Our principle result on foraging

efficiency across varying experiment cases (fig.5) sug-

gests that our distributed co-evolutionary approach is

able to adapt an on-board simulator environment model

to the presence of a light source, and consequently im-

proves the evolution of controller solutions tasked with

foraging. On closer inspection the results are mixed.

In support of our hypothesis, despite the No Light

experiment drawing no significant difference in forag-

ing efficiency to the Random Movement control, the

on-board simulators evolve with a convergence on the

correct environment correspondence. If the on-board

simulator was entirely disassociated from reality, we

would expect to observe a wide distribution of simu-

lator models. The foraging efficiency appears similar

to the control due to the inefficient common mode of

random movement behaviour in the absence of a light

source. However, the real controller performance does

inform the on-board simulator evolution.

Furthermore, the experiment cases Light Fixed Over

Nest and Light Over Nest to Light Opposite Nest show

a convergence of on-board simulators to the relevant

environment model scenario and a higher foraging effi-

ciency. In the case of the light source relocating, the on-

board simulator does not successfully re-converge to the

relevant environment model scenario, but there is a vis-

ible response in evolutionary development. These two

experiment cases, having the same initial environment

condition, help to demonstrate that the distributed co-

evolutionary approach is able to exploit a stable envi-

ronment circumstance or respond to a changing envi-

ronment. This supports our hypothesis that .

Compromising our hypothesis, despite a significant

improvement in foraging efficiency relative to the con-

trol, the Light Opposite Nest experiment case failed

to evolve an on-board simulator with the relevant en-

vironment model scenario. In actuality, the on-board

simulator evolved with a convergence to the no light

scenario, and evolved a wide controller mapping distri-

bution comparable to the No Light experiment case.

In which case, the approach was unable to identify and

utilise the light source through the real behaviour of the

robots. The statistical difference in foraging efficiency

from the control was likely gained through the explo-
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rative behaviour of the controller evolution to make use

of a light source regardless of the on-board simulator.

Furthermore, whilst the Light Opposite Nest to Light

Over Nest experiment case appears to initially evolve

the relevant environment model scenario, the controller

mapping evolves with a wide distribution, indicating

that there is an ambiguity as to which behaviours trans-

fer well to the real environment when the light is oppo-

site the nest. There is a change in evolutionary devel-

opment related to the light source relocation, but not

enough to reach the much higher foraging efficiency oth-

erwise apparent when the experiments start with the

light source over the nest.

Our results indicate that it is possible to couple the

distributed evolution of an on-board simulator with the

encapsulated evolution of a controllers, providing that

the environment gives a strong enough stimulus draw a

meaningful real world fitness assessment. When this is

not true, the evolutionary development reflects the am-

biguity. In our investigation this weakness is when the

light is opposite the nest. We hypothesise that when

the light is above the nest it acts as a strong attrac-

tor, but opposite the nest site the light disperses in all

directions providing only a weak repulsive navigational

aid.

6 Conclusions and Future Work

In this work a background motivation toward an on-

line on-board distributed co-evolutionary approach for

swarm robotics is described. We propose that on-board

simulation and evolutionary computation is an appeal-

ing design approach for swarm robotics. We propose

that an on-board simulator may aid the currently docu-

mented issues facing online on-board distributed evolu-

tionary robotics. We investigate the reality gap, specifi-

cally the environmental correspondence of an on-board

simulator, by a novel distributed co-evolutionary ap-

proach to improve the transference of controllers evolved

within an on-board simulator. A novelty of our ap-

proach is the the potential to improve transference be-

tween simulation and reality without an explicit mea-

surement between the two domains. We are interested

in a distributed and implicit selection mechanism of on-

board simulators to avoid the need to evaluate multiple

on-board simulators per robot, and to leverage the vari-

ety of evaluations across many robots against the possi-

bility of uninformative circumstances of a single robot.

We hypothesise that the variation of on-board simu-

lator environment models across many robots can be

competitively exploited by comparison of the real con-

troller fitness of many robots. We hypothesise that the

real controller fitness values across many robots can be

taken as indicative of the varied fitness in environmen-

tal correspondence of on-board simulators, and used to

inform the distributed evolution an on-board simula-

tor environment model without explicit measurement

of the real environment.

Our results demonstrate that our online on-board

distributed co-evolutionary approach creates an adap-

tive relationship between the on-board simulator envi-

ronment model, the real world behaviour of the robots,

and the state of the real environment. The results indi-

cate that our approach is sensitive to whether the real

behavioural performance of the robot is able to inform

on the state real environment. Our results demonstrate

a good co-evolutionary convergence of controllers and

on-board simulators when a light source can be used

as a navigational attractor to the nest site (Light Fixed

Over Nest, initially in Light Over Nest to Light Opposite

Nest). However, if the light source is used as a repulsive

navigational aid (Light Fixed Opposite Nest, initially in

Light Opposite Nest to Light Over Nest), a wide dis-

tribution of controller genotype mappings evolved, in-

dicating an ambiguity in useful controller behaviours,

and may cause a problem of precedence between the

co-evolution of an on-board simulator and controller,

which will be investigated in the future. The anomaly in

our results, where a different evolutionary convergence

of the on-board simulator occurs to the same initial en-

vironment scenario between the Light Fixed Opposite

Nest and Light Opposite Nest to Light Over Nest ex-

periment cases requires further investigation.

The dependence of our approach on the informative

quality of the environment through robot behaviours

may be similar to the boot-strapping problem high-
lighted by Konig et al[10], which links the distributed

evolutionary development of robot behaviours to their

spatial mobility. In future work we would like to vary

the number of robots, as the number of robots consti-

tutes the evolutionary population of on-board simula-

tors, to investigate any gains of parallelism in evalua-

tions towards evolutionary convergence. Logically the

number of robots has a relationship to the available

space of operation, creating a further variable of spatial

density of robots. In our decentralised approach, which

necessitates short range communication, we hypothe-

sise that the spatial density and mobility of robots will

impact the connectivity of the distributed evolutionary

algorithm. In this context, our approach with an on-

board simulator bears resemblance to the Island Model

spatially structured evolutionary algorithm[22]. Future

work would specifically investigate spatial aspects relat-

ing to connectivity in distributed evolution on mobile

robots as a parallel to the field of spatially structured

evolutionary algorithms, and the utility of an on-board
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simulator to improve the mechanism of evolutionary se-

lection through virtual evaluations.
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