
Vol.:(0123456789)

SN Computer Science (2022) 3:53
https://doi.org/10.1007/s42979-021-00926-9

SN Computer Science

ORIGINAL RESEARCH

Investigating Malware Propagation and Behaviour Using System
and Network Pixel‑Based Visualisation

Jacob Williams1 · Phil Legg1 

Received: 29 July 2021 / Accepted: 4 October 2021
© The Author(s) 2021

Abstract
Malicious software, known as malware, is a perpetual game of cat and mouse between malicious software developers and
security professionals. Recent years have seen many high profile cyber attacks, including the WannaCry and NotPetya ransom-
ware attacks that resulted in major financial damages to many businesses and institutions. Understanding the characteristics
of such malware, including how malware can propagate and interact between systems and networks is key for mitigating
these threats and containing the infection to avoid further damage. In this study, we present visualisation techniques for
understanding the propagation characteristics in dynamic malware analysis. We propose the use of pixel-based visualisations
to convey large-scale complex information about network hosts in a scalable and informative manner. We demonstrate our
approach using a virtualised network environment, whereby we can deploy malware variants and observe their propagation
behaviours. As a novel form of visualising system and network activity data across a complex environment, we can begin to
understand visual signatures that can help analysts identify key characteristics of the malicious behaviours, and, therefore,
provoke response and mitigation against such attacks.

Keywords  Malware analysis · Data visualisation

Introduction

Malware (malicious software) is recognised to be one of
the greatest threats against modern computer systems that
now underpin much of society and our everyday lives [1].
Recent years have seen a number of high profile cyber
attacks on global corporations, resulting in significant finan-
cial, operational, and reputational damage [7]. In particu-
lar, ransomware has become a dominant malware variant
due to advances in anonymous payment methods, such as
Bitcoin, meaning that a victim’s files can be encrypted and
held to ransom until a user makes payment to acquire the
decryption key. In addition, malware distribution mecha-
nisms have evolved as part of our hyper-connected society.

Vulnerabilities such as the MS17-010 EternalBlue exploit
reveal how malware can propagate through corporate and
home networks at speed and without user intervention which
was a key software component to the propagation of the
global WannaCry attack [24]. The arms race of security
continues between security analysts and malicious software
developers. As malware developers seek to identify new
methods of attack, those tasked with defending systems need
improved tooling to be able to examine patterns of behaviour
effectively and efficiently to assist well-informed incident
response.

A major complexity with any systems analysis is being
able to examine large volumes of multi-variate data in con-
junction. Reverse engineering techniques and static code
analysis have often been used to examine malware charac-
teristics. It is also increasingly common to perform dynamic
analysis using a sandbox environment, which is the approach
we adopt, however in a large sandbox network environment,
a vast amount of machine data can easily be generated in a
relatively short time, and there is a need for improved meth-
ods of analysis to understand this data at scale.

In this work, we investigate the nature of malware
propagation using a virtualised multi-machine network

This article is part of the topical collection “Cyber Security and
Privacy in Communication Networks” guest edited by Rajiv Misra,
R K Shyamsunder, Alexiei Dingli, Natalie Denk, Omer Rana,
Alexander Pfeiffer, Ashok Patel and Nishtha Kesswani.

 *	 Phil Legg
	 Phil.Legg@uwe.ac.uk

1	 University of the West of England, Coldharbour Lane,
Bristol BS16 1QY, UK

http://orcid.org/0000-0003-3460-5609
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00926-9&domain=pdf

	 SN Computer Science (2022) 3:53 53   Page 2 of 12

SN Computer Science

environment. In particular, we propose novel pixel-based
visualisation techniques to help address the challenges of
data scalability to improve the diagnostic of system and net-
work behaviours to examine the characteristics of malware
propagation across computer networks. In this manner, we
are not only able to understand the traits that impact on an
individual machine, but we can examine the traits of the
overall network, including the propagation characteristics
of how malware traverses from one machine to the next. A
key challenge for any large scale analytics such as this is
the issue of scalability, and therefore, we seek to identify
techniques that can help gather and analyse large volumes
of multi-variate data sources that contextualise the malicious
activity across a network, in a manner that is scalable for
an analyst to work with. Our focus is on the visualisation
of malware propagation to enable security analysts a clear
overview of how machines interact and respond to a mali-
cious software threat. Using two well-recognised malware
variants, and a sandbox network environment, we illustrate
how these variants are visualised and how a security ana-
lyst can clearly identify key activities that result in malware
propagation.

The contributions of this work are as follows:

–	 We propose pixel-based visualisation techniques for sys-
tem and network-wide analysis, offering scalable repre-
sentation of multi-variate system parameters.

–	 We deploy a testing environment and illustrate the use of
these techniques to better convey the characteristics and
behaviours of system and network activities, in a manner
that allows visibility of all devices at scale.

–	 We illustrate how this can better examine propagation
techniques in malware due to the comparative analysis
of system properties across multiple networked devices.

Related Works

To understand the problem further, we focus our related
works on the broad challenge of malware analysis, includ-
ing traditional methods of analysis, machine-learning tech-
niques, and visualisation methods. Previous methods largely
focus on individual machine analysis. One of the key aspects
of our work is to address multi-system examination and anal-
ysis simultaneously, such as a large corporate network or a
home environment, such that we can better understand the
visual cues and signatures of compromised devices through
malware propagation methods that involve no human inter-
vention. By focusing on the contributing elements of each
paper, we are able to divide our research into four key areas
of study, each of these were used to make decisions on how
our development proceeded or changed as it progressed.

