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Abstract
Malicious software, known as malware, is a perpetual game of cat and mouse between malicious software developers and 
security professionals. Recent years have seen many high profile cyber attacks, including the WannaCry and NotPetya ransom-
ware attacks that resulted in major financial damages to many businesses and institutions. Understanding the characteristics 
of such malware, including how malware can propagate and interact between systems and networks is key for mitigating 
these threats and containing the infection to avoid further damage. In this study, we present visualisation techniques for 
understanding the propagation characteristics in dynamic malware analysis. We propose the use of pixel-based visualisations 
to convey large-scale complex information about network hosts in a scalable and informative manner. We demonstrate our 
approach using a virtualised network environment, whereby we can deploy malware variants and observe their propagation 
behaviours. As a novel form of visualising system and network activity data across a complex environment, we can begin to 
understand visual signatures that can help analysts identify key characteristics of the malicious behaviours, and, therefore, 
provoke response and mitigation against such attacks.

Keywords Malware analysis · Data visualisation

Introduction

Malware (malicious software) is recognised to be one of 
the greatest threats against modern computer systems that 
now underpin much of society and our everyday lives [1]. 
Recent years have seen a number of high profile cyber 
attacks on global corporations, resulting in significant finan-
cial, operational, and reputational damage [7]. In particu-
lar, ransomware has become a dominant malware variant 
due to advances in anonymous payment methods, such as 
Bitcoin, meaning that a victim’s files can be encrypted and 
held to ransom until a user makes payment to acquire the 
decryption key. In addition, malware distribution mecha-
nisms have evolved as part of our hyper-connected society. 

Vulnerabilities such as the MS17-010 EternalBlue exploit 
reveal how malware can propagate through corporate and 
home networks at speed and without user intervention which 
was a key software component to the propagation of the 
global WannaCry attack [24]. The arms race of security 
continues between security analysts and malicious software 
developers. As malware developers seek to identify new 
methods of attack, those tasked with defending systems need 
improved tooling to be able to examine patterns of behaviour 
effectively and efficiently to assist well-informed incident 
response.

A major complexity with any systems analysis is being 
able to examine large volumes of multi-variate data in con-
junction. Reverse engineering techniques and static code 
analysis have often been used to examine malware charac-
teristics. It is also increasingly common to perform dynamic 
analysis using a sandbox environment, which is the approach 
we adopt, however in a large sandbox network environment, 
a vast amount of machine data can easily be generated in a 
relatively short time, and there is a need for improved meth-
ods of analysis to understand this data at scale.

In this work, we investigate the nature of malware 
propagation using a virtualised multi-machine network 
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environment. In particular, we propose novel pixel-based 
visualisation techniques to help address the challenges of 
data scalability to improve the diagnostic of system and net-
work behaviours to examine the characteristics of malware 
propagation across computer networks. In this manner, we 
are not only able to understand the traits that impact on an 
individual machine, but we can examine the traits of the 
overall network, including the propagation characteristics 
of how malware traverses from one machine to the next. A 
key challenge for any large scale analytics such as this is 
the issue of scalability, and therefore, we seek to identify 
techniques that can help gather and analyse large volumes 
of multi-variate data sources that contextualise the malicious 
activity across a network, in a manner that is scalable for 
an analyst to work with. Our focus is on the visualisation 
of malware propagation to enable security analysts a clear 
overview of how machines interact and respond to a mali-
cious software threat. Using two well-recognised malware 
variants, and a sandbox network environment, we illustrate 
how these variants are visualised and how a security ana-
lyst can clearly identify key activities that result in malware 
propagation.

The contributions of this work are as follows:

– We propose pixel-based visualisation techniques for sys-
tem and network-wide analysis, offering scalable repre-
sentation of multi-variate system parameters.

– We deploy a testing environment and illustrate the use of 
these techniques to better convey the characteristics and 
behaviours of system and network activities, in a manner 
that allows visibility of all devices at scale.

– We illustrate how this can better examine propagation 
techniques in malware due to the comparative analysis 
of system properties across multiple networked devices.

