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ABSTRACT: In this study Acoustic Emission (AE) technique was used for monitoring mode I 

delamination test of sandwich composites. Since, during mode I delamination test various 

damage mechanisms appear, their classification is of major importance. Hence, integration of k-

means algorithm and genetic algorithm was applied as an efficient clustering method to 

discriminate different failure modes. Performing primary experiments to find the relationship 

between AE parameters and damage mechanisms, the AE signals of obtained clusters were 

assigned to distinct damage mechanisms. Also, the dominance of damage mechanisms was 

determined based on the distribution of AE signals in different clusters. Finally SEM 

observation was employed to verify obtained results. The results indicate the efficiency of the 

proposed method in damage classification of sandwich composites.  

KEY WORDS: Damage Mechanism, Sandwich Composite, Acoustic Emission, Clustering 

Analysis. 

1. INTRODUCTION 

Sandwich composites are widely used in a variety of engineering applications, including 

components of space vehicles, aircraft structures, marine vessels, train and truck structures, and 

containers and tanks. A sandwich is a special form of a laminated shell structure; consisting of 

three distinct layers that are bonded together to form an efficient load carrying assembly. Two 

thin face sheets of high performing material (fiber reinforced composite) are adhesively bonded 



to each side of a thick but considerably lighter core (e.g. foam). The main benefits of using this 

particular lay-up are the high stiffness and strength to weight ratios, and greatly increased 

flexural strength and stiffness. Fiber reinforced composite sandwich materials are extensively 

used in structural applications mainly because of their relative advantages over other structural 

materials in terms of improved stability, weight savings, and ease of manufacture and repair [1]. 

Sandwich structures are often subjected to out-of-plane loading during utilization. In such cases, 

sandwich composites suffer severely by delamination cracking because of poor interlaminar 

fracture resistance. Due to the great effect of delamination on stiffness and long-term 

performance of composites, its detection is of great importance [2]. 

In order to perform online inspection of damage evolution in sandwich composites, AE 

technique has better applicability compared with other conventional non-destructive testing 

methods. Some advantages of AE method are online failure inspection, recognition and 

classification of damage mechanisms in real time [3-8]. Acoustic Emission (AE) is a robust non-

destructive method for detection and recognition of different damage modes in composite 

materials. AE is a naturally occurring phenomenon, which is the result of transient elastic wave 

propagation caused by a sudden release of energy inside the material [9]. 

In composite materials there are various sources of AE signals such as matrix cracking, 

debonding, fiber breakage, etc. [7,8]. Therefore it is very important to discriminate AE signals 

corresponding to different failure mechanisms. In order to find the correlation between damage 

mechanisms and AE parameters, several studies have been carried out using different AE features 

such as counts, amplitude, energy [10, 11, 12]. Also, multi-parameter analysis has been used by 

several researchers to improve discrimination of AE events [13, 14, 15].  K-nearest algorithm is 

one of the supervised pattern recognition methods used by kenji and ono [16] for identification of 

damage modes in carbon /epoxy composites. Supervised pattern recognition is used whenever the 

number of damage mechanisms is known prior; While, unsupervised pattern recognition is 

performed without any previous knowledge. Unsupervised pattern recognition algorithm has 

been used by moevu et al. [17] in studying the AE signals of two SiCf/[Si–B–C] composites. The 

unsupervised algorithm could efficiently distinguish different types of matrix cracking. 

Several researchers have used neural network for clustering AE signals [18, 19, 20]. Godin et al. 

[21] used integration of kohonen’s self-organizing map and k-means algorithm to classify AE 

events of glass/epoxy composites and achieved interesting results. Kohonen’s self-organizing 



map, a neural network based approach, although accurate, suffers from high computational time. 

In addition, its performance is dependent on the network structure and number of neurons which 

must be specified prior [22]. Most of the above mentioned studies have been performed in time 

domain, while valuable information can be achieved using frequency domain. Wavelet transform 

is one the most suitable signal processing techniques in time-frequency domain that has been 

used by several researchers for analysing AE signals [23, 24]. The results indicate good 

performance of frequency analysis in studying AE events of composite materials. 