First and foremost was the research conducted into visu-
alisation methods and how other malware analysts have visu-
alised their findings in the past. Wagner et al. [26] surveyed
various methods of visualising malware analysis, exploring
the multitude of characteristics that apply to techniques for
individual analysis, comparison, and summarization. Gregio
et al. [11] explored the visualisation of malware behavioural
analysis by capturing interactions with target operating sys-
tems using system service descriptor table hooking, using
this data the authors were able to create visualisations that
draw distinctions and similarities between samples. Han
et al. [13] performed analysis of samples using visualised
image matrices created by extracting opcode sequences from
malware binaries through a combination of disassembly and
execution of samples. In doing so, Han et al. [13] created vis-
ualisations that can be used to distinguish samples from each
other and be used for training learning algorithms attempting
to do the same. Similar to our initial goals, Gove and Deason
[10] looked at identifying malware through network activ-
ity utilising an algorithm based on discrete Fourier trans-
forms paired with aggregation summary tables which can
be used to inform whether a detection is worth looking into.
Similarly, Zhuo and Nadjin [29] conducted a study with the
goal of visualising malware network traces by capturing het-
erogeneous attributes, such as protocols and IP addresses,
an effective method due to the analysis of network traces
being key to categorising malware. A study into visualising
enterprise network attacks by Creese et al. [8] is important
to our work as the result of their study was the creation of
a visualisation tool for modelling attacks using traditional
network notation and a disk propagation logic that connects
the network and business process layers. Another key aspect
of their work was to study the principles and characteristics
they they identified during the development of their tool.
Finally, a study into the design of pixel-oriented techniques
by Keim [16] that shows how to create clear and effective
pixel-based visualisations for communicating various forms
of data, this was used to inform our design choices.

The field of malware detection is ultimately the product of
effective analysis, and therefore, it is useful to study detec-
tion techniques to explore possibilities for visualisation.
Using the method of mining format information from mal-
ware executables, Bai et al. [2] were able to identify charac-
teristics that could be deemed malicious, identifying a total
of 197 different features which can be used to train effective
detection algorithms. NODENS is a random forest-based,
lightweight malware detection platform created by Mills
et al. [20], who explore the creation of classification mod-
els which use 22 different features curated after removing
duplicate or unnecessary ones. Patel and Tailor [22] created
a method for monitoring and counteracting ransomware by
observing key folders and dynamically creating large dummy
files when rapid encryption was detected within the observed

SN Computer Science (2022) 3:53 	 Page 3 of 12  53

SN Computer Science

folders. In a similar vein to Grégio et al. [11], Xiao et al.
[27] studied detecting malware through behaviour graphs
which were created by monitoring the order in which mal-
ware makes system calls and in doing so created a method
of distinguishing benign system call orders from malicious
ones. Xiao et al. [27] also documented a broad scope of sys-
tem calls that malware frequently make, which is useful for
reproducing such work on classification. Donehue et al. [9]
presented a method of detecting malware samples through
the obfuscation method of packing using a tree based naviga-
tion method with applied offsets to distinguish what might
be legitimate and what might be packing. In doing so, they
created a technique that can also be visualised, Markov Byte
Plots that show the difference between packed and unpacked
portable executable files. Finally, Rhode et al. [23] stud-
ied the use of recurrent neural networks for predicting if an
executable was malicious or not based on a short snapshot of
behavioural data using values, such as total processes, max
process ID, and CPU usage.

To create hypotheses and temper an expectation for what
our system and visualisations were going to look like, it
was sensible to explore research that focused solely on the
propagation aspect of malware. Yu et al. [28] explored the
concept of modelling malware propagation in large scale
networks using a two-layer epidemic model. The authors
discern that malware propagation in large networks can fol-
low one of three different distributions depending on how
much of the network is already infected. To better optimise
intrusion detection systems, Sharafaldin et al. [25] created a
data set containing more than eighty network traffic features
gathered from live samples using CICFlowMeter, a pub-
licly available ethernet traffic bi-flow generator and analyser.
Using these features, the authors were able to create data
sets and designate signatures to varying attack profiles. In a
similar manner to Yu et al. [28], Hosseini and Azgomi [14]
represented malware propagation using a rumour spreading
model, identifying five different types of machines that per-
form different roles in the propagation of malware. Finally,
Guillen and Rey [12] researched the role of compartment
devices in malware propagation and found that while such
devices do not contribute to the initial infection rate, they
instead increase the general overall rate of infection.

The final area of study was researched to assist in the
development of the sandbox environment that would be used
to run and extract data from to fuel the visualisation process.
Studies such as the one performed by Chakkaravarthy et al.
[6] provided us with knowledge of common methods used
to avoid detection in sandboxes, concepts, such as payload
fragmentation, session splicing, and contextual awareness.
The authors also provide a clear and detailed description
of the setup that they used to conduct this study, making a
useful baseline for replication. Afianian et al. [1] present
a similar study, a comprehensive summary of knowledge

regarding evasion techniques, separating them into the cat-
egories of detection dependent and detection independent,
and detailing how to prevent both kinds. Finally, a study
conducted by Miramirkhani et al. [21] looked deep into what
small features could be used by malware writers to detect a
virtual environment. They create distinctions between types
of artefacts that one could look for, and subcategories within
those artefacts. While the study we explore here does not
seek to address sandbox evasion or detection, it is neverthe-
less important to recognise this important area of research.

