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Abstract—Maintaining a desired trade-off performance between 
system throughput maximization and user fairness satisfaction 
constitutes a problem that is still far from being solved. In LTE 
systems, different tradeoff levels can be obtained by using a 
proper parameterization of the Generalized Proportional Fair 
(GPF) scheduling rule. Our approach is able to find the best 
parameterization policy that maximizes the system throughput 
under different fairness constraints imposed by the scheduler 
state. The proposed method adapts and refines the policy at each 
Transmission Time Interval (TTI) by using the Multi-Layer 
Perceptron Neural Network (MLPNN) as a non-linear function 
approximation between the continuous scheduler state and the 
optimal GPF parameter(s). The MLPNN function generalization 
is trained based on Continuous Actor-Critic Learning Automata 
Reinforcement Learning (CACLA RL). The double GPF 
parameterization optimization problem is addressed by using 
CACLA RL with two continuous actions (CACLA-2). Five 
reinforcement learning algorithms as simple parameterization 
techniques are compared against the novel technology.  
Simulation results indicate that CACLA-2 performs much better 
than any of other candidates that adjust only one scheduling 
parameter such as CACLA-1. CACLA-2 outperforms CACLA-1 
by reducing the percentage of TTIs when the system is 
considered unfair. Being able to attenuate the fluctuations of the 
obtained policy, CACLA-2 achieves enhanced throughput gain 
when severe changes in the scheduling environment occur, 
maintaining in the same time the fairness optimality condition. 

Keywords- LTE-A, TTI, CQI, throughput, fairness, scheduling rule, 
GPF, MLPNN, RL, policy, CACLA-1, CACLA-2. 

I.  INTRODUCTION 
The optimal allocation of channel and rate resources under a 

given set of Quality of Service (QoS) requirements constitutes 
an important throughput maximization task of the scheduling 
procedure. In particular, the fairness-guaranteed scheduling 
becomes a complex problem to solve since multiple active 
users are connected to the base station through the fast fading 
radio channels and LTE schedulers are designed in the 
opportunistic manner intended to exploit the multiuser 
diversity. Hence, by using simple scheduling rules, near Pareto 
optimal user throughputs should be obtained under a given 
fairness performance requirement among multiple users. The 
fairness target selection and the modalities of applying the best 
scheduling rules in order to satisfy the considered requirement 

become the main concerns in designing a self-learning LTE 
scheduler. The Channel Quality Indicator (CQI) feedback as 
achievable user rate information should be considered in the 
fairness performance evaluation metric in order to avoid the 
unfair treatment of some users with unfavorable channel 
conditions. For this study, the Next Generation Mobile 
Networks (NGMN) fairness requirement is considered as a 
fairness criterion in such a way that a system is considered fair 
if and only if at each TTI t at least (100-x)% of active users 
achieve at least x% of each normalized user throughput [1]. 
The fairness criterion can be achieved by using a satisfactory 
parameterization of the GPF scheduling rule [2].The objective 
function of the current study is designed to maximize the 
system throughput under the NGMN fairness constraints. With 
a given input state at each TTI, the scheduler should be able to 
find the best policy of GPF parameters set to be applied in the 
current TTI in order to meet the grand NGMN objective.  

The continuous and multidimensional scheduler state space 
is modeled by using the Markov Decision Process (MDP) in 
which the selected CACLA-2 actions are rewarded based on 
the transition performance from previous to the current state. 
Based on given MDP problems, CACLA-2 criticizes each 
action set in order to localize much faster the optimal scheduler 
state [3]. The experiments show that CACLA-2 performs much 
better in comparison with other RL algorithms by maximizing 
the mean user throughput and minimizing, at the same time, the 
percentage of TTIs when the system stays unfair. The rest of 
this paper is organized as follows: Section II promotes the 
relevant techniques proposed in the literature. Section III 
presents the optimization problem. Section IV presents the 
architecture of the novel self-learning scheduler. Section V 
shows the results, and the paper concludes with Section VI. 