In spite of various studies that have been performed on damage characterization of typical 

composites, there are a few studies on sandwich composites using AE technique. Until now, few 

researchers have used AE parameters to study the development of failure mechanisms in 

sandwich structures. Quispitupa et al. [25] have used AE waveform parameters such as amplitude 

and energy to study the damage mechanisms of the sandwich composites subjected to fatigue 

loading conditions. According to the obtained results, AE waveform parameters could classify 

damage mechanisms very well.  

In this paper, hybrid of k-means algorithm and genetic algorithm was used to classify damage 

mechanisms during mode I delamination test. For this purpose, PCA was first used to reduce the 

dimensionality of rather large data. Then, integration of genetic algorithm and k-means algorithm 

was applied to cluster the data set. K-means algorithm is one of the most extensively used 

clustering methods, however, its performance strongly depends on the initial cluster centres and it 

may get stuck at local minima. In order to overcome this problem, GA was used as an efficient 

technique to find optimum cluster centres. Indeed, the searching capability of genetic algorithm 

can provide an optimal solution in a reasonable time. 

After clustering analysis, mean AE parameters of each cluster were calculated and the best 

distinguished parameter was selected for damage characterization.  

According to the primary experiments that were performed to find the relationship between the 

ranges of AE parameters and damage mechanisms, the AE signals of each cluster were assigned 

to a distinct damage mechanism. Also the dominance of damage mechanisms during mode Ι 

delamination was investigated based on the distribution of AE signals in different clusters. This 

investigation was combined with microscopic observations by SEM to verify the results. A 

concise explanation of damage classification procedure is shown in Figure 1. 

 



Figure 1. A concise explanation of damage classification procedure 

2. EXPRIMENTAL PROCEDURE 

2.1. Description of the Materials  

The experimental work was done on sandwich composite materials with glass fiber/epoxy as 

skin and polyethylene foam as core. Three specimens with different interface angles were 

manufactured in lab (Table 1). 

 

Table 1. Lay-up of specimens 

 

A hand lay-up method was followed by a 24 h vacuum bagging, set for all the specimens. Also, 

starter crack was created by inserting a Teflon film with a thickness of about 20 μm as an initial 

crack for the delamination test. After the vacuum bagging, the plates were placed in open air for 

48 h. For ensuring excellent quality, the plates were examined using ultrasonic c-scan. The 

approved plates were then marked and cut on a band saw with a fine-toothed blade to obtain 

mode I opening test coupons (according to ASTM D5528). The specimen dimensions were 

220×20 mm
2
 and total nominal thickness was 5.5mm and foam thickness was 3mm for all 

specimens. The 20 mm width was essential to provide the AE sensor with enough area to create 

good coupling since the sensor diameter was 5 mm.  

In this study, glass fibers, pure epoxy resin and pure polyethylene foam were used in the tensile 

test to determine the correlation among the AE results and fiber breakage, matrix cracking and 

core damage, respectively. 

2.2. Test Method 

Four samples were used for each test specimen. Figure 2 shows the bundle testing tab, clamping 

system of bundle, and AE sensors.  

The DCB (Double Cantilever Beam) shown in Figure 2 consists of a rectangular, uniform 

thickness, sandwich composite specimen, containing a non-adhesive insert on the mid-plane 

which serves as a delamination initiator. Opening forces were applied to the DCB specimen by 

means of loading hinges bonded to one end of the specimen. The ends of the DCB were opened 

by controlling displacement, while the load and delamination length were recorded. 



 

Figure 2. Experimental set-up of mode I delamination test  

 

The applied load versus opening displacement was recorded and stored digitally and post 

processed. Instantaneous delamination front locations are marked on the chart at intervals of 

delamination growth based on ASTM D5528 [26].  

2.3. Testing device  

A properly calibrated test machine was used which was operated in a displacement control mode 

with a constant displacement rate in the range from 0.5 to 500 mm/min. All the specimens were 

loaded in 2 mm/min. The testing machine was applied with grips to hold the loading hinges that 

were bonded to the specimen. 