Methodology

We first describe the experimental environment for our data
collection, and then discuss the design aspects of conveying
this data in a scalable manner for a security analyst.

Experimental Environment

Sandbox environments are commonly used for malware
analysis [18], often achieved using a Virtual Machine to
examine the behaviour of malware when executed. Cuckoo
sandbox [15] is an excellent tool for malware analysis, how-
ever a limiting factor is that Cuckoo is designed for a single
virtual environment rather than monitoring propagation of
malware across machines. We, therefore, develop a custom
environment based on Cuckoo but that can support and
gather data from multiple targets.

Figure 1 shows our virtualised network consisting of four
Windows 7 (Win7) nodes with IP addresses in the range
10.10.5.11-14 and a Ubuntu node with address 10.10.5.10.
All devices are connected via a virtualised internal only
network. We use VirtualBox as our virtualisation system
as it offers excellent configuration options for virtualised
networking, as well as offering the VBoxManage command
line tools. The internal network is isolated, such that the
Win7 hosts can interact with each other and the Ubuntu
monitoring node, however there is no access back to the
host machine to escape from the sandbox. The Ubuntu node
is used for real-time data collection, and is air-gapped with
two network adaptors meaning that if the Win7 devices are
shut down, and the Ubuntu network adaptor connected to the
internal network is disabled, then we can connect our host to
this machine for the retrieval of data logs. Since many mal-
ware samples are designed to target Windows systems, using
a Ubuntu environment for the monitoring system means that
it is not exposed to the same vulnerabilities as the target
machines being examined, but yet could be connected to
the same virtualised network for the purpose of gathering
and retrieving data logs safely. Furthermore, macOS was
used as the host operating system for VirtualBox to limit
any potential of the Win32 malicious samples escaping the

	 SN Computer Science (2022) 3:53 53   Page 4 of 12

SN Computer Science

sandbox and causing damage to genuine production systems.
The Win7 nodes were configured with various applications
and utilities to represent real machines, including Skype,
Office, Python, and VSCode. The machines were also delib-
erately weakened in terms of security, so that the true impact
of propagation could be examined. Therefore, we disabled
user access control and allowed all port connections to be
accepted. We also allowed network discovery and file shar-
ing across the networked devices.

For the data collection we utilise a variety of different
sources across the network. First, using the Ubuntu node
we gather system-specific data from each machine using a
customised Python script, with the client script running on
each of the four Win7 machines and a server script run-
ning on the Ubuntu 20.04 node. This script utilises the psutil
Python library and queries each machine for general statis-
tics related to CPU and RAM usage, network connections
and system processes. Each client will report back to the
server at given time intervals as specified by the user (e.g.,
every 15 s). This process is crucial as we can not store any
logging data on the client machines themselves, since by
the very nature of ransomware, these logs would become
encrypted when the ransomware is deployed. The second
mechanism in place for data collection is for network activ-
ity which we capture using Wireshark on the Ubuntu node.
By enabling promiscuous mode on the Ubuntu network

adaptor we can capture all traffic on the internal network,
giving a complete view of all inbound and outbound traffic
between the connected devices. Despite being isolated from
the Internet, there is still significant information available
here, as well as information related to the propagation of the
malware over the network infrastructure. The third source
of data collection is on the host OS running VirtualBox,
where we can use the VBoxManage command line tools to
obtain further detail on the virtual machines. This reports
on CPU, RAM and HDD usage, as well as information on
network connections (although due to being isolated this
does not bring much information). In addition, we can use
VBoxManage to capture screenshots of all virtual machines
on a sequential basis. We configure this, so that we capture
one screenshot of each machine every minute. The result of
the data collection is that for every machine we have detailed
time-stamped logs on CPU and RAM usage, screenshots,
information on the network connections that are established
and their protocols, and information on the system processes
currently running.

For each test, we deploy the virtual machines and begin
the logging process and allow the systems to run for a period
of time with no further action, which is done to establish an
initial baseline of activity. The Ubuntu node is then able to
transfer the malicious test sample to the first Win7 node.
We then execute the malicious sample under test on Node1
and we continue to observe and log the system and network
activity. The duration of the test is dependent on the sample
being tested, which could be from as little as 5 min to a cou-
ple of hours depending on what behaviours are performed.
Crucially, the visual representation of the data needs to be
scalable to account for variable length execution periods.
Ransomware, by design, makes itself known to the user to
inform them that their system is encrypted and that payment
is required. Therefore, we can use the obtained screenshots
to observe whether all nodes have been compromised. Since
we are using virtualisation, we can then revert all of the
Win7 virtual machines to their previous snapshot to reset the
test environment. We can also then disconnect the Ubuntu
node from the malware analysis virtual network to retrieve
the data captures.

