Direct Numerical Simulation of Supersonic Flows Passing a Backward Step

Jian Fang, <u>Yufeng Yao</u>, Alexander A. Zheltovodov, Lipeng Lu

Problem Background

• Supersonic flow passing a Backward step is one of key flow phenomena in high-speed vehicle and its propulsion systems

CFD code: Low-Dissipation Monotonicity-Preserving Scheme

• Bandwidth dissipation optimization method (BDOM) is used to optimize the linear part of the MP scheme

1. Fang, J., Li, Z. and Lu, L., Journal of Scientific Computing, 56:67-95, 2013. 2. Fang, J., Yao, Y.F., Li, Z. and Lu, L., Computers and Fluids, 104: 55-72, 2014

Bandwidth property of MP7-LD scheme

DNS of isotropic turbulence

化京航空航天大學

BEIHANG UNIVERSITY

Supersonic flow passing a backward step

Density Schlieren

Pressure Field

Ref: Zheltovodov, A., et al. (1990). An Experimental Documentation of Supersonic Turbulent Flows in the Vicinity of Forward and Backward-Facing Ramps.

Separation bubble reduces with Reynolds number

University of the West of England

BRISTOL

Surface pressure and skin friction

EC: expansion corner; CC: compression corner

Ref : Zheltovodov, A., et al. (1990). An Experimental Documentation of Supersonic Turbulent Flows in the Vicinity of Forward and Backward-Facing Ramps.

Pressure gradient and numerical Schlieren

Turbulent flow properties and its variation

Variation along two streamlines

Different evolution process of TKE and Reynolds shear stress along two streamlines

Variation of cross correlation

Correlation of streamwise and normal velocity fluctuation

Locations for comparison

Location of correlation peaks

Instantaneous streamwise u'

Streamwise velocity fluctuation along the streamlines S1 and S2

Close view of flow structures

region

Flow topology compared to Oil-flow test

Oil-flow visualization (Zheltovodov et al., 1983)

Surface flow topology

Distance between neighbour nodes = BL thickness δ

Concluding Remarks

- Supersonic Expansion/Compression Corner is investigated by using DNS
 - > Turbulence is suppressed during expansion but enhanced in compression;
 - Two different characteristics of turbulent structures was found in the ramp region as
 - In the outer layer, turbulence is consistently suppressed;
 - In the inner layer, (1) turbulence is largely suppressed only in the corner region, then gradually redevelops; (2) coherence structure of fluctuations is preserved and it increases during the compression
 - Large-scale Görtler vortices are clearly captured, indicating its connection to upstream wall turbulence;
 - Reynolds number effect is observed
 - Separation bubble shrinks with the increase of Re, but
 - Scale of Görtler vortices is independent of Re (distance between nodes)

Thank You!