Related Works

To understand the problem further, we focus our related 
works on the broad challenge of malware analysis, includ-
ing traditional methods of analysis, machine-learning tech-
niques, and visualisation methods. Previous methods largely 
focus on individual machine analysis. One of the key aspects 
of our work is to address multi-system examination and anal-
ysis simultaneously, such as a large corporate network or a 
home environment, such that we can better understand the 
visual cues and signatures of compromised devices through 
malware propagation methods that involve no human inter-
vention. By focusing on the contributing elements of each 
paper, we are able to divide our research into four key areas 
of study, each of these were used to make decisions on how 
our development proceeded or changed as it progressed.

First and foremost was the research conducted into visu-
alisation methods and how other malware analysts have visu-
alised their findings in the past. Wagner et al. [26] surveyed 
various methods of visualising malware analysis, exploring 
the multitude of characteristics that apply to techniques for 
individual analysis, comparison, and summarization. Gregio 
et al. [11] explored the visualisation of malware behavioural 
analysis by capturing interactions with target operating sys-
tems using system service descriptor table hooking, using 
this data the authors were able to create visualisations that 
draw distinctions and similarities between samples. Han 
et al. [13] performed analysis of samples using visualised 
image matrices created by extracting opcode sequences from 
malware binaries through a combination of disassembly and 
execution of samples. In doing so, Han et al. [13] created vis-
ualisations that can be used to distinguish samples from each 
other and be used for training learning algorithms attempting 
to do the same. Similar to our initial goals, Gove and Deason 
[10] looked at identifying malware through network activ-
ity utilising an algorithm based on discrete Fourier trans-
forms paired with aggregation summary tables which can 
be used to inform whether a detection is worth looking into. 
Similarly, Zhuo and Nadjin [29] conducted a study with the 
goal of visualising malware network traces by capturing het-
erogeneous attributes, such as protocols and IP addresses, 
an effective method due to the analysis of network traces 
being key to categorising malware. A study into visualising 
enterprise network attacks by Creese et al. [8] is important 
to our work as the result of their study was the creation of 
a visualisation tool for modelling attacks using traditional 
network notation and a disk propagation logic that connects 
the network and business process layers. Another key aspect 
of their work was to study the principles and characteristics 
they they identified during the development of their tool. 
Finally, a study into the design of pixel-oriented techniques 
by Keim [16] that shows how to create clear and effective 
pixel-based visualisations for communicating various forms 
of data, this was used to inform our design choices.

The field of malware detection is ultimately the product of 
effective analysis, and therefore, it is useful to study detec-
tion techniques to explore possibilities for visualisation. 
Using the method of mining format information from mal-
ware executables, Bai et al. [2] were able to identify charac-
teristics that could be deemed malicious, identifying a total 
of 197 different features which can be used to train effective 
detection algorithms. NODENS is a random forest-based, 
lightweight malware detection platform created by Mills 
et al. [20], who explore the creation of classification mod-
els which use 22 different features curated after removing 
duplicate or unnecessary ones. Patel and Tailor [22] created 
a method for monitoring and counteracting ransomware by 
observing key folders and dynamically creating large dummy 
files when rapid encryption was detected within the observed 
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folders. In a similar vein to Grégio et al. [11], Xiao et al. 
[27] studied detecting malware through behaviour graphs 
which were created by monitoring the order in which mal-
ware makes system calls and in doing so created a method 
of distinguishing benign system call orders from malicious 
ones. Xiao et al. [27] also documented a broad scope of sys-
tem calls that malware frequently make, which is useful for 
reproducing such work on classification. Donehue et al. [9] 
presented a method of detecting malware samples through 
the obfuscation method of packing using a tree based naviga-
tion method with applied offsets to distinguish what might 
be legitimate and what might be packing. In doing so, they 
created a technique that can also be visualised, Markov Byte 
Plots that show the difference between packed and unpacked 
portable executable files. Finally, Rhode et al. [23] stud-
ied the use of recurrent neural networks for predicting if an 
executable was malicious or not based on a short snapshot of 
behavioural data using values, such as total processes, max 
process ID, and CPU usage.

