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The stability of convection in an anisotropic porous
medium, where the solute concentration is assumed
to decay via a first-order chemical reaction, is studied.
This is a simplified model for the interactions between
carbon dioxide and brine in underground aquifers; the
instability of which is essential in reducing reservoir
mixing times. The key purpose of this paper is to
explore the role porous media anisotropy plays in
convective instabilities.

It is shown that varying the ratio of horizontal to
vertical solutal diffusivites does not significantly effect
the behaviour of the instability. This is also the case
for changes of permeability when the diffusion rate
dominates the solute reaction rate.

However, interestingly, when the solute reaction
rate dominates the diffusion rate a change in the
permeability of the porous material does have a
substantial effect on the instability of the system.

The region of potential subcritical instabilities is
shown to be negligible, which further supports the
novel instability behaviour.

1. Introduction
The world’s current energy production is based primarily
on fossil fuels; the combustion of which has been
consistently highlighted as the biggest contributor to
climate change thorough the increase of carbon dioxide
in the atmosphere [1]. To generate sustainable alternative
renewable energy technologies to replace fossil fuels,
intensive research and development is needed to
overcome the deficiencies that limit existing approaches
and produce novel new technological options.
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Whilst these longer-term options are being developed, a more-immediately accessible strategy
to limit of the accumulation of carbon dioxide in the atmosphere is its storage in underground
brine-filled aquifers [2].

Due to the complicated nature of the interactions between carbon dioxide and brine (cf. [3,4]
and references therein), the fundamental underlying chemistry is often represented in a highly
simplified manner as a first-order reaction, where the dissolved carbon dioxide reacts with an
abundant substrate [4,5]. Reservoir mixing times are reduced from thousands to hundreds of
years due to the enhanced mixing caused by convection [6], making the exploration of the onset
of such convection of particular relevance.

Utilising spectral and asymptotic methods, stability analyses (and time-dependent
simulations) are performed for convection in an isotropic porous medium (where the solute
concentration is assumed to decay via a first-order chemical reaction) in [4]. Multiple bifurcations
in the steady state solutions are demonstrated. A discussion on alternative models for carbon
dioxide storage may also be found in [7].

In this paper we consider the porous medium to be anisotropic, with constant anisotropic
solute diffusivity and linearly layer dependent permeability. The specific aim of this investigation
is to assess the impact, if any, the anisotropic of the porous medium has on the convective
instability of the flow for the fundamental first-order reaction problem. Recent contributions on
the study of convective instabilities in anisotropic porous media include [8–12].

An assessment of the onset of convection is achieved by analysing both the linear instability
and nonlinear stability thresholds of the governing model. Comparing these thresholds allows the
assessment of the suitability of linear theory to predict the physics of the onset of convection, (and
hence reservoir mixing). The derivation of sharp unconditional stability thresholds is particularly
physically useful due to the lack of restrictions on the initial data [13].

The stability calculations required to construct the neutral curves involve determining
eigenvalues and eigenfunctions. The results are derived numerically using the Chebyshev tau-
QZ method [14], which is a spectral method coupled with the QZ algorithm. All numerical results
were checked by varying the number of polynomials to verify convergence.

2. Formation of the problem
Let us consider a water saturated porous layer Ωp bounded by two horizontal parallel planes.
Let d > 0, Ωp =R2 × (−d, d) and Oxyz be a cartesian frame of reference. The Darcy equation, for
variable permeability k(z) = k0s(z), is assumed to govern the fluid motion in the layer, such that

µ

k(z)
v =−∇P − bgρ (2.1)

where v and P are velocity, and pressure, b = (0, 0, 1), g is acceleration due to gravity, ρ is density,
µ is the dynamic viscosity of the fluid and k0 is the reference permeability.

