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Abstract — In LTE-A cellular networks there is a fundamental 
trade-off between the cell throughput and fairness levels for 
preselected users which are sharing the same amount of 
resources at one transmission time interval (TTI). The static 
parameterization of the Generalized Proportional Fair (GPF) 
scheduling rule is not able to maintain a satisfactory level of 
fairness at each TTI when a very dynamic radio environment is 
considered. The novelty of the current paper aims to find the 
optimal policy of GPF parameters in order to respect the fairness 
criterion. From sustainability reasons, the multi-layer perceptron 
neural network (MLPNN) is used to map at each TTI the 
continuous and multidimensional scheduler state into a desired 
GPF parameter.  The MLPNN non-linear function is trained 
TTI-by-TTI based on the interaction between LTE scheduler and 
the proposed intelligent controller. The interaction is modeled by 
using the reinforcement learning (RL) principle in which the 
LTE scheduler behavior is modeled based on the Markov 
Decision Process (MDP) property. The continuous actor-critic 
learning automata (CACLA) RL algorithm is proposed to select 
at each TTI the continuous and optimal GPF parameter for a 
given MDP problem. The results indicate that CACLA enhances 
the convergence speed to the optimal fairness condition when 
compared with other existing methods by minimizing in the same 
time the number of TTIs when the scheduler is declared unfair. 

Keywords- LTE-A, TTI, CQI, throughput, fairness, scheduling rule, 
policy, MLPNN, RL, MDP, CACLA. 

I. INTRODUCTION 
In the Orthogonal Frequency Division Multiple Access 

(OFDMA) radio access networks, the system throughput and 
user fairness tradeoff optimization problem has to maximize 
the total cell throughput while maintaining a certain level of 
fairness between user throughputs. One way to maximize the 
total system throughput subject to fairness constraints is to use 
opportunistic schedulers such as channel aware based GPF 
scheduling rule that exploits the multi-user diversity principle. 
Therefore different tradeoff levels can be obtained by using a 
proper parameterization of the GPF scheduling scheme [1]. 

The Next Generation Mobile Networks (NGMN) fairness 
requirement [2] is used for the fairness criterion adoption 
which requires a predefined user throughput distribution to be 
achieved. Based on the NGMN concept, the scheduler is 
considered to be fair if and only if each user achieves a certain 
percentage from the Cumulative Distribution Function (CDF) 
of other normalized user throughputs (NUT). Based on the 

scheduler instantaneous state (channel conditions, user 
throughputs and traffic loads), the GPF rule should be adapted 
in such a manner that the obtained CDF curve of NUTs 
respects the NGMN fairness condition. By assuming that the 
NGMN optimality criterion depends only on the previous GPF 
parameterization, the scheduling procedure can then be 
modeled as a MDP with the respect of the Markov property. 

The innovation of the current work aims to explore the 
unknown behavior of the scheduler states in order to learn the 
optimal policy of GPF parameters in such a way that the 
NGMN fairness requirement is satisfied at each TTI. The 
CACLA RL algorithm is proposed in this sense to solve given 
MDP problems by selecting optimal actions. The quality of 
applying different continuous GPF parameters in different 
continuous scheduler states is approximated by using a non-
linear MLPNN function. The rest of the document is organized 
as follows: Section II highlights the importance of the fairness-
throughput tradeoff optimization problem. Section III presents 
the elements of the related work. In section IV, the insight 
elements of the proposed controller are analyzed. Section V 
presents the results, and the paper concludes with Section VI.   

II. USER FAIRNESS AND SYSTEM THROUGHPUT TRADEOFF 
OPTIMIZATION PROBLEM 

In LTE packet scheduling, a set t  of preselected users is 
scheduled at each TTI t in frequency domain by using a set of 
 grouped OFDMA sub-carriers denoted as resource blocks 
(RBs). The resource allocation procedure in time-frequency 
domain follows the integer linear programming optimization 
problem at each TTI t as shown in Eq. (1): 
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where i , jb represents the allocation vector, i , jr is the achievable 

rate for user i and RB j, and iT denotes the average throughput 
of user i averaged over a number of TTI by using the 
exponential moving filter [1]. The fairness-throughput tradeoff 
is tuned by parameter  k t which can be adapted TTI-by-TTI 



 

in order to meet the objective function. When 0k   for the 
entire transmission, the obtained GPF rule maximizes the 
throughput (MT). If 1k  , the obtained scheme is entitled 
Proportional Fair (PF) and when k is very large  k  , 
the scheduler maximizes the fairness between users and 
minimizes the system throughput and the obtained rule is 
entitled maximum fairness (MF). The optimal scheduler state 
in which the NGMN requirement is respected can be achieved 
by setting k at each TTI t such as: 

                               1k k kt t                                 (2) 

where k  is the optimal  k t parameter step. Let us 

define     1k kt ,k ,..,       as the decision vector of 
action taken at TTI t in order to close the scheduler nearby or in 
the optimal state. The action set   can be discrete or 
continuous. Obviously, the current action  k t should be 
chosen in such a manner that the tradeoff objective 
function  1t  in the next state is maximized. By using the 

estimation operator  , the tradeoff action can be seen as a 
decision vector of the second linear programming optimization 
problem which should be solved before Eq. (1): 
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where 1
S

t  represents the scheduler state in the next TTI t+1. 