Visualisation Design

Security analysts are often tasked with understanding com-
plex multi-variate data and related contextual data attributes
using dashboard visualisations, such as charts and plots. A
major challenge is being able to convey information in a
concise yet informative manner, such that the context can be
understood clearly while also being scalable for analysing
multiple machines together, so that a holistic view can also
be achieved. As described previously, the data collection
results in a large multi-variate data set that includes CPU

Fig. 1   Network Configuration. We host four virtualised Windows
7 machines for deployment of the attack. We also host a virtualised
Ubuntu 20.04 machine for data collection. All machines are con-
nected to each other on a internal virtualised network with no external
access. External access can only be granted to the Ubuntu machine
for the purpose of retrieving data collection

SN Computer Science (2022) 3:53 	 Page 5 of 12  53

SN Computer Science

and RAM usage, network connections, system processes,
and screenshots, for each of the machines running on the net-
work over an extended period of time. While traditional plots
and charts may go some way to reveal temporal data varia-
tions, they require significant real estate on-screen and result
in much white space. This does not lend itself to a scal-
able solution, where multiple machines and multiple data
attributes can be easily examined together. As the amount of
information to be represented is increased, it is important to
consider the implications of visual aspects such as data-ink
ratio and other cues that help make a visualisation engaging
and memorable [5]. The smallest visual element available
on a computer is a pixel. Pixel-based visualisations [16] are
effective for conveying numerical data at scale, such as illus-
trating days of a year in a concise and compact format [4].

Figure 2 gives an overview of how we map data to the
pixel-based visualisation. Each row represents a numerical
data attribute (e.g., CPU usage, RAM usage, process usage,
network protocol). Likewise, system screenshots are grouped
by row to illustrate the system interface where required.
The temporal data attributes are mapped against the cor-
responding screenshot for the same time period (e.g., 4 data
observations captured every 15 s map against one screenshot
captured per minute). Rows can then be stacked together
as required, and colour-coded based on their respective

system, with the data value represented by the size of the
pixel within the square region. We can extend this further for
data sources such as network activity to include source-desti-
nation pair as well as protocol and packet size. We consider
each protocol as an independent data attribute, and we use
colour to denote the destination machine, since known hosts
are colour-coded and unknown hosts can be represented by
grey scale. The value can be determined as either the num-
ber of occurrences for a given protocol, or an aggregated
packet size for the given time period. In this manner, each
row can be defined based on the machine, the data source,
and any further attributes, such as protocol or process name
(e.g., ‘Node1-CPU-Usage’, ‘Node2-Network-SMB’, ‘Node3-
Process-Skype’). Figure 3 illustrates in greater detail how
each data point is mapped to the corresponding pixel region.
A region of 9 × 9 means that we could in theory have 6 dis-
tinct square pixel sizes ( 9 × 9 , 7 × 7 , 5 × 5 , 3 × 3 , 1 × 1 , and
blank). Since we choose to map four data observations per
screenshot, each screenshot is scaled to 36 × 36 . We use a
consistent thresholding approach across all data source val-
ues V based on the mean value M for the given data row. For
each data row, if V > 2 ∗ M then the pixel is scaled as 9 × 9 ,
else if V > M then the pixel is scaled as 5 × 5 , else if V > 0
then the pixel is scaled as 3 × 3 , else the pixel region is left
blank. We omit 7 × 7 and 1 × 1 to support a just-noticeable
difference between the pixel sizes even at scale, however all
numerical parameters can be easily modified by an analyst
to support finer detail or to increase scalability, and sum-
mary statistics for each attribute row can also be examined
in further detail. This is available for download to promote
further research activity and collaboration with the wider
community: https://​github.​com/​phill​egg/​pixsys.

Experimentation

We use two different malware variants to illustrate our ana-
lytical approach using the pixel-oriented visualisation tech-
nique: WannaCry and NotPetya. We specifically focus on
these two samples as they both exhibit propagation using
the EternalBlue exploit, yet they also have other differenti-
ating characteristics, meaning we can examine these using
our approach for where they may exhibit similarities and

Fig. 2   Visual design overview. Here, one screenshot is mapped
against 4 data observations of a single metric at 4 given time periods
(e.g., every 15 s). This can be scaled up as shown, to represent 4 sys-
tems over a longer duration (e.g., 5 min)

Fig. 3   Visual design of pixel
representation using 4 sizes
to support just-noticeable
differences, based on whether
the given value is greater than
twice the mean, greater than the
mean, greater than zero, or zero

https://github.com/phillegg/pixsys

	 SN Computer Science (2022) 3:53 53   Page 6 of 12

SN Computer Science

differences. As described previously, we deploy a virtualised
network consisting of four networked Windows 7 machines,
depicted as red, green, yellow and blue in the visualisation.
We capture CPU usage, RAM usage, network protocol activ-
ity and system process activity, as well as the correspond-
ing system screenshots that in this use case would notify
the user of the ransomware infection. We utilise the default
parameters for capturing data and visualising the activity, as
described previously.

WannaCry

In our first experiment, we use the WannaCry ransomware.
This particular malware was chosen because of its notoriety
for using many resources upon execution and its ability to
propagate across insecure machines extremely quickly.

Due to the wide coverage gained by the WannaCry out-
break in 2017, we are able to conduct an initial investigation
based on existing technical analysis reports, such as that
by Vipre Labs [17]. After WannaCry is initially executed
it first checks for the presence of a specific website. If this
domain is down then the attack continues. This domain was
famously purchased and sink-holed, which was how the out-
break was originally contained. Given we are experimenting
using an internal only network, the sample is able to execute
as no internet connection is made available. Next the sample
begins the encryption phase, where it spawns itself as a sepa-
rate service called MSSECSVC2.0 which then drops and
executes a 3MB Win32 portable executable file called task-
sche.exe. This newly dropped executable is the ransomware
component which performs file encryption using RSA–AES.

