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Abstract:  

The influence of numerical dissipation on direct numerical simulation (DNS) of decaying isotropic turbulence 

at initial Reλ = 72 and turbulent channel flow at  Reτ = 180  is investigated respectively by using the 

seventh-order low-dissipation monotonicity-preserving (MP7-LD) scheme with different levels of bandwidth 

dissipation. It is found that for both benchmark test cases, small-scale turbulence fluctuations can be largely 

suppressed by high level of scheme dissipation, while numerical errors in terms of high-frequency oscillations 
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appear and could destabilize the computation if the dissipation is reduced to a very low level. Numerical 

studies show that reducing the bandwidth dissipation to 70% of the conventional seventh-order upwind 

scheme can maximize the efficiency of the MP7-LD scheme in resolving small-scale turbulent fluctuations 

and, in the meantime preventing the accumulation of non-physical numerical errors. By using the optimized 

MP7-LD scheme, DNS of an impinging oblique shock-wave interacting with a spatially-developing turbulent 

boundary layer is conducted at the incoming free-stream Mach number of 2.25 and shock angle of 33.2°. 

Simulation results of mean velocity profiles, wall surface pressure, skin friction and Reynolds stresses are 

validated against available experimental data and other DNS predictions in both the undisturbed equilibrium 

turbulent boundary layer region and the interaction zone, and good agreements are achieved. The turbulent 

kinetic energy transport equation is also analyzed and the balance of the equation is well preserved in the 

interaction region. This study demonstrates the capability of the optimized MP7-LD scheme for DNS of 

complex flow problems of wall-bounded turbulent flow interacting with shock-waves. 

 

Keywords: Numerical dissipation, Monotonicity-preserving scheme, Direct numerical simulation, Shock-

wave/turbulent-boundary-layer interaction.  

 

1. Introduction 

Direct numerical simulation (DNS) and large-eddy simulation (LES) of compressible turbulent flows 

interacting with shock-waves raise challenges to numerical schemes, which are required to capture shock-

waves without introducing spurious numerical oscillations and simultaneously resolve small-scale turbulent 
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structures without evident dissipation. Even for weakly compressible turbulence, a certain level of numerical 

dissipation is needed in order to stabilize simulations by suppressing the aliasing errors resulting from the 

discretization of nonlinear convection terms [1]. Although some existing low- or non-dissipative methods, 

such as high-order central scheme with entropy splitting [2] or skew-symmetric splitting [3] can stabilize the 

computation by reducing the aliasing error without introducing ad hoc numerical dissipation, these methods 

cannot be effectively applied in near shock-wave regions, primarily due to the calculation of convection 

fluxes in non-conservative forms. Therefore, these methods often need to be used in conjunction with 

conservative schemes in the region near shock-waves [4, 5], which will cause further problems at the 

interfaces between different types of schemes. [6, 7]  It is widely accepted that conventional shock-capturing 

schemes (such as essentially non-oscillatory (ENO) schemes [8, 9] and weighted essentially non-oscillatory 

(WENO) schemes [10]) are too dissipative to effectively resolve small-scale turbulence [11, 12]. Therefore, 

comparing with high-order central schemes, a denser grid must be used for conventional shock-capturing 

schemes aforementioned, and this will largely increase the computational cost of DNS or LES approach. For 

example, the effective bandwidth of the seventh-order WENO scheme is merely about 30% of the maximum 

bandwidth, i.e. 30%kmax [11]; hence to achieve the same resolution with those high-order central schemes 

with the effective bandwidth of almost 100%kmax, three times more grid points are required in each direction, 

resulting in at least a factor of 27 in terms of grid points, memory and computational cost with possible 

further increase in computational time cost due to the decrease of time step. Therefore, lots of researchers 

tried to develop better shock-capturing schemes, including improved WENO schemes [13-17], high-order 

limiters [18-21]  and filters [22, 23]. Among these shock-capturing schemes, the high-order monotonicity-
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preserving (MP) scheme proposed by Suresh and Huynh [21] has a good performance in preserving both the 

accuracy in smooth regions and the monotonicity near the discontinuities. Li and Jaberi [24] confirmed the 

good performance of the MP schemes in DNS of compressible turbulence with and without shocks and 

Jammalamadaka et al. [25, 26] adopted the seventh-order MP scheme in a series of DNS and LES of shock-

wave/turbulent-boundary-layer interactions (SWTBLI), which proved the capability of MP scheme in DNS 

and LES of SWTBLI. Some efforts tried to improve the performance of the MP scheme. Li et al. [27] 

proposed a sixth-order optimized MP scheme (OMP6), in which the dispersion errors are minimized . Their 

research demonstrated the better performance of the OMP6 scheme against the MP scheme in capturing 

small-scale flow structures. Fang et al. [28] recently proposed a low-dissipation MP (MP-LD) scheme, and 

they got an improvement of the effective bandwidth from 30%kmax to almost 100%kmax in DNS of isotropic 

turbulence by reducing 70% of the bandwidth dissipation of the seventh-order MP scheme, which indicated 

the strong connection of the performance of upwind schemes to numerical dissipation. Following the studies 

of Li and Jaberi [24],  Li et al. [27] and Fang et al. [28], the present paper further investigates the influences 

of the bandwidth dissipation of the MP7-LD scheme on DNS of various turbulent flow configurations. Firstly, 

the eigenvalue and the bandwidth property of the linear part of the MP7-LD scheme will be analyzed. Then, 

the effects of bandwidth dissipation will be extracted and investigated in weakly compressible isotropic 

turbulence and wall-bounded turbulence without the interference with the nonlinear errors or the order of 

accuracy, and the optimized value of the bandwidth dissipation will be proposed. Finally, DNS of impinging 

oblique shock-wave/turbulent-boundary-layer interactions at the free-stream Mach number 2.25 will be 

conducted by using the optimized MP7-LD scheme, and the results will be validated by comparing with the 
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published experimental measurements and other DNS data, in order to demonstrate the applicability of the 

optimized MP7-LD scheme in DNS of complex wall-bounded turbulent flows with shock-waves. 

The paper is organized as follows. In Section 2, we describe the governing equations, the numerical 

scheme and the properties of the MP7-LD scheme. The performances of the MP7-LD scheme are assessed 

and the influences of the bandwidth dissipation on DNS of isotropic turbulence and turbulent channel flow are 

studied in Section 3. In Section 4, we report the DNS of impinging shock-wave/turbulent-boundary-layer 

interaction by applying the optimized MP7-LD scheme together with results validation, comparison and 

discussions. Finally, in Section 5 we draw some conclusions. 

2. Governing Equation and Numerical Method 

2.1. Governing Equations 

Three-dimensional unsteady compressible Navier-Stokes (N-S) equations in a general, time-invariant, 

curvilinear coordinate system are numerically solved for all turbulent flow cases considered hereafter. The N-

S equations are nondimensionalized with the reference length 𝐿0, velocity 𝑢0, temperature 𝑇0, density 𝜌0, and 

dynamic viscosity 𝜇0. The resulting dimensionless parameters are Reynolds number Re =  𝑢0𝐿0/𝜇0 and 

Mach number  M = 𝑢0/�𝛾𝑅𝑇0 . A constant Prandtl number Pr = 𝜇 𝐶𝑝 ℎ⁄ = 0.72 is used, where 𝐶𝑝 =

𝛾𝑅(𝛾 − 1) is the specific heat capacity of gas at a constant pressure and h is the thermal conductivity. 𝑅 and 𝛾 

are the specific gas constant and the specific heat capacity ratio, which are both set to be constants as,  

𝑅 = 287.1 𝐽/(𝐾𝑔 ∙ 𝐾) and 𝛾 = 1.4. 

This set of equations are written in the strong conservation form as,    
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𝜕(𝐽𝑸)
𝜕𝑡

+
𝜕�𝑬� − 𝑬�𝑣�

𝜕𝜉
+
𝜕�𝑭� − 𝑬�𝑣�

𝜕𝜂
+
𝜕�𝑮� − 𝑮�𝑣�

𝜕𝜁
= 𝐽𝑺,                                                (1) 

where the coordinate transformation between the physical domain (𝑥,𝑦, 𝑧) and the computational domain 

(𝜉, 𝜂, 𝜁), can be described by following equations as, 

𝑥 = 𝑥(𝜉, 𝜂, 𝜁), 𝑦 = 𝑦(𝜉, 𝜂, 𝜁), 𝑧 = 𝑧(𝜉, 𝜂, 𝜁).                                                     (2) 

In Eq. (1),  𝐽 = |𝜕(𝑥,𝑦, 𝑧) 𝜕(𝜉, 𝜂, 𝜁)⁄ | is the Jacobian of the coordinate transformation and 

𝑸 = [𝜌,𝜌𝑢,𝜌𝑣,𝜌𝑤,𝐸]𝑻 is the solution vector. The primary variables are the density 𝜌, the velocity 

component 𝑢, 𝑣,𝑤, and the total energy 𝐸. The temperature 𝑇 and pressure 𝑃 are related to the density 𝜌 via 

the ideal gas law 𝑃 = 𝜌𝑇 (𝛾𝑀2)⁄ . 

