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[bookmark: OLE_LINK146][bookmark: OLE_LINK147]ABSTRACT: In this study Acoustic Emission (AE) technique was used for monitoring mode I delamination test of sandwich composites. Since, during mode I delamination test various damage mechanisms appear, their classification is of major importance. Hence, integration of k-means algorithm and genetic algorithm was applied as an efficient clustering method to discriminate different failure modes. Performing primary experiments to find the relationship between AE parameters and damage mechanisms, the AE signals of obtained clusters were assigned to distinct damage mechanisms. Also, the dominance of damage mechanisms was determined based on the distribution of AE signals in different clusters. Finally SEM observation was employed to verify obtained results. The results indicate the efficiency of the proposed method in damage classification of sandwich composites. 
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1. INTRODUCTION
Sandwich composites are widely used in a variety of engineering applications, including components of space vehicles, aircraft structures, marine vessels, train and truck structures, and containers and tanks. A sandwich is a special form of a laminated shell structure; consisting of three distinct layers that are bonded together to form an efficient load carrying assembly. Two thin face sheets of high performing material (fiber reinforced composite) are adhesively bonded to each side of a thick but considerably lighter core (e.g. foam). The main benefits of using this particular lay-up are the high stiffness and strength to weight ratios, and greatly increased flexural strength and stiffness. Fiber reinforced composite sandwich materials are extensively used in structural applications mainly because of their relative advantages over other structural materials in terms of improved stability, weight savings, and ease of manufacture and repair [1]. Sandwich structures are often subjected to out-of-plane loading during utilization. In such cases, sandwich composites suffer severely by delamination cracking because of poor interlaminar fracture resistance. Due to the great effect of delamination on stiffness and long-term performance of composites, its detection is of great importance [2].
In order to perform online inspection of damage evolution in sandwich composites, AE technique has better applicability compared with other conventional non-destructive testing methods. Some advantages of AE method are online failure inspection, recognition and classification of damage mechanisms in real time [3-8]. Acoustic Emission (AE) is a robust non-destructive method for detection and recognition of different damage modes in composite materials. AE is a naturally occurring phenomenon, which is the result of transient elastic wave propagation caused by a sudden release of energy inside the material [9].
[bookmark: OLE_LINK7][bookmark: OLE_LINK8]In composite materials there are various sources of AE signals such as matrix cracking, debonding, fiber breakage, etc. [7,8]. Therefore it is very important to discriminate AE signals corresponding to different failure mechanisms. In order to find the correlation between damage mechanisms and AE parameters, several studies have been carried out using different AE features such as counts, amplitude, energy [10, 11, 12]. Also, multi-parameter analysis has been used by several researchers to improve discrimination of AE events [13, 14, 15].  K-nearest algorithm is one of the supervised pattern recognition methods used by kenji and ono [16] for identification of damage modes in carbon /epoxy composites. Supervised pattern recognition is used whenever the number of damage mechanisms is known prior; While, unsupervised pattern recognition is performed without any previous knowledge. Unsupervised pattern recognition algorithm has been used by moevu et al. [17] in studying the AE signals of two SiCf/[Si–B–C] composites. The unsupervised algorithm could efficiently distinguish different types of matrix cracking.
Several researchers have used neural network for clustering AE signals [18, 19, 20]. Godin et al. [21] used integration of kohonen’s self-organizing map and k-means algorithm to classify AE events of glass/epoxy composites and achieved interesting results. Kohonen’s self-organizing map, a neural network based approach, although accurate, suffers from high computational time. In addition, its performance is dependent on the network structure and number of neurons which must be specified prior [22]. Most of the above mentioned studies have been performed in time domain, while valuable information can be achieved using frequency domain. Wavelet transform is one the most suitable signal processing techniques in time-frequency domain that has been used by several researchers for analysing AE signals [23, 24]. The results indicate good performance of frequency analysis in studying AE events of composite materials.
In spite of various studies that have been performed on damage characterization of typical composites, there are a few studies on sandwich composites using AE technique. Until now, few researchers have used AE parameters to study the development of failure mechanisms in sandwich structures. Quispitupa et al. [25] have used AE waveform parameters such as amplitude and energy to study the damage mechanisms of the sandwich composites subjected to fatigue loading conditions. According to the obtained results, AE waveform parameters could classify damage mechanisms very well. 
[bookmark: OLE_LINK37][bookmark: OLE_LINK38]In this paper, hybrid of k-means algorithm and genetic algorithm was used to classify damage mechanisms during mode I delamination test. For this purpose, PCA was first used to reduce the dimensionality of rather large data. Then, integration of genetic algorithm and k-means algorithm was applied to cluster the data set. K-means algorithm is one of the most extensively used clustering methods, however, its performance strongly depends on the initial cluster centres and it may get stuck at local minima. In order to overcome this problem, GA was used as an efficient technique to find optimum cluster centres. Indeed, the searching capability of genetic algorithm can provide an optimal solution in a reasonable time.
After clustering analysis, mean AE parameters of each cluster were calculated and the best distinguished parameter was selected for damage characterization. 
According to the primary experiments that were performed to find the relationship between the ranges of AE parameters and damage mechanisms, the AE signals of each cluster were assigned to a distinct damage mechanism. Also the dominance of damage mechanisms during mode Ι delamination was investigated based on the distribution of AE signals in different clusters. This investigation was combined with microscopic observations by SEM to verify the results. A concise explanation of damage classification procedure is shown in Figure 1.