After the ransomware component exits, the MSSEC-
SVC2.0 process remains running, now beginning to
prepare for its propagation. It does this by creating two
threads, one for LAN and one for WAN. In the LAN
thread, it takes the first three octets of every IPv4 address
associated with network adaptor and builds an IP list from
1 to 254 for the fourth octet. Each generated IP is passed
into its own thread to execute the EternalBlue exploit,
with a maximum of ten threads. In the WAN propagation

thread, 128 public IP addresses are randomly generated,
the first octet is pseudo-randomly generated, since it skips
127 and must be less then 224, the remaining octets are
completely random. To propagate the thread connects
to port 445 on the target machine, which is used by the
Server Message Block (SMB) protocol. If the connection
is successful it begins negotiating for the SMB tree ID,
following this it makes five attempts to send a packet based
on the EternalBlue exploit. Then it will be expecting a
response from its target containing 0x51, which would
mean the exploit has been successful and it can send the
payload with the DoublePulsar shellcode. After this, the
activity on the newly infected machine will proceed the
same as the initial infection.

Given this technical analysis of the malware character-
istics, we seek to explore how well this chain of events can
be examined based on the network and system characteris-
tics gathered by our data collector, and as visualised by our
pixel-based approach.

Figure 4 shows the CPU, RAM and corresponding screen-
shots, as formulated by the visualisation tool. At the point
of execution, the CPU usage of machine one can be seen to
increase, and this increase in CPU usage is trigged across the
other machines on the network despite no user interaction.
This increase of activity would seem reasonable to correlate
with the encryption process made by the machines once the
ransomware component is in place.

Figure 5 shows the network usage for the WannaCry
propagation. There is a clear pattern across all machines
involving the increase in SMB activity as the dominant pro-
tocol in use, as we would expect from the known charac-
teristics of the malware. We can see the communications
between the machines, in particular, where red (machine
one) is seen to then communicate with all other machines on
the network, and likewise, they communicate back.

Figure 6 shows an extract of the process usage for the
WannaCry propagation (the full visualisation is too large
to depict, due to 40 rows per machine). The top row shows
the execution of the malicious executable (file hash begin-
ning 24d0). Subsequent processes can be observed including

Fig. 4   WannaCry: Screen, CPU
and RAM Usage

SN Computer Science (2022) 3:53 	 Page 7 of 12  53

SN Computer Science

tasksche.exe, taskhsvc.exe, VSSVC.exe, WmiPrvSE.exe and
@WanaDecryptor@.exe.

NotPetya

NotPetya is another form of ransomware which extended on
the Petya malware but also incorporates the worm compo-
nent of EternalBlue. As before, we can examine the technical
analysis given by VMWare Carbon Black [3] to understand
the expected behaviours.

Upon execution the malware first performs a check
to assess what privilege level it is running as, primarily
checking for the SeDebugPrivilege permission. Based on
this permission the malware proceeds in one of two ways:
if it does have the privilege then the malware assumes it
has administrator privileges and encrypts the Master Boot
Record (MBR) using the known Petya method; if the user
does not have administrative privilege, the malware will
instead use a user space encryption routine. The next stage
of the process is to check for the presence of processes

relating to anti-virus software. If any AV software is found
then the global variable are modified to disarm these. If
no processes are found and the malware has administrator
privileges, it runs a credential stealer. It will then attempt
to propagate using the EternalBlue SMB propagation as
described earlier. After these routines complete, the mal-
ware will attempt to remove forensic artefact data by run-
ning a command to clear logs for Setup, System, Security,
and Application, it will then delete the Update Sequence
Number (USN) journal from the drive. Following this, the
malware will force a restart in one of three ways depend-
ing on the privilege level. If the malware has access to
SeShutDown and SeDebug, it will call the InitiateSystem-
Shutdown API; if it only has access to SeDebug, it will
initiate shutdown by calling the NtDll.NtRaiseHardError
API; if it has neither, then it will rely on a created sched-
uled restart task. Since the MBR is already compromised,
the malware boots to its own environment, where it then
encrypts the Master File Table (MFT) and alerts the user
to the compromise.

Fig. 5   WannaCry: Network
Protocol Usage (where each row
denotes an individual system-
protocol name pair)

	 SN Computer Science (2022) 3:53 53   Page 8 of 12

SN Computer Science

Fig. 6   WannaCry: System
Process Usage (where each row
denotes an individual system-
process name pair)

SN Computer Science (2022) 3:53 	 Page 9 of 12  53

SN Computer Science

Using this knowledge, we assumed that the activity would
begin with a short spike, followed by a plateau of higher sys-
tem resource usage. Following these would be an increase in
SMB activity across the network, which would then be suc-
ceeded by another spike in system resource usage to denote
the restart and encryption of the MFT.

Figure 7 shows the network activity observed when the
NotPetya sample is executed on machine one in our virtual-
ised network. First, we note the significant longer period of
time for malware execution required here, since NotPetya
will delay the restart process by 1 h to maximise the propa-
gation stage before performing the system restart and the
encryption process. Our visualisation approach scales well
to handle a significantly longer period of time while still
being able to convey key details. In an operational envi-
ronment, analysts would naturally zoom and pan across the
visualisation, to gain both an overview (as shown) as well
as zooming in for a detailed view. The network analysis also
reveals reoccurring patterns across all four machines, where
the ICMP, LANMAN, NBSS, SMB and SMB2 protocols are
all triggered. The pixel-based visualisation essentially cre-
ates a form of visual signature that could be used by analysts
to identify related occurrences of protocols across systems.