II. RELATED WORK 
The idea of applying the RL principles for the LTE 

scheduler state space generalization constrained by multiple 
QoS objectives is originally proposed in [4], [5]. In particular, 
the Q-Learning algorithm with the MLPNN function 
approximation is used to achieve different static tradeoff levels 
between system throughput and user fairness [6]. The packet 
scheduling optimization problem in terms of the static Jain 
Fairness Index (JFI) constraint is analyzed in [7]. By imposing 



     

                     a)  Jain Fairness Index vs. Mean User Throughput                                                          b) CDF distribution 

Fig.1. Fairness evaluation criteria (benchmarks) for a 60-user scenario equally distributed from ENodeB base station to the edge of cell under 
uniform power allocation and FDD downlink transmission with a system bandwidth of 20MHz

the fairness limit regardless of the channel conditions makes 
the approach impractical for the real time schedulers. For this 
reason, the qualitative fairness measures based on channel 
statistics, rather than the quantitative fairness thresholds are 
preferred to be used in practice. The NGMN qualitative 
fairness measure adaptation techniques in LTE systems were 
first elaborated in [8] in which the cumulative distribution 
function (CDF) of the normalized user throughputs is adjusted 
by using a simple parameterization of the GPF scheduling 
metric. The CDF curve adaptation to the fairness requirement is 
achieved at each 1sidealing with the waste of system capacity, 
especially when the traffic load varies drastically TTI-by-TTI. 
A slightly improved method proposed in [7] is introduced in 
[9], in which the JFI constraint is replaced by the NGMN 
fairness requirement in the CDF domain (continuous oblique 
black line from Fig. 1.b.). 

      A set of RL algorithms that are able to match at each TTI 
the CDF curve under the NGMN fairness constraint (Fig.1.b) is 
proposed in [9].  The CACLA-1 actor critic algorithm 
outperforms any of the methods proposed in [7], [8] and other 
RL algorithms by maximizing the percentage of TTIs when the 
system respects the NGMN fairness requirement. It is 
important to notice that all the proposed methods being 
illustrated above use a simple parameterization of the GPF 
scheduling rule. The method proposed in this paper uses the 
double parameterization of GPF scheduling discipline. It is 
proved that by using CACLA-2 with two continuous GPF 
parameters, the obtained policy is able to converge much better 
to the optimal scheduler state when compared with CACLA-1. 

III.  GPF OPTIMIZATION PROBLEM 
The GPF scheduling metric proposed in [2] exploits two 

parameters in order to obtain near optimal user throughputs and 
to adjust the fairness performance in such a way that the 
NGMN requirement is accomplished. The system model 

considers a set t  of preselected users with an infinite buffer 
model with the minimum requested bit rate of 0kbps. At each 
TTI t a set of   orthogonal sub-carriers called Resource 
Blocks (RBs) [10] should be shared among the active users in 
order to solve the GPF integer linear programming 
optimization problem subject of convex set of constraints as 
shown by Eq. 1:  
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where  i , jb t  represents the RB allocation decision for user i 
and RB j,  i , jr t  is the achievable user rate determined based 

on the instantaneous CQI reports, and  iT t  denotes the 
achieved user throughput averaged with the exponential 
moving filter. By using a fine tuning of [0,1]t   and 

[0,1]t  parameters, a varying level of fairness can be 
obtained at each TTI t. For this reason, the technique is entitled 
double GPF parameterization (GPF-2). If 0t   and 1t  , 
the GPF scheme becomes the maximum throughput (MT) 
scheduling rule whereas when 1t   and 0t  , the obtained 
metric becomes the max-fairness technique. For the particular 
case of 1t  and 1t  , the well-known proportional fair 
metric (PF) is obtained. The illustrative mean user throughput 
and JFI fairness tradeoffs for the aforementioned particular 
GPF rules are highlighted in Fig. 1.a. The simple GPF 
parameterization used by other adjusting policies in [6], [7], [8] 
and [9] is represented by the special case of GPF simple 
parameterization (GPF-1) when 1t  and  0t max,   where 



1max  . Obviously, it is expected that CACLA-1 requires 
more time to optimize t than CACLA-2 which explores for a 
more restrictive domain of parameters. However, the double 
parameterization learning technique should adapt the set of 
 ,t t   parameters TTI-by-TTI in order to reach the optimal 
or feasible scheduler state (green tradeoff values from Fig. 1. a) 
such that: 
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where  ,t t t    is the MLPNN output space or the RL 
algorithm action space. For CACLA-2, the action space is 

 
2

1,1t   whereas for CACLA-1, the simple 

parameterization involves    1,1t t    . For other RL 
algorithms with discrete action spaces exposed and analyzed in 
this paper, the action at TTI t becomes  t k   

where 1,.., tk   . Let us define S
t the continuous and 

multidimensional scheduler state at TTI t. The scheduler 
evolves to the next state 1

S
t  when the discrete or continuous 

action t  is applied for the scheduling procedure.  

