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Abstract 

Directed fuzzy hypergraphs are introduced as a generalization of both 

crisp directed hypergraphs and directed fuzzy graphs. It is proved that 

the set of all directed fuzzy hypergraphs can be structured into a magmoid 

with operations graph composition and disjoint union. In this framework 

a notion of syntactic recognition inside magmoids is defined and several 

properties are presented. 
 

 

1 Introduction 
 

Fuzzy set theory, since its development in 1965, and in general fuzzy structures, 

have contributed to a wide range of real world applications due to their ability 
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to cover the distance between the numerical models used in engineering and 

the symbolic models used in formal systems and artificial intelligence [35]. In 

particular, fuzzy graphs, introduced in 1975, by Rosenfeld are able to model 

real time systems where the inherent level of information in them varies with 

different levels of precision [32]. 

Our intention is to develop a notion of algebraic recognizability for sets of 

directed fuzzy (hyper)graphs, i.e., directed (hyper)graphs with fuzzy edges and 

fuzzy nodes, in analogy with the corresponding algebraic recognizability notions 

for strings [18] and trees [21]. Directed hypergraphs consist of a set of vertices 

(nodes) and a set of hyperedges, just as ordinary directed graphs except that a 

hyperedge may have an arbitrary sequence of sources (incoming arrows) and an 

arbitrary sequence of targets (outgoing arrows), instead of only one source and 

one target as is the case for ordinary graph edges. Each hyperedge is labeled 

with a symbol from a doubly ranked alphabet Σ in such a way that the first 

(resp. second) rank of its label equals the number of its sources (resp. targets). 

Additionally, every hypergraph is equipped with a sequence of begin and end 

nodes. Ordinary directed graphs are obtained as a special case of directed 

hypergraphs i.e., in the case that each hyperedge has one source and one target, 

there are no multiple edges and no edge labels, and the begin and end sequences 

are the empty word. The fuzzy graphs of [32] are costructed by taking fuzzy 

subsets of the node and edge sets of a given directed crisp graph. 

Engelfriet and Vereijken proved in [19] that every (hyper)graph can be con- 

structed from a finite set of elementary graphs by inductively using the opera- 

tions of concatenation and sum. Since for every graph an infinite number of such 

expressions exist, at the same paper, the authors stated the open problem of 

finding a complete set of equations (rewriting rules) with the property that two 

expressions represent the same graph if and only if one can be transformed into 

the other by these equations. This problem was solved in [9] by appropriately 

adopting magmoids as the necessary algebraic structure for the representation 

of graphs and led to the construction, for the first time, of automata operating 

on arbitrary graphs [10, 12, 23]. 

A magmoid, introduced by Arnold and Dauchet in 1978, is a doubly ranked 

set endowed with two operations which are associative, unitary, and compatible 

to each other [1, 2, 8, 9, 11]. It generalizes the ordinary monoid structure and 

a natural regularity notion, analogously with the string case, derives from this. 

More precisely, we say that a subset L of a magmoid M is recognizable whenever 

there exist a locally finite magmoid N and a morphism of magmoids h : M → N , 

so that L = h−1(P ) for some P ⊆ N [11]. 

The set of directed fuzzy hypergraphs, as defined above, is structured into 

a magmoid with operations  fuzzy graph composition and disjoint union.  As 

a result the previously described recognizability mode can be applied for fuzzy 

graph languages and the corresponding class is closed under boolean operations, 

inverse magmoid morphisms and sum operation. 

Fuzzy recognizability has been investigated towards various directions, via 

fuzzy automata [29, 30, 34], syntactic monoids [5, 6], monoid fuzzification [24], 

nondeterministic recognizability [26], minimization of finite automata [27], infi- 
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nite computations [25, 33], and tree recognizability [7, 20]. 

In the present paper we introduce a syntactic recognizability theory, inside 

the framework of magmoids, for directed fuzzy hypergraphs analogously with 

the already established theory for sets of directed crisp graphs [11], see also 

[16, 17]. In Section 2 fuzzy graphs are defined by extending the definition 

of Rosenfeld. Their algebraic structure and several fundamental results are 

described in the following section. In Section 4 we introduce the recognition 

mechanism and investigate its properties. A characterization of recognizability 

is obtained from the underlying magmoid structure which allows us to explore 

its recognition capacity. Moreover, the closure properties of the corresponding 

class are examined and several interesting examples are illustrated including 

the strongly connected fuzzy graphs and the fuzzy complement of a fuzzy graph 

language. 
 

