### Accepted Manuscript Title: The effectiveness of therapeutic exercise for joint hypermobility syndrome: A systematic review Author: Shea Palmer Samuel Bailey Louise Barker Lauren Barney Ami Elliott PII: S0031-9406(13)00084-9 DOI: http://dx.doi.org/doi:10.1016/j.physio.2013.09.002 Reference: PHYST 723 To appear in: *Physiotherapy* Received date: 24-5-2013 Accepted date: 25-9-2013 Please cite this article as: Palmer S, Bailey S, Barker L, Barney L, Elliott A, The effectiveness of therapeutic exercise for joint hypermobility syndrome: a systematic review, *Physiotherapy* (2013), http://dx.doi.org/10.1016/j.physio.2013.09.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. | 1 | TITLE PAGE | |----|--------------------------------------------------------------------------------------------------------------------------------------------| | 2 | | | 3 | Title | | 4 | The effectiveness of therapeutic exercise for joint hypermobility syndrome: a | | 5 | systematic review | | 6 | | | 7 | Author names and affiliations | | 8 | Shea Palmer <sup>1</sup> , Samuel Bailey <sup>1</sup> , Louise Barker <sup>2</sup> , Lauren Barney <sup>1</sup> , Ami Elliott <sup>3</sup> | | 9 | <sup>1</sup> Department of Allied Health Professions, Faculty of Health & Life Sciences, | | 10 | Glenside Campus, Blackberry Hill, Bristol, UK, BS16 1DD | | 11 | <sup>2</sup> Royal Devon & Exeter NHS Foundation Trust, Barrack Rd, Exeter, Devon, UK, EX2 | | 12 | 5DW | | 13 | <sup>3</sup> Plymouth Hospitals NHS Trust, Derriford Road, Crownhill, Plymouth, Devon, UK, | | 14 | PL6 8DH | | 15 | | | 16 | E-mail address | | 17 | Shea Palmer Shea.Palmer@uwe.ac.uk | | 18 | | | 19 | Corresponding author | | 20 | Professor Shea Palmer, Professor of Musculoskeletal Rehabilitation, Department of | | 21 | Allied Health Professions, Faculty of Health & Life Sciences, Glenside Campus, | | 22 | Blackberry Hill, Bristol, UK, BS16 1DD. E-mail Shea.Palmer@we.ac.uk, Tel +44 | | 23 | (0)117 3288919, Fax +44 (0)117 3288437 | | 24 | | | 25 | Word count 2 998 | | 1 | ABSTRACT | |----|---------------------------------------------------------------------------------------| | 2 | | | 3 | Title: The effectiveness of therapeutic exercise for joint hypermobility syndrome: a | | 4 | systematic review | | 5 | Background: Joint hypermobility syndrome (JHS) is a heritable connective tissue | | 6 | disorder characterised by excessive range of movement at multiple joints | | 7 | accompanied by pain. Exercise is the mainstay of management yet its effectiveness | | 8 | is unclear. | | 9 | Objectives: To establish the effectiveness of therapeutic exercise for JHS. | | 10 | Design: Systematic literature review. | | 11 | Data sources: A search of nine online databases, supplemented by a hand search | | 12 | and snowballing. | | 13 | Study eligibility criteria (participants and interventions): People diagnosed with | | 14 | JHS (rather than asymptomatic generalised joint laxity); therapeutic exercise (of any | | 15 | type) used as an intervention; primary data reported; English language; published | | 16 | research. | | 17 | Study appraisal and synthesis methods: Methodological quality was appraised by | | 18 | each reviewer using Critical Appraisal Skills Programme checklists. Articles were | | 19 | then discussed collectively and disagreements resolved through debate. | | 20 | Results: 2 001 titles were identified. Four articles met the inclusion criteria, | | 21 | comprising one controlled trial, one comparative trial and two cohort studies. All | | 22 | studies found clinical improvements over time. However there was no convincing | | 23 | evidence that exercise was better than control or that joint-specific and generalised | | 24 | exercise differed in effectiveness. | | 25 | Limitations: The studies used heterogeneous outcome measures, preventing | - pooling of results. Only one study was a true controlled trial which failed to report - 2 between-group statistical analyses post-treatment. - 3 Conclusions and implications of key findings: There is some evidence that - 4 people with JHS improve with exercise but there is no convincing evidence for - 5 specific types of exercise or that exercise is better than control. Further high quality - 6 research is required to establish the effectiveness of exercise for JHS. - 7 **Keywords** - 8 Joint hypermobility; benign hypermobility syndrome; exercise; exercise therapy; - 9 systematic review 1 MANUSCRIPT 2 3 TITLE 4 5 The effectiveness of therapeutic exercise for joint hypermobility syndrome: a 6 systematic review 7 8 9 INTRODUCTION Rationale 10 11 Joint hypermobility syndrome (JHS) has been defined as a "heritable disorder of the 12 connective tissues characterised by hypermobility, often affecting multiple joints, and musculoskeletal pains in the absence of systemic inflammatory joint disease such as 13 14 rheumatoid arthritis" [1]. Variation in diagnostic criteria makes interpretation of 15 published literature difficult but the revised Brighton Criteria [2] are now widely used. 16 JHS is generally accepted to be more prevalent in children, in females and in some 17 ethnic groups. Approximately 5% of women and 0.6% of men experience symptomatic joint hypermobility [3]. 