The acoustic emission software AEWin and a data acquisition system (PAC) PCI-2 with a 

maximum sampling rate of 40 MHz were used for recording AE events. A broadband, resonant-

type, single-crystal piezoelectric transducer from Physical Acoustics Corporation (PAC), called 

PICO, was used as the AE sensor. The sensor had a resonance frequency of 513.28 kHz, and an 

optimum operating range of 100–750 kHz. The surface of the sensor was covered with grease in 

order to provide good acoustic coupling between the specimen and the sensor. The signal was 

detected by the sensor and enhanced by a 2/4/6-AST pre-amplifier. The gain selector of the 

preamplifier was set to 40 dB. The test sampling rate was 1 MHz and 16 bits of resolution, 

between 10 and 100 dB. Preliminary to damage check, the data acquisition system had been 

calibrated for each kind of specimens, according to a pencil lead break procedure. Then, a 

repeatable acoustic wave was generated in the specimen by a lead breakage on its surface. At the 

same time, the attenuation of the AE waves was measured. For this purpose, the lead breakage 

test was repeated several times and at different locations between the sensors. After the 

calibration step, AE signals were recorded during mechanical testing. Signal descriptors such as 

amplitude, duration, rise time, counts, and energy were calculated by the AE software (AEWin). 

During the test, two sensors were placed in a linear configuration located at a distance of 50 mm, 

as shown in Figure 2. Two sensors were used to ensure that only the AE signals of damage area 

were used for clustering analysis. 



3. Clustering Analysis 

3.1. Principal Component Analysis (PCA) 

PCA is a multivariate analysis tool usually used to reduce dimensionality of a large data set to 

enable better visualization and analysis of data [27]. With the aim of dimensional reduction, the 

data is transformed to a new set of uncorrelated variables, i.e. the principal components. In fact, 

PCA projects the data along the directions that depict maximum variance in the data set. These 

directions are specified by the eigenvectors of the covariance matrix with the highest eigenvalues. 

Let x be the n×m input data set, where n and m are the number of AE signals and related 

variables (features) respectively. Since the variables don’t have same units, the data has to be 

standardized. Standardization is achieved by transforming all data to have zero mean and unit 

standard deviation. In this case all variables have same weight. After data standardization, the 

covariance matrix is calculated. Then, eigenvectors and corresponding eigenvalues for covariance 

matrix have to be calculated. If C denotes the covariance matrix, the eigenvalues λi can be 

obtained by solving the determinant equation det(C-λi)=0. Then eigenvectors are columns of the 

matrix A such that C=ADA
T
, where  
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Where, λ1≥ λ2≥…≥ λm. 

Keeping only the first l eigenvectors for clustering analysis, the transformation to principal 

components is expressed as: 
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3.2. K-means Algorithm 

The task of k-means algorithm is to classify a set of n data points in m-dimensional space into k 

number of classes [28]. The classification procedure is done by minimizing the sum of squares of 

distances between the data and the relevant cluster centres. The first step of k-means algorithm is 



to partition the input data into k initial clusters. After calculating the mean point of each cluster as 

the centre of the cluster, a new partition is created by assigning each point to the cluster with the 

nearest centre. For the new clusters, the new centroids are recalculated and the algorithm is 

repeated by alternate application of these two steps until the coordinates of cluster centres do not 

change any more. Since the number of clusters is not known a priori, the algorithm has to be 

executed with different values of k and the best partitioning must be defined by means of a 

validity criterion such as the Davis-Bouldin (DB) index [29]. The DB validity index is calculated 

as follows: 
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Where s is the within-cluster distance, d the between clusters distance and k is the number of 

clusters. Low values of DB indicate good clustering. 

3.3. K-means Genetic Algorithm 

The most important disadvantage of k-means algorithm is that its performance strongly depends 

on the choice of the initial cluster centres and it usually gets stuck at local minima. In order to 

solve this problem, hybrid of k-means algorithm and genetic algorithm is proposed as an efficient 

clustering technique [30, 31]. In fact, integration of these algorithms – which makes a right 

balance between local exploitation and global exploration - can be a robust method for optimum 

clustering of AE events. 

Before explaining the steps of k-means genetic algorithm, the type of chromosome representation 

should be clarified. In this study, each chromosome is represented as a series of real numbers 

expressing the cluster centres. The steps of the hybrid algorithm are as follows: 

Step 1) Population initialization 

K random points are chosen from input data set as the centres of clusters. 

Step 2) Clustering 

In this step, each point x is assigned to the cluster with nearest centre and then new centres are 

calculated by Equation 4: 
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Where, zi
* 

is the new cluster centre and ni is the number of points belonging to cluster Ci. 