 

2 Fuzzy Graphs 
 

A fuzzy set Aµ = (A, µ) consists of a set A together with a function µ : A → [0, 1] 
called the membership function of Aµ, for every x ∈ A the value µ(x) is called 

the membership grade of x. The support of Aµ  is the crisp set 

µ = {x | x ∈ A and µ(x) > 0}. 
 

A doubly ranked set, or doubly ranked alphabet, (Xm,n)m,n∈N is a set X to- 
gether with a function rank : X → N×N, where N is the set of natural numbers. 
For m, n ∈ N, Xm,n = {x ∈ A | rank(x) = (m, n)}. In what follows we will drop 
the subscript m, n ∈ N and denote a doubly ranked set simply by X = (Xm,n). 

The set of all words over a finite set A is denoted A∗, for every word w ∈ A∗, 

|w| denotes its length. We denote by ε the empty word and A+ = A∗ − {ε}. 

For n ∈ N, [n] stands for the set {1, 2, . . . , n}. 

A fuzzy (m, n)-graph over the doubly ranked alphabet Σ = (Σm,n) is a tuple 

G = (Vκ, Eλ, s, t, l, begin, end) consisting of 

• the nonempty fuzzy set of nodes or vertices Vκ = (V, κ), 

• the fuzzy set of edges Eλ = (E, λ), with E = Es , 

• the source and target functions s : E → V + and t : E → V +, respectively, 

• the labeling function l : E → Σ such that 
 

rank(l(e)) = (|s(e)|, |t(e)|), for all e ∈ E, 
 

• the sequences of begin and end nodes begin ∈ V ∗  and end  ∈ V ∗  with 

|begin| = m and |end| = n. 
 

Notice that vertices can be duplicated in the begin and end sequences of the 

graph and also at the sources and targets of the edges. For an edge e of a fuzzy 

graph G we simply write rank(e) to denote rank(l(e)).   This definition is a 
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generalization for hypergraphs of the one given by Rosenfeld in [32] (see also 

[28]). More precisely, if in the above we set 

• for every e ∈ E, rank(e) = (1, 1), 

• Σ = Σ1,1 is a singleton set, 

• for every pair (v, u) ∈ V × V there exists at most one e ∈ E such that 

(s(e), t(e)) = (v, u), 

• for every e ∈ E 
 

λ(e) ≤ min{κ(v) | v appears in the words s(e) or t(e)}, (1) 
 

• and begin = end = ε, 
 

then the so obtained constructs are directed unlabeled fuzzy graphs without 

hyperedges and multiple edges and no begin and end sequences, presented in 

[32], for simplicity we shall call them binary fuzzy graphs. 

The specific sets V and E chosen to define a concrete fuzzy graph G are ac- 

tually irrelevant. We shall not distinguish between two isomorphic fuzzy graphs. 

Hence we have the following definition of an abstract graph. Two concrete fuzzy 

(m, n)-graphs 

G = (Vκ, Eλ, s, t, l, begin, end) and G! = (V ! , E! , s!, t!, l!, begin!, end!) 
κI λI 

over Σ are isomorphic if and only if there exist two bijections hV   : V  → V ! and 

hE : E → E! commuting with κ, λ, s, t, l, begin and end in the obvious way. An 
abstract fuzzy (m, n)-graph is defined as the equivalence class of a concrete fuzzy 

(m, n)-graph with respect to isomorphism. We denote by F GRm,n(Σ) the set 

of all abstract fuzzy (m, n)-graphs over Σ and F GR(Σ) = (F GRm,n(Σ))m,n∈N. 

Since we shall mainly be interested in abstract fuzzy graphs we simply call them 

fuzzy graphs. A fuzzy graph G is called: discrete if λ(e) = 0 for all e ∈ E, crisp 

if the sets Vκ, Eλ are crisp. Given a binary graph G = (Vκ, Eλ, s, t, l, begin, end), 

its complement is the binary graph Gc = (Vκ, EλI , s, t, l, begin, end) with 

λ!(e) = min{κ(s(e)), κ(s(e))} − λ(e), 

for all e ∈ E. Notice that this definition is accordant with Eq. (1) and moreover 

it is a generalization of the definition for the complement of a crisp graph. Given 

a binary fuzzy graph language L ⊆ F GR(Σ) its compliment is Lc = {Gc | G ∈ 
L}. 