18 19 Joint pain in JHS is thought to be caused by excessive movement increasing 20 stress on joint surfaces, ligaments and neighbouring structures [3]. Pain may cause 21 muscle inhibition, leading to atrophy and reduced joint control [4]. Proprioceptive 22 acuity may also be adversely affected [5, 6], perhaps due to joint mechanoreceptor 23 damage [7]. The inability to acknowledge extreme joint ranges may create an even 24 more unstable joint by further stretching supporting structures. JHS can be 25 accompanied by fatigue [8], anxiety and depression, impacting negatively on social | 1 f | unction [9 | 9] and | thereby | having | a substantial | impact on | individuals. | |-----|------------|--------|---------|--------|---------------|-----------|--------------| |-----|------------|--------|---------|--------|---------------|-----------|--------------| | Acute pain episodes may be managed using taping, bracing or splinting [4] or | |----------------------------------------------------------------------------------| | with non-steroidal anti-inflammatory drugs [3]. However education [10, 11] and | | therapeutic exercise [12] are the mainstays of long term management. Encouraging | | an active lifestyle may improve function and enhance quality of life [13]. | Strengthening exercises targeting stabilising muscles around hypermobile joints might enhance joint support throughout movement and reduce pain [14, 15]. Closed chain exercises may reduce strain on injured ligaments [16], enhance proprioceptive feedback [4], and optimise muscle action [17]. Coordination and balance exercises such as wobble board training may improve proprioception [18, 19]. Neural pathways and movement patterns consisting of muscle pair cocontractions are reinforced [20]. This can encourage compensation reactions [21], preventing joints moving into extreme ranges and avoiding further injury [3]. In contrast to specific muscle training, a generalised exercise approach can also be taken, addressing cardio-respiratory, musculoskeletal and neurological aspects of movement [22] and reducing general deconditioning [23]. Hydrotherapy can be a successful medium in which to perform such exercises [22], challenging balance and core strength within a supportive environment, with water resistance and buoyancy increasing exercise variability [24]. Although exercise is widely regarded as a core component of JHS management [12, 4], there is no clear consensus about its effectiveness. There is generally a lack of high quality research which might contribute to the prescription of inappropriate interventions [25] and negative experiences of physiotherapy [1]. It is timely that the available evidence for exercise should be systematically evaluated. | 1 | Objectives | |----|--------------------------------------------------------------------------------------------| | 2 | This systematic review aimed to establish the effectiveness of therapeutic exercise | | 3 | for JHS. Due to the small number of studies identified in initial scoping work, it was | | 4 | decided not to prescribe the specific type of exercise or the clinical outcomes. | | 5 | | | 6 | | | 7 | METHODS | | 8 | This review has been reported in accordance with PRISMA recommendations [26]. | | 9 | | | 10 | Protocol and registration | | 11 | No prior protocol was published. | | 12 | | | 13 | Eligibility criteria | | 14 | The following inclusion criteria were applied to retrieved records: 1. people with joint | | 15 | hypermobility syndrome (rather than asymptomatic generalised joint laxity); 2. | | 16 | therapeutic exercise (of any type) used as an intervention; 3. human participants; 4. | | 17 | primary data reported; 5. English language; 6. published research. The criteria were | | 18 | applied in turn to the titles, abstracts and full texts. No date restrictions were used to | | 19 | maximise record retrieval. All study designs were included. | | 20 | | | 21 | Information sources | | 22 | Following discussion and advice from a University librarian, nine online databases | | 23 | were searched. These were Allied & Complementary Medicine (AMED); British | | 24 | Nursing Index (BNI); Cumulative Index to Nursing & Allied Health Literature | | 25 | (CINAHL); Cochrane Library; Embase; Healthcare Management Information | | 1 | Consortium (HMIC); Medline; Physiotherapy Evidence Database (PEDro); and | |----|------------------------------------------------------------------------------------------| | 2 | SportDiscus. The OVID platform was used to search Embase and HMIC; EBSCO for | | 3 | AMED, CINAHL, Medline and SPORTDiscus; and ProQuest for BNI. The electronic | | 4 | search was supplemented by a manual hand search of relevant journals | | 5 | (Supplemental Information, Table A) and by snowballing of full articles retrieved. | | 6 | | | 7 | Search | | 8 | Key search concepts were identified as 'joint hypermobility syndrome' and | | 9 | 'therapeutic exercise'. Team discussion and an online thesaurus were used to | | 10 | identify alternative terms for the search key words. The final search terms are | | 11 | presented in Supplemental Information, Table B. The search strategy for EBSCO, | | 12 | OVID, ProQuest and the Cochrane Library were identical. PEDro required an | | 13 | adapted search strategy, where each search term for the 'joint hypermobility | | 14 | syndrome' concept was searched individually. This was felt to be sensitive enough | | 