To create hypotheses and temper an expectation for what 
our system and visualisations were going to look like, it 
was sensible to explore research that focused solely on the 
propagation aspect of malware. Yu et al. [28] explored the 
concept of modelling malware propagation in large scale 
networks using a two-layer epidemic model. The authors 
discern that malware propagation in large networks can fol-
low one of three different distributions depending on how 
much of the network is already infected. To better optimise 
intrusion detection systems, Sharafaldin et al. [25] created a 
data set containing more than eighty network traffic features 
gathered from live samples using CICFlowMeter, a pub-
licly available ethernet traffic bi-flow generator and analyser. 
Using these features, the authors were able to create data 
sets and designate signatures to varying attack profiles. In a 
similar manner to Yu et al. [28], Hosseini and Azgomi [14] 
represented malware propagation using a rumour spreading 
model, identifying five different types of machines that per-
form different roles in the propagation of malware. Finally, 
Guillen and Rey [12] researched the role of compartment 
devices in malware propagation and found that while such 
devices do not contribute to the initial infection rate, they 
instead increase the general overall rate of infection.

The final area of study was researched to assist in the 
development of the sandbox environment that would be used 
to run and extract data from to fuel the visualisation process. 
Studies such as the one performed by Chakkaravarthy et al. 
[6] provided us with knowledge of common methods used 
to avoid detection in sandboxes, concepts, such as payload 
fragmentation, session splicing, and contextual awareness. 
The authors also provide a clear and detailed description 
of the setup that they used to conduct this study, making a 
useful baseline for replication. Afianian et al. [1] present 
a similar study, a comprehensive summary of knowledge 

regarding evasion techniques, separating them into the cat-
egories of detection dependent and detection independent, 
and detailing how to prevent both kinds. Finally, a study 
conducted by Miramirkhani et al. [21] looked deep into what 
small features could be used by malware writers to detect a 
virtual environment. They create distinctions between types 
of artefacts that one could look for, and subcategories within 
those artefacts. While the study we explore here does not 
seek to address sandbox evasion or detection, it is neverthe-
less important to recognise this important area of research.

Methodology

We first describe the experimental environment for our data 
collection, and then discuss the design aspects of conveying 
this data in a scalable manner for a security analyst.

Experimental Environment

Sandbox environments are commonly used for malware 
analysis [18], often achieved using a Virtual Machine to 
examine the behaviour of malware when executed. Cuckoo 
sandbox [15] is an excellent tool for malware analysis, how-
ever a limiting factor is that Cuckoo is designed for a single 
virtual environment rather than monitoring propagation of 
malware across machines. We, therefore, develop a custom 
environment based on Cuckoo but that can support and 
gather data from multiple targets.

Figure 1 shows our virtualised network consisting of four 
Windows 7 (Win7) nodes with IP addresses in the range 
10.10.5.11-14 and a Ubuntu node with address 10.10.5.10. 
All devices are connected via a virtualised internal only 
network. We use VirtualBox as our virtualisation system 
as it offers excellent configuration options for virtualised 
networking, as well as offering the VBoxManage command 
line tools. The internal network is isolated, such that the 
Win7 hosts can interact with each other and the Ubuntu 
monitoring node, however there is no access back to the 
host machine to escape from the sandbox. The Ubuntu node 
is used for real-time data collection, and is air-gapped with 
two network adaptors meaning that if the Win7 devices are 
shut down, and the Ubuntu network adaptor connected to the 
internal network is disabled, then we can connect our host to 
this machine for the retrieval of data logs. Since many mal-
ware samples are designed to target Windows systems, using 
a Ubuntu environment for the monitoring system means that 
it is not exposed to the same vulnerabilities as the target 
machines being examined, but yet could be connected to 
the same virtualised network for the purpose of gathering 
and retrieving data logs safely. Furthermore, macOS was 
used as the host operating system for VirtualBox to limit 
any potential of the Win32 malicious samples escaping the 
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sandbox and causing damage to genuine production systems. 
The Win7 nodes were configured with various applications 
and utilities to represent real machines, including Skype, 
Office, Python, and VSCode. The machines were also delib-
erately weakened in terms of security, so that the true impact 
of propagation could be examined. Therefore, we disabled 
user access control and allowed all port connections to be 
accepted. We also allowed network discovery and file shar-
ing across the networked devices.