Figure 1. A concise explanation of damage classification procedure
2. EXPRIMENTAL PROCEDURE
2.1.  Description of the Materials 
The experimental work was done on sandwich composite materials with glass fiber/epoxy as skin and polyethylene foam as core. Three specimens with different interface angles were manufactured in lab (Table 1).

[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Table 1. Lay-up of specimens

A hand lay-up method was followed by a 24 h vacuum bagging, set for all the specimens. Also, starter crack was created by inserting a Teflon film with a thickness of about 20 μm as an initial crack for the delamination test. After the vacuum bagging, the plates were placed in open air for 48 h. For ensuring excellent quality, the plates were examined using ultrasonic c-scan. The approved plates were then marked and cut on a band saw with a fine-toothed blade to obtain mode I opening test coupons (according to ASTM D5528). The specimen dimensions were 220×20 mm2 and total nominal thickness was 5.5mm and foam thickness was 3mm for all specimens. The 20 mm width was essential to provide the AE sensor with enough area to create good coupling since the sensor diameter was 5 mm. 
In this study, glass fibers, pure epoxy resin and pure polyethylene foam were used in the tensile test to determine the correlation among the AE results and fiber breakage, matrix cracking and core damage, respectively.
2.2.  Test Method
Four samples were used for each test specimen. Figure 2 shows the bundle testing tab, clamping system of bundle, and AE sensors. 
The DCB (Double Cantilever Beam) shown in Figure 2 consists of a rectangular, uniform thickness, sandwich composite specimen, containing a non-adhesive insert on the mid-plane which serves as a delamination initiator. Opening forces were applied to the DCB specimen by means of loading hinges bonded to one end of the specimen. The ends of the DCB were opened by controlling displacement, while the load and delamination length were recorded.

[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK87]Figure 2. Experimental set-up of mode I delamination test 