Given a fuzzy graph G = (Vκ, Eλ, s, t, l, begin, end) we say that there exists a 

directed path from the node v1 to the node vk of G if there exist edges e1, . . . , ek−1 

and nodes v2, . . . , vk−1  of G such that vi appears in s(ei) and vi+1 appears in 

t(ei) for all i = 1, . . . , k − 1.  A fuzzy graph G = (Vκ, Eλ, s, t, l, begin, end) is 
called strongly connected if for all pairs (u, v) ∈ V × V , with u j= v, there exists 

a directed path from u to v. 
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3 Algebraic Structure 
 

A magmoid (cf. [1, 2, 9, 11]) is a doubly ranked set M = (Mm,n) equipped with 
two operations denoted by ◦ (circle) and D (box): 

◦ : Mm,n × Mn,k → Mm,k , D : Mm,n × MmI ,nI  → Mm+mI ,n+nI 

 

for all m, n, k, m!, n! ) 0, which are associative in the obvious way and satisfy 
the distributivity law (f ◦ g) D (f ! ◦ g!) = (f D f !) ◦ (g D g!) whenever all the above 

operations are defined. Moreover, it is equipped with a sequence of constants 

en ∈ Mn,n (n ) 0), called units, such that 

em ◦ f = f = f ◦ en,  e0 D f = f = f D e0 

for all f ∈ Mm,n and all m, n ) 0, and the additional condition em D en = em+n 

holds true for all m, n ) 0. Notice that, due to the last equation, the elements en 

(n ≥ 2) are uniquely determined by e1. From now on e1  will be simply denoted 
by e.  Submagmoids, morphisms, congruences and quotients of magmoids are 

defined in the obvious way. 

An elegant characterization of a congruence can be achieved by means of 

the notion of the context. In a magmoid M an (m,n)-context is a 4-tuple ω = 

(g1, f1, f2, g2), with fi ∈ Mmi ,ni 
(i = 1, 2), g1 ∈ Ma,m1 +m+m2 

, g2 ∈ Mn1 +n+n2 ,b, 
where a, b ∈ N. 

 
 

The set of all (m, n)-contexts is denoted Contm,n(M ). For any f ∈ Mm,n and 
ω = (g1, f1, f2, g2) as above, we write ω[f ] = g1 ◦ (f1 D f D f2) ◦ g2; note that 
ω[f ] ∈ Ma,b. 

 

Proposition 1 (cf.  [11]). The equivalence ∼= (∼m,n) on the magmoid M = 
(Mm,n) is a congruence whenever, for all m, n ) 0, f, g ∈ Mm,n  and all ω ∈ 

Contm,n(M ) 

f ∼m,n g implies ω[f ] ∼a,b ω[g]. 
 

We say that a doubly ranked family L = (Lm,n) is a subset of the magmoid 

M = (Mm,n) (notation L ⊆ M ), whenever Lm,n  ⊆ Mm,n  for all m, n ∈ N.  The 
boolean and the magmoid operations on subsets of M are defined in the obvious 

way. 

Two elements of a magmoid M are equivalent modulo the syntactic con- 
gruence of a subset L ⊆ M , whenever they have the same set of contexts with 
respect to L. Formally, let L be a subset of the magmoid M and f ∈ Mm,n, we 
set CL(f ) = {ω | ω ∈ Contm,n(M ), ω[f ] ∈ L}. 

Proposition 2 (cf. [11]). The equivalence ∼L on M defined by 
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is a congruence. 

f ∼L,m,n g, whenever CL(f ) = CL(g) 

 

Given a magmoid M and a set L ⊆ M , ∼L is called the syntactic congruence 

of L and the quotient magmoid ML  = M/ ∼L  is the syntactic magmoid of 

L.  Thus, for all m, n ) 0, the set (ML)m,n can be identified with the set 
consisting of all distinct contexts of the elements of Mm,n, i.e., we may write 
(ML)m,n = {CL(f ) | f ∈ Mm,n} whereas, the operations of ML are given by 

the formulas: 
 

CL(f ) ◦ CL(g) = CL(f ◦ g), CL(f ) D CL(g) = CL(f D g). 

 
The syntactic magmoid is characterized by the following universal property: 
for any magmoid epimorphism h : M → N , such that h−1(h(L)) = L, there 
exists a unique magmoid morphism h̄ : N → ML such that h̄ ◦ h = hL, where 
hL : M → ML is the canonical projection onto the quotient. Thus ML is unique 

up to isomorphism. 
 