We consider the dissolution of a solute inΩp,where the solute undergoes a first-order S1→ S2
reaction, where solution density is increased by species S1 (but not S2). Letting the concentration
of species S1 dissolved in the solution to be denoted byC (and assuming that the solution density
is linear in C), equation 2.1 together with the incompressibility condition and the equation of
solute balance yields

µ

k0s(z)
v =−∇P − bgρ0(1 + α(C − C0)), (2.2)

∇ · v= 0, (2.3)

ε
∂C

∂t
+ v · ∇C = εκh

(
∂2C

∂x2
+
∂2C

∂y2

)
+ εκv

∂2C

∂z2
− βC. (2.4)



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

In these equations ρ0 is the reference density, α is the coefficient of solutal expansion, C0 is the
reference concentration, ε is the porosity, β is the reaction rate of the solute and κh and κv are the
constant horizontal and vertical thermal diffusivities, respectively.

Assuming the solute concentration is constant at the upper boundary and there is no flux of
solute across the lower boundary, the boundary conditions for the problem are v = 0 and C =C0

at z = d and v = 0 and ∂C/∂z = 0 at z =−d.
Let us now consider the basic steady state solution

(
v, P , C

)
of system 2.2-2.4, for the

motionless case i.e. v = 0. Utilising the boundary conditions yields

C(z) =

C0 cosh

(
d
√

β
εκv

(
z
d + 1

))
cosh

(
2d
√

β
εκv

) . (2.5)

To study the stability of the system we introduce a perturbation (u, p, c) to the steady state
solution such that v = v + u, P = P + p and C =C + c, and non-dimensionalise with scalings of

x = dx∗, t=
εdµ

k0gC0ρ0α
t∗, u =

k0gC0ρ0α

µ
u∗, p= gdC0ρ0αp

∗, c=C0c
∗.

Substituting the perturbations and non-dimensionalised variables into system 2.2-2.4, and
dropping the stars we derive

1

f(z)
u =−∇p− bc, (2.6)

∇ · u = 0, (2.7)

∂c

∂t
+ u · ∇c+

√
RDaM(z)w=

ζ

R

(
∂2c

∂x2
+
∂2c

∂y2

)
+

1

R

∂2c

∂z2
−Dac, (2.8)

where w= u3, f(z) = s(z/d) = 1 + λz with |λ|< 1 to ensure f(z)> 0,

M(z) =
sinh

(√
RDa(z + 1)

)
cosh

(
2
√
RDa

) ,

and

R=
gρ0αC0k0d

εµκv
, Da=

βdµ

gρ0αC0k0
, ζ =

κh
κv
,

with R and Da being the Rayleigh and Damköhler numbers, respectively and ζ being the ratio of
horizontal to vertical solutal diffusivities.

The perturbed boundary conditions are now u = c= 0 at z = 1 and u = ∂c/∂z = 0, at z =−1.
We assume that the perturbation fields (u, c, p), defined on R2 × [−1, 1], are periodic in the x
and y direction and we shall denote by Ω = [0 2π/ax]× [0, 2π/ay]× [−1, 1] to be the periodicity
cell.

3. Stability analysis
To understand the processes occurring during carbon dioxide sequestration in underground
saline aquifers it is crucial to assess the onset of convection (i.e. instability). This is achieved by
analysing both the linear instability and nonlinear stability thresholds of the governing model.

In a linear instability analysis it is assumed that the perturbation is small and so terms
of quadratic and higher order are neglected, which leads to this approach providing limited
information on the behaviour of the nonlinear system. The instability could then potentially
occur prior to the thresholds predicted by the linear theory being reached. Establishing stability
results through the use of generalised nonlinear energy techniques [13] addresses this issue. By
comparing the instability thresholds generated by the linear theory with the stability thresholds
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generated by the energy method, an assessment of the suitability of the linear theory to predict
the onset of convection can then be made.

(a) Linear instability analysis
To proceed with the linear analysis the nonlinear terms from 2.6-2.8 are discarded. Since
the resulting system is linear and autonomous we may seek solutions of the form u =

û(z)eσt+i(axx+ayy), c= ĉ(z)eσt+i(axx+ayy) and p= p̂(z)eσt+i(axx+ayy), where ax, ay ∈ R are
the horizontal wavenumbers and σ ∈C is the growth rate.