Step 3) Fitness computation 

Fitness function is described as the summation of the Euclidean distances of the points from their 

corresponding cluster centres (Equation 5): 
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(5) 

Where, zi denotes cluster centre and k is the number of clusters. For optimum clustering, fitness 

value must be minimized.  

Step 4) Selection  

According to fitness values, two parents are selected from a population to create two new 

children. In this study, Roulette wheel selection with elitist selection was used. Since elitist 

selection copies at least one best solution without any changes to a new population, it guaranties 

the best solution ever found to survive to end. 

Step 5) Crossover 

 After selection is performed, two parents exchange their information to create new children with 

a specified crossover probability.  

Step 6) Mutation  

In this step, mutation takes place according to the Equation 6: 

(1 2 ) 0

( 2 ) 0

r if r
r

if r

   
  

    

(6) 

Where r is the value at a gene position before mutation, r′ after mutation and Δ is a number in the 

range [0, 1] generated with uniform distribution. The (+) or (-) sign both have same possibility to 

occur.  

Step 7) Checking stopping criterion 



 The algorithm should be repeated while the stopping criterion is met. In this paper maximum 

number of iterations was used as stopping criterion. 

Table 2 summarizes the initial parameters of KGA. Also, the flowchart of the algorithm is shown 

in Figure. 3. 

Table 2. Initial parameters of KGA 

Figure 3. Flowchart of KGA 

4. RESULTS AND DISCUTION 

In order to find the relationship between AE parameters and damage mechanisms, AE 

monitoring of pure failures (core failure, failure of the adhesive bond, matrix cracking, and fiber 

breakage) was used to create an AE reference pattern. Based on AE analysis of the test results, 

these failures were classified according to distribution of AE amplitude, energy and frequency. 

Table 3 summarizes AE characteristics of pure damage modes. Applying Fourier Transform 

(FFT), the frequency distribution versus power spectrum was obtained as shown in Figure 4. 

According to the obtained results from pure failures (Table 3), there is some overlap between 

AE amplitude and energy ranges; whereas, the dominant frequency range of signals related to 

different failures varies significantly. The different frequency pattern of pure failure modes is an 

important key in damage classification procedure. According to the results the highest 

frequencies are associated with fiber breakage and the lowest ones are related to core failure. 

The frequency ranges of adhesive failure and matrix cracking are between core failure and fiber 

breakage frequency ranges. 

 

Table 3. AE characteristics of pure failure modes 

 

Figure 4. Frequency distribution vs. power spectrum: a) core failure, b) failure of the adhesive bond, 

c) matrix cracking, d) fiber breakage 

 

After determining the correlation between AE parameters and damage mechanisms, mode I 

delamination tests were carried out and the AE signals were recorded. In order to cluster AE 

events, PCA was first used to reduce the dimensionality of rather large data set and to visualize 



the results in a two-dimensional subspace. Since the selected AE parameters weren’t in similar 

units, standardization of these parameters was done by means of their standard deviation. 

After dimensional reduction, the AE signals were clustered using k-means genetic algorithm. The 

optimum number of clusters was calculated using Davis-Bouldin validity index. For this purpose, 

the hybrid algorithm was executed with values of k from 2 to 10 and DB index was calculated for 

each run. Figures 5-7 illustrate average DB index versus number of clusters (k). According to 

these figures the optimum number of clusters which minimizes the DB index is four. Hence, four 

damage mechanisms are expectable during mode I delamination test. 

 

Figure 5. Davis-Bouldin validity index versus number of clusters in specimen S1 

Figure 6. Davis-Bouldin validity index versus number of clusters in specimen S2 

Figure 7. Davis-Bouldin validity index versus number of clusters in specimen S3 

 

Figures 8-10 show frequency content of clustered AE signals versus amplitude. The dominant 

ranges of other AE parameters are listed in Table 4. The results indicate that among different AE 

descriptors, frequency is the best distinguished parameter; hence it can be used as an efficient AE 

parameter for damage classification of sandwich composites.  