The role of the RL approaches is to drive the scheduler in 
the feasible state  1

S
t   , where  1 1,   represents 

the collection of multi-dimensional data points when the 
scheduler meets the feasible state for different channel and 
network conditions. When the applied action moves the 
throughput-JFI domain on the left side of   zone, the 
scheduler is declared unfair (MT scheduling rule case) 
and  1

S
t   , where    11,  denotes the region of 

unfair states. Otherwise, the scheduler is considered to be over-
fair (MF scheduling rule case) and  1

S
t   . By translating 

the quantitative tradeoff evaluation (Fig.1.a.) to qualitative 
NGMN fairness evaluation (Fig.1. b.), the scheduler state space 
status is decided based on the NGMN Objective Function 

(NOF)   iT t    
, where the sub-space     S

i tT t    represents 

the normalized user throughput (NUT) for 1 ti ,..,   . Let us 

define  iT  as the CDF function when all observations 

   iT t are log-normal distributed. If  Req
iT  represents the 

NGMN fairness requirement (continuous oblique black line), 
then the aggregated NOF function is calculated based on Eq. 3: 
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where   Req
i iT T   if  1iT  , and otherwise   1Req

iT  . 

Based on NGMN specifications [1], the scheduler state is fair 
 1

S
t    only and only if 0S

t    , where the fairness 

region is        �= . The delimitation between 
feasible area and over-fairness area is given by the superior 
CDF limit Max (oblique dot black line in Fig. 1.b) such that: 
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where  0 1,  is the confidence parameter that can guarantee 
the feasible region detection during the exploration period. For 
a larger   parameter, the   region can be detected much 
faster by degrading the system throughput whereas when the 
confidence parameter is small enough, more exploration time is 
required for CACLA-2 to localize the feasible state. The 
scheduler state status is decided based on Eq. 5: 
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The purpose of CACLA-2 is to find the feasible state 
 1

S
t    based on action t  applied at TTI t and to keep 

this desirable state as long as possible. Other regions such as 
   or   are considered undesirable for the learning 
procedure. 

IV. THE SELF-LEARNING  LTE-A SCHEDULER 
ARCHITECTURE 

The proposed actor-critic RL algorithm learns the optimal 
policy of  ,t t  actions based on the interaction between 
the conventional LTE scheduler and the novel controller.  At 
each TTI t, the controller receives from the scheduler a new 

 1 1
S S

t t t t t, , , �    MDP problem, where  �:  
constitutes the reward function which is a modified version of 
aggregated NOF function. For each t�, the LTE controller has 
to decide based on RL approach which action t  should be 
applied at the current TTI t (Fig. 2). In other words, the 
controller has to learn how to behave for many �problems. In 
this sense, the controller requires the state value function 

 S
t tV   where  1 1t ,V   : and the action-state value 

 S
t tA   where    11 1 1t , ,A    : . When RL approaches with 

discrete actions are used, different action-state values k
tQ  are 

requested for each k
t  action. The idea is to upgrade these 

values based on an infinite number of iterations by using the 
temporal learning principles [11]. The way how the 
tuple   t t tV ,A Q is updated TTI-by-TTI based on t� MDP 

problems determines the RL algorithm type. The time period 
when  t tV ,A  values are updated is called training stage and 
each RL approach has different performance impacts in the in 
the scheduling quality. When the learned state  and  action-state 



 

Fig.2 The architecture of the self-learning LTE-A scheduler 

value functions are directly applied to the new �, then the 
exploitation stage is performed. The purpose of the training 
stage is to find the optimal policy ( , )S

t t    which can 
provide the largest amount maximum rewards averaged over 
the number of training epochs or number of training TTIs. In 
order to reduce the MLPNN structure complexity and to speed 
up the convergence in the   region, the initial scheduler 
state space has to be aggregated by using a special pre-
processing stage.  