The applied load versus opening displacement was recorded and stored digitally and post processed. Instantaneous delamination front locations are marked on the chart at intervals of delamination growth based on ASTM D5528 [26]. 
2.3. Testing device 
A properly calibrated test machine was used which was operated in a displacement control mode with a constant displacement rate in the range from 0.5 to 500 mm/min. All the specimens were loaded in 2 mm/min. The testing machine was applied with grips to hold the loading hinges that were bonded to the specimen.
The acoustic emission software AEWin and a data acquisition system (PAC) PCI-2 with a maximum sampling rate of 40 MHz were used for recording AE events. A broadband, resonant-type, single-crystal piezoelectric transducer from Physical Acoustics Corporation (PAC), called PICO, was used as the AE sensor. The sensor had a resonance frequency of 513.28 kHz, and an optimum operating range of 100–750 kHz. The surface of the sensor was covered with grease in order to provide good acoustic coupling between the specimen and the sensor. The signal was detected by the sensor and enhanced by a 2/4/6-AST pre-amplifier. The gain selector of the preamplifier was set to 40 dB. The test sampling rate was 1 MHz and 16 bits of resolution, between 10 and 100 dB. Preliminary to damage check, the data acquisition system had been calibrated for each kind of specimens, according to a pencil lead break procedure. Then, a repeatable acoustic wave was generated in the specimen by a lead breakage on its surface. At the same time, the attenuation of the AE waves was measured. For this purpose, the lead breakage test was repeated several times and at different locations between the sensors. After the calibration step, AE signals were recorded during mechanical testing. Signal descriptors such as amplitude, duration, rise time, counts, and energy were calculated by the AE software (AEWin). During the test, two sensors were placed in a linear configuration located at a distance of 50 mm, as shown in Figure 2. Two sensors were used to ensure that only the AE signals of damage area were used for clustering analysis.
3. Clustering Analysis
3.1. Principal Component Analysis (PCA)
[bookmark: OLE_LINK15][bookmark: OLE_LINK16][bookmark: OLE_LINK132][bookmark: OLE_LINK133]PCA is a multivariate analysis tool usually used to reduce dimensionality of a large data set to enable better visualization and analysis of data [27]. With the aim of dimensional reduction, the data is transformed to a new set of uncorrelated variables, i.e. the principal components. In fact, PCA projects the data along the directions that depict maximum variance in the data set. These directions are specified by the eigenvectors of the covariance matrix with the highest eigenvalues. Let x be the n×m input data set, where n and m are the number of AE signals and related variables (features) respectively. Since the variables don’t have same units, the data has to be standardized. Standardization is achieved by transforming all data to have zero mean and unit standard deviation. In this case all variables have same weight. After data standardization, the covariance matrix is calculated. Then, eigenvectors and corresponding eigenvalues for covariance matrix have to be calculated. If C denotes the covariance matrix, the eigenvalues λi can be obtained by solving the determinant equation det(C-λi)=0. Then eigenvectors are columns of the matrix A such that C=ADAT, where 
	

	
(1)


Where, λ1≥ λ2≥…≥ λm.
Keeping only the first l eigenvectors for clustering analysis, the transformation to principal components is expressed as:
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3.2. K-means Algorithm
The task of k-means algorithm is to classify a set of n data points in m-dimensional space into k number of classes [28]. The classification procedure is done by minimizing the sum of squares of distances between the data and the relevant cluster centres. The first step of k-means algorithm is to partition the input data into k initial clusters. After calculating the mean point of each cluster as the centre of the cluster, a new partition is created by assigning each point to the cluster with the nearest centre. For the new clusters, the new centroids are recalculated and the algorithm is repeated by alternate application of these two steps until the coordinates of cluster centres do not change any more. Since the number of clusters is not known a priori, the algorithm has to be executed with different values of k and the best partitioning must be defined by means of a validity criterion such as the Davis-Bouldin (DB) index [29]. The DB validity index is calculated as follows:
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Where s is the within-cluster distance, d the between clusters distance and k is the number of clusters. Low values of DB indicate good clustering.
3.3. K-means Genetic Algorithm
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]The most important disadvantage of k-means algorithm is that its performance strongly depends on the choice of the initial cluster centres and it usually gets stuck at local minima. In order to solve this problem, hybrid of k-means algorithm and genetic algorithm is proposed as an efficient clustering technique [30, 31]. In fact, integration of these algorithms – which makes a right balance between local exploitation and global exploration - can be a robust method for optimum clustering of AE events.
Before explaining the steps of k-means genetic algorithm, the type of chromosome representation should be clarified. In this study, each chromosome is represented as a series of real numbers expressing the cluster centres. The steps of the hybrid algorithm are as follows:
Step 1) Population initialization
K random points are chosen from input data set as the centres of clusters.
[bookmark: OLE_LINK19][bookmark: OLE_LINK20]Step 2) Clustering
In this step, each point x is assigned to the cluster with nearest centre and then new centres are calculated by Equation 4:
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Where, zi* is the new cluster centre and ni is the number of points belonging to cluster Ci.
Step 3) Fitness computation
[bookmark: OLE_LINK11][bookmark: OLE_LINK12]Fitness function is described as the summation of the Euclidean distances of the points from their corresponding cluster centres (Equation 5):
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Where, zi denotes cluster centre and k is the number of clusters. For optimum clustering, fitness value must be minimized. 
Step 4) Selection 
According to fitness values, two parents are selected from a population to create two new children. In this study, Roulette wheel selection with elitist selection was used. Since elitist selection copies at least one best solution without any changes to a new population, it guaranties the best solution ever found to survive to end.
Step 5) Crossover
 After selection is performed, two parents exchange their information to create new children with a specified crossover probability. 
Step 6) Mutation 
In this step, mutation takes place according to the Equation 6:
	