 

Figure 8. Frequency – amplitude plot of clustered AE signals in specimen S1 

Figure 9. Frequency – amplitude plot of clustered AE signals in specimen S2 

Figure 10. Frequency – amplitude plot of clustered AE signals in specimen S3 

 

Table 4. Dominant ranges of AE parameters 

 

According to the results of primary experiments conducted on pure failure modes (Table 3), the 

AE signals of each cluster could be assigned to a different damage mechanism. Although there 

are some differences between pure failure results and mode I delmaintion results, the most 

important point is the relationship between frequency range and damage mechanisms. As 

mentioned above, the highest and the lowest frequency ranges are representatives of fiber 

breakage and core failure, respectively. Meanwhile, the frequency ranges of adhesion failure and 

matrix cracking are between core failure and fiber breakage frequency ranges. Considering this 

relationship, the AE signals of the first cluster are associated with core failure, the second cluster 



with adhesion failure, the third cluster with matrix cracking and the forth cluster with fiber 

breakage.  

Also, the dominance of damage mechanisms was determined according to the distribution of AE 

signals in different clusters, as summarized in Table 5.  

 

Table 5. Dominance of damage mechanisms 

 

Hence it can be concluded that, core failure and fiber breakage are the most dominant failure 

modes in specimen S1. These two damage modes contain 65% of total AE events. However, 

there is some matrix cracking (about 20%). In this specimen, due to appropriate adhesion 

between core and skin, debonding is not noticeable. Only 15% of AE signals are related to this 

kind of damage mechanism. Although failure of the adhesive bond is negligible in specimen S1, 

it is the most prevailing damage mode in specimens S2 and S3. Adhesion failure contains 35% 

and 45% of total AE events of specimens S2 and S3, respectively. The second significant damage 

type in specimen S2 is core failure, while for specimen S3 core failure involves only 15% of AE 

events. In specimen S3 matrix cracking is more dominant as well as adhesion failure.  

SEM observations of damage mechanisms are illustrated in Figures 11-13. The figures show 

dominant damage modes in different interfaces. The results are in good consistence with k-means 

genetic algorithm results.  

 

Figure 11. SEM observation of damage mechanisms in specimen S1 

Figure 12. SEM observation of damage mechanisms in specimen S2 

Figure 13. SEM observation of damage mechanisms in specimen S3 

 

5. CONCLUSION 

During mode I delamination test of sandwich composites various damage mechanisms appear. 

Identification and classification of these damage mechanisms is an important task that was 

studied in this paper. For this purpose, Acoustic Emission technique was used as an efficient 

non-destructive testing method. In order to cluster AE signals generated during mode I 

delamination test, integration of k-means algorithm and genetic algorithm was applied. Based on 

the relationship between AE events and damage mechanisms, the AE signals were assigned to 

distinct damage mechanisms. Among different AE parameters, frequency was the best 



distinguished descriptor to characterize damage modes. It was found that frequency ranges of 

35-65, 100-130, 170-250 and 350-450 kHz were concerned with the core failure, failure of 

adhesive bond, matrix cracking and fiber breakage, respectively. Considering the distribution of 

AE signals in different clusters, the dominance of damage mechanisms was achieved for each of 

the layups. It was found that core failure and fiber breakage were the most prevailing failure 

mechanisms in specimen S1; while adhesion failure and core failure were more dominant in 

specimen S2. For specimen S3 adhesion failure and matrix cracking were the most important 

damage mechanisms. SEM observations were consistent with these results. The results show 

that AE technique accompanied by clustering algorithms can be promising methods for 

identification and classification of damage mechanisms in sandwich composites. 

 

ACKNOWLEDGMENT 

The authors wish to thank the Department of Mechanical Engineering at Amirkabir 

University of Technology, for providing the facilities for this study. 

 

REFRENCES 

[1] Belingardi G., Cavatorta MP., Duella R.,: Material characterization of a composite–foam 

sandwich for the front structure of a high speed train. Composite Structures, 61(1-2), 13-25 

(2003). 

 Doi:10.1016/S0263-8223(03)00028-X 

[2] Pagano NJ., Schoeppner GA.: Delamination of polymer matrix composites: Problems and 

Assessment. (ed(s).: Kelly A. and Zweben C.) Comprehensive Composite Materials, 433-528 

(2000). 

[3] Bakukas J., Prosser W., Johnson W.: Monitoring damage growth in titanium matrix 

composites using acoustic emission. Composite Materials, 28(4), 305–28 (1994). 