15 | for this physiotherapy-specific database. The search was conducted on 23 <sup>rd</sup> | | 16 | November 2012. | | 17 | | | 18 | Study selection | | 19 | Duplicates were removed and the inclusion criteria applied to the titles of retrieved | | 20 | records. The abstracts of all remaining records were then obtained and the criteria | | 21 | applied again. Finally the full texts of remaining articles were obtained and the | | 22 | process repeated. Snowballing from the reference lists of the full articles maximised | | 23 | identification of relevant literature [27]. All decisions were discussed and agreed as a | | 24 | group, ensuring robust application of the inclusion criteria. | | 25 | | | 1 | Data collection process and data items | |----|--------------------------------------------------------------------------------------------| | 2 | Key data was extracted from the final articles, including study design, participant | | 3 | characteristics, sample size, diagnostic criteria, outcome measures, main findings | | 4 | and detailed information about the exercise interventions. | | 5 | | | 6 | Risk of bias in individual studies | | 7 | Risk of bias was assessed using Critical Appraisal Skills Programme (CASP) | | 8 | checklists [28]. CASP was selected because different checklists are available to | | 9 | assess the quality of different research designs. Each group member independently | | 10 | applied the appropriate checklist to each of the final articles. Individual critiques were | | 11 | discussed as a group with any disagreements resolved by group consensus. | | 12 | | | 13 | Additional analyses | | 14 | Where available, data on pain intensity from pre-treatment to immediately post- | | 15 | treatment was used to calculate standardised effect sizes. Due to heterogeneity in | | 16 | study design and outcomes, there was no other formal supplementary analysis or | | 17 | attempt to summarise or synthesise results across the included studies. Consistent | | 18 | patterns in the risk of bias across studies were identified following individual study | | 19 | assessment. | | 20 | | | 21 | | | 22 | RESULTS | | 23 | Study selection | | 24 | The process of study selection is summarised in Supplemental Information, Figure A. | After duplicates were removed a total of 2 001 potentially relevant articles were | 1 | identified (1 967 from the electronic search, two from the hand search and 32 from | |----|----------------------------------------------------------------------------------------------| | 2 | snowballing). Successive application of the inclusion criteria to the titles, abstracts | | 3 | and full texts left four articles for inclusion within the review (three from the electronic | | 4 | and hand search and one from snowballing). | | 5 | | | 6 | Study characteristics | | 7 | Table 1 provides a synopsis of each of the four included studies and Table 2 | | 8 | describes the exercise interventions more fully. The final four studies comprised a | | 9 | randomised comparative trial [29], a randomised controlled trial [30], and two cohort | | 10 | studies [1, 31]. Barton and Bird [31] failed to report their diagnostic criteria whilst the | | 11 | others used the Brighton criteria. The study by Kemp et al [29] was in a paediatric | | 12 | population, whilst the other studies were in adults. Sample sizes in the exercise | | 13 | intervention groups ranged from n=15 [30] to n=30 [29]. The studies by Sahin et al | | 14 | [30] and Ferrell et al [1] were specific to the knee joint, whilst the other two studies | | 15 | incorporated whole body exercise interventions. | | 16 | | | 17 | Risk of bias within studies | | 18 | The CASP tool for randomised controlled trials was used to assess the trials by | | 19 | Kemp et al [29] and Sahin et al [30]. The CASP tool for cohort studies was applied to | | 20 | Ferrell et al [1] and Barton and Bird [31]. Key findings from this quality appraisal are | | 21 | detailed below. | | 22 | The randomised comparative trial by Kemp et al [29] compared generalised | | 23 | exercise against targeted (joint-specific) exercise. The assessing therapist was | | 24 | reported to be blind to treatment allocation and the treating therapist was blind to | assessment data, although the success of blinding was not reported. Randomisation | 1 | was via a computer-generated list sequence contained in opaque envelopes but it | |----|-----------------------------------------------------------------------------------------| | 2 | was not clear who opened these and made the treatment allocations. The | | 3 | prospective sample size calculation of n=48 in each group was not reached and | | 4 | attrition was high (28% at 2 months and 44% at 5 months). The authors did not find | | 5 | statistically significant differences in baseline characteristics between those who did | | 6 | and did not complete the final assessment, although such analysis could be subject | | 7 | to type two errors. Closer inspection suggests a trend towards those dropping out | | 8 | having: less back pain, joint swelling, pain with exercise and medications; lower | | 9 | CHAQ scores; higher shuttle test performance; and higher parent's assessment of | | 10 | child's pain and parent's global assessment. Issues related to exercise adherence | | 11 | were not explicitly