The convection and diffusion flux vectors in Eq. (1) are defined as,  

𝑬� =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜌𝑈�
𝜌𝑢𝑈� + 𝜉𝑥𝑃
𝜌𝑣𝑈� + 𝜉𝑦𝑃
𝜌𝑤𝑈� + 𝜉𝑧𝑃
(𝐸 + 𝑃)𝑈� ⎦

⎥
⎥
⎥
⎥
⎤

, 𝑭� =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜌𝑉�
𝜌𝑢𝑉� + 𝜂̂𝑥𝑃
𝜌𝑣𝑉� + 𝜂̂𝑦𝑃
𝜌𝑤𝑉� + 𝜂̂𝑧𝑃
(𝐸 + 𝑃)𝑉� ⎦

⎥
⎥
⎥
⎥
⎤

, 𝑮� =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜌𝑊�
𝜌𝑢𝑊� + 𝜁𝑥𝑃
𝜌𝑣𝑊� + 𝜁𝑦𝑃
𝜌𝑤𝑊� + 𝜁𝑧𝑃
(𝐸 + 𝑃)𝑊� ⎦

⎥
⎥
⎥
⎥
⎤

                                     (3) 

and 

𝑬�𝒗 =

⎣
⎢
⎢
⎢
⎢
⎡

0
𝜉𝑥𝑖𝜏𝑖1
𝜉𝑥𝑖𝜏𝑖2
𝜉𝑥𝑖𝜏𝑖3
𝜉𝑥𝑖𝑏𝑖 ⎦

⎥
⎥
⎥
⎥
⎤

, 𝑭�𝒗 =

⎣
⎢
⎢
⎢
⎡

0
𝜂̂𝑥𝑖𝜏𝑖1
𝜂̂𝑥𝑖𝜏𝑖2
𝜂̂𝑥𝑖𝜏𝑖3
𝜂̂𝑥𝑖𝑏𝑖 ⎦

⎥
⎥
⎥
⎤

, 𝑮�𝒗 =

⎣
⎢
⎢
⎢
⎢
⎡

0
𝜁𝑥𝑖𝜏𝑖1
𝜁𝑥𝑖𝜏𝑖2
𝜁𝑥𝑖𝜏𝑖3
𝜁𝑥𝑖𝑏𝑖 ⎦

⎥
⎥
⎥
⎥
⎤

.                                                (4) 

For the convenience of representing matrices and vectors, (𝑥1, 𝑥2, 𝑥3), (𝑢1,𝑢2,𝑢3) and (𝜉1, 𝜉2, 𝜉3) are used to 

be equivalent to (𝑥, 𝑦, 𝑧), (𝑢, 𝑣,𝑤) and (𝜉, 𝜂, 𝜁), respectively, and the standard Einstein summation notation is 

used. In Eq. (2) and (3), the grid transformation �
𝜉𝑥𝑖
𝜂̂𝑥𝑖
𝜁𝑥𝑖
� = 𝐽 �

𝜕𝜉 𝜕𝑥𝑖⁄
𝜕𝜂 𝜕𝑥𝑖⁄
𝜕𝜁 𝜕𝑥𝑖⁄

� is used for all metric coefficients, and the 

contravariant velocity components and the total energy are written as, 
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𝑈� = 𝜉𝑥𝑖𝑢𝑖, 𝑉� = 𝜂̂𝑥𝑖𝑢𝑖, 𝑊� = 𝜁𝑥𝑖𝑢𝑖 ,                                                               (5) 

and 

𝐸 =
1
2

(𝜌𝑢𝑖𝑢𝑖) +
𝜌𝑇

𝛾(𝛾 − 1)𝑀2   .                                                                        (6) 

The stress tensor and the heat flux vector are expressed as, 

𝜏𝑖𝑗 =
𝜇

Re
�
𝜕𝑢𝑖
𝜕𝜉𝑘

𝜕𝜉𝑘
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝜉𝑘

𝜕𝜉𝑘
𝜕𝑥𝑖

−
2
3
𝛿𝑖𝑗

𝜕𝑢𝑙
𝜕𝜉𝑘

𝜕𝜉𝑘
𝜕𝑥𝑙

� ,                                                      (7) 

and  

𝑏𝑖 = 𝑢𝑗𝜏𝑖𝑗 +
𝜇

PrRe(𝛾 − 1)𝑀2
𝜕𝑇
𝜕𝜉𝑘

𝜕𝜉𝑘
𝜕𝑥𝑖

,                                                             (8) 

The dynamic viscous coefficient 𝜇 is calculated via the Sutherland law as, 

𝜇 = 𝑇1.5 𝑇𝑆 𝑇0⁄ + 1
𝑇 + 𝑇𝑆 𝑇0⁄  ,                                                                              (9) 

where 𝑇0 = 216.65𝐾 and  𝑇𝑆 = 110.4𝐾  are used in all simulations. 

The source term 𝑺 in Eq. (1), unless specific defined, is assumed to be 0. Unless otherwise described, all 

the variables in the present paper are in the dimensionless form. 

2.2. Numerical Scheme 

We take the derivative of a general function 𝐹(𝑥) on a set of one-dimensional uniformly distributed grid 

points (𝑥𝑖 = 𝑖∆, 𝑖 = 0,1,⋯ ,𝑁) with the grid spacing ∆ to illustrate the numerical scheme. Thus, the derivative 

𝜕𝐹(𝑥) 𝜕𝑥⁄  at 𝑥𝑖 can be approximated as,  

𝜕𝐹(𝑥)
𝜕𝑥

=
�𝐹�𝑖+1/2 − 𝐹�𝑖−1/2� 

∆
+ O(∆𝑚) ,                                                           (10) 
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where 𝑚 stands for the order of the accuracy of the scheme and 𝐹�𝑖+1/2 in Eq. (10) is the numerical flux 

function at an interface location of  𝑥𝑖+1/2 = (𝑥𝑖 + 𝑥𝑖+1) 2⁄ , which can be reconstructed based on a specific 

numerical scheme using the values at several neighboring grid points.  

Considering  the MP7-LD scheme [28], its linear part is given as,  

𝐹�𝑖+1/2 =
1

280
( 𝑎−3𝐹𝑖−3+𝑎−2𝐹𝑖−2 + 𝑎−1𝐹𝑖−1 + 𝑎0𝐹𝑖 + 𝑎1𝐹𝑖+1 + 𝑎2𝐹𝑖+2 + 𝑎3𝐹𝑖+3 − 𝑏7𝐹𝑖+4),            (11) 

in which 𝑏7 is a free parameter to determine the relative contribution of the point i+4. Substituting Eq. (11) 

into Eq. (10), the first-order derivative can be approximated as,  

𝜕𝐹(𝑥)
𝜕𝑥

≈ � 𝛼𝑛𝐹𝑖+𝑛

4

𝑛=−4

 ,                                                                         (12) 

where the finite difference coefficients 𝛼𝑛 are calculated as,  

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛼−4
𝛼−3
𝛼−2
𝛼−1
𝛼0
𝛼1
𝛼2
𝛼3
𝛼4 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑎−3

𝑎−3−𝑎−2
𝑎−2−𝑎−1
𝑎−1−𝑎0
𝑎0−𝑎1
𝑎1−𝑎2
𝑎2−𝑎3
𝑎3+𝑏7
−𝑏7 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 .                                                                          (13) 

By employing the Taylor series expansion and keeping the seventh-order accuracy, the values of 

𝑎−3, 𝑎−2, 𝑎−1, 𝑎0, 𝑎1, 𝑎2, 𝑎3 are determined in terms of the free parameter 𝑏7, as given below,  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑎−3
𝑎−2
𝑎−1
𝑎0
𝑎1
𝑎2
𝑎3 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

= �𝑏7 − 2,−7𝑏7 +
50
3

, 21𝑏7 −
202

3
,−35𝑏7 +

638
3

, 35𝑏7 +
428

3
,−21𝑏7 −

76
3

, 7𝑏7 +
8
3
� 𝑇 .        (14) 
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For 𝑏7 = 0, Eq. (12) is recovered to the conventional seventh-order upwind scheme. On the contrary, 

when 7b  is set to be 1, the Eq. (12) becomes the explicit eighth-order central scheme, which is a non-

dissipative scheme. 