Figure 8 shows the system processes that are called when
the NotPetya sample is executed. Given the increased runt-
ime of the malware before the system restarts, we have a
signficantly longer period of time that requires analysis.
The pixel visualisation allows us to identify distinct patterns
across machines, for example, all machines call VSSVC.
exe and WmiPrvSE.exe within the same time period. The
process rundll32 is also triggered as a new activity across
all compromised machines.

Discussion

We now reflect on the key findings from our investigation.
Pixel-based visualisations are well suited to convey large
volumes of data within a concise visual format, and are,
therefore, well-suited for the security domain. While alter-
native approaches such as horizon charts also seek to com-
press information in a smaller visual space, for encoding
additional data attributes such as network communication
and destination machines, as well as for the identification of
recurring patterns, we found pixel-based approaches provide
greater flexibility such as being able to extend visual attrib-
utes, such as colour, size, and position, to accommodate for
more complex data sources.

Pixel-based visualisation has the benefit of being able
to display much more information in a confined space. If
one was to visualise the entire network activity of our setup
in a multi-line time-series plot, it would become cluttered
extremely quickly. Moreover, it would be difficult to make
associations and identify the relationship between data
points. With the pixel-based approach, we avoid issues of
data occlusion, and so any patterns that may be present are
visible. Due to the compact representation, being able to
illustrate multiple rows to further separate out data, such
as network protocol usage, can be achieved still within a
constrained visual area. Furthermore, using colour and size,
we can denote additional data attributes, such as destina-
tion machine, and the volume of activity. This reveals clus-
ters of activity in a much clearer fashion that a line plot.
A traditional line plot may introduce much redundancy in
terms of white space, whereby the security analyst may
only be concerned in whether an attribute is within some

Fig. 7   NotPetya Network Protocol Analysis: Each row represents a
protocol, grouped by machine (colour). Markers are scaled by amount
of traffic (5-point scale), and coloured by destination machine. Over
the 1 h period before NotPetya forces a system reboot, the visualisa-

tion reveals the protocol pattern. There is a recurring pattern of activ-
ity based on ICMP, LANMAN, NBSS, SMB, and SMB2 protocols
that can be observed

	 SN Computer Science (2022) 3:53 53   Page 10 of 12

SN Computer Science

threshold group (e.g., high, medium, low, none) or when
there is change between these groups. Using a 9 × 9 pixel
region provides up to 6 distinct thresholds which we found
sufficient for representing system and network variations to
observe system activities.

We were also able to visualise activity relating to pro-
cesses running on each node, gathered by our Python script
agent utilising the psutil library. Using the data gathered by
this agent we could observe activity specifically related to
the sample and compare it against a baseline of other pro-
cesses present on the node. This is useful, because samples
often create different processes to perform different tasks, by
gathering this specific data we are able to see all of these and
note when the process started, how many resources it used,
and when it ceased. A good example of this is in Fig. 6,
where you can see the different times that @WanaDecryp-
tor@.exe executed on each machine, which could inform
our hypotheses for the order in which the machines were
infected. The data collector actually provides additional
information that is not utilised fully yet, such as which

process initiates which network communications, which
could be incorporated as part of future work. One challenge
in any sandbox monitoring agent is whether the agent itself
is compromised or interferes with the malware execution.
Many malware samples look for environment parameters
that may suggest they are running in a sandbox [19], such
as the present of agent.py which is used by Cuckoo or the
phrase “VMware” occurring in the Windows registry. We
found that our various data collectors would terminate at
different times, which is likely related to this. Our Python
script stops returning data just before the encryption process
is complete, whereas the CPU and RAM usage is continually
gathered as these are retrieved through the VBoxManage
getmetrics command. It is suspected that the agent script
fails due to the execution of WannaCry, causing the script to
stop prematurely, because it cannot access resources as the
encryption and EternalBlue routines are deployed.

Given the features of pixel-based visualisations, we
believe such an approach would be valuable in setting, where
fast recognition of propagation patterns would be key. For

Fig. 8   NotPetya System Process Analysis: Each row represents a
process call, grouped by machine (colour), using a 5-point scale for
pixel size. Even with a highly compact view due to the increased
runtime before malicious action, we can recognise common patterns

of process calls across machines, including the increased activity to
VSSVC.exe and WmiPrvSE.exe, and the start of the rundll32 process
across each machine

SN Computer Science (2022) 3:53 	 Page 11 of 12  53

SN Computer Science

example, SOC analysts are required to triage incidents of
malware infections quickly to minimise potential damage
to the network environment. If the traffic occurring on the
network could be captured, visualised, and then compared
against other previously captured samples, it may be possi-
ble to observe similarities between the activities and triage
the incidents with greater accuracy. This can even apply to
large amounts of data, since pixel-oriented methods allow
for the condensing or broadening of data without suffering
a loss of accuracy. This can been observed amongst our two
samples, our WannaCry testing took place over 15 min and
our NotPetya testing took place over an hour, yet despite this
both tests created a suite of visualisations that can be used
to discover patterns of activity. Future research will study
how significantly larger networks could be examined using
similar techniques in conjunction with other forms of data
analysis and filtering, such as machine learning methods.
Given the use of well-established industry tools, such as
Wireshark, a further research question would explore how
such novel methods are integrated with the tools, techniques
and workflows of analysts to support both overview and
detail as part of a triage process.

Conclusion

In this paper we have explored visualisation techniques for
examining system and network-based attributes, utilising
pixel-based visualisation to achieve an informative yet scala-
ble view of a large corporate network. We use this to conduct
malware propagation analysis, observing the protocol and
process usage across networked machines for distributing
and executing ransomware. While we use two malware vari-
ants that are now patched in modern systems, the principles
remain crucial to have such network and system visualisation
methods available for SOC analysts when tasked with new
vulnerabilities.