For the data collection we utilise a variety of different 
sources across the network. First, using the Ubuntu node 
we gather system-specific data from each machine using a 
customised Python script, with the client script running on 
each of the four Win7 machines and a server script run-
ning on the Ubuntu 20.04 node. This script utilises the psutil 
Python library and queries each machine for general statis-
tics related to CPU and RAM usage, network connections 
and system processes. Each client will report back to the 
server at given time intervals as specified by the user (e.g., 
every 15 s). This process is crucial as we can not store any 
logging data on the client machines themselves, since by 
the very nature of ransomware, these logs would become 
encrypted when the ransomware is deployed. The second 
mechanism in place for data collection is for network activ-
ity which we capture using Wireshark on the Ubuntu node. 
By enabling promiscuous mode on the Ubuntu network 

adaptor we can capture all traffic on the internal network, 
giving a complete view of all inbound and outbound traffic 
between the connected devices. Despite being isolated from 
the Internet, there is still significant information available 
here, as well as information related to the propagation of the 
malware over the network infrastructure. The third source 
of data collection is on the host OS running VirtualBox, 
where we can use the VBoxManage command line tools to 
obtain further detail on the virtual machines. This reports 
on CPU, RAM and HDD usage, as well as information on 
network connections (although due to being isolated this 
does not bring much information). In addition, we can use 
VBoxManage to capture screenshots of all virtual machines 
on a sequential basis. We configure this, so that we capture 
one screenshot of each machine every minute. The result of 
the data collection is that for every machine we have detailed 
time-stamped logs on CPU and RAM usage, screenshots, 
information on the network connections that are established 
and their protocols, and information on the system processes 
currently running.

For each test, we deploy the virtual machines and begin 
the logging process and allow the systems to run for a period 
of time with no further action, which is done to establish an 
initial baseline of activity. The Ubuntu node is then able to 
transfer the malicious test sample to the first Win7 node. 
We then execute the malicious sample under test on Node1 
and we continue to observe and log the system and network 
activity. The duration of the test is dependent on the sample 
being tested, which could be from as little as 5 min to a cou-
ple of hours depending on what behaviours are performed. 
Crucially, the visual representation of the data needs to be 
scalable to account for variable length execution periods. 
Ransomware, by design, makes itself known to the user to 
inform them that their system is encrypted and that payment 
is required. Therefore, we can use the obtained screenshots 
to observe whether all nodes have been compromised. Since 
we are using virtualisation, we can then revert all of the 
Win7 virtual machines to their previous snapshot to reset the 
test environment. We can also then disconnect the Ubuntu 
node from the malware analysis virtual network to retrieve 
the data captures.

Visualisation Design

Security analysts are often tasked with understanding com-
plex multi-variate data and related contextual data attributes 
using dashboard visualisations, such as charts and plots. A 
major challenge is being able to convey information in a 
concise yet informative manner, such that the context can be 
understood clearly while also being scalable for analysing 
multiple machines together, so that a holistic view can also 
be achieved. As described previously, the data collection 
results in a large multi-variate data set that includes CPU 

Fig. 1  Network Configuration. We host four virtualised Windows 
7 machines for deployment of the attack. We also host a virtualised 
Ubuntu 20.04 machine for data collection. All machines are con-
nected to each other on a internal virtualised network with no external 
access. External access can only be granted to the Ubuntu machine 
for the purpose of retrieving data collection
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and RAM usage, network connections, system processes, 
and screenshots, for each of the machines running on the net-
work over an extended period of time. While traditional plots 
and charts may go some way to reveal temporal data varia-
tions, they require significant real estate on-screen and result 
in much white space. This does not lend itself to a scal-
able solution, where multiple machines and multiple data 
attributes can be easily examined together. As the amount of 
information to be represented is increased, it is important to 
consider the implications of visual aspects such as data-ink 
ratio and other cues that help make a visualisation engaging 
and memorable [5]. The smallest visual element available 
on a computer is a pixel. Pixel-based visualisations [16] are 
effective for conveying numerical data at scale, such as illus-
trating days of a year in a concise and compact format [4].