2.2.1. Eigenvalue Analysis 

Consider the one-dimensional advection equation, 

𝜕𝜙(𝑥, 𝑡)
𝜕𝑡

+
𝜕𝜙(𝑥, 𝑡)
𝜕𝑥

= 0 ,                                                                       (15) 

with the solution vector of 𝝓 = (𝜙1,𝜙2,⋯ ,𝜙𝑁) on a set of 𝑁 discrete grid points. Its semi-discrete form can 

be written as,  

𝑑𝝓
𝑑𝑡

=
1
∆
𝑩𝝓 ,                                                                             (16) 

where 𝑩 is the coefficient matrix of the scheme in Eq. (12). 

The eigenvalue analysis states that the scheme will be stable if all eigenvalues of the matrix 𝑩 have non-

positive real parts and also the time step falls within the stability region of the time-integration scheme. The 

eigenvalue spectra of 𝑩 for N=200 with the periodic boundary condition are given in Figure 1. It can be seen 

that the eigenvalue has non-positive real parts only when 𝑏7 ≤ 1. Taking the conventional seventh-order 

upwind scheme(𝑏7 = 0) as the baseline scheme, and increasing parameter 𝑏7 from 0 to 1, the scheme of Eq. 

(12) is becoming  more stable as the eigenvalues are closer to the origin and therefore allowing a larger time 

step. On the contrary, reducing 𝑏7 from 0, the scheme is still stable, but requires a smaller time step. The 

scheme with 𝑏7 > 1 is unstable and therefore should be avoid. 
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Figure 1. The eigenvalue spectra of matrix 𝑩 for N=200 points and the periodic boundary condition.  

 
2.2.2. Fourier Analysis 

By using the Fourier analysis, the bandwidth properties of Eq. (12) with different values of 𝑏7 from -1 to 1 

are presented in Figure 2, in which the relation of the modified wavenumber 𝑘�  and the wavenumber 𝑘 is given 

as, 

𝑘� = −𝑖 � 𝛼𝑛𝑒𝑖𝑘𝑛
4

𝑛=−4

,                                                                           (17) 

As shown in Figure 2(a), the real part of the modified wavenumber that represents the bandwidth 

resolution remains unchanged while varying parameter 𝑏7 from -1 to 1 (i.e. the results are collapsed). 

However, the numerical dissipation indicated by the negative value of the imaginary part of the modified 

wavenumber in Figure 2(b) is consistently reduced to zero by increasing the parameter 𝑏7 from 0 to 1. In 

contrary, reducing 𝑏7 from 0 to -1, the bandwidth dissipation of Eq. (12) will be increased. 
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Figure 2. Bandwidth properties of the linear part of the MP7-LD scheme. (a) real part of the modified 
wavenumber; (b) imaginary part of the modified wavenumber. 

By integrating the imaginary part of the modified wavenumber, the integral bandwidth dissipation can be 

defined as, 

  Σ = ∫ −𝐼𝑚(𝑘�)𝑑𝑘𝜋
0  , (18) 

in which 𝐼𝑚( ) means the imaginary part of a complex variable. 

The relation of the integral bandwidth dissipation Σ in Eq. (18) with respect to parameter 𝑏7 is illustrated 

in Figure 3, from which the linear relation of the integral bandwidth dissipation and parameter 𝑏7 can be seen. 

For example, by setting 𝑏7 = 0.2, the integral dissipation will be reduced to that of the conventional ninth-

order upwind scheme. For 𝑏7 = −1, the integral dissipation is close to that of the conventional third-order 

upwind scheme and the integral dissipation of the conventional fifth-order upwind scheme can be achieved by 

setting 𝑏7 = −0.332. The linear relation between the bandwidth dissipation and parameter 𝑏7 suggests that 

with the increased value of parameter b7 from 0 to 1, a percentage of bandwidth dissipation b7×100% of its 

original level will be reduced; therefore, the numerical dissipation of the MP7-LD scheme can be 

conveniently tuned to a required level. 
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Figure 3. Integral Bandwidth Dissipation with the parameter b7. 

In order to resolve small-scale turbulent structures and also to preserve turbulence energy, the numerical 

dissipation should be kept as low as possible. In other word, parameter b7 should be close to 1. However, in 

practical simulations, a certain level of numerical dissipation is necessary to suppress the aliasing errors [29]. 

Therefore, parameter 𝑏7 is suggested to be set between 0 and 1, in consideration of both the efficiency and the 

stability of the computation.  

In the MP7-LD scheme, a shock sensor proposed by Ducros et al. [30] is adopted to replace the 

smoothness criterion of the original MP scheme, and this shock sensor at a grid point 𝑖 can be expressed as, 

  Ω𝑖 = �𝑃𝑖+1−2𝑃𝑖+𝑃𝑖−1
𝑃𝑖+1+2𝑃𝑖+𝑃𝑖−1

� (𝜕𝑢𝑘 𝜕𝑥𝑘⁄ )2

(𝜕𝑢𝑘 𝜕𝑥𝑘⁄ )2+𝜔𝑘𝜔𝑘+𝜀
  , (19) 

where 𝑃𝑖  is static pressure at 𝑖,  𝜔𝑘 = 𝜕𝑢𝑗 𝜕𝑥𝑖⁄ − 𝜕𝑢𝑖 𝜕𝑥𝑗⁄  is the vorticity component and a small value 

𝜀 = 10−30 is used to avoid zero dividing. This shock sensor is proven to be the best one among four different 

shock sensors assessed by Pirozzoli [1] recently. A threshold value 𝜎 = 0.01 is used to active the MP limiter, 

which is the same value suggested by Lo et al. [31].  For one-dimensional problems, due to the inexistence of 
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the vorticity, the smoothness criterion of the fifth-order WENO-JS scheme [32] is used as a shock sensor, 

which is given as, 

  Ω𝑖 = �1
4

(𝑃𝑖+1 − 𝑃𝑖−1)2 + 13
12

(𝑃𝑖+1 − 2𝑃𝑖 + 𝑃𝑖−1)2�
2
 . (20) 

The application of the MP7-LD scheme is summarized in following steps:-  

1. The original convection fluxes values at the interface are calculated by using the bandwidth 

dissipation optimized upwind scheme, i.e. Eq. (11) with a selected optimized parameter b7.  

2. The shock sensor Ω𝑖  is calculated from Eq. (19) or (20) depending on the dimensionality of the 

problem. 

3. If Ω𝑖 > 𝜎, the MP limiter described in reference [21] will be incorporated to determine the final 

interface value to preserve the monotonicity. 

4. Otherwise, the final interface values will be determined as the original interface value. 

5. The derivative is finally calculated with the neighboring interface values via Eq. (10). 

For the hyperbolic system of the Navier-Stokes equations, upwind schemes in the present paper are used 

together with the Steger-Warming flux vector splitting method [33]. To reduce numerical errors, the 

conventional fluxes are evaluated in the local characteristic space [34] with a pair of Roe-averaged 

eigenvectors of the Jacobian matrix to transform the convection fluxes between the physical space and the 

characteristic space [35]. 
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A sixth-order compact central scheme (COMP6) [36], which has been widely adopted as a high-order 

method in DNS and LES of weakly compressible turbulence, is used as a reference scheme in the present 

study. This scheme is expressed as,  

 1
3
𝐹𝑖−1′ + 𝐹𝑖′ + 1

3
𝐹𝑗+1′ = (𝐹𝑖+2 − 𝐹𝑖−2) 36⁄ + 7 (𝐹𝑖+1 − 𝐹𝑖−1) 9⁄  . (21) 

A tenth-order compact filter is incorporated as a stabilizer when the COMP6 scheme is used to solve 

convection terms, whose expression is, 

 𝛼𝑓𝐹�𝑖−1 + 𝐹�𝑖 + 𝛼𝑓𝐹�𝑖+1 = ∑ 𝑎𝑛(𝐹𝑖+𝑛+𝐹𝑖−𝑛) 2⁄5
𝑛=0   , (22) 

where 𝐹� is the filtered variable and 𝛼𝑓 ∈ (−0.5,0.5) is the filter coefficient used to determine the strength of 

the filter and 𝑎𝑛 is calculated according to 𝛼𝑓. The details of the filter and its property can be found in a paper 

by Visbal and Gaitonde [37]. In the present study, 𝛼𝑓 = 0.49 is used for all the test cases, which restricts the 

filter only at very high wavenumbers. 