Letting D= d/dz and taking the double curl of the linearised version of 2.6, where the third
component is chosen, (and the fact that û is solenoidal) we have the linearised system

f
(
D2 − a2

)
ŵ − λDŵ − f2a2ĉ= 0, (3.1)

1

R

(
D2 − a2ζ

)
ĉ−Daĉ−

√
RDaMŵ= σĉ, (3.2)

where a2 = a2x + a2y. The boundary conditions for the fourth-order system at z = 1 are ŵ= ĉ= 0

and at z =−1 are ŵ=Dĉ= 0. The fourth-order system 3.1-3.2 was solved using the Chebyshev-
tau method [14,15], which is a spectral technique coupled with the QZ algorithm. Numerical
results for the linear theory are presented in §4.

(b) Nonlinear stability analysis
To obtain global nonlinear stability bounds in the stability measure L2(Ω), we first remove the
pressure term from equation 2.6 by taking the double curl (utilising 2.7) to yield

∇2w − λ

f

∂w

∂z
+ f

(
∂2c

∂x2
+
∂2c

∂y2

)
= 0. (3.3)

To adopt the differential constraint approach to the generalized energy technique (see e.g. [10,16,
17]), we multiply 2.8 by c and integrate over Ω to obtain

1

2

d

dt
‖c‖2 =−

√
RDa<Mw, c >−Da‖c‖2 − ζ

R
‖∇hc‖2 −

1

R

∥∥∥∥ ∂c∂z
∥∥∥∥2 (3.4)

where ∇h = i∂/∂x+ i∂/∂y and ‖ · ‖ and < · , ·> denote the norm and inner product on L2(Ω),

respectively. Defining

E =
1

2
‖c‖2, I =−

√
RDa<Mw, c >, D=Da‖c‖2 +

ζ

R
‖∇hc‖2 +

1

R

∥∥∥∥ ∂c∂z
∥∥∥∥2 ,

it follows from 3.4 that

dE

dt
= I − D.

Defining 1/RE =maxH(I/D), whereH is the space of kinematically admissible perturbations to
2.6-2.8 (subject to constraint 3.3), and utilising the Poincaré inequality, such that D≥ cE for some
constant c, if RE > 1 then

dE

dt
≤−

(
RE − 1

RE

)
cE.

Integrating, we have E(t)≤E(0)≤ e
− c(RE−1)t

RE → 0 as t→∞. The decay of c clearly follows
by the definition of E(t). However, for global nonlinear stability, the decay of u must also be
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demonstrated. Using the arithmetic-geometric mean inequality in 2.6 yields

1

1 + λ
‖u‖2 ≤ γ

2
‖c‖2 +

1

2γ
‖u‖2.

for constant γ > 0. Letting γ = 1 + λ, as c→ 0 in the stability measure L2(Ω) as t→∞ the decay
of u clearly follows.

Introducing the Lagrange multiplier τ, such that

τ(x)
(
∇2w − λ

f

∂w

∂z
+ f

(
∂2c

∂x2
+
∂2c

∂y2

))
= 0,

and adopting normal mode representations (see §3(a)), the Euler-Lagrange equations for the
maximisation problem 1/RE are

RE

(
f(D2 − a2)ŵ − λDŵ − a2f2ĉ

)
= 0, (3.5)

RE

(
f2(D2 − a2)τ̂ − λ2τ̂ + λfDτ̂ −

√
RDaf2Mĉ

)
= 0, (3.6)

RE

(√
RDaMŵ + a2f τ̂

)
=

2

R
(D2 − a2ζ)ĉ− 2Daĉ, (3.7)

with the boundary conditions

ŵ= 0, τ̂ = 0 ĉ= 0 for z = 1 and ŵ= 0, τ̂ = 0 Dĉ= 0 for z =−1.

System 3.5-3.7 forms a sixth-order eigenvalue problem for RE , where global stability holds if
RE > 1 for all eigenvalues RE (whilst maximising over R and minimising over a2). Numerical
results for the nonlinear energy approach are presented in §4. As in Section §3(a) this eigenvalue
problem was solved utilising the Chebyshev-tau method.