Figure 2 gives an overview of how we map data to the 
pixel-based visualisation. Each row represents a numerical 
data attribute (e.g., CPU usage, RAM usage, process usage, 
network protocol). Likewise, system screenshots are grouped 
by row to illustrate the system interface where required. 
The temporal data attributes are mapped against the cor-
responding screenshot for the same time period (e.g., 4 data 
observations captured every 15 s map against one screenshot 
captured per minute). Rows can then be stacked together 
as required, and colour-coded based on their respective 

system, with the data value represented by the size of the 
pixel within the square region. We can extend this further for 
data sources such as network activity to include source-desti-
nation pair as well as protocol and packet size. We consider 
each protocol as an independent data attribute, and we use 
colour to denote the destination machine, since known hosts 
are colour-coded and unknown hosts can be represented by 
grey scale. The value can be determined as either the num-
ber of occurrences for a given protocol, or an aggregated 
packet size for the given time period. In this manner, each 
row can be defined based on the machine, the data source, 
and any further attributes, such as protocol or process name 
(e.g., ‘Node1-CPU-Usage’, ‘Node2-Network-SMB’, ‘Node3-
Process-Skype’). Figure 3 illustrates in greater detail how 
each data point is mapped to the corresponding pixel region. 
A region of 9 × 9 means that we could in theory have 6 dis-
tinct square pixel sizes ( 9 × 9 , 7 × 7 , 5 × 5 , 3 × 3 , 1 × 1 , and 
blank). Since we choose to map four data observations per 
screenshot, each screenshot is scaled to 36 × 36 . We use a 
consistent thresholding approach across all data source val-
ues V based on the mean value M for the given data row. For 
each data row, if V > 2 ∗ M then the pixel is scaled as 9 × 9 , 
else if V > M then the pixel is scaled as 5 × 5 , else if V > 0 
then the pixel is scaled as 3 × 3 , else the pixel region is left 
blank. We omit 7 × 7 and 1 × 1 to support a just-noticeable 
difference between the pixel sizes even at scale, however all 
numerical parameters can be easily modified by an analyst 
to support finer detail or to increase scalability, and sum-
mary statistics for each attribute row can also be examined 
in further detail. This is available for download to promote 
further research activity and collaboration with the wider 
community: https:// github. com/ phill egg/ pixsys.

Experimentation

We use two different malware variants to illustrate our ana-
lytical approach using the pixel-oriented visualisation tech-
nique: WannaCry and NotPetya. We specifically focus on 
these two samples as they both exhibit propagation using 
the EternalBlue exploit, yet they also have other differenti-
ating characteristics, meaning we can examine these using 
our approach for where they may exhibit similarities and 

Fig. 2  Visual design overview. Here, one screenshot is mapped 
against 4 data observations of a single metric at 4 given time periods 
(e.g., every 15 s). This can be scaled up as shown, to represent 4 sys-
tems over a longer duration (e.g., 5 min)

Fig. 3  Visual design of pixel 
representation using 4 sizes 
to support just-noticeable 
differences, based on whether 
the given value is greater than 
twice the mean, greater than the 
mean, greater than zero, or zero

https://github.com/phillegg/pixsys
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differences. As described previously, we deploy a virtualised 
network consisting of four networked Windows 7 machines, 
depicted as red, green, yellow and blue in the visualisation. 
We capture CPU usage, RAM usage, network protocol activ-
ity and system process activity, as well as the correspond-
ing system screenshots that in this use case would notify 
the user of the ransomware infection. We utilise the default 
parameters for capturing data and visualising the activity, as 
described previously.

WannaCry

In our first experiment, we use the WannaCry ransomware. 
This particular malware was chosen because of its notoriety 
for using many resources upon execution and its ability to 
propagate across insecure machines extremely quickly.