The diffusion terms of N-S equations are solved with the COMP6 scheme of Eq. (21). The primitive 

variables 𝑢𝑖 and 𝑇 are firstly differentiated, and the stress tensor as well as the heat flux vector are then 

formed at each node. The diffusion terms are then computed by differentiating the first-order derivative 

values with another application of Eq. (21). This method is more efficient than the direct calculation of 

second-order derivatives, although the later method can be more numerically stable. After all the spatial terms 

are solved, the third-order TVD Runge–Kutta method is used for the time integration [38].  
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3. Numerical Experiments 

3.1. Shu-Osher Problem 

The problem of a moving Mach 3 shock-wave interacting with a sinusoidal density wave, known as the 

Shu-Osher problem [8] is firstly considered. The numerical dissipation is investigated by solving one-

dimensional Euler equations on the grids with 150 and 200 points. The density profiles at non-dimensional 

time unit t=1.8 from the MP7-LD scheme with parameter b7=0, 0.3, 0.7 and 0.9 are compared with the grid-

converged solution, which is calculated by the original MP7 scheme on a very fine grid with 10000 points 

(see Figure 4).  
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 Figure 4. Comparison of density distribution at t=1.8 for the Shu-Osher problem on 150 points (a) and 
200 points (b). 

As indicated in Figure 4 (a), immediately left the normal shock-wave located at about x=2.4, the 

monotonic increase of the density wave amplitude with the decrease of numerical dissipation can be realized. 

Therefore, the result is gradually improved by increasing parameter b7 from 0 to 0.7. However, with further 

reducing the numerical dissipation by setting b7=0.9, undesirable numerical oscillations appear at the 

compression wave (see zoomed figure inserted in Figure 4 a), and contaminate the result. Therefore, for this 
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problem, parameter b7=0.7 is the optimized option among the four values tested. However, when the number 

of the points increases from 150 to 200, the difference between the results from MP7-LD scheme with 

different values of b7 is not obvious and they are all close to the reference. Comparing with the original 

WENO scheme of Jiang and Shu  [10], the better performance of the MP7-LD scheme with any values of b7 

can be get. 

3.2. Homogeneous Isotropic Turbulence 

DNS of weakly compressible isotropic turbulence is carried out to further assess the influence of the 

numerical dissipation. Results of the MP7-LD scheme with parameter b7=0, 0.3, 0.7 and 0.9 as well as the 

COMP6 scheme are analyzed and compared with the DNS data by using the pseudo-spectral method. The 

initial flow field is a divergence-free velocity field (seeded with random white noise) with uniform thermal 

variables, same as that of the study by Samtaney et al. [39]. The initial kinetic energy spectrum is given as, 

 𝐸(𝑘) = 𝐴𝑘4𝑒−2(𝑘 𝑘0⁄ )2   , (23) 

where 𝑘 is the wavenumber, 𝑘0 = 8 is the wavenumber at which the spectrum peak locates, and 𝐴 = 1.3 ×

10−4 is a constant to specify initial kinetic energy. 

The root mean square (RMS) velocity fluctuation 𝑢𝑅𝑀𝑆, Taylor micro-scale λ  and the corresponding 

Reynolds number Reλ are defined as, 

 𝑢𝑅𝑀𝑆 = �〈𝑢𝑘′′𝑢𝑘′′〉 3⁄  , (24) 

 𝜆 = � 〈𝑢𝑘′′𝑢𝑘′′〉
〈(𝜕𝑢′′ 𝜕𝑥⁄ )2〉+〈(𝜕𝑣′′ 𝜕𝑦⁄ )2〉+〈(𝜕𝑤′′ 𝜕𝑧⁄ )2〉

 , (25) 

 Re𝜆 = Re𝑢𝑅𝑀𝑆𝜌̅𝜆 〈𝜇〉⁄  , (26) 
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where 〈𝐹〉 denotes the Favré averaged value of 𝐹, which is calculated as, 〈𝐹〉 = 𝜌𝐹���� 𝜌̅⁄ . And “    � ” means 

statistical averaging, which equals to the volume averaging for this case. The fluctuation is expressed as 

𝐹′ = 𝐹 − 𝐹� and 𝐹′′ = 𝐹 −  〈𝐹〉  

The turbulent Mach number 𝑀𝑇, which is used to measure the compressibility of turbulence, is defined as,  

 𝑀𝑇 = �〈𝑢𝑘′′𝑢𝑘′′〉 〈𝐶〉�  , (27) 

where 𝐶 = √𝑇 𝑀 ⁄  is the nondimensionalized speed of sound. 

Initially, 𝑀𝑇 is set to be 0.3, and Re𝜆 is set to be 72. A total of 1283 grid points are used to discretize a 

cubic  computational domain of 2𝜋3, with grid resolution close to the Kolmogorov length scale (𝑘𝑚𝑎𝑥𝜂0 ≈

0.9, with 𝑘𝑚𝑎𝑥 = 64 and 𝜂0 representing the initial Kolmogorov length scale) [39]. Due to the weak 

compressibility of the present case, the MP limiter is inactivated by the shock sensor; therefore, the results are 

only determined by the linear part of the MP7-LD scheme, i.e. Eq. (11) with different values of parameter b7. 

The temporal evolutions of the turbulent kinetic energy (𝑇𝐾𝐸 = 1
2
〈𝑢𝑘′′𝑢𝑘′′〉) and enstrophy (𝛺𝐸𝑁 =

1
2
〈𝜔𝑘𝜔𝑘〉) normalized with their initial values are compared in Figure 5, in which the time is normalized with 

the initial large-eddy turnover time 𝜏0.  
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Figure 5. Temporal evolutions of turbulent kinetic energy (a) and enstrophy (b).  
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It can be seen from Figure 5(a) that, the temporal evolutions of turbulent kinetic energy from all schemes 

tested agree reasonably well with each other, which indicates insensitive of the 𝑇𝐾𝐸 prediction to the 

numerical dissipation. However, a more detailed comparison seen in a zoom sub-figure inserted in Figure 5(a) 

shows a faster decay of TKE for the MP7-LD scheme with b7=0 and a slightly over-prediction of TKE for 

b7=0.9 in comparison with the benchmark results of the spectral method and the COMP6 scheme. The 

possible reasons for this could be attributed to the suppression of turbulent fluctuations by the over-excessive 

numerical dissipation of small b7 value and unsuppressed numerical oscillations for large b7 value, 

respectively. 

According to enstrophy variations in Figure 5(b), which is closely related to small-scale turbulence 

fluctuations [40], the differences among results from different parameter b7 are more distinguishable. The 

enstrophy obtained by the MP7-LD scheme with b7=0 has shown the lowest peak value and the fastest decay 

rate, which indicates the strongest suppression of small-scale turbulence fluctuations. While increasing b7, i.e. 

reducing the bandwidth dissipation, the level of enstrophy is becoming higher. While b7 is set to be 0.7, the 

result of the MP7-LD scheme is very close to that of COMP6 scheme, which indicates the similar 

performances in terms of resolving turbulence fluctuations of these two schemes. However, when further 

reduce the numerical dissipation by setting b7 to be 0.9, the enstrophy is largely overpredicted, which could be 

attributed to the rise of small-scale unphysical numerical oscillations.  

The energy spectrum 𝐸(𝑘) at an instantaneous time of 𝑡 = 2𝜏0 (see Figure 6) also shows the unphysical 

rise of 𝐸(𝑘) at high wavenumber region for the MP7-LD scheme with b7=0.9, which is consistent with the 

overprediction of the enstrophy observed in Figure 5(b). Therefore, it can be concluded that while the 
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numerical dissipation is tuned too low (i.e. parameter b7 is close to 1.0), the resulting unphysical small-scale 

fluctuations will contaminate the flow field significantly. With further accumulation of numerical errors at 

high wavenumber range, the computation would become unstable and most likely to be crashed eventually. 
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Figure 6. Instantaneous energy spectra at 𝒕 = 𝟐𝝉𝟎. 

For the MP7-LD scheme with parameter b7=0, the turbulent energy at high wavenumbers is obviously 

underpredicted, which indicates the suppression of small-scale turbulence fluctuations by the high level of 

bandwidth dissipation at b7=0. While increasing b7 from 0 to 0.7, an improved prediction of the energy 

spectrum at high wavenumbers can be achieved, and this confirms the critical impact of the numerical 

dissipation level on resolving small-scale turbulent motions. For b7=0.7, the result of present MP7-LD scheme 

is very close to that of the COMP6 scheme and the spectral method.  