The NGMN objective function S
t    is calculated based on 

the CDF function of NUT observations set     S
i tT t   , 

1 ti ,..,  , as shown by Fig. 1. The NGMN fairness 
requirement is the oblique continuous line. If the CDF curve is 
located on the left side of the NGMN requirement (MT rule 
case), the system is considered unfair  1

S
t   , and when 

the CDF function lies on the right side (MF and PF rules 
cases), the system is declared fair  1

S
t   . In order to 

determine the optimal or feasible region in the CDF domain, 
the superior limit of the NGMN requirement should be 
imposed (dot oblique line). In this sense, the fair area is divided 
in two sub-regions: feasible  1

S
t    and over-fairness 

 1
S

t    where       �= . As seen from Fig.1, 
only the green curve respects the feasibility condition. 
Therefore, at each TTI the action  k t  should be chosen in 
such a manner that 1

S
t   . Based on Fig. 1, the NGMN 

objective function is calculated based on Eq. (4) 
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Fig. 1 NGMN Fairness evaluation criteria (benchmarks) for 60 users 
scenario equally distributed from ENodeB base station to the edge of 
cell under uniform power allocation and Frequency Division Duplex 

downlink transmission with a system bandwidth of 20MHz 
 

where   and Req represent the CDF  function and the 
NGMN fairness requirement, respectively. Equation (4) is the 
cost function which aims to praise the quality of action k  
taken in the previous state. Due to the noisy characteristic of 
Eq. (4) , the CACLA RL algorithm requires the additional 
function in order to learn the optimal policies of GPF 
parameters in such a way that S

t   . 

III. RELATED WORK 
The parameterization of the GPF scheduler for the system 

throughput maximization under NGMN requirement is 
discussed in [3]. The impact of the traffic load and user rate 
constraints are considered when the CDF distribution of  ,k tT  is 
determined. Unfortunately, the adaptation process is achieved 
at different time scales in order to make the proposal suitable 
for real time scheduling leading to the inflexible behavior when 
severe changes in the network conditions may occur. In [4] an 
off-line procedure of adapting the  parameter subject of 
different temporal fairness indices constraints is proposed. The 
expected user throughput is calculated at the beginning of each 
TTI in order to predict the current state of the average user 
throughput before the scheduling decision. However, the traffic 
load is not considered and the method cannot be applied to the 
real systems due to the high complexity cost when the number 
of active flows increases. In this study, the method from [4] can 
suffer a slight modification in the sense that  k t can be 
adapted based on the NGMN constraint where the CDF 
function is calculated based on the predicted throughput. The 
balance of the system throughput and user fairness tradeoff is 
analyzed in [1], in which the traffic load is categorized based 
on the CQI reports. The normalized system throughput and 
Jain Fairness Index are considered as a part of the input state. 
The Q-Learning algorithm is used to learn different policies 
that converge very well to different tradeoff levels. However, 
the concept is not extended to dynamic fairness requirement. 



 

 

Fig. 2 Proposed Scheduler-Controller Architecture 

IV. PROPOSED ARCHITECTURE 
The interaction between controller and scheduler shown in 

Fig. 2 is modeled in two stages: exploration and exploitation. 
In the first stage, the LTE controller receives a new state which 
is the aggregated version of S

t such as C
t . Based on the trial 

and error principle, the controller takes random actions that are 
mapped into scheduling decisions by the scheduler. The 
scheduler ranks the previous scheduling decision at the 
beginning of the next TTI based on the reward function such 
as  1 1

C a
t t t   , . Basically, the reward function t  

indicates how far or close is the function S
t     from its 

objective when compared with the previous state when action 
1

a
t  is applied. The exploration stage target is to form a policy 

of scheduling decisions that follows those actions that 
maximize the sum of future rewards for every initial state. The 
exploitation stage applies the learned policy TTI-by-TTI. In 
order to learn the optimal policy, the MLPNN non-linear 
function is required to approximate the continuous and 
multidimensional state C

t  in optimal GPF continuous 
parameters. In this sense, the MLPNN weights are trained by 
using the gradient descent algorithm with feed-forward (FP) 
and backward propagation (BP) principles. The BP minimizes 
the error between the target output and the one which is 
obtained through FP procedure. The way how the error and 
target values are calculated determines the type of RL 
algorithm which is used for the optimal GPF parameterization. 