Doi: 10.1177/002199839402800402 

[4] Hajikhani M., Oskouei AR., Ahmadi M., Sharifi A., Heidari M.: Progressive Fracture 

Evaluation in Composite Materials by Acoustic Emission Technique. Key Engineering 

Materials, 465, 535-538 (2011). 

Doi: 10.4028/www.scientific.net/KEM.465.535 

http://dx.doi.org/10.1177/002199839402800402
http://dx.doi.org/10.4028/www.scientific.net/KEM.465.535


[5]  Siron O., Chollon G., Tsuda H., Yamauchi H., Maeda K., Kosaka K.: Microstructural and 

Mechanical Properties of Filler-added Coal-tar pitch-based C/C Composites: the Damage and 

Fracture Process in Correlation with AE Waveform Parameters. Journal of Carbon, 38, 1369-

1389 (2000). 

Doi: 10.1016/S0008-6223(99)00270-5 

[6] Oskouei AR., Ahmadi M., Hajikhani M.: Wavelet-based acoustic emission characterization 

of damage mechanism in composite materials under mode I delamination at different interfaces.  

eXPRESS Polymer Letters, 3(12), 804–13 (2009). 

DOI: 10.3144/expresspolymlett.2009.99 

[7] Ely TM., Hill EK.: longitudinal splitting and fibre breakage characterization in graphite 

epoxy using acoustic emission data. NDT&E International, 30(2), 109-109 (1997). 

Doi: 10.1016/S0963-8695(97)85524-7 

[8] Uenoya T.: Acoustic emission analysis on interfacial fracture of laminated fabric polymer 

matrix composite. Journal of Acoustic Emission, 13, 95-102 (1995). 

[9] Ronnie K.M. Handbook of Nondestructive Testing, vol.5 Acoustic Emission. 2nd ed., 

American Society for Nondestructive Testing, (1987). 

[10] Morscher GN., Martinez-Fernandez J., Purdy MJ.: Determination of interfacial properties 

using a single-fiber microcomposite test. Journal of the American Ceramic Society, 79(4), 1083–

91 (1996). 

DOI: 10.1111/j.1151-2916.1996.tb08551.x 

[11] Barré S., Benzeggagh ML.: On the use of acoustic emission to investigate damage 

mechanisms in glass-fibre-reinforced poly-propylene. Composites Science and Technology, 

52(3), 369-376 (1994). 

Doi: 10.1016/0266-3538(94)90171-6 

[12] Ativitavas N., Fowler T., Pothisiri T.: Acoustic emission characteristics of pultruded fiber 

reinforced plastics under uniaxial tensile stress, ‘Proceeding of European WG on AE, Berlin, 

Germany’, 447-454 (2004). 

[13] Yamaguchi K., Oyaizu H., Johkaji J., Kobayashi Y.: Acoustic Emission technology using 

multi-parameter analysis of waveform and application to GFRP tensile tests. Acoustic Emission, 

current practice and future directions, ASTM STP 1077, Philadelphia, PA, 123-143 (1991). 

http://dx.doi.org/10.1016/S0008-6223%2899%2900270-5
http://dx.doi.org/10.1016/S0963-8695%2897%2985524-7
http://dx.doi.org/10.1016/0266-3538%2894%2990171-6


[14] Pappas YZ., Markopoulos YP., Kostopoulos V.: Failure mechanisms analysis of 2D 

carbon/carbon using acoustic emission monitoring. NDT&E International, 31(3), 157-163 

(1998). 

Doi: 10.1016/S0963-8695(98)00002-4 

[15] Kostopoulos V., Loutas TH., Kontsos A., Sotiriadis G., Pappas YZ.: On the identification 

of the failure mechanisms in oxide/oxide composites using acoustic emission. NDT&E 

International, 36(8), 571-580 (2003). 

Doi: 10.1016/S0963-8695(03)00068-9 

[16] Kenji K., Ono K. Pattern recognition of acoustic emission signals from carbon fiber/epoxy 

composites, ‘Proceeding of 7th international acoustic emission symposium, Zao, Japan’, (1987). 