assessed. Other aspects of the trial seemed rigorous. | | 12 | The randomised controlled trial by Sahin et al [30] compared the effectiveness | | 13 | of knee proprioception exercises against a control group. The process of allocating | | 14 | JHS patients to exercise and control conditions was inadequately reported and there | | 15 | was no reference to blinding patients, assessors or doctors delivering the exercise | | 16 | intervention. As highlighted in Table 1, there is some confusion in the study report | | 17 | related to sample sizes and there was no prospective sample size calculation. | | 18 | Exercise adherence and participant attrition are not reported. Statistical analyses of | | 19 | between-group differences after treatment are not reported and conclusions are | | 20 | instead based upon analysis of changes over time. | | 21 | The cohort study by Ferrell et al [1] evaluated knee exercises. Analysis was | | 22 | limited to those who completed the exercise intervention, with 10% attrition due to | | 23 | relocation (n=2). It is not known whether there was any attempt to blind assessors or | | 24 | patients to the aims of the study or outcome scores. The wording used for the | | 25 | assessment of pain by visual analogue scale (VAS) was not clearly described. Other | | 1 | aspects of the study are reported well. Adherence was monitored using an exercise | |----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2 | diary and was found to be generally very positive. | | 3 | The cohort study by Barton and Bird [31] investigated a general exercise | | 4 | programme. There was a lack of detail concerning outcome assessment. The study | | 5 | used a questionnaire that seems to have been developed by the authors but the | | 6 | method of development or psychometric properties are not reported. The same | | 7 | assessor was used throughout to enhance reliability, although attempts to blind | | 8 | patients or assessors are not reported. Exercise adherence was recorded but not | | 9 | reported. | | 10 | | | 10 | | | 11 | Results of individual studies | | | Results of individual studies Kemp et al [29] found no differences between groups in childrens' pain, parents' pain, | | 11 | | | 11<br>12 | Kemp et al [29] found no differences between groups in childrens' pain, parents' pain, | | 11<br>12<br>13 | Kemp et al [29] found no differences between groups in childrens' pain, parents' pain, CHAQ scores or the six-minute shuttle test. The only difference between groups was | | 11<br>12<br>13<br>14 | Kemp et al [29] found no differences between groups in childrens' pain, parents' pain, CHAQ scores or the six-minute shuttle test. The only difference between groups was for parental global assessment which was better with targeted exercise at ~5 months | Sahin et al [30] found that exercise reduced participants' pain (at rest and on movement) and increased knee joint proprioception. This conclusion is based upon significant improvements observed over time in the exercise group which were absent in the control group. However there is no specific between-group statistical analysis reported and therefore a question mark remains about the true effectiveness of exercise. The AIMS-2 data demonstrated a statistically significant improvement over time in the exercise group for the occupational activity subscale change. | 1 | (but not for physical status, emotional status, symptoms or social activity status). | |----|-----------------------------------------------------------------------------------------| | 2 | Ferrell et al [1] found that therapeutic exercise enhanced proprioceptive | | 3 | acuity, balance and strength; reduced pain VAS scores; and improved the physical | | 4 | functioning and mental health components of the SF-36. | | 5 | Barton and Bird [31] found significant improvements in the maximum distance | | 6 | walked and pain on movement (in both the most affected joint and in all joints in | | 7 | general). The other 11 (out of 14) questionnaire items were non-significant. Range of | | 8 | motion of both knee joints improved with exercise but the other 15 (out of 17) joints | | 9 | were unchanged. Mean Carter and Wilkinson scores [32], an earlier version of the | | 10 | Beighton score, were also non-significant. | | 11 | | | 12 | Synthesis of results | | 13 | Synthesis of results was not possible due to heterogeneity of study designs and | | 14 | outcome measures. Standardised effect sizes for pain ranged from 0.75 to 1.72. | | 15 | | | 16 | Risk of bias across studies | | 17 | A common risk of bias includes convenient sampling from single centres. | | 18 | | | 19 | | | 20 | DISCUSSION | | 21 | Summary of evidence | | 22 | This review identified one randomised comparative trial in children [29], and one | | 23 | randomised controlled trial [30] and two cohort studies in adults [1, 31]. The evidence | | 24 | suggests that people with JHS who undertake exercise improve over time in a range | | 25 | of patient (and parent) reported outcomes (including pain, global assessment of the | - 1 impact of hypermobility, maximum distance walked and quality of life) and objective - 2 outcomes (including proprioception, balance, strength and range of movement). - 3 There was no convincing evidence that improvements were any better than - 4 comparator groups. No adverse effects were reported. The quality of the two - 5 randomised trials [29, 30] has previously been independently rated as 6/10 and 3/10 - 6 respectively [33]. 