A. LTE Controller State Space 
Due to the continuous and high dimensionality 

characteristics of the original scheduler state space S
t , the 

MLPNN non-linear function is used in order to offer good 
generalizations for the   t t tV ,A Q values. In order to avoid 

the state dependency on the number of active radio bearers, 
the initial state space S

t is converted into a more 
representative and compacted state such as C

t  by keeping 
only the relevant information which can affects the action 
selection for the scheduling procedure. Then, the proposed 
controller state space becomes: 

              1 1, , , , , ,C T T R
t t t t t t t td                   (6) 

where T
t and T

t  are the mean and the standard deviations, 
respectively for the log-normal distribution of NUT 
observations, R

td is the minimum/maximum difference 
between i and Req

i percentiles when the system is fair/unfair 
as indicated in [9], and t represents the system status flags 
which indicates that 1t    when C

t   , 0t   
when C

t   and finally 1t  for the feasible state. 
Basically, the distance R

td decides the state C
t status such 

that: if 0i ,R Req
t i id ,      ti  then C

t   and the 

distance is  R i ,R
t td max d  , and when 0i ,R

t td , i   the 

controller is declared fair C
t   and  R i ,R

t td min d  . For the 

particular case when C
t   and  0R

td ,  then the state 

becomes C
t   . It is important to point out that all the 

above calculations are performed for the CDF domain of 
interest of  0 0 7i , .  . Beyond this interval, the CDF 
percentiles are not able to decide the controller state status. 
 

B. Reward Function 
The objective function from Eq. 3 is not suitable as a 

reward function due to the oscillated characteristics of the 
LTE scheduling procedure. Then, the particularities of GPF-2 
should be highlighted for the reward function computation. 
Compared with CACLA-1 [9], CACLA-2 reveals the 
existence of multiple optimal solutions  ,opt opt

t t   

when C
t   . In Fig. 1, the feasibility is reached when let us 

say  0.5, 1opt opt
t t   . If  ,opt

t t     , then C
t   ; 

when  , 1t t   , then the system tends to become over-

fair C
t   . Based on these principles, the feasibility can be 

reached for multiple optimal set of parameters 
when  ,t t   . Then the reward function for GPF-2 can 
be divided as indicated in Eq. 7: 
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When C
t   , the reward function UF

t  can be modeled 
by using the tuple of  1 1 1 1, , ,t t t t        . If the feasibility 
is reached, then the previous action should be granted with the 
maximum reward. The necessary conditions for the 
 region convergence are: 1 0t    and 1 0t   . The 
decision can be further divided into two situations: when 

1 1t t    the reward function should contain a weighted sum 
of  1 1,t t    ; when 1 1t t   , the role of 1t   is not 
important anymore and the reward should focus only 
on 1t  . In the opposite case when 1 0t    and 1 0t   , 
the action should be severely punished since the state moves 
farer away from  zone. Therefore, when C

t   , the 
reward function is calculated based on Eq. 7.a.: 
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For the over-fairness case, the reward function should follow 
the opposite direction of Eq. 7.a. The desirable situation is 
denoted by 1 0t    and 1 0t   and the undesirable one by 
the  case  when 1 0t     and 1 0t   . In  the first  instance  



  

 

Fig.3. The CDF curve of the proposed policies 

1t  and 1t   must be compared in order to determine 
whether 1t   can help or not in reaching of the feasible state. 
Equation 7.b. highlights the proposed reward model for the 
particular situation when C

t   . 
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        
         

     

    

 (7.b) 

During the training stage, the role of CACLA-2 RL algorithm 
is to collect the maximum rewards TTI-by-TTI and to select 
based on the MDP problem t� such actions t in order to 
improve and to refine the final policy of GPF-2 parameters. 

 

C. CACLA-2 RL Algorithm 
Based on CACLA principles, two MLPNN functions are 

used for the approximations of state and action-state values. 
Let us define  F A A C

t MLP t tA ,     and  F V V C
t MLP t tV ,     

the forwarded action-state and state values respectively, where 
 A V

t t,  are the trained MLPNN weights at TTI t. The 
MLPNN weights are updated according to the gradient-
descent principle which aims to minimize the mean-square 
errors 

A
tE and 

V
tE based on Eq. 8.a and Eq.8.b, respectively:  

            1 1 1 1

A A C T C F C
t t t A t t t tE , A A   

    


           (8.a) 

            1 1 1 1

V V C T C F C
t t t V t t t tE , V V   

    


           (8.b) 

where  1
T C
t tA   and  1

T C
t tV   are the target values,  A  and 

V  are the learning rates, and  is the total number of hidden 
nodes for all MLPNN layers. The errors from (8.a) and (8.b) 
are back-propagated layer-to-layer for each MLPNN node. 
The target state value is updated at TTI t when the reward 
value  is  received as a  result of  applying the  previous  action  