By using the vortex identification scheme of the second invariant of the velocity gradient tensor, i.e. the Q 

criterion [41], the turbulent coherent structures from simulations using the MP7-LD scheme with b7=0.7 and 

b7=0.9 respectively at an instantaneous time of 𝑡 = 2𝜏0 are visualized in Figure 7. The classic randomly 

distributed worm-like vortices can be identified in Figure 7(a). However, small-scale oscillations (pointed by 
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the red arrow) appear in Figure 7(b), which is a visual evidence of the small-scale numerical errors that will 

appear when the numerical dissipation is tuned too low. 

(a)  (b)  
Figure 7. Turbulent coherent structures identified by Q criterion and colored by vorticity intensity. 

The results are obtained using the MP7-LD scheme with (a): b7=0.7; (b): b7=0.9. 

The computing efficiency of the MP7-LD and COMP6 scheme is also evaluated. Firstly, we compare the 

CPU times cost for 300 times calculation of the convection fluxes for the two schemes, during which the 

shock sensor Eq. (19) and tenth-order compact filter Eq. (22) are calculated every step for MP7-LD and 

COMP6 respectively.  Then, the CPU time consuming for 100 time steps advance in DNS of the present case 

is given. The results are tabulate in Table 1, from which we can get that, although the calculation of the 

convection fluxes with the MP7-LD scheme costs almost 4 times CPU time against the COMP6 scheme, the 

CPU time of solving the whole N-S equations is only increased less than 2 times. 

Table 1 CPU time consuming 

 Calculating inviscid fluxes for 300 
times (second) 

Solving N-S equations for 100 
time steps (second) 

MP7-LD 291.5 518.2 
COMP6 74.2 278.2 
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In case of higher 𝑀𝑇 isotropic turbulence, shocklets will be generated, which is regarded a rigorous test 

case for the numerical scheme. Therefore, the forced isotropic turbulence at 𝑀𝑇 = 0.8 and 𝑅𝑒𝜆 = 145 is 

directly simulated to test the capability of the MP7-LD scheme in capturing shocklets. To maintain higher 

level of the turbulence kinetic energy, the divergence-free random forces at the largest scale are added to the 

momentum and the energy equations in the same way as Kida and Orszag [42]. The MP7-LD scheme with 

b7=0.7 is used to solve the convection terms with a total of 2563 grid points. The instantaneous fields of flow 

variables are shown in Figure 8, in which the randomly generated shocklets can be identified as large density 

gradients and/or negative velocity divergences. According to Figure 8(c), the adopted shock sensor Eq. (19) 

and the selection of threshold can identify all the regions, where shocklets are possibly existent. The 

simulation demonstrates the capability of proposed the MP7-LD scheme in capturing shock-waves. 
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(a) (b)      

(c)  
Figure 8. Instantaneous field of (a): density, (b): velocity divergence and (c): shock sensor. The 

threshold value 𝝈 = 𝟎.𝟎𝟏 is marked with the red contour lines. 
 

3.3.  Turbulent Channel Flow 

The influence of parameter b7 is continued to be investigated in DNS of a channel flow configuration with 

two homogeneous directions in streamwise and the spanwise. The computation domain is  2𝜋 × 2 × 𝜋 in 

streamwise (x), wall–normal (y) and spanwise (z) direction respectively, with the reference length 𝐿0 being 

the channel half-height ℎ. The reference Reynolds number Re is 3000 based on 𝐿0, bulk density 𝜌0, bulk 

velocity 𝑢0 and viscosity 𝜇0 at wall Temperature 𝑇0. The corresponding friction Reynolds number is Re𝜏 ≈
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180, which is close to the incompressible spectral DNS of Moser et al. [43] The reference Mach number 

based on  𝑢0 and  𝑇0 is 0.5, which defines a weakly compressible flow. [44] 

The domain is discretized with 96 × 96 × 96 grid points, which are uniformly distributed in x and z 

directions and hyperbolically clustered towards top and bottom walls in the y direction. The grid spacings in 

the streamwise and the spanwise directions are ∆𝑥+ ≈ 12 and ∆𝑧+ ≈ 6 in wall units, respectively (based on 

the wall friction velocity 𝑢𝜏 = �
1
Re

𝜇𝜕𝑢 𝜕𝑦⁄
𝜌

�
𝑊

 and the viscous length scale 𝑙𝑣 = 1
Re

𝜇𝑊
𝜌𝑊𝑢𝜏

). In the wall-normal 

direction, the first grid point away from the wall is  𝑦1+ ≈ 0.7 and the maximum grid spacing is 7.5 wall units 

at the centerline of the channel. The grid matches the resolution for DNS of wall-bounded turbulence 

recommended by Sagaut [45].  

The flow is driven by a uniform streamwise body force, which is defined as the source term in the N-S 

equations as, 

 𝑺 =

⎝

⎜
⎛

0
𝐹𝑥
0
0

𝐹𝑥𝑢𝑏⎠

⎟
⎞

 , (28) 

in which, 𝐹𝑥 is the body force, 𝑢𝑏 = 𝜌𝑢����𝑥𝑧
𝜌�𝑥𝑧

 is the bulk velocity and 𝜌̅𝑥𝑧 means the density averaged in the x and 

the z directions. The body force is calculated every time step, therefore, it varies in time such that the total 

mass flux ∫ 𝜌𝑢����𝑥𝑧𝑑𝑦
ℎ
0  remains constant during the simulation. The body force calculation follows that of 

Lenormand et al. [44], which is briefly described here as,  

 𝐹𝑥𝑛+1 = 𝐹𝑥𝑛 −
∆𝑡
𝐿𝑦𝐿𝑧

[2(𝑄𝑛+1 − 𝑄0) − 0.2(𝑄𝑛 − 𝑄0)]   , (29) 
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where 𝑄0, 𝑄𝑛 and 𝑄𝑛+1 are, respectively, the target mass flux supposed to be conserved, the mass flux at time 

step n and the first-order prediction of the mass flux at time step n+1, given as, 

 𝑄𝑛+1 = 𝑄𝑛 + ∆𝑡�𝐿𝑦𝐿𝑧𝐹𝑥𝑛 − 𝐿𝑧𝜏𝑊� , (30) 

with 𝜏𝑊 being the spatial averaged wall viscous stress.  

The periodical boundary condition is applied in the x and the z directions, and isothermal nonslip 

condition is used at the top and bottom walls. The MP7-LD scheme with b7=0, 0.7 and 0.9 are assessed and 

results from the COMP6 scheme is used as the reference data. The statistics are got by averaging the flow 

field along the x and z directions as well as in time after the statistically stationary state is reached. However, 

simulation of b7=0.9 collapsed due to the numerical instability for which the reasons have been explained 

before; therefore, no statistical results of this case are presented. 

The mean velocity profiles in inner and outer scaling are shown in Figure 9, in comparison with 

incompressible DNS of Moser et al. [43] and experimental measurements of Eckelmann [46] and 

Niederschulte et al. [47]. The van Driest transformed velocity 𝑢𝑉𝐷 is used for the effective comparison 

between the compressible and incompressible results, according to the formula below,  

 𝑢𝑉𝐷 = ∫ 𝜌̅ 𝜌̅𝑊⁄〈𝑢〉
0 𝑑〈𝑢〉. (31) 

It can be seen from Figure 9 that the difference between all the profiles is small, which means the 

insensitive of the mean velocity prediction to the numerical dissipations tested within the MP7-LD scheme. In 

fact, all the schemes studied here are high-order and low-dissipation types; therefore, the correct mean flow 

predictions are always expected for these kinds of schemes. From detailed comparison of velocity profiles, we 
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can observe a slight elevation of the velocity in the logarithmic region from the present simulations. Among 

the three tested cases, the results of the MP7-LD with b7=0.7 and the COMP6 scheme are very close to each 

other, which indicates their similar performances in simulating wall turbulence.  

(a)
1 10 100

0

5

10

15

20

25

40 45 50 55 60 65 7014.5

15.0

15.5

16.0

16.5

 

 Corrected experimetnal data of
          Eckelmann 1974

 Incompressible of Moser et al. 1999
 COMP6
 MP7-LD with b7=0
 MP7-LD with b7=0.7

u+ =2.5y+ +5.5

 

u+ VD

y+

u+ =y
+

(b)
0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

 Experimental data of Nierdershulte et al. 1990
 Incompressible of Moser et al. 1999
 COMP6
 MP7-LD with b7=0
 MP7-LD with b7=0.7

u+ VD
y/h  

Figure 9. Mean velocity profiles in: (a) inner scaling  and (b) outer scaling. 