 

4 Recognizability of Fuzzy Graphs 
 

Fuzzy graphs can be organized into a magmoid by virtue of two operations: 
product or composition corresponding to ◦ and sum corresponding to D. Let F 

be an (m, n)-graph and G is an (n, k)-graph represented respectively by 
 

(Vκ, Eλ, s, t, l, begin, end) and (V ! , E! , s!, t!, l!, begin!, end!), 
κI λI 

then their product F ◦ G is the (m, k)-graph 
 

(V !! !! !! !!    !! !! !! 

κII , EλII , s , t , l , begin , end ) 
 

obtained by taking the disjoint union of F and G and then identifying the ith end 
node v of F with the ith begin node v! of G, for all i ∈ {1, ..., n}; for the resulting 
node v!! we set κ!!(v!!) = max{κ(v), κ(v!)}. Additionally, begin!! = begin and 

end!! = end!.  The sum F D G of arbitrary graphs F and G is their disjoint 

union with their sequences of begin nodes concatenated and similarly for their 

end nodes. 

For instance let Σ = {a, b, c}, with rank(a) = (2, 1), rank(b) = (1, 1) and 

rank(c) = (1, 2). In the following pictures, edges are represented by boxes, 

nodes by dots, and the sources and targets of an edge by directed lines that 

enter and leave the corresponding box, respectively. The order of the sources 

and targets of an edge is the vertical order of the directed lines as drawn in 

the pictures.   The membership grades are omitted for simplicity.   We display 

two graphs F ∈ F GR3,4(Σ) and G ∈ F GR4,2(Σ), where the ith begin node is 

indicated by bi, and the ith end node by ei. 
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Then their product F ◦ G and their sum F D G are respectively the (3, 2) and 

the (7, 6)-graphs 
 

 
 

For every n ∈ N we denote by En  the discrete (n, n)-graph with nodes 

x1, ..., xn, begin and end sequence x1 · · · xn  and κ(xi) = 0 for all i; we write E 
for E1. It can be verified that F GR(Σ) = (F GRm,n(Σ)) with the operations 
defined above is a magmoid, whose units are the graphs En, n ≥ 0. 

Recognizability inside magmoids can be defined in a way similar to that 
of monoids. A congruence ∼= (∼m,n) on a magmoid M = (Mm,n) saturates 
L ⊆ M whenever, for all m, n ≥ 0, the subset Lm,n is a union of ∼m,n-classes. 
If, for all m, n ≥ 0, the congruence ∼m,n has finite index (i.e., finite number of 
equivalence classes) we say that ∼ has locally finite index. Moreover, a magmoid 
M = (Mm,n) is said to be locally finite if, for all m, n ≥ 0, the set Mm,n is finite. 

 
Definition 1. A subset L of F GR(Σ) is called (syntactic) recognizable if there 
exists a locally finite magmoid N = (Nm,n) and a morphism h : F GR(Σ) → N , 
so that L = h−1(P ), for some P ⊆ N . 

 

We denote by Rec(F GR(Σ)) the class of all syntactically recognizable sub- 

sets of F GR(Σ). The elements of Rec(F GR(Σ)) are called recognizable fuzzy 

graph languages. From the described fuzzy recognizability notion and from the 

construction of the syntactic magmoid, similarly with crisp recognizability, we 

deduce 

Theorem 1. Let L ⊆ F GR(Σ), the following conditions are equivalent: 
 

1. L is recognizable; 
 

2. L is saturated by a congruence of a locally finite index; 

3. ∼L has locally finite index; 
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4. card{CL(F ) | F ∈ F GRm,n(Σ)} is finite for all m, n ∈ N; 
 

5. the syntactic magmoid F GR(Σ)L  is locally finite. 
 

Corollary 1. The class Rec(F GR(Σ)) of all recognizable fuzzy graph languages 

is closed under finite union, intersection, complement and inverse morphisms 

of magmoids. 
 

Proof. Combine the above theorem with Proposition 3 of [11]. 
 

Proposition  3.  Let Σ be a doubly ranked alphabet and a, b ∈ Σ, a j= b,  

the fuzzy graph language L
a,b 

⊆ F GR(Σ) consisting of all graphs that have an 
equal 

number of labels a and b on edges with memebeship grade greater or equal to k, 
k ∈ [0, 1], is not recognizable 

Proof. For every G ∈ F GR(Σ) and every ω = (G1, F1, F2, G2) we denote by |G|a 

the number of a’s occurring as labels of edges with membership grade greater 
or equal to k in G and 

|ω|a = |G1|a + |F1|a + |F2|a + |F2|a. 