A. Controller State Space 
The controller state space contains the relevant information 

including the previous GPF parameter, a representative 
compacted state of NUTs and an indication about how close or 
far the objective function S

t    is from the optimal value. 
Therefore, the input controller continuous state space is 
represented by the following set with normalized elements: 
                        1, , , , ,C T T R

t t t t t t td                     (5) 

where T
t and T

t  represent the mean deviation and the 
standard deviation respectively for the log-normal 
distributions of NUTs, t is the controller flag which indicates 
that C

t   when 1t   , C
t   when 0t  and the 

controller is feasible  C
t    when 1t  . The flag t  is 

determined based on R
td  which is the representative CDF 

distance calculated based on Eq. (6) where i ,R Req
t i id    : 
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Basically, if there is any 0i ,R
td   in the CDF representation, 

then C
t   , and when all the percentiles are on the right 

side of the requirement such as  0i ,R
td  , then C

t   . When 

 0R
td , then C

t   , where  is the superior limit of 
feasible region. 
 

B. Reward Function 
The reward function is computed from perspective of the 

transition area between two consecutive TTIs. When the 
C
t   (Fig. 1), any increase of  k t moves the scheduler 

further away from the optimal region. On the other pole, 
when C

t   , it is undesirable to decrease  k t parameter. 

Therefore, for the GPF parameterization when C
t   then 

k   and when C
t   then k   until the feasible state 

is reached. Based on the aforementioned characteristics, the 
reward function for the GPF parameterization case becomes: 
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The goal of the LTE controller is to find the optimal policy 
( , )C a

t t    at each TTI which permits to select the best action 
for returning the maximum reward within 1

C
t . The CACLA 

RL algorithm is used to perform the trained policy as an actor 
and aims to improve it when necessary as a critic. 
 

C. The CACLA RL Algorithm 
The CACLA RL algorithm uses one-dimensional 

continuous actions  0,1t   which implies k  0,1 . In 
order to find optimal policies, one MLPNN is used for the 
continuous action approximation such as  F C

t tA   and another 



 

 

TABLE I. SIMULATION PARAMETERS 

Fig. 3 Reward type percentage and standard deviation 

Fig. 4 Number of TTIs when the scheduler state is UF/FEA/OF 

MLPNN for forwarding the state value  F C
t tV  . The notion of 

state value implies the approximated accumulated reward 
value for a given state under some learned policies. The 
principle of CACLA is to update the action value only if the 
state target value  1

T C
t tV   increases the previous update such 

as [5]: 
             1 1 1 1

AT C F C T C F C
t t t t t t t tA A if V V

            (8) 

where      1 1 1 1,T C C F C
t t t t t t tV V          ,   is the 

discount factor and A is the action value learning rate. 
Alongside its very simple architecture, CACLA can locate 
relatively faster the optimal state when compared with other 
RL algorithms such as: Q-learning, QV-learning, SARSA or 
ACLA [6], [7], [8] by using predefined GPF parameters steps. 
 

V. SIMULATION RESULTS  
We consider a dynamic scenario with fluctuating traffic 

load within the interval of [10,120] active data flows/users with 
infinite buffer. Moreover, the analyzed scheduling policies are 
running on parallel schedulers that use the same conditions for 
shadowing, path loss, multi-path loss and interference models. 
In order to test the impact of the proposed algorithms in the 
performance metrics, the number of active users is randomly 
switched at each 1s revealing the generality of the proposed 
scheduling policy. The rest of parameters are listed in Table I.  

The scheduling policy obtained by using CACLA RL is 
compared against the methods proposed in [4] (MT), [5] (AS) 
and with other policies obtained by exploring with discrete 
actions based RL algorithms. The exploration is performed for 
all RL algorithms by using  -greedy actions. Figure 3 
concludes that the CACLA policy outperforms other policies 
from the number of TTIs when  ,C

t    points of view.  

VI. CONCLUSIONS 
In this paper the CACLA RL algorithm is used in order to 

adapt and to apply the best fairness parameter for a dynamic 
radio environment in LTE-Advanced networks. We proved that 
CACLA, minimize the number of TTIs when the system is 
declared unfair being able in the same to fast up the 
convergence speed by minimizing the number of punishments  
( 1t   ) (Fig. 4) when the number of active users changes 
dramatically.  
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Parameter Names Values 
System bandwidth 

Cell radius/ User Speed 
Channel Model 

Shadowing std. deviation 
Path Loss/Penetration Loss 

Carrier frequency/DL power 
Superior Limit of Feasible Region 
Exploration/Exploitation periods 

Learning rate /discount factor/ epsilon 
No. hidden layers / No. hidden nodes 

20MHz 
1000 m/30km/h 

Rayleigh Fading (Vehicular A) 
8 dB 

128.1 + 37.6 log(d)/10 dB 
2GHz/43dBm 

0 05.   
1000 s / 200 s 
0.01/0.99/0.5 

1/50 