The RMS velocity fluctuations and the Reynolds shear stress in wall units are plotted in Figure 10(a). 

Again, the difference between the test schemes and reference data is inconspicuous. For high-order statistics 

such as the RMS vorticity fluctuations shown in Figure 10(b), the improvement of using b7=0.7 against b7=0 

is clearly visible, especially for the wall-normal component of the vorticity fluctuations ωy,RMS. 
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Figure 10. Comparison of (a) RMS velocity fluctuation and Reynolds shear stress and (b) RMS 
vorticity fluctuation. 
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The effect of numerical dissipation is more salient on the prediction of turbulent velocity spectra as shown 

in Figure 11. In consistent with DNS of isotropic turbulence described before, the spectra of different schemes 

agree well with each other at the low wavenumber range. However, differences do exist at high wavenumbers. 

It can be seen that, the MP7-LD scheme with b7=0.7 produces larger values of spectrum for all three velocity 

components than that of b7=0, which means the better preservation of small-scale turbulence energy. The 

unphysical numerical oscillation has also been effectively suppressed, as there is no sign of tail-up of spectra 

curve at the end of the bandwidth for simulation using b7=0.7.  
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Figure 11. Spanwise velocity fluctuation spectra of (a) 𝒖′′, (b) 𝒗′′, (c) 𝒘′′ at 𝒚+ = 𝟏𝟎.  
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The small-scale turbulence coherent structures visualized by the iso-surface of 𝑄 = (𝑢0 ℎ⁄ )2 from four 

different schemes are shown in Figure 12. For the MP7-LD scheme with b7=0.9, the flow field shown is just 

before the computation breakdown, and for other three schemes, the coherent structures are shown at the same 

time unit of t=200. Comparing Figures 12(a) and 12(b), the coherent structures obtained from the lower 

numerical dissipation b7=0.7 case are more prosperous, which indicates the predicted turbulence is more 

energetic. The turbulence simulated by the COMP6 scheme (see Figure 12(d)) is the most energetic, since it 

has the lowest dissipation among all the assessed schemes. In Figure 12(c), there are large numbers of small-

scale structures clustered, which is obvious unphysical and will cause simulation crash. It is believe that these 

small-scale structures are the results of the accumulation of unphysical errors that cannot be ‘washed away’ 

due to such a low level of numerical dissipation at b7=0.9. Therefore, it is concluded that, a certain level of 

numerical dissipation must be kept for DNS of wall-bounded turbulence, and based on numerical studied so 

far, parameter b7=0.7 is highly recommended as the optimized value for the MP7-LD scheme. However, the 

robustness of the MP-LD scheme is related to the value of the  𝑏7. Smaller values of 𝑏7 should be used for 

flows with complex geometry and grid, in which stronger numerical errors could be induced. We’ve tried 

𝑏7 = 0.7 in a series of SWTBLI, including impinging shock-wave/flat plate boundary layer interaction (the 

results will be presented in the next section), supersonic compression corner, expansion/compression corner 

and transonic airfoil, and MP-7LD scheme with 𝑏7 = 0.7 worked well in these cases. For more complex 

flows, the value of 𝑏7 could be case depended. 
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 (a)  (b)  

(c) (d)  
Figure 12. Turbulent coherent structures identified by Q criterion and colored by streamwise 
vorticity. (a) MP7-LD with b7=0; (b) MP7-LD with b7=0.7; (c) MP7-LD with b7=0.9; (d) COMP6. 

4. DNS of Shock-wave/Turbulent-Boundary-Layer Interaction 

By applying the optimized MP7-LD scheme with b7=0.7, further study is conducted for DNS of SWTBLI 

to evaluate the performance of the MP7-LD scheme in simulating complex turbulent flows with shock-waves 

and separations.  

4.1. Computation Setup 

The flow configuration is sketched in Figure 13, in which the inlet plane is 4 inches from the leading-edge 

of the plate. The outlet plane is about 11 inches from the leading-edge and the inviscid shock impinging point 
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at the wall is 𝑥𝐼 =10 inches from the leading-edge. The Mach number of the incoming flow is M = 2.25 and 

an oblique shock-wave at an angle of 33.2°, generated by a wedge, is introduced into the computational 

domain. The reference Reynolds number based on the reference length (1 inch) and velocity, density and 

viscosity of the incoming free-stream flow is Re = 635000, which corresponds to the zero-pressure-gradient 

flat plate boundary layer experimental test of Shutts et al. [48] (case 55010501). A laminar boundary layer 

profile based on compressible laminar boundary layer analysis is super-imposed at the inlet with the 

supersonic inflow boundary condition in the outer region and extrapolation of pressure in the subsonic portion 

of the boundary layer [49]. To trigger the boundary layer transition, the periodically wall blowing and suction 

boundary condition in the region of 4.5 < 𝑥 < 5 is used, which is the same as that of previous DNS of Rai et 

al. [50], Gao et al. [51], Pirozzoli and Grasso [52]. An adiabatic nonslip condition is used for the remaining 

wall surface. Near the outlet plane, an additional sponge zone with stretched grids and the second-order filter 

[53] is incorporated to drive the flow to a uniform state, and the supersonic outflow condition is used at the 

outlet plane. At the far field boundary of the upper surface of the computational domain, the single-point 

Rankine-Hugoniot relations are used to specify the free-stream values before and after the shock-wave.   

 
Figure 13 The sketch of computational domain of SWTBLI 
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The domain size is 7.6×1.2×0.2 and the orthogonal grid concentrating towards the wall and the interaction 

position is established. The grid has 2800, 150 and 256 points in streamwise, wall normal and spanwise 

directions, respectively. At the position immediately upstream the interaction zone (x=9.8), where the flow is 

fully developed with an equilibrium turbulent boundary layer status, the grid spacing are Δ𝑥+ = 3.9, Δ𝑦1+ ≈

0.9, Δ𝑧+ = 7.6. The ratio of the effective grid spacing Δ = �Δ𝑥Δ𝑦Δ𝑧3  to the local Kolmogorov length scale 𝜂 

at x=9.8 and inviscid interaction position x=10.0 has been evaluated a posteriori (see Figure 14). It is evident 

that the effective grid spacing at these two key locations reaches the smallest turbulence length scale, which 

satisfies the resolution requirement for DNS.  
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Figure 14. Profiles of the ratio of effective grid spacing to the local Kolmogorov length scale. 

4.2. Shock sensor 

The instantaneous distribution of shock sensor Eq. (19) at an x-y plane is depicted in Figure 15, in which 

the oblique shock-wave impingement and reflection can be seen by the shock sensor function above the 

threshold of 𝜎 = 0.01. Inside the wall boundary layer, where the turbulence is energetic, the MP limiter is 

completely deactivated, which ensures the turbulence being properly resolved at higher accuracy.  
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Figure 15. Distribution of shock sensor function. 
 

4.3. Skin Friction 

The mean wall skin friction 𝐶𝑓 = 2Re〈𝜇𝑊〉
𝜕〈𝑢〉
𝜕𝑦
�
𝑊

is plotted in Figure 16, in which the van Driest II 

transformation is used to extend the incompressible skin friction correlations to compressible flow conditions.  

The expressions of the skin friction correlations of the incompressible laminar Blasius, turbulent Blasius and 

Kármán–Schoenherr are respectively given as,  

 𝐶𝑓 = 0.6641 �Re𝑥⁄  (32) 

 𝐶𝑓 = 0.026 �Re𝜃𝐼0.25�  (33) 

 𝐶𝑓 = 1 [17.08(log Re𝜃𝐼)2 + 25.11 log Re𝜃𝐼 + 6.012]⁄  (34) 

where Re𝜃𝐼 = Re𝜃 𝜇𝑊⁄ , and 𝜃 is the momentum thickness of the boundary layer. 
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Figure 16.  Wall skin friction coefficient distributions.  (a) upstream the interaction region, and (b) 
in the interaction region. 

According to Figure 16(a), a good agreement between the predicted skin friction coefficient and the 

laminar Blasius solution in the laminar boundary layer region can be seen. The increase of Cf after x=6.25 

indicates the boundary layer transition occurred, and after reaching the maximum value near x=8.25, Cf falls 

back to a level between the turbulent Blasius and Kármán–Schoenherr correlations, which means the turbulent 

boundary layer is fully developed to an equilibrium status. After interacting with the shock-waves, Cf 

decreases steeply with negative values at x=9.85, which indicates the appearance of the reversed flow. 