Let G ∈ F GR(Σ), we observe that for every ω, ω! ∈ C
L

a,b (G) it holds 
 

|ω|a − |ω|b = |ω!|a − |ω!|b = |G|b − |G|a. 

 

We can easily verify that the function 
 

φm,n 

G −→ |G|b − |G|a, G  ∈ GRm,n(Σ) 
 

is a bijection of the set (F GR(Σ) a,b )m,n on the set of integers Z. Furthermore 
k 

it holds 
 

φ(G ◦ G!) = φ(G) + φ(G!), φ(G D G!) = φ(G) + φ(G!) and φ(En) = 0n,n 

 

and thus, the syntactic magmoid of L
a,b 

is isomorphic to the magmoid associated 

with the commutative monoid of the additive integers. Since this is locally 

infinite from Theorem 1 we derive that this language is not recognizable. 
 

Remark 1. Note that L
a,b  

consists of all fuzzy graphs with an equal number 

of a’s and b’s. As we have shown in [11], the syntactic magmoid of the crisp 

graph language that consists of all graphs with an equal number of a’s and b’s 

in their labels, is also isomorphic with the same magmoid and in this respect 

the present result constitutes a generalization for fuzzy graph languages. 
 

Proposition 4. The fuzzy graph language L1 ⊆ F GR(Σ) consisting of all 
graphs that have exactly k edges (k ≥ 1) with membership grade 1 is recog- 

nizable. 

Proof. For every G ∈ F GR(Σ) let |G|1 be the number of edges of G with 

membership grade 1 and for every ω = (G1, F1, F2, G2) we set 
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It holds: 

|ω|1 = |G1|1 + |F1|1 + |F2|1 + |F2|1. 

 

- |G|1 = 0, whenever for every ω ∈ CL1 
(G), |ω|1 = k, 

- |G|1 = 1, whenever for every ω ∈ CL1 
(G), |ω|1 = k − 1, 

 
. 

- |G|1 = k − 1, whenever for every ω ∈ CL1 
(G), |ω|1 = 1, 

- |G|1 = k, whenever for every ω ∈ CL1 
(G), |ω|1 = 0, 

- |G|1 ≥ k + 1, whenever CL1 
(G) = ∅. 

 

The function φm,n  : (F GR(Σ)L1 
)m,n  → {0, 1, . . . , k, α}, sending the syn- 

tactic class of every graph G ∈ F GR(Σ)m,n  to 0, 1, . . . , k or α, whenever 

|G|1 = 0, 1, . . . , k or ) k + 1 respectively, is a bijection. 
Now let M (A) = (M (A)m,n) be the magmoid associated with the commu- 

tative monoid A = {0, 1, . . . , k, α} whose operation is given by the following 

table. 
 
 
 

. . . . . . 

 
 

It holds: 
 

φ(G ◦ G!) = φ(G) + φ(G!), φ(G D G!) = φ(G) + φ(G!) and φ(En) = 0n,n 

 
and hence the syntactic magmoid of L1  is isomorphic to M (A).  This is a locally 
finite magmoid and hence from Theorem 1 we deduce that L1  ∈ Rec(F GR(Σ)). 

 

 

Proposition 5. Given a finite doubly ranked set Σ, the class Rec(F GR(Σ)) is 

closed under D-operation. 
 

Proof.  Similar with the corresponding proof for crisp graph languages (see [11]). 
 

 

Proposition 6. The fuzzy graph language Ldp  ⊆ F GR1,1(Σ) that consists of 

all graphs that have at least one directed path from the begin node to the end 

node through edges with membership grade 1 is recognizable. 

Proof. We define the following equivalence on F GRm,n(Σ): G1 ∼p G2 whenever 

the next two items are equivalent there exists a directed path from the ith begin 
node of G1 to the jth end node of G1 through edges with membership grade 1 
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if and only if there exists a directed path from the ith begin node of G2 to the 

jth end node of G2 through edges with membership grade 1. It holds: 

G1 ∼p G2 and G! ∼p G
!
 implies G1 D G!  ∼p G2 D G!

 
1 2 1 2 

and similarly for ◦, hence ∼p is a congruence which trivially saturates Ldp and 

thus by Theorem 1 we get that Ldp  is recognizable. 
 

Proposition 7. The fuzzy graph language Lsc of all strongly connected graphs 

is recognizable. 
 