Due to the wide coverage gained by the WannaCry out-
break in 2017, we are able to conduct an initial investigation 
based on existing technical analysis reports, such as that 
by Vipre Labs [17]. After WannaCry is initially executed 
it first checks for the presence of a specific website. If this 
domain is down then the attack continues. This domain was 
famously purchased and sink-holed, which was how the out-
break was originally contained. Given we are experimenting 
using an internal only network, the sample is able to execute 
as no internet connection is made available. Next the sample 
begins the encryption phase, where it spawns itself as a sepa-
rate service called MSSECSVC2.0 which then drops and 
executes a 3MB Win32 portable executable file called task-
sche.exe. This newly dropped executable is the ransomware 
component which performs file encryption using RSA–AES.

After the ransomware component exits, the MSSEC-
SVC2.0 process remains running, now beginning to 
prepare for its propagation. It does this by creating two 
threads, one for LAN and one for WAN. In the LAN 
thread, it takes the first three octets of every IPv4 address 
associated with network adaptor and builds an IP list from 
1 to 254 for the fourth octet. Each generated IP is passed 
into its own thread to execute the EternalBlue exploit, 
with a maximum of ten threads. In the WAN propagation 

thread, 128 public IP addresses are randomly generated, 
the first octet is pseudo-randomly generated, since it skips 
127 and must be less then 224, the remaining octets are 
completely random. To propagate the thread connects 
to port 445 on the target machine, which is used by the 
Server Message Block (SMB) protocol. If the connection 
is successful it begins negotiating for the SMB tree ID, 
following this it makes five attempts to send a packet based 
on the EternalBlue exploit. Then it will be expecting a 
response from its target containing 0x51, which would 
mean the exploit has been successful and it can send the 
payload with the DoublePulsar shellcode. After this, the 
activity on the newly infected machine will proceed the 
same as the initial infection.

Given this technical analysis of the malware character-
istics, we seek to explore how well this chain of events can 
be examined based on the network and system characteris-
tics gathered by our data collector, and as visualised by our 
pixel-based approach.

Figure 4 shows the CPU, RAM and corresponding screen-
shots, as formulated by the visualisation tool. At the point 
of execution, the CPU usage of machine one can be seen to 
increase, and this increase in CPU usage is trigged across the 
other machines on the network despite no user interaction. 
This increase of activity would seem reasonable to correlate 
with the encryption process made by the machines once the 
ransomware component is in place.

Figure 5 shows the network usage for the WannaCry 
propagation. There is a clear pattern across all machines 
involving the increase in SMB activity as the dominant pro-
tocol in use, as we would expect from the known charac-
teristics of the malware. We can see the communications 
between the machines, in particular, where red (machine 
one) is seen to then communicate with all other machines on 
the network, and likewise, they communicate back.

Figure 6 shows an extract of the process usage for the 
WannaCry propagation (the full visualisation is too large 
to depict, due to 40 rows per machine). The top row shows 
the execution of the malicious executable (file hash begin-
ning 24d0). Subsequent processes can be observed including 

Fig. 4  WannaCry: Screen, CPU 
and RAM Usage
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tasksche.exe, taskhsvc.exe, VSSVC.exe, WmiPrvSE.exe and 
@WanaDecryptor@.exe.

NotPetya

NotPetya is another form of ransomware which extended on 
the Petya malware but also incorporates the worm compo-
nent of EternalBlue. As before, we can examine the technical 
analysis given by VMWare Carbon Black [3] to understand 
the expected behaviours.

Upon execution the malware first performs a check 
to assess what privilege level it is running as, primarily 
checking for the SeDebugPrivilege permission. Based on 
this permission the malware proceeds in one of two ways: 
if it does have the privilege then the malware assumes it 
has administrator privileges and encrypts the Master Boot 
Record (MBR) using the known Petya method; if the user 
does not have administrative privilege, the malware will 
instead use a user space encryption routine. The next stage 
of the process is to check for the presence of processes 