Downstream flow reattachment, the skin friction increases monotonously to a level even larger than that in the 

upstream location, which indicates the boundary layer is ‘back’ to turbulent boundary layer, but is still not yet 

fully recovered to an equilibrium status.  

4.4. Mean Flow 

The mean profile of fully developed equilibrium turbulent boundary layer at x=9.5 is analyzed. The 

boundary layer parameters are listed in Table 2, in which 𝛿 and 𝛿∗ are the 99% nominal boundary layer 

thickness and displacement thickness, and Re𝜏 = Re𝜌𝑊𝑢𝜏𝛿 𝜇𝑊⁄  is the friction Reynolds number. 
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Table 2 Boundary layer parameters at x=9.5 

Cf Reδ Reδ∗ Reθ Reτ 
2.47×10-3 41167 11515 3148 685 

The mean velocity profiles are plotted in outer and inner scalings in Figure 17(a) and 17(b), respectively. 

The experimental measurements of Shutts et al. [48] and Bookey et al. [54] are also added in Figure 17(a) for 

comparison. The good agreements between the present DNS and experiments can be seen in the outer region 

of the boundary layer. In inner scaling, 𝑢𝑉𝐷+  is highly coincident with the classic law of wall in both the linear 

sub-layer and log-layer. A good agreement between the present DNS and incompressible DNS of flat-plate 

turbulent boundary layer of Wu and Moin [55] at Re𝜃 = 900 can also be found in Figure 17(b), except for the 

wake layer, where the present DNS shows stronger strength of the wake component due to the higher 

Reynolds number of the present case. 
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Figure 17. Mean velocity profile in (a) outer scaling and (b) inner scaling at x=9.5. 𝛋 = 𝟎.𝟒𝟏 is the 
von Kármán constant. 

The mean temperature and mass flux profiles at x=9.5 are compared with the experimental data of  Shutts 

et al. [48] and DNS result of Pirozzoli et al. [52] in Figure 18. Again, the present DNS results are in good 

agreement with the experimental data as well as the previous DNS at similar flow conditions.  
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Figure 18. Profiles of mean temperature and mass flux at x=9.5. 

The mean wall pressure in the interaction region is plotted in Figure 19, together with the experimental 

data of Dupont et al. [56] at two closest flow conditions (M=2.3, α=32.4 and α=33.2), where 𝑋∗and 𝑃∗are 

defined in the same way as Dupont et al. [56], i.e. 𝑋∗ = (𝑥 − 𝑋0) 𝐿𝑆⁄ , 𝑃∗ = (𝑝̅ − 𝑝1) (𝑝2 − 𝑝1)⁄  , where 𝑋0 is 

the mean position of the reflected shock foot, 𝐿𝑆 is the length of the interaction zone, 𝑝1 and 𝑝2 are the 

pressure upstream and downstream of the impinging shock deduced from the inviscid theory. 

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 

 Present DNS
 Experiment of Dupont et al. at Ma=2.3, α=32.4Ο

 Experiment of Dupont et al. at Ma=2.3, α=33.2Ο  

P*

X*  
Figure 19. Mean wall pressure distributions in comparison with experiments. 

It can be seen that the mean wall pressure of the present DNS matches well with the measurement data. 

The predicted wall pressure is increased smoothly, because the compression in the near-wall region is carried 

out by a series of compression waves due to strong inviscid-viscous interactions.  
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Figure 20 compares the mean and instantaneous flow field with a recent PIV experiment of Humble et al. 

[57, 58] at M=2.07, Re𝜃 = 4.92 × 104 and α=35.4°. The validation is merely qualitatively due to the 

difference in flow conditions. To be consistent with the experiment, the coordinates in Figure 20 are 

normalized as  𝑥∗ = (𝑥 − 𝑥𝐼) 𝛿𝑟𝑒𝑓⁄  and 𝑦∗ = 𝑦 𝛿𝑟𝑒𝑓⁄ , in which 𝛿𝑟𝑒𝑓 is the nominal boundary layer thickness 

at 𝑥∗ = −3. 

 

 
Figure 20. Mean (a, b) and instantaneous (c, d) streamwise velocity and velocity vector s of present 

DNS (a, c) and PIV measurement of Humble et al. [57] (b, d). 

It can be seen from Figure 20 that DNS results and PIV measurements are very similar in terms of mean 

and instantaneous flow patterns, including the thickening of the boundary layer after interacting with the 

shock-wave, the formation of the mixing layer during the interaction as well as the complex instantaneous 

reverse flow in the interaction region. Both flows show small separation; however, from the Figure 20 (c, d), 

we can see the instantaneous flow separation happens in much larger region than that of the mean flow, which 
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indicates the strong unsteadiness of the flow separation. Comparing with the PIV measurement, the DNS 

captures more flow details in the near-wall and the interaction regions due to its higher spatial resolution. 

4.5. Turbulence Statistics 

According to the Morkovin’s hypothesis, we compared the density scaled RMS velocity fluctuations 

𝑢𝑖,𝐷𝑅𝑀𝑆′′ = � 𝜌�
𝜌�𝑊

〈𝑢𝑖′′𝑢𝑖′′〉 at location of x=9.5 before turbulence/shock interaction with low Reynolds number 

boundary layer experimental data of Purtell at al. [59] and Erm and Joubert [60], incompressible DNS of 

Spalart [61] and Wu and Moin [55], as well as a recent compressible DNS of Pirozzoli et al. [62] in Figure 21, 

in which 𝑢𝑖,𝐷𝑅𝑀𝑆′′  is normalized with the wall friction velocity. 
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Figure 21. Density scaled RMS velocity fluctuation in outer scaling (a) and inner scaling (b) at 
x=9.5. 

In the outer region of the turbulent boundary layer, good agreements have been achieved for all the RMS 

velocity fluctuation components compared with the experimental data and other DNS results. In the inner 

(near-wall) region, better agreements among all these data are obtained, due to the smaller influence of the 

flow Reynolds number on turbulence statistics in the near-wall region when the inner scaling is adopted. The 
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peak value of streamwise velocity fluctuation attains 2.86 at 𝑦+ = 14, in good agreement with experimental 

data of Purtell [59]. 

The comparison of the streamwise and the wall-normal velocity fluctuation intensities: �〈𝑢′′𝑢′′〉 and 

�〈𝑣′′𝑣′′〉 in the interaction region between the present DNS and PIV of Humble et al. [57]  is given in Figure 

22, and qualitative agreements can be found, including the amplification of the velocity intensities and the 

change of their distribution patterns during the interaction. According to Figure 22, in both DNS and 

experiment, the turbulence begins to be amplified at about 2𝛿 upstream the inviscid interaction point 𝑥𝐼 . In 

the equilibrium region, the turbulence energy is more concentrated in the near-wall region, which can also be 

confirmed in Figure 21. The interaction with the shock-wave greatly enhances the fluctuation intensities, 

drafts their peaks away from the wall and changes their distribution patterns, which can be partly due to the 

formation of the mixing layer. [63, 64] Therefore, downstream the interaction region, there is a wide region 

with strong fluctuations and the peaks of both �〈𝑢′′𝑢′′〉 and �〈𝑣′′𝑣′′〉 move from the near-wall region to 

𝑦 ≈ 0.3𝛿𝑟𝑒𝑓, where a ‘core’ of the mixing layer locates. Further downstream, the velocity intensities in the 

outer region of boundary layer are gradually damped out due to the decay of the mixing layer and the 

damping rate in the experiment is somehow faster than that of the present DNS. In experiment, the near-wall 

peak of �〈𝑢′′𝑢′′〉 begins to recover (see Figure 22 (b)), which indicates the regeneration of the wall turbulence, 

however, this phenomenon happens at a further downstream location in the present DNS, which could be 

attributed to the lower Reynolds number of the present study. 
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Figure 22. Velocity fluctuation intensities in the interaction region, �〈𝒖′′𝒖′′〉 (a, b) and 𝟑�〈𝒗′′𝒗′′〉 

(c, d) normalized with the velocity in the incoming flow of the present DNS (a, c) and PIV 
measurement of Humble et al. [57] (b, d). 