[17] Moevus M., Godin N., R’Mili M., Rouby D., Reynaud P., Fantozzi G., Farizy G.: Analysis 

of damage mechanisms and associated acoustic emission in two SiCf/[Si–B–C] composites 

exhibiting different tensile behaviours. Part II: Unsupervised acoustic emission data clustering. 

Composites Science and Technology, 68(6), 1258–1265 (2008). 

Doi: 10.1016/j.compscitech.2007.12.002 

[18] Yan T., Holford K., Carter D., Brandon J.: Classification of acoustic emission signatures 

using a self-organization neural network. Journal of Acoustic Emission, 17(1/2), 49-59 (1999). 

[19] De Oliveira R., Marques AT.: Health monitoring of FRP using acoustic emission and 

artificial neural networks. Computers and Structures, 86(3-5), 367-373 (2008). 

Doi: 10.1016/j.compstruc.2007.02.015 

[20] Philippidis TP., Nikolaidis VN., Anastassopoulos AA.: Damage characterization of 

carbon/carbon laminates using neural networks techniques on AE signals. NDT&E 

International, 31(5), 329-40 (1998). 

DOI: 10.1016/S0963-8695(98)00015-2 

[21] Godin N., Huguet S., Gaeertner R.: Integration of the Kohonen’s self-organizing map and 

k-means algorithm for the segmentation of the AE data collected during tensile tests on cross-

ply composites. NDT&E International, 38(4), 299-309 (2005). 

Doi: 10.1016/j.ndteint.2004.09.006 

[22] Haykin S: Neural Networks-A Comprehensive Foundation. 2nd ed., Macmillan College, 

New York, (1994). 

http://dx.doi.org/10.1016/S0963-8695%2898%2900002-4
http://dx.doi.org/10.1016/S0963-8695%2803%2900068-9
http://dx.doi.org/10.1016/j.compscitech.2007.12.002


[23] Ni QQ., Iwamoto M.: Wavelet transform of acoustic emission signals in failure of model 

composites. Engineering Fracture Mechanic, 69(6), 717-728 (2002). 

DOI: 10.1016/S0013-7944(01)00105-9 

[24] Marec A., Thomas JH., El Guerjouma R.: Damage characterization of polymer-based 

composite materials: Multivariable analysis and wavelet transform for clustering acoustic 

emission data. Mechanical Systems and Signal Processing, 22(6), 1441-1464 (2008). 

Doi: 10.1016/j.ymssp.2007.11.029 

[25] Quispitupa A., Shafiq B., Just F., Serrano D.: Acoustic emission based tensile 

characteristics of sandwich composites. Composites: Part B, 35 563–571 (2004). 

Doi: 10.1016/j.compositesb.2003.11.012 

[26] ASTM Standard D5528: Standard Test Method for Mode I Interlaminar Fracture 

Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM 

International, West Conshohocken, PA, (2002). 

[27] Jolliffe I.T: Principal Component Analysis. 2nd ed., springer series in statistics, (2002). 

[28] Likas A., Vlassis N., Verbeek J.: The global k-means clustering algorithm. Pattern 

Recognition, 366(2), 451-461 (2003). 

Doi: 10.1016/S0031-3203(02)00060-2 

[29] Davies DL., Bouldin DW.: A cluster separation measure. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 1(4), 224-227 (1979). 

Doi: 10.1109/TPAMI.1979.4766909 

[30] Murthy CA., Chowdhury N.: In search of optimal clustering using genetic algorithms. 

Pattern Recognition Letters, 17(8), 825-832 (1996). 

Doi: 10.1016/0167-8655(96)00043-8 

[31] Bandyopadhyay S., Maulik U.: An evolutionary technique based on K-Means algorithm for 

optimal clustering in RN. Information Science, 146(1-4), 221-237 (2002). 