relating to anti-virus software. If any AV software is found 
then the global variable are modified to disarm these. If 
no processes are found and the malware has administrator 
privileges, it runs a credential stealer. It will then attempt 
to propagate using the EternalBlue SMB propagation as 
described earlier. After these routines complete, the mal-
ware will attempt to remove forensic artefact data by run-
ning a command to clear logs for Setup, System, Security, 
and Application, it will then delete the Update Sequence 
Number (USN) journal from the drive. Following this, the 
malware will force a restart in one of three ways depend-
ing on the privilege level. If the malware has access to 
SeShutDown and SeDebug, it will call the InitiateSystem-
Shutdown API; if it only has access to SeDebug, it will 
initiate shutdown by calling the NtDll.NtRaiseHardError 
API; if it has neither, then it will rely on a created sched-
uled restart task. Since the MBR is already compromised, 
the malware boots to its own environment, where it then 
encrypts the Master File Table (MFT) and alerts the user 
to the compromise.

Fig. 5  WannaCry: Network 
Protocol Usage (where each row 
denotes an individual system-
protocol name pair)
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Fig. 6  WannaCry: System 
Process Usage (where each row 
denotes an individual system-
process name pair)
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Using this knowledge, we assumed that the activity would 
begin with a short spike, followed by a plateau of higher sys-
tem resource usage. Following these would be an increase in 
SMB activity across the network, which would then be suc-
ceeded by another spike in system resource usage to denote 
the restart and encryption of the MFT.

Figure 7 shows the network activity observed when the 
NotPetya sample is executed on machine one in our virtual-
ised network. First, we note the significant longer period of 
time for malware execution required here, since NotPetya 
will delay the restart process by 1 h to maximise the propa-
gation stage before performing the system restart and the 
encryption process. Our visualisation approach scales well 
to handle a significantly longer period of time while still 
being able to convey key details. In an operational envi-
ronment, analysts would naturally zoom and pan across the 
visualisation, to gain both an overview (as shown) as well 
as zooming in for a detailed view. The network analysis also 
reveals reoccurring patterns across all four machines, where 
the ICMP, LANMAN, NBSS, SMB and SMB2 protocols are 
all triggered. The pixel-based visualisation essentially cre-
ates a form of visual signature that could be used by analysts 
to identify related occurrences of protocols across systems.

Figure 8 shows the system processes that are called when 
the NotPetya sample is executed. Given the increased runt-
ime of the malware before the system restarts, we have a 
signficantly longer period of time that requires analysis. 
The pixel visualisation allows us to identify distinct patterns 
across machines, for example, all machines call VSSVC.
exe and WmiPrvSE.exe within the same time period. The 
process rundll32 is also triggered as a new activity across 
all compromised machines.

Discussion

We now reflect on the key findings from our investigation. 
Pixel-based visualisations are well suited to convey large 
volumes of data within a concise visual format, and are, 
therefore, well-suited for the security domain. While alter-
native approaches such as horizon charts also seek to com-
press information in a smaller visual space, for encoding 
additional data attributes such as network communication 
and destination machines, as well as for the identification of 
recurring patterns, we found pixel-based approaches provide 
greater flexibility such as being able to extend visual attrib-
utes, such as colour, size, and position, to accommodate for 
more complex data sources.

Pixel-based visualisation has the benefit of being able 
to display much more information in a confined space. If 
one was to visualise the entire network activity of our setup 
in a multi-line time-series plot, it would become cluttered 
extremely quickly. Moreover, it would be difficult to make 
associations and identify the relationship between data 
points. With the pixel-based approach, we avoid issues of 
data occlusion, and so any patterns that may be present are 
visible. Due to the compact representation, being able to 
illustrate multiple rows to further separate out data, such 
as network protocol usage, can be achieved still within a 
constrained visual area. Furthermore, using colour and size, 
we can denote additional data attributes, such as destina-
tion machine, and the volume of activity. This reveals clus-
ters of activity in a much clearer fashion that a line plot. 
A traditional line plot may introduce much redundancy in 
terms of white space, whereby the security analyst may 
only be concerned in whether an attribute is within some 

Fig. 7  NotPetya Network Protocol Analysis: Each row represents a 
protocol, grouped by machine (colour). Markers are scaled by amount 
of traffic (5-point scale), and coloured by destination machine. Over 
the 1 h period before NotPetya forces a system reboot, the visualisa-

tion reveals the protocol pattern. There is a recurring pattern of activ-
ity based on ICMP, LANMAN, NBSS, SMB, and SMB2 protocols 
that can be observed
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threshold group (e.g., high, medium, low, none) or when 
there is change between these groups. Using a 9 × 9 pixel 
region provides up to 6 distinct thresholds which we found 
sufficient for representing system and network variations to 
observe system activities.