Proof. Let G = (Vκ, Eλ, s, t, l, begin, end) ∈ F GRm,n(Σ). If there exist nodes 

u, v ∈ V without a directed path from u to v or backward and are not both 
either in the begin or the end sequence of G, then CLsc 

(G) = ∅. 

Assume now that every node of G that doesn’t appear in the begin and the 

end sequences of G has directed paths back and forth with every other node of 

G. Then there exist contexts of G with respect to Lsc. The possible different 

such contexts correspond to the different ways we can arrange the m + n begin 

and end marks to the nodes of G in a way that each node that requires at least 

one directed path connecting it with another node appears at least once in the 
begin or the end sequence of G. This is clearly a finite number, hence 

card{CLsc 
(G) | G ∈ F GRm,n(Σ)} < ∞ 

and by Theorem 1 the language Lsc  is recognizable. 
 

Fuzzy graph language recognizability can also be characterized through left 

derivatives in a result that is a generalization of the fundamental fact that a 

string language is recognizable, if and only if, it has finitely many left derivatives, 

if and only if, it has finitely many right derivatives [18]. Let L ⊆ F GR(Σ) and 

ω ∈ Contm,n(F GR(Σ)).  The left derivative of L at ω is defined as 

ω−1L = {G ∈ F GRm,n(Σ) | ω[G] ∈ L}. 
 

Proposition 8. The fuzzy graph language L ⊆ F GR(Σ) is recognizable, if and 

only if, card{ω−1L | ω ∈ Contm,n(F GR(Σ))} < ∞ ,  for all  m, n ∈ N. 
 

Proof. As in the case of crisp graph languages (see Proposition 5 of [11]). 
 

By virtue of this proposition we prove the following result. 

Proposition 9. Let L ⊆ F GR(Σ) be the binary fuzzy graph language that 

consists only of graphs containing only nodes with membership grade 1. Then L 

is recognizable if and only if Lf c is recognizable. 

Proof. Assume that L ∈ Rec(F GR(Σ)) and m, n ∈ N, then by the previous 

proposition 

card{ω−1L | ω ∈ Contm,n(F GR(Σ))} < ∞. 
Let ω−1L, . . . , ω−1L be representatives of the distinct left derivatives of L.  We 

1 k 
shall prove that (ω

f c
)−1L, . . . , (ω

f c
)−1L are all the distinct left derivatives of 

1 k 

Lf c. For every ω = (G1, F1, F2, G2), we set 
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ωf c = (G
f c

, F 
f c

, F 
f c

, G
f c

). 
1 1 2 2 

Note that for any graph G ∈ F GR(Σ) it holds (Gf c)f c  = G.  Now, let ω ∈ 

Contm,n(F GR(Σ)), then for any graph G ∈ F GR(Σ) it holds 
 

ω[G] ∈ Lf c ⇔ (ω[G])f c ∈ L 
∗
 ω

f c[Gf c] ∈ L. 
 

Since we assumed that ω−1L, . . . , ω−1L are all the distinct left derivatives of L, 
1 k 

from the last we deduce that there exists 1 ≤ i ≤ k such that 

ωi[G
f c] ∈ L ⇔ (ωi[G

f c])f c ∈ Lf c   ∗
 

 

ω
f c

[G] ∈ Lf c. 
 

Hence the context ω is identified with one of ω
f c

, . . . , ω
f c

, and thus Lf c has finite 
1 k 

distinct left derivatives which by Proposition 8 concludes the proof. Notice that 
in the equivalences  

∗
 we used the equality (ω[G])f c = ωf c[Gf c] which holds 

only in the case that the graph G has only nodes with membership grade 1. 
 

 
 

5    Conclusion 
 

Fuzzy graphs were defined as an extension of the notion given by Rosenfeld in 

[32], i.e., directed (hyper)graphs with fuzzy sets of nodes and fuzzy sets of edges. 

It turns out that the set of all fuzzy graphs can be structured into a magmoid 

with operations product (graph composition) and sum (disjoint union). By 

virtue of this algebraic structure we introduced a syntactic recognizability notion 

for sets of fuzzy graphs employing the syntactic magmoid in a role analogous 

to the syntactic monoid of string languages. This approach shall allow us to 

explore the fuzzy case for existing crisp graph theoretic methods and techniques 

involving formal verification [3, 4, 13] and natural language processing [31] as 

well as for the syntactic complexity of string and graph languages [14, 15, 22]. 
 

 

References 
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