7 8 ### Limitations - 9 There were some issues evident with sampling, diagnostic criteria and sample sizes, - increasing the likelihood of type two errors and reducing external validity. All four - studies used convenience sampling and one study [29] was on a paediatric - population. The Brighton Criteria [2] were used for diagnosis in three of the four - studies [1, 29, 30], although application differed slightly (See Table 1). Barton and - 14 Bird [31] report using recruitment interviews but fail to explicitly outline their - diagnostic criteria. Sample sizes were small, ranging from n=20 to 57 (with n=15 to - 30 in the exercise intervention arms). Only Kemp et al [29] reported prospective - sample size calculations, although they failed to recruit to those. - Randomisation and blinding issues were also evident. Of the two randomised - studies, only Kemp et al [29] report a clear randomisation process. Sahin et al [30] - failed to state their randomisation method so potential allocation bias is unknown. - 21 Three studies fail to report attempts to blind researchers [1, 30, 31]. Although Kemp - 22 et al [29] conducted a single-blind trial, the success of blinding was not reported. - 23 Kemp et al [29] lost 44% of their participants to follow up and Ferrell et al [1] - lost two of their 20 participants due to relocation (10%). Intention-to-treat analyses - were not employed but may have helped to reduce potential attrition bias [34]. 1 Attrition was not reported in the other studies [30, 31]. | 2 | The exercise interventions demonstrated wide heterogeneity (Table 4). Two | |----|-----------------------------------------------------------------------------------------| | 3 | studies concentrated on the knee joint [1, 30], limiting generalisability. Barton and | | 4 | Bird [31] provided a 'menu' of available exercises, avoiding exercises known to | | 5 | exacerbate individuals' symptoms. There is variable focus on proprioceptive, balance | | 6 | and strength exercises, depending on individual study aims. This means that | | 7 | observed improvements cannot easily be attributed to one type of exercise. The | | 8 | descriptions of specific exercises, repetitions and progression are often difficult to | | 9 | interpret and replicate. There were very different levels of exercise supervision | | 10 | between studies and the location of exercise (home versus clinic) also varied (see | | 11 | Table 2). The very close supervision implemented by Sahin et al [30] (three times per | | 12 | week for eight weeks, supervised by a doctor in clinic) seems unrealistic for most | | 13 | healthcare settings. | | 14 | The only trial to include a no exercise control [30] failed to conduct direct | | 15 | between-group statistical analyses, basing their conclusions on differences over | | 16 | time. The lack of a no exercise control group [29] and complete lack of comparison | | 17 | groups [1, 31] in the other studies means that the true effectiveness of exercise in | | 18 | this condition remains unknown. The length of follow up varied from immediately | | 19 | following the end of the exercise intervention [1, 30] to six weeks [31] and | | 20 | approximately 3 months afterwards [29]. Barton and Bird [31] recommended | | 21 | abstention from exercise during follow up, which saw a reversal in training effects. It | | 22 | is not clear what advice patients in Kemp et al [29] received about maintaining | | 23 | exercise during the follow-up period but most improvements were maintained at 3 | A wide range of outcome measures were used, with all four using a visual months. The long term effects of exercise remain unclear. 24 | 1 | analogue scale (VAS) for pain, albeit very differently. For example Kemp et al [29] | |----|----------------------------------------------------------------------------------------------| | 2 | used a VAS with anchors of 'no pain' to 'worst pain possible' for children aged eleven | | 3 | to sixteen but a faces pain scale for those aged seven to eleven. Barton and Bird | | 4 | [31] do not report the anchors used but four separate VASs assessed 'the most | | 5 | affected joint at rest', 'the most affected joint on movement', 'the pain in all your joints | | 6 | in general at rest' and 'the pain in all your joints in general on movement'. Sahin et al | | 7 | [30] used anchors of 'no pain' and 'severe pain' for knee pain 'during movement' and | | 8 | 'resting position'. Ferrell et al [1] do not report the anchors used. Such variations in | | 9 | methodology complicate accurate comparisons and pooling of study results. | | 10 | Ferrell et al [1] established reliability of their outcome measures by retesting a | | 11 | subgroup of participants prior to implementing the exercise intervention. However, | | 12 | Barton and Bird [31] use a self-composed questionnaire with no evidence of | | 13 | psychometric properties and fail to report whether goniometry assessed active or | | 14 | passive movement. | | 15 | It would be useful if future research addressed issues related to sampling bias | | 16 | and sample size through multi-centre recruitment. The Brighton (1998) criteria [2] | | 17 | should be used to standardise diagnosis and participant and researcher blinding | | 18 | should be enhanced. Longer-term follow up and more complete description of the | | 19 | exercise interventions would be helpful. | | 20 | A limitation of this review is that it was restricted to published literature in the | | 21 | English language and it is therefore possible that relevant material may have been | | 22 | missed. | | 23 | | | 24 | Conclusions | | 25 | Overall, the available evidence suggests that patients who received an exercise | - 1 intervention improved over time and no adverse effects were reported. However, - 2 there was no convincing evidence that generalised exercise was any better than - 3 joint-specific exercise [29] or that knee exercises were any better than a control - 4 condition [30]. Clear cause-effect relationships for exercise have therefore not been - 5 demonstrated. The methodological quality of the included studies was generally - 6 lacking, particularly with regards statistical power and adequate control conditions. - 7 Further robust studies are required to determine the effectiveness of therapeutic - 8 exercise for the management of JHS. 9 - 10 **Ethical approval:** Not required. - 11 **Funding:** No funding was received to support this work. - 12 **Conflict of interest:** There are no conflicts of interest. 13 14 15 ### REFERENCES - 1. Ferrell W R, Tennant N, Sturrock RG, Ashton L, Creed G, Brydson G, Rafferty D. - 17 Amelioration of symptoms by enhancement of proprioception in patients with joint - hypermobility syndrome. Arthritis & Rheumatism 2004;50(10):3323-8. - 19 2. Grahame R, Bird HA, Child A. The revised (Brighton 1998) criteria for the - diagnosis of the JHS. Journal of Rheumatology 2000;27:17779. - 21 3. Simpson MR. Benign joint hypermobility syndrome: evaluation, diagnosis, and - 22 management. Journal of the American Osteopathic Association: Clinical Practice - 23 2006;106(9):531-6. - 4. Keer R, Simmonds J. Joint Protection and physical rehabilitation of the adult with - 25 hypermobility. Current Opinion in Rheumatology 2011;23:131-6. - 5. Hall MG, Ferrell WR, Sturrock RD, Hamblen DL, Baxendale RH. The effect of the - 2 hypermobility syndrome on knee joint proprioception. British Journal of - 3 Rheumatology 1995;34:121-5. - 4 6. Fatoye F, Palmer S, Macmillan F, Rowe P, van der Linden M. Proprioception and - 5 muscle torque deficits in children with hypermobility syndrome. Rheumatology - 6 2009; 48(2):152-7. - 7. Frontera WR, editor. Rehabilitation of sports injuries: scientific basis. Oxford: - 8 Wiley-Blackwell; 2003 - 9 8. Hakim AJ, Grahame R. Non-musculoskeletal symptoms in joint hypermobility - syndrome. Indirect evidence for autonomic dysfunction? Rheumatology - 11 2004;43(9):1194-5. - 12 9. Bravo JF, Sanhueza G, Hakim AJ. Neuromuscular physiology in joint - hypermobility. In: Hakim AJ, Keer R, Graham R, editors. Hypermobility, - fibromyalgia and chronic pain. London: Churchill Livingstone; 2010. - 15 10. Russek LN. Joint Hypermobility. Physical Therapy 1999;79(6):591-9. - 11. Russek LN. Examination and treatment of a patient with hypermobility syndrome. - 17 Physical Therapy 2000;80:386-98. - 18 12. Kerr AJ, Macmillan CE, Uttley WS, Luqamni RA. Physiotherapy for children with - 19 hypermobility syndrome. Physiotherapy 2000;86(6):313-7. - 20 13. Simmonds JV, Keer RJ. Hypermobility and the hypermobility syndrome, Part 2: - 21 Assessment and management of hypermobility syndrome: Illustrated via case - 22 studies. Manual Therapy 2008;13(2):e1-e11. - 23 14. Graves JE, Pollock ML, Jones AE. Specificity of limited range of motion variable - resistance training. Medicine and Science in Sports and Exercise 1989;21(1):84- - 25 9. - 1 15. Kitai TA, Sale DG. Specificity of joint angle in isometric training. European Journal - of Applied Physiology 1989;58(7):744-8. - 3 16. Fitzgerald GK. Open versus closed kinetic chain exercise: Issues in rehabilitation - 4 after anterior cruciate ligament reconstructive surgery. Physical Therapy - 5 1997;77(12):1747-54. - 6 17. Stensdotter A, Hodges PW, Mellor R, Sundelin G, Ger-Ross CHA. Quadriceps - 7 activation in closed and in open kinetic chain exercise. Official Journal of the - 8 American College of Sports Medicine 2003;35(12):2043-7. - 9 18. Mallik AK, Ferrell WR, McDonald A. Impaired proprioceptive acuity at the - proximal interphalangeal joint in patients with the hypermobility syndrome. British - 11 Journal of Rheumatology 1994;33:631-7. - 19. Bernier JN, Perrin DH. Effect of co-ordination training on proprioception of the - functionally unstable ankle. Journal of Orthopaedic and Sports Physical Therapy - 14 1998;27(4):264-75. - 20. Lephart SM, Fu FH, editors. Proprioception and neuromuscular control in joint - stability. Champaign, IL, USA: Human Kinetics; 2000. - 17 21. Page P, Ellenbecker TS, editors. The scientific and clinical application of elastic - resistance. Champaign, IL, USA: Human Kinetics; 2003. - 19 22. Simmonds JV, Keer RJ. Hypermobility and hypermobility syndrome. Manual - 20 Therapy 2007;12(2):298-309. - 21 23. Ross J, Grahame R. Easily missed? Joint hypermobility syndrome. British - 22 Medical Journal 2011;342(7167):275-81. - 23 24. Frontera WR, Micheli LJ, Herring SA, Silver JK, editors. Clinical sports medicine: - medical management and