Future work will investigate pro-active defenses against
malware, environment-sensitive malware analysis, refine-
ment of analysis functionality to enable specific views of
individual machines and their metrics, and how visualisation
techniques can be integrated for large-scale network-wide
monitoring and assessment to help SOC analysts better iden-
tify and defend against potential attacks.

Author Contributions  JW led the research activity under the supervi-
sion of PL. Both contributed to the conceptualisation, design, imple-
mentation, and experimentation. Both authors contributed to the pro-
duction of the final manuscript.

Funding  We would like to thank the UK National Cyber Security Cen-
tre studentship scheme for supporting this research.

Availability of Data and Material  All software code and data related to
this research is available at: https://​github.​com/​phill​egg/​pixsys.

Declarations 

 Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Afianian A, Niksefat S, Sadeghiyan B, Baptiste D. Malware
dynamic analysis evasion techniques: a survey. ACM Comput
Surv. 2019. https://​doi.​org/​10.​1145/​33650​01.

	 2.	 Bai J, Wang J, Zou G. A malware detection scheme based on
mining format information. Sci World J. 2014. https://​doi.​org/​
10.​1155/​2014/​260905.

	 3.	 Black C. Carbon black threat research technical analysis: Petya
/ notpetya ransomware. VMWare, Palo Alto, California: Tech.
rep; 2018.

	 4.	 Borgo R, Proctor K, Chen M, Jänicke H, Murray T, Thornton
I. Evaluating the impact of task demands and block resolution
on the effectiveness of pixel-based visualization. IEEE Trans
Vis Comput Graph. 2010;16(6):963–72. https://​doi.​org/​10.​1109/​
TVCG.​2010.​150.

	 5.	 Borkin MA, Vo AA, Bylinskii Z, Isola P, Sunkavalli S, Oliva A,
Pfister H. What makes a visualization memorable? IEEE Trans
Vis Comput Graph. 2013;19(12):2306–15. https://​doi.​org/​10.​
1109/​TVCG.​2013.​234.

	 6.	 Chakkaravarthy S, Sangeetha D, Vaidehi V. A survey on mal-
ware analysis and mitigation techniques. Comput Sci Rev.
2019;32:1–23. https://​doi.​org/​10.​1016/j.​cosrev.​2019.​01.​002.

	 7.	 Chen Q, Bridges RA. Automated behavioral analysis of mal-
ware: a case study of wannacry ransomware. In: 2017 16th IEEE
International Conference on machine learning and applications
(ICMLA), 2017; p. 454–60. https://​doi.​org/​10.​1109/​ICMLA.​
2017.0-​119.

	 8.	 Creese S, Goldsmith M, Moffat N, Happa J, Agrafiotis I.
Cybervis: visualizing the potential impact of cyber attacks on
the wider enterprise. In 2013; p. 73–9. https://​doi.​org/​10.​1109/​
THS.​2013.​66989​79.

	 9.	 Donahue J, Paturi A, Mukkamala S. Visualization techniques
for efficient malware detection. In: 2013; p. 289–91. https://​doi.​
org/​10.​1109/​ISI.​2013.​65788​45.

	10.	 Gove R, Deason L. Visualizing automatically detected peri-
odic network activity. In: 2018; p. 1–8. https://​doi.​org/​10.​1109/​
VIZSEC.​2018.​87091​77.

	11.	 Grégio A, Santos R. Visualization techniques for malware
behavior analysis. In: Proceedings of SPIE—the International

https://github.com/phillegg/pixsys
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3365001
https://doi.org/10.1155/2014/260905
https://doi.org/10.1155/2014/260905
https://doi.org/10.1109/TVCG.2010.150
https://doi.org/10.1109/TVCG.2010.150
https://doi.org/10.1109/TVCG.2013.234
https://doi.org/10.1109/TVCG.2013.234
https://doi.org/10.1016/j.cosrev.2019.01.002
https://doi.org/10.1109/ICMLA.2017.0-119
https://doi.org/10.1109/ICMLA.2017.0-119
https://doi.org/10.1109/THS.2013.6698979
https://doi.org/10.1109/THS.2013.6698979
https://doi.org/10.1109/ISI.2013.6578845
https://doi.org/10.1109/ISI.2013.6578845
https://doi.org/10.1109/VIZSEC.2018.8709177
https://doi.org/10.1109/VIZSEC.2018.8709177

	 SN Computer Science (2022) 3:53 53   Page 12 of 12

SN Computer Science

Society for Optical Engineering. 2011. https://​doi.​org/​10.​1117/​
12.​883441.

	12.	 Guillén JDH, Rey ÁM. Modeling malware propagation using
a carrier compartment. Commun Nonlinear Sci Numer Simul.
2018;56:217–26.

	13.	 Han K, Kang B, Im EG. Malware analysis using visualized image
matrices. Sci World J. 2014. https://​doi.​org/​10.​1155/​2014/​132713.

	14.	 Hosseini S, Abdollahi Azgomi M. A model for malware propa-
gation in scale-free networks based on rumor spreading process.
Comput Netw. 2016. https://​doi.​org/​10.​1016/j.​comnet.​2016.​08.​
010.