Fig.4. Obtained policies 
 

1t  in the previous state 1
C
t  according to Eq. 9: 

                   1 1 1
T C C F C

t t t t t t tV , V                        (9) 

where  0 1,  is the discount factor that indicates the 
importance of future scheduler rewards.  
       In order to find the best policy of GPF parameters, the 
training procedure uses a combination of exploration and 
exploitation stages which permit to select greedy actions with 
a probability of  1 t  such as:  

                
     

     2
11

1

1

F C
t t t Th

t

t t Th,

A if a

if b

 

 

   
   





                 (10) 

where t is the two-dimensional real random number and 

Th is the greedy threshold which decides if there is policy 
evaluation (10.a) or policy improvement (10.b). Equation 10 is 
entitled actor scheme for the CACLA-2 algorithm. The critic 
scheme updates the action target value in state 1

C
t  based on: 

                  1 1 1
T C F C T C F C
t t t t t t t tA A if V V             (11) 

According to Eq. 11, the target action value for the state 1
C
t is 

updated at TTI t only and only if the reward 
 1 1

C
t t t,    value can improve the state 1

C
t value. The 

same principles are applied to CACLA-1[9]. 
 

D. Other RL Candidates 
The performance of actor-critic schemes is compared 

against the actor RL schemes which are well known in the 
specialty literature. Double Q-Learning [11] is a modified 
version of the standard Q-learning that uses a double estimator 
function in the sense that two agents store two action value 
functions. QV-2  learning  works  by  keeping  a track  of  both  



  
 

 
Fig.5. Measured min/max distances from the NGMN requirement 
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action and state values and differs from the original QV-
learning from the MLNN error functions point of view [12]. 
QVMAX and QVMAX2 algorithms are off-line RL 
procedures in the sense that they combine the state, action-
state values and error function computation based on QV2 and 
Q learning approaches [13]. The RL candidates use discrete 
action sets by adjusting the GPF-1 parameterization problem.  
 

V. SIMULATION RESULTS  
 In order to prove the eligibility of CACLA-2 actor-critic RL 

algorithm in comparison with other methods, the considered 
scenario fluctuates at each 1s the number of active users based 
on the  -greedy probability in the interval of [10,120], and the 
user mobility is considered to be random walk with 30kmph 
speed. The evaluation of each scheduling algorithm is achieved 
by using the same conditions for interference, path loss, 
shadowing and fast fading. Each base station transmits with the 
same power which is equally distributed for all RBs. The best 
effort traffic type is considered for the downlink transmission 
purpose. The CQI feedback which is sent in the uplink 
direction is considered to be errorless. The rest of the 
parameters  of  the LTE   scheduler  can be found  in TABLE I.  

Fig.6. JFI –Mean user throughput tradeoff 

The LTE controller trains each RL algorithm for 1000s. Then, 
the resulted policy is exploited for 200s.  Due to the fact that 
Double-Q-learning algorithm spends too much time in the 
irrelevant state-space regions, after the exploration period, the 
controller is decoupled from the LTE scheduler and is re-
trained based on the visited MDP problems for a duration of 
about 500s. Except CACLA-1, CACLA-2 and Double-Q 
algorithms, the other candidates use the Boltzmann policy for 
the action selection procedure [13]. The rest of the parameters 
for LTE controller can be found in TABLE II.  

      As shown in Fig.3, CACLA-2, CACLA-1, QVMAX, 
QXMAX2 and Double-Q RL algorithms satisfy the NGMN 
fairness requirement when the number of active users remains 
constant. From the CDF perspective, the PF scheduling metric 
and QV-2 RL algorithm localize the scheduler in the 
 region. The evolution of learned policies times is depicted 
in Fig. 4 based on the number of bearers in the active state. 
QV-2, Double-Q and QVMAX learning algorithms provide the 
highest fluctuations of t parameter with the lowest policy 
revenue capacity to the optimal value. On the other side, 
CACLA-1 and CACLA-2 exploit the critic scheme advantage 
by keeping the policy oscillations in acceptable limits. By using 
two continuous actions, CACLA-2 is able to recover the   
state much faster when the traffic load is varying. By 
increasing t  and decreasing t  when the number of users 
increases from 12 to 115 (Fig. 4), the policy stabilizes in less 
than 10ms by recovering the stability of the policy. A 
significant system throughput gain can be achieved by 
minimizing in the same time the percentage of TTIs when the 
scheduler is located in the   operating area. 