rehabilitation, Philadelphia: Saunders; 2007. - 25 25. Grahame R. Hypermobility not a circus act. International Journal of Clinical | 1 | Practice 2000;54(5):314-5. | |----|-----------------------------------------------------------------------------------------| | 2 | 26. Moher D, Liberatir A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred | | 3 | reporting items for systematic reviews and meta-analyses: The PRISMA | | 4 | statement. PLoS Medicine 2009;6(7):e1000097. | | 5 | 27. Duff A. The literature search: a library-based model for information skills | | 6 | instruction. Library review 1996;45(4):14-8. | | 7 | 28. Critical Appraisal Skills Programme (CASP). Critical Appraisal Skills Programme | | 8 | Tools [http://www.casp-uk.net/, accessed 15 May 2013]. | | 9 | 29. Kemp S, Roberts I, Gamble C, Wilkinson S, Davidson JE, Baildam EM, et al. A | | 10 | randomized comparative trial of generalized vs targeted physiotherapy in the | | 11 | management of childhood hypermobility. Rheumatology 2010;49:315-25. | | 12 | 30. Sahin N, Baskent A, Cakmak A, Salli A, Ugurlu H, Berker E. Evaluation of knee | | 13 | proprioception and effects of proprioception exercise in patients with benign joint | | 14 | hypermobility syndrome. Rheumatology International 2008;28:995-1000. | | 15 | 31. Barton LM, Bird HA. Improving pain by the stabilization of hyperlax joints. Journal | | 16 | of Orthopaedic Rheumatology 1996;9:46-51. | | 17 | 32. Carter CO, Wilkinson J. Persistent joint laxity and congenital dislocation of the | | 18 | hip. J Bone Joint Surg 1964;46:40-5. | 19 33. Physiotherapy Evidence Database (PEDro). [http://www.pedro.org.au/, accessed 20 18 September 2013]. 21 34. Gupta SK. Intention-to-treat concept: A review. Perspect Clin Res 2011;2(3):109-22 12. ## Table 1. Synopsis of included studies. | Authors | Kemp et al (2010) [29] | Sahin et al (2008) [30] | Ferrell et al (2004) [1] | Barton & Bird (1996) [31] | |------------------------------|---------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------| | Study Design | Randomised Comparative Trial | Randomised Controlled Trial | Cohort Study | Cohort Study | | Participant | 10.9 years (7-16) | 26.9 years (20-45) | 27.3 years (16-49) | Age not reported | | Characteristics | 38 male, 19 female | 6 male, 29 female <sup>a</sup> | 2 male, 16 female | 2 male, 23 female | | Mean age (range), | Children's Rheumatology | Physical Medicine & | Hypermobility Clinic, UK | Hospital referral or Patient | | gender, location of | Department, UK | Rehabilitation Department | | Support Group, UK | | recruitment | | Outpatient Clinic, Turkey | | | | Sample Size | n=57 randomised (General | n=40 (Exercise n=15, Control | n=20 at baseline | n=25 | | | Exercise n=27, Targeted | n=25) <sup>b</sup> | n=18 completed intervention | | | | Exercise n=30) | | | | | | n=41 completed intervention | | | | | | (n=18, n=23) | | | | | | n=32 completed follow up | | | | | | (n=15, n=17) | | | | | Diagnostic Criteria | Revised (Brighton 1998) | Revised (Brighton 1998) | Revised (Brighton 1998) | Not stated | | | Criteria: Beighton Score 4/9 or | Criteria: Beighton Score 4/9 or | Criteria: Beighton Score above | | | | above & one major criteria, | above & one major or two | 4/9 & one major criteria or one | | | | one major and two minor, four | minor symptoms | major & at least two minor | | | | minor criteria, or two minor | Knee Pain | criteria | | | | criteria with first-degree | | Knee Pain | | | | relative with hypermoblity | | | | | <b>Exercise Intervention</b> | Whole body exercises: | Knee exercises: | Knee exercises: | Whole body exercises: | | | General Exercise: aim to | Knee proprioception exercises | Knee proprioception exercises | Warm up/mobility exercises | | | maximise muscle strength and | | Balance exercises | Specific joint exercises | | | fitness | | Knee strength exercises | Proprioception exercises | | | Targeted Exercise: aim to | | | | | | address functional stability of | | | | | Outcomes | symptomatic joints | Knoo noin ()(AC) at root and an | Knoo noin (\/AC) | Dain at rest () (A C) | | Outcomes | Primary Outcome: Child's pain | Knee pain (VAS) at rest and on | Knee pain (VAS) | Pain at rest (VAS) | | (Assessment method) | (VAS) Secondary Outcomes: | movement | Knee joint proprioception (threshold detection paradigm) | Pain on Movement (VAS) | | | Parent's assessment of child's | Knee proprioception (active- | Balance (instrumented balance | Beighton Score<br>Joint ROM (Loebl | | | pain (VAS) | active method, biodex system<br>3pro multijoint system | board) | hydrogoniometer) | | | Parent's global assessment of | isokinetic dynamometer) | Knee strength (Kin-Com | Function (non-validated | | | impact of pain (VAS) | Functional Status (AIMS-2 | isokinetic dynamometer) | questionnaire) | | | Functional Impairment (CHAQ) | Questionnaire) | Quality of Life (Short Form 36 | questionnaile) | | | i unulunai impailment (CHAQ) | Questionnane) | Quality of Life (Short Form 30 | | | | Six minute shuttle run | | Questionnaire) | | |---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Duration of intervention (Assessment points) | 6 weeks<br>(Baseline, ~2 months, ~5<br>months) | 8 weeks<br>(Baseline, 8 weeks) | 8 weeks (Baseline, 8 weeks) contractions subgroup re-test between 2-8 weeks, of intervention, follow up) | 