	15.	 Jamalpur S, Navya YS, Raja P, Tagore G, Rao GRK. Dynamic
malware analysis using cuckoo sandbox. In: 2018; p. 1056–60.
https://​doi.​org/​10.​1109/​ICICCT.​2018.​84733​46.

	16.	 Keim D. Designing pixel-oriented visualization techniques: theory
and applications. IEEE Trans Vis Comput Graph. 2000;6(1):59–
78. https://​doi.​org/​10.​1109/​2945.​841121.

	17.	 Labs V. Wannacry technical analysis. VIPRE Labs, Los Angeles,
California: Tech. rep; 2017.

	18.	 Lindorfer M, Kolbitsch C, Milani Comparetti P. Detecting envi-
ronment-sensitive malware. In: Sommer R, Balzarotti D, Maier G,
editors. Recent advances in intrusion detection. Berlin: Springer;
2011. p. 338–57.

	19.	 Mills A, Legg P. Investigating anti-evasion malware triggers using
automated sandbox reconfiguration techniques. J Cybersecur
Privacy. 2021;1(1):19–39. https://​doi.​org/​10.​3390/​jcp10​10003,
https://​www.​mdpi.​com/​2624-​800X/1/​1/3.

	20.	 Mills A, Spyridopoulos T, Legg P. Efficient and interpretable real-
time malware detection using random-forest. In: 2019 Interna-
tional Conference on cyber situational awareness, data analytics
and assessment (Cyber SA), 2019; p. 1–8. https://​doi.​org/​10.​1109/​
Cyber​SA.​2019.​88995​33.

	21.	 Miramirkhani N, Appini MP, Nikiforakis N, Polychronakis M.
Spotless sandboxes: evading malware analysis systems using
wear-and-tear artifacts. In: 2017; p. 1009–24. https://​doi.​org/​10.​
1109/​SP.​2017.​42.

	22.	 Patel A, Tailor J. A malicious activity monitoring mecha-
nism to detect and prevent ransomware. Comput Fraud Secur.
2020;2020:14–9. https://​doi.​org/​10.​1016/​S1361-​3723(20)​
30009-9.

	23.	 Rhode M, Burnap P, Jones K. Early stage malware prediction
using recurrent neural networks. Comput Secur. 2017. https://​doi.​
org/​10.​1016/j.​cose.​2018.​05.​010.

	24.	 Satheesh Kumar M, Ben-Othman J, Srinivasagan K. An investiga-
tion on wannacry ransomware and its detection. In: 2018; p. 1–6.
https://​doi.​org/​10.​1109/​ISCC.​2018.​85383​54.

	25.	 Sharafaldin I, Habibi Lashkari A, Ghorbani A. Toward generating
a new intrusion detection dataset and intrusion traffic characteriza-
tion. In: 2018; p. 108–116. https://​doi.​org/​10.​5220/​00066​39801​
080116.

	26.	 Wagner M, Fischer F, Luh R, Haberson A, Rind A, Keim D.A,
Aigner W. A survey of visualization systems for malware analy-
sis. In: Borgo R, Ganovelli F, Viola I editors. Eurographics Con-
ference on Visualization (EuroVis)—STARs. The Eurographics
Association 2015. https://​doi.​org/​10.​2312/​eurov​isstar.​20151​114.

	27.	 Xiao F, Lin Z, Sun Y, Ma Y. Malware detection based on deep
learning of behavior graphs. Math Probl Eng. 2019;2019:1–10.
https://​doi.​org/​10.​1155/​2019/​81953​95.

	28.	 Yu S, Gu G, Barnawi A, Guo S, Stojmenovic I. Malware prop-
agation in large-scale networks. IEEE Trans Knowl Data Eng.
2015;27:170–9. https://​doi.​org/​10.​1109/​TKDE.​2014.​23207​25.

	29.	 Zhuo W, Nadjin Y. Malwarevis: entity-based visualization of mal-
ware network traces. In: 2012; p. 41–47. https://​doi.​org/​10.​1145/​
23796​90.​23796​96

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1117/12.883441
https://doi.org/10.1117/12.883441
https://doi.org/10.1155/2014/132713
https://doi.org/10.1016/j.comnet.2016.08.010
https://doi.org/10.1016/j.comnet.2016.08.010
https://doi.org/10.1109/ICICCT.2018.8473346
https://doi.org/10.1109/2945.841121
https://doi.org/10.3390/jcp1010003
https://www.mdpi.com/2624-800X/1/1/3
https://doi.org/10.1109/CyberSA.2019.8899533
https://doi.org/10.1109/CyberSA.2019.8899533
https://doi.org/10.1109/SP.2017.42
https://doi.org/10.1109/SP.2017.42
https://doi.org/10.1016/S1361-3723(20)30009-9
https://doi.org/10.1016/S1361-3723(20)30009-9
https://doi.org/10.1016/j.cose.2018.05.010
https://doi.org/10.1016/j.cose.2018.05.010
https://doi.org/10.1109/ISCC.2018.8538354
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.2312/eurovisstar.20151114
https://doi.org/10.1155/2019/8195395
https://doi.org/10.1109/TKDE.2014.2320725
https://doi.org/10.1145/2379690.2379696
https://doi.org/10.1145/2379690.2379696

	Investigating Malware Propagation and Behaviour Using System and Network Pixel-Based Visualisation
	Abstract
	Introduction
	Related Works
	Methodology
	Experimental Environment
	Visualisation Design

	Experimentation
	WannaCry
	NotPetya

	Discussion
	Conclusion
	References