 

The instantaneous turbulence coherent structures are visualized in Figure 23 by using the iso-surface of 

the swirling strength 𝜆𝑐𝑖 [65] equaling to 0.5% of its global maximum,  from which it can be seen the 

turbulence coherent structures are well resolved by using the optimized MP7-LD scheme and the shock-wave 

is also well captured. The dramatic change in turbulent structures while passing through the shock-wave can 

also be observed. In the undisturbed turbulent boundary layer, the streamwise elongated coherent structures in 

the near wall region, known as horseshoe vortex or hairpin vortex [65, 66] are predominant. After interacting 

with the shock-wave, the turbulent flow are detached from the wall, resulting in a thicker layer with much 

chaotic characteristics, which indicates the change of the turbulence production mechanism from a wall-

bounded turbulence to a free shear-layer turbulence. The large-scale deformation of the impinging shock-

38 
 



wave surface can also be seen (pointed with an black arrow), which is consistent with the observation by 

Priebe et al. [64]. 

 

Figure 23. Turbulence coherent structures visualized using iso-surface of 𝝀𝒄𝒊, rendered with the 
instantaneous streamwise velocity. The shock surface is visualized by using the iso-surface of the 

pressure gradient and a slice of pressure field is also shown. 

4.6. Turbulent Kinetic Energy Budget 

The turbulent kinetic energy transport equation can provide critical information for investigations of 

turbulence mechanisms and modelling and it can also be used to validate a DNS by checking the balance of 

the TKE transport equation [67]. The TKE transport equation is expressed as [62],  

 𝜕0.5𝜌�〈𝑢𝑘
′′𝑢𝑘

′′〉
𝜕𝑡

= 𝐶 + 𝑇 + 𝑃 + 𝑉 − 𝜀 + 𝐾, (35) 

where, 𝐶 = − 𝜕
𝜕𝑥𝑗

�0.5𝜌̅〈𝑢𝑗〉〈𝑢𝑘′′𝑢𝑘′′〉� is the advection term, 𝑇 = − 𝜕
𝜕𝑥𝑗

�0.5𝜌̅〈𝑢𝑖′′𝑢𝑖′′𝑢𝑗′′〉 + 𝑝′𝑢𝚥′′������� is the turbulent 

transport term, 𝑃 = −𝜌̅〈𝑢𝑖′′𝑢𝑗′′〉
𝜕〈𝑢𝑖〉
𝜕𝑥𝑗

 is the production term, 𝑉 = 𝜕
𝜕𝑥𝑗

�𝜏𝚤𝚥′ 𝑢𝚤′′�������� is the viscous diffusion term, 
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𝜀 = 𝜏𝚤𝚥′
𝜕𝑢𝚤′′

𝜕𝑥𝚥

��������
 is the dissipation term and 𝐾 = 𝑝′ 𝜕𝑢𝚤

′′

𝜕𝑥𝚥

��������
+ 𝑢𝚤′′���� �

𝜕𝜏𝚤𝚥����
𝜕𝑥𝑗

− 𝜕𝑃�

𝜕𝑥𝑖
� is the term accounting for the direct 

effect of compressibility through pressure–dilatation correlation and mass diffusion.  

The distributions of all terms in the undisturbed boundary layer at 𝑥∗ = −3 are shown in Figure 24, in 

which all terms are normalized with 𝜌𝑊2 𝑢𝜏4 𝜇𝑊⁄ . The data from DNS of SWTBLI of Pirozzoli and Bernardini 

[68] at Mach=2.28 are given for comparison. In the most part of the undisturbed boundary layer (𝑦+ > 30), 

the transport equation presents the balance between the production and dissipation. The viscous diffusion and 

turbulent transport terms become effective only in the near-wall region, which transport TKE from high 

production region towards the wall. The production term maximizes at about 𝑦+ = 12, which is also the peak 

position of streamwise velocity fluctuation and indicates the existence of organized turbulent structures as 

presented in Figure 23. The dissipation terms increases when approaching the wall, and is balanced by the 

viscous diffusion term at the wall. The present DNS agrees well with the data of Pirozzoli and Bernardini [68] 

and the balance calculated as the sum of all terms in Eq. (35), is very close to zero, which means the DNS is 

well resolved in the undisturbed boundary layer. 
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Figure 24. Turbulence kinetic energy balance at  𝒙∗ = −𝟑 
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The distributions of TKE budgets normalized with 𝜌𝑊2 𝑢𝜏4 𝜇𝑊⁄  at 𝑥∗ = −3 in the interaction region are 

shown in Figure 25. It can be seen that, all terms are greatly changed in the interaction zone and their relation 

becomes complex. Therefore, the balance of all terms is a challenge to the numerical method of the DNS. The 

production and dissipation terms are greatly increased in the mixing layer generated in the interaction region, 

in which the turbulence is dominated by some large-scale turbulent coherent structures as shown in Figure 23. 

The strong TKE production in the mixing layer is balanced by the turbulent transport and dissipation terms. 

The viscous diffusion term is restricted in the very near-wall region, even in the interaction region. The term 

K is effective in regions with shock-waves and compression waves, where compressibility is strong. 

(a)  (b)  

(c) (d)  

(e) (f)  

Figure 25. Turbulence kinetic energy budget terms. (a): C, (b): T, (c): P, (d): ε, (e): V, (f): K 
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The profiles of terms of the TKE transport equation in the interaction (𝑥∗ = −0.21) and recovery regions 

(𝑥∗ = 9.0) are shown in Figure 26, in which 𝑦+ is calculated with the wall values at 𝑥∗ = −3. The DNS data 

of Pirozzoli and Bernardini [68] at similar locations are also plotted. The quantitative comparison between the 

present DNS and the data of Pirozzoli and Bernardini [68] is poor, since the flow in the interaction and 

recovery region is in the state of non-equilibrium. However, we can still identify the consistent trend of all 

terms between the two DNS. In the interaction region of 𝑥∗ = −0.21, the strong production is in the mixing 

layer and is balanced by dissipation and turbulent transport. TKE is transported towards the wall by the 

turbulent transport term and the near-wall TKE transport is still accomplished by the viscous diffusion term, 

which are balanced by the dissipation term. In the recovery region, the production term decreases in outer part 

of the boundary layer and increases in the near-wall region, which indicates the decay of the mixing layer and 

regeneration of wall turbulence. All other terms become similar with those in the undisturbed boundary layer, 

which indicates the recovery of the boundary layer towards the state of equilibrium. Although all terms 

change greatly in the interaction region, the balance of the TKE transport equation is well preserved, which 

means the good performance of the present MP-LD scheme in the DNS. 
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Figure 26. Turbulence kinetic energy balance at  𝒙∗ = −𝟎.𝟐𝟏 (a) and  𝒙∗ = 𝟗 
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5. Concluding Remarks 

This paper investigated the influences of numerical dissipation of the MP7-LD scheme on DNS of both 

isotropic turbulence and wall-bounded turbulence and an optimized value of the parameter b7=0.7 has been 

derived and confirmed during benchmark tests. The DNS of the impinging shock-wave/turbulent-boundary-

layer interaction is then carried out by using the optimized MP7-LD scheme and the results are well validated 

against available experimental data and other DNS results, which prove the applicability of the MP7-LD 

scheme for DNS of complex turbulent flows interacting with shock-waves. Some conclusions can be drawn as 

follows,  

(1) The numerical dissipation influences turbulence simulation mainly on two aspects: first, the excessive 

numerical dissipation will suppress small-scale turbulent fluctuations and over-dissipate turbulent energies, 

therefore, reduces the accuracy of DNS/LES; second, if the numerical dissipation is too low, the unphysical 

numerical error in terms of small-scale oscillations could develop and grow, which will contaminant the 

simulation results, and even destroy the computations.  

(2) An optimized level of numerical dissipation should be kept for stable DNS computation. For the MP7-

LD scheme, the parameter b7=0.7, which reduces 70% of the bandwidth dissipation of the conventional 

seventh-order upwind scheme, is recommended as the optimized value for DNS of both isotropic turbulence 

and wall-bounded turbulence, according to case studies in the present research. It is also found that, for high-

order DNS of wall-bounded turbulence with a sufficient finer grid resolution, the influence of bandwidth 

dissipation is mainly presented in the spectra at the high wavenumber range. It has little influence on the 

prime statistics, such as the mean flow field and the Reynolds stresses profiles. 
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(3) The optimized MP7-LD scheme can be efficiently applied in DNS of complex turbulent flows with 

shock interactions and shock-induced flow separations. Both the detailed turbulent structures and accurate 

flow statistics can be acquired. The turbulence is amplified with a dramatic change of the coherent structures 

during the interaction region, which indicates the change of turbulence production mechanism from fully 

attached wall turbulence to detached mixing layer. The analysis of the TKE transport equation further 

confirms the high TKE production in the mixing layer. The terms of the TKE transport equation are greatly 

changed and the relation among all terms becomes complex in interaction region. The balance of the equation 

is still well preserved in all the regions, which proves the good resolution of the present DNS. 
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