6 weeks<br>(Baseline, 6 weeks, 12 weeks) | | Main Statistically<br>Significant Findings<br>(at end of treatment) | Targeted Exercise only: Reduced parent's global assessment (p=0.017) Reduced CHAQ (p=0.045) Combined groups: Reduced child's pain (p<0.001) Reduced parent's pain (p<0.001) Reduced parent's global assessment (p=0.005) Reduced CHAQ (p=0.024) [Maintained at ~5 months with the exception of parents' global assessment] | Exercise Group: Reduced pain (p<0.05) Increased knee proprioception (p<0.001) | Reduced pain (p=0.003) Increased proprioceptive acuity (p<0.001) Increased balance (p<0.001) Increased quadriceps and hamstrings muscle strength (p<0.05) Improved quality of life (physical functioning p=0.029, mental health p=0.008) | Reduced pain on movement (p<0.001) Increased maximum distance walked (p<0.006) Reduced Knee ROM (Left knee, p=0.003, Right knee, p=0.022) [Reversal of changes towards baseline at 12 weeks] | | Standardised Effect<br>Size for Pain (at end<br>of treatment) | Child's pain (VAS) = 1.37 | VAS at rest = 0.75<br>VAS on movement = 1.72 | VAS = 1.12 | Unable to calculate | a Note that the total number of males and females reported in the paper (n=6+29=35) varies from the reported total sample size (n=40). b Note that the sample size is variably reported in the paper as n=30 (n=15 exercise, n=15 control), n=35 (n=15 exercise, n=20 control) and n=40 (n=15). exercise, n=25 control). The latter is most frequently reported in the paper and has therefore been used for the purposes of this review. <sup>&</sup>lt;sup>c</sup> Note that a subgroup of n=10 patients had repeat assessment 2-8 weeks after baseline (to test reproducibility) before receiving the exercise intervention. Abbreviations: CHAQ = Childhood Health Assessment Questionnaire, HEP = Home Exercise Programme, ROM = Range of Movement, VAS = Visual Analogue Scale Table 2. Description of the exercise interventions employed in each study. | Authors Exercise type, duration | Details of exercise intervention and progression | Location: frequency, duration, supervision | |---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------| | Kemp et al (2010) [29]<br>Whole body exercises, 6<br>weeks | General Exercise: shuttle-runs; bunny-hops; squat-thrusts; sitting-to-standing; step-ups; star-jumps. Progression: Start at 30 seconds (or 10 repetitions) and add 15 seconds (or 5 or 10 repetitions) at a time Targeted Exercise: Control neutral joint position (facilitate optimal joint alignment in a resting position); Re-train dynamic control (maintain optimal joint alignment while moving adjacent joints); Motion control (improve control of the joint through its full range); Specific tissue lengthening (stretch short mobiliser muscles). Progression: reduce support, increase repetition, speed and duration. All exercises should be pain free. | Clinic: x1 per week, 30 minutes, supervised by physiotherapist Home: daily, duration not stated, no supervision | | Sahin et al (2008) [30]<br>Knee exercises, 8 weeks | Week 1: walking backwards, heel walking, walking on fingertips, walking with eyes closed, single leg balance, forward-backward bends on one leg - eyes open & closed (all 30 seconds duration), sit to stand from high chair (20 reps) Week 2: added exercise with rocker bottom wood (2-3 mins), slow sit-to-stand from low chair (10 reps), plyometric exercises (jumping over 15cm height, 10 reps), walking exercises (slow walk-broad circle, fast walk-broad circle, slow walk-narrow circle, fast walk-narrow circle, 5 reps each) Week 3: added biomechanical ankle platform system (BAPS) board balance wood (2-3 minutes), mini-trampoline jumping (30 reps) | Clinic: x3 per week, duration not stated, supervised by doctor | | Ferrell et al (2004) [1]<br>Knee exercises, 8 weeks | Week 1: squats, pliés, bridging (5 reps, 1 set) Week 2: doubled sets Week 3: added front lunges Week 4: doubled sets Week 5: increased to 10 reps but 1 set, added static hamstring exercises & balance board (2 mins x 3 sets). Week 6: doubled sets, balance board (4 sets) Week 7: increased to 15 reps but 1 set, added side lunges Week 8: doubled sets, balance board remained at 4 sets | Home: x4 per week, duration not stated, no supervision | | Barton & Bird (1996) [31]<br>Whole body exercises, 6<br>weeks | Individual exercise programmes with a number of the following: Warm up/mobility exercises: shoulder rolls, arm circles, neck rotations, neck lateral flexions, wrist circles, side flexions of spine, thoracic rotations in sitting Specific joint exercises: hamstring curls in standing/prone, static hamstring in sitting, hip extensions in prone (knee extended/flexed), pelvic tilts, sit ups, chest press in supine, arm elevations in supine, resisted bicep curls, resisted bicep curls at 90degrees shoulder abduction, finger opposition, wrist flexion/extension, pronation/ supination, heel raises, alternate tiptoe-heel walking, ankle plantar/dorsiflexion, resisted ankle inversion/eversion Proprioception exercises: single leg ball rolling, single leg balance Progression: None | Home: frequency not stated, duration not stated, no supervision Assessments of outcome measures every 2 weeks | ### TABLE AND FIGURE LEGENDS 2 - 3 Table 1. Synopsis of included studies. - 4 Table 2. Description of the exercise interventions employed in each study.