Doi: 10.1016/S0020-0255(02)00208-6 

 

 

 

 

 

http://dx.doi.org/10.1016/j.ymssp.2007.11.029
http://dx.doi.org/10.1016/S0031-3203%2802%2900060-2
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1016/0167-8655%2896%2900043-8
http://dx.doi.org/10.1016/S0020-0255%2802%2900208-6


List of figure captions: 

Figure 1. A concise explanation of damage classification procedure 

Figure 2. Experimental set-up of mode I delamination test  

Figure 3. Flowchart of KGA 

Figure 4. Frequency distribution vs. power spectrum: a) core failure, b) failure of the adhesive bond, 

c) matrix cracking, d) fiber breakage 

Figure 5. Davis-Bouldin validity index versus number of clusters in specimen S1 

Figure 6. Davis-Bouldin validity index versus number of clusters in specimen S2 

Figure 7. Davis-Bouldin validity index versus number of clusters in specimen S3 

Figure 8. Frequency – amplitude plot of clustered AE signals in specimen S1 

Figure 9. Frequency – amplitude plot of clustered AE signals in specimen S2 

Figure 10. Frequency – amplitude plot of clustered AE signals in specimen S3 

Figure 11. SEM observation of damage mechanisms in specimen S1 

Figure 12. SEM observation of damage mechanisms in specimen S2 

Figure 13. SEM observation of damage mechanisms in specimen S3 

 

List of table captions: 

Table 1. Lay-up of specimens 

Table 2. Initial parameters of KGA 

Table 3. AE characteristics of pure failure modes 

Table 4. Dominant ranges of AE parameters 

Table 5. Dominance of damage mechanisms 



 

 

Figure 1. A concise explanation of damage classification procedure 

 



 

Figure 2. Experimental set-up of mode I delamination test 

 



 

Figure 3. Flowchart of KGA 

 



 

Figure 4. Frequency distribution vs. power spectrum: a) core failure, b) failure of the adhesive bond, 

c) matrix cracking, d) fiber breakage 

 



 

Figure 5. Davis-Bouldin validity index versus number of clusters in specimen S1 



 

Figure 6. Davis-Bouldin validity index versus number of clusters in specimen S2 



 

Figure 7. Davis-Bouldin validity index versus number of clusters in specimen S3 



 

Figure 8. Frequency – amplitude plot of clustered AE signals in specimen S1 



 

Figure 9. Frequency – amplitude plot of clustered AE signals in specimen S2 



 

Figure 10. Frequency – amplitude plot of clustered AE signals in specimen S3 



 

Figure 11. SEM observation of damage mechanisms in specimen S1 



 

Figure 12. SEM observation of damage mechanisms in specimen S2 



 

Figure 13. SEM observation of damage mechanisms in specimen S3 



30 

 

Table 1. Lay-up of specimens 

Interfaces No. of Specimens 

Woven (-45/45)/Foam S1 

90/Foam S2 

Woven (0/90)/Foam S3 

 

Table 2. Initial parameters of KGA 

Initial population Crossover rate Mutation rate Maximum number 

of iterations 

100 0.75 0.01 1000 

 

Table 3. AE characteristics of pure failure modes 

Failure mode Dominant Amplitude 

ranges (dB) 

Dominant Energy 

ranges (aj) 

Dominant Frequency 

ranges (kHz) 

Core Failure 40-60 0-30 30-80 

Failure of the Adhesive 

Bond 

60-80 5-230 100-150 

Matrix Cracking 75-85 90-390 160-250 

Fiber Breakage 85-105 350-1250 250-500 

 

Table 4. Dominant ranges of AE parameters 

Specimen 

Dominant 

Amplitude range 

(dB) 

Dominant 

Frequency range 

(kHz) 

Dominant Count 

range 

Dominant Duration 

range (μs) 

S1 

35-55 

40-60 

40-70 

45-70 

25-100 

100-150 

160-240 

240-500 

20-1500 

10-550 

5-250 

5-40 

25-10000 

10-2400 

5-1500 

5-500 

S2 

35-50 

40-60 

30-95 

100-160 

20-1100 

10-545 

20-9100 

15-5400 
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40-65 

45-65 

170-250 

250-500 

5-265 

5-35 

10-2000 

5-600 

S3 

35-45 

40-65 

40-70 

45-70 

35-90 

95-170 

170-255 

260-450 

25-560 

15-560 

5-250 

5-40 

10-6000 

10-2100 

5-1500 

5-500 

 

Table 5. Dominance of damage mechanisms 

Specimen 
Core Failure (%) Failure of the 

Adhesive Bond (%) 

Matrix Cracking 

(%) 

Fiber Breakage 

(%) 

S1 35 15 20 30 

S2 30 35 25 10 

S3 15 45 25 15 

 

 