4. Numerical results and conclusions
In this section we present the numerical results relating to the key physical variables considered
in the system, namely the critical solutal Raleigh number Ra, the Damköhler number Da (ratio
of solute reaction to diffusion rates), the ratio of horizontal to vertical solutal diffusivity ζ and λ
such that 1 + λz describes the non-dimensional permeability varying in the z direction. For all of
the parameter ranges explored the growth rate σ was found to be real at the onset of instability.

Figure 1 gives a visual representation of the linear instability thresholds for a variety of ζ values
for fixed λ.

From figure 1 it is clear that the behaviour of the neutral curve for each value of ζ follows
the same pattern (namely an increase in instability between log(Da) of −4.5 and approximately
−1.25 with an increase as log(Da) tends to 0) as that of the isotropic case (i.e. ζ = 1.)

This mirrors the general behaviour for an isotropic porous medium [4] (although this paper
considers an infinite layer, whereas a finite two-dimensional enclosure is explored in [4]). Thus,
although there is some quantitative effect in varying the ratio of horizontal to vertical solutal
diffusivites, it does not significantly effect the behaviour of the instability. The same pattern to
that shown in figure 1 is observed for other physically realistic values of λ.

Figure 2 gives a visual representation of the linear instability thresholds for a variety of λ
values for fixed ζ.

Figure 2 clearly shows that a change in λ has negligible effect for log(Da) between −3 and
approximately −1.75. This demonstrates that a varying permeability in the vertical direction has
no impact on the stability of the system. However, as log(Da) tends to 0 figure 2 shows that an
increased value of λ causes a significant increase in instability when compared to the case of no
permeability variability (i.e. λ= 0).

This highly interesting result indicates that when the diffusion rate dominates the solute
reaction rate (i.e. for low values of Da) a change in the permeability of the porous material
has no significant effect on the instability of the system. However, when the solute reaction rate
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Figure 1. Visual representation of the linear instability thresholds for ζ = 0.5, 0.8, 1, 1.2 and 1.5 with critical Rayleigh

number Ra plotted against log(Da), and where λ= 0.2.
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Figure 2. Visual representation of the linear instability thresholds for λ= 0, 0.5 and 0.9 with critical Rayleigh numberRa

plotted against log(Da), and where ζ = 1.

dominates the diffusion rate (i.e. for higher values of Da) a change in the permeability of the
porous material does have a significant effect on the instability of the system.

Figure 3 explores this concept in more detail by giving a visual representation of the linear
instability thresholds for a variety of λ values for fixed Da.
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Figure 3. Visual representation of the linear instability thresholds for Da= 0.005, 0.01, 0.1, 0.15 and 0.2 with critical

Rayleigh number Ra plotted against λ, and where ζ = 1.

Interesting, it is clear from figure 3 that for lower valeus of Da (0.005 and 0.01) in increase in
permeability causes the system to become slightly more stable. By contrast, as Da is increased
(demonstrated at the values 0.1, 0.15 and 0.2) an increase in permeability causes the system to
become more unstable. There is, therefore, a critical value of Da (appropriately 0.05) between the
two distinct behaviours for which λ becomes independent of the stability behaviour.

Figure 4 gives a visual representation of the linear instability and nonlinear stability thresholds
for a representative example.

It is clear from figure 4 that the region of potential subcritical instabilities between the linear
instability and nonlinear stability thresholds is negligible. This result was demonstrated for all
physically realistic ranges of λ and ζ ranges explored.

To conclude, it has been shown that (with respect to instability) varying the ratio of horizontal
to vertical solutal diffusivites does not significantly effect the behaviour of the instability. This is
also the case for changes of permeability when the diffusion rate dominates the solute reaction
rate. However, interestingly, for changes of permeability (when the solute reaction rate dominates
the diffusion rate) there is a substantial instability effect.

Since the linear instability and nonlinear stability results clearly show excellent agreement, we
can conclude that (for the parameter ranges explored) the linear theory accurately encapsulates
the physics of the onset of convection. Thus, the novel instability results are supported by the
negligible region of subcritical instabilities.
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