When the minimum/maximum NGMN distance R
td  is 

considered (Fig. 5), CACLA-2 outperforms the main candidate 
CACLA-1 by maintaining the system in the minimum 
distances range of [0, 0.03]. The result of the policy 
fluctuations of other candidates is directly impacted in Fig. 5 
where the NGMN distances converge much slower than the 
actor-critic schemes. The PF scheduling rule indicates the 
highest NGMN distance for all transmission period. These 
concepts explain the higher throughput gain from Fig. 6 of 
actor-critic schemes when compared against the other 
candidates. In particular, CACLA-2 indicates a throughput gain  

Parameter Names Values 
Main Parameters 

System bandwidth 
Cell radius/ User Speed 

Channel Model 
Shadowing std. deviation 

Path Loss/Penetration Loss 
Interfered cells 

Carrier frequency/DL power 
Exploration/Experience Replay 

/Exploitation periods 
Discrete   

No. of MLPNN hidden layers 
Activation function 

No. of hidden nodes/layer 
Confidence Parameter ( ) 

3GPPP[14]/NGMN[1] 
20MHz 

1000 m/30km/h 
Rayleigh Fading (Vehicular A) 

8 dB 
128.1 + 37.6 log(d)/10 dB 

0 
2GHz/43dBm 
1000 s / 500 s 

/ 200 s 
4 3 2 1 210 , 10 , 10 , 10 , 5 10 ,0           

3 
Tangent Hyperbolic 

50 
0.05 



 

Fig. 7 Percentage of TTIs when the scheduler seats on the UF/FEA/OF 
states regions 
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when compared with CACLA-1 of about 0.2Mbps. The PF 
metric shows the worst performance even when the JFI-mean 
user throughput tradeoff is considered leading to the waste of 
system capacity when the NGMN fairness requirement is 
considered.  From the percentage of TTIs when the system 
state is  ,   or (Fig. 7) in the exploitation state,  the 
static parameterization of PF scheduling rule shows the highest 
amount of TTIs when the scheduler is over-fair and the lowest 
percentage of TTIs when the system is feasible. When the 
simple parameterization is used, QV2-learning constitutes the 
worst choice when the scheduler state is  ,C

t �= . 
From the view point of the number of TTIs when the scheduler 
is over-fair, the best performance is obtained by using the 
QVMAX policy. CACLA-1 algorithm outperforms the other 
candidates with the simple parameterization scheme when the 
feasible region is met. When the proposed GPF-2 
parameterization is used, CACLA-2 outperforms any of other 
RL methods. CACLA-2 gains more than 3000 TTIs from the 
  region which are valued by the   zone. In the same 
time, CACLA-2 gains around 6% feasible TTIs when 
compared with the main candidate CACLA-1 algorithm. From 
other perspective, by increasing the number of feasible TTIs, 
the number of reward punishments  1t   in the 
exploitation stage is strongly reduced. This concept highlights 
the quality of the proposed policy and the ability of recovering 
the desired feasible state in less than 10 TTIs when severe 
changes in the traffic load and user channel  conditions  appear. 

VI. CONCLUSIONS 
 The current work shows that the use of the double GPF 

parameterization increases the percentage of TTIs with 6% 
when the scheduler is feasible in comparison with the simple 
parameterization technique. The percentages of TTIs when the 
system is considered   or indicate a real improvement 
of about 1.32% and 4.71%, respectively, when CACLA-2 is 
performed. By using double action space, the resulted policy 
indicates lower fluctuations when the traffic load drastically 
changes. In conclusion, the double parameterization of the 
GPF scheduling rule presents real improvements in terms of 
system throughput gains and percentages of TTIs when the 
system is considered feasible. 
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Method 
V  Q  A    Exploration Type 

Double-Q - 0.01 - 0.99  -greedy ( Th =0.05) 
QV2 0.0001 0.01 - 0.95 Boltzmann ( =1) 

QVMAX 0,0001 0.01 - 0.95 Boltzmann ( =10) 
QVMAX2 0.0001 0.01 - 0.95 Boltzmann ( =10) 
CACLA-1 0.01 - 0.01 0.99  -greedy ( Th =0.5) 
CACLA-2 0.01 - 0.01 0.99  -greedy ( Th =0.5) 