We were also able to visualise activity relating to pro-
cesses running on each node, gathered by our Python script 
agent utilising the psutil library. Using the data gathered by 
this agent we could observe activity specifically related to 
the sample and compare it against a baseline of other pro-
cesses present on the node. This is useful, because samples 
often create different processes to perform different tasks, by 
gathering this specific data we are able to see all of these and 
note when the process started, how many resources it used, 
and when it ceased. A good example of this is in Fig. 6, 
where you can see the different times that @WanaDecryp-
tor@.exe executed on each machine, which could inform 
our hypotheses for the order in which the machines were 
infected. The data collector actually provides additional 
information that is not utilised fully yet, such as which 

process initiates which network communications, which 
could be incorporated as part of future work. One challenge 
in any sandbox monitoring agent is whether the agent itself 
is compromised or interferes with the malware execution. 
Many malware samples look for environment parameters 
that may suggest they are running in a sandbox [19], such 
as the present of agent.py which is used by Cuckoo or the 
phrase “VMware” occurring in the Windows registry. We 
found that our various data collectors would terminate at 
different times, which is likely related to this. Our Python 
script stops returning data just before the encryption process 
is complete, whereas the CPU and RAM usage is continually 
gathered as these are retrieved through the VBoxManage 
getmetrics command. It is suspected that the agent script 
fails due to the execution of WannaCry, causing the script to 
stop prematurely, because it cannot access resources as the 
encryption and EternalBlue routines are deployed.

Given the features of pixel-based visualisations, we 
believe such an approach would be valuable in setting, where 
fast recognition of propagation patterns would be key. For 

Fig. 8  NotPetya System Process Analysis: Each row represents a 
process call, grouped by machine (colour), using a 5-point scale for 
pixel size. Even with a highly compact view due to the increased 
runtime before malicious action, we can recognise common patterns 

of process calls across machines, including the increased activity to 
VSSVC.exe and WmiPrvSE.exe, and the start of the rundll32 process 
across each machine
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example, SOC analysts are required to triage incidents of 
malware infections quickly to minimise potential damage 
to the network environment. If the traffic occurring on the 
network could be captured, visualised, and then compared 
against other previously captured samples, it may be possi-
ble to observe similarities between the activities and triage 
the incidents with greater accuracy. This can even apply to 
large amounts of data, since pixel-oriented methods allow 
for the condensing or broadening of data without suffering 
a loss of accuracy. This can been observed amongst our two 
samples, our WannaCry testing took place over 15 min and 
our NotPetya testing took place over an hour, yet despite this 
both tests created a suite of visualisations that can be used 
to discover patterns of activity. Future research will study 
how significantly larger networks could be examined using 
similar techniques in conjunction with other forms of data 
analysis and filtering, such as machine learning methods. 
Given the use of well-established industry tools, such as 
Wireshark, a further research question would explore how 
such novel methods are integrated with the tools, techniques 
and workflows of analysts to support both overview and 
detail as part of a triage process.

Conclusion

In this paper we have explored visualisation techniques for 
examining system and network-based attributes, utilising 
pixel-based visualisation to achieve an informative yet scala-
ble view of a large corporate network. We use this to conduct 
malware propagation analysis, observing the protocol and 
process usage across networked machines for distributing 
and executing ransomware. While we use two malware vari-
ants that are now patched in modern systems, the principles 
remain crucial to have such network and system visualisation 
methods available for SOC analysts when tasked with new 
vulnerabilities.

Future work will investigate pro-active defenses against 
malware, environment-sensitive malware analysis, refine-
ment of analysis functionality to enable specific views of 
individual machines and their metrics, and how visualisation 
techniques can be integrated for large-scale network-wide 
monitoring and assessment to help SOC analysts better iden-
tify and defend against potential attacks.
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