	(6)


Where r is the value at a gene position before mutation, r′ after mutation and Δ is a number in the range [0, 1] generated with uniform distribution. The (+) or (-) sign both have same possibility to occur. 
Step 7) Checking stopping criterion
 The algorithm should be repeated while the stopping criterion is met. In this paper maximum number of iterations was used as stopping criterion.
Table 2 summarizes the initial parameters of KGA. Also, the flowchart of the algorithm is shown in Figure. 3.
[bookmark: OLE_LINK13][bookmark: OLE_LINK21]Table 2. Initial parameters of KGA
[bookmark: OLE_LINK124][bookmark: OLE_LINK125][bookmark: OLE_LINK22][bookmark: OLE_LINK88]Figure 3. Flowchart of KGA
4. RESULTS AND DISCUTION
[bookmark: OLE_LINK131][bookmark: OLE_LINK138]In order to find the relationship between AE parameters and damage mechanisms, AE monitoring of pure failures (core failure, failure of the adhesive bond, matrix cracking, and fiber breakage) was used to create an AE reference pattern. Based on AE analysis of the test results, these failures were classified according to distribution of AE amplitude, energy and frequency. Table 3 summarizes AE characteristics of pure damage modes. Applying Fourier Transform (FFT), the frequency distribution versus power spectrum was obtained as shown in Figure 4. According to the obtained results from pure failures (Table 3), there is some overlap between AE amplitude and energy ranges; whereas, the dominant frequency range of signals related to different failures varies significantly. The different frequency pattern of pure failure modes is an important key in damage classification procedure. According to the results the highest frequencies are associated with fiber breakage and the lowest ones are related to core failure. The frequency ranges of adhesive failure and matrix cracking are between core failure and fiber breakage frequency ranges.

[bookmark: OLE_LINK23][bookmark: OLE_LINK24]Table 3. AE characteristics of pure failure modes

Figure 4. Frequency distribution vs. power spectrum: a) core failure, b) failure of the adhesive bond, c) matrix cracking, d) fiber breakage

After determining the correlation between AE parameters and damage mechanisms, mode I delamination tests were carried out and the AE signals were recorded. In order to cluster AE events, PCA was first used to reduce the dimensionality of rather large data set and to visualize the results in a two-dimensional subspace. Since the selected AE parameters weren’t in similar units, standardization of these parameters was done by means of their standard deviation.
[bookmark: OLE_LINK17][bookmark: OLE_LINK18]After dimensional reduction, the AE signals were clustered using k-means genetic algorithm. The optimum number of clusters was calculated using Davis-Bouldin validity index. For this purpose, the hybrid algorithm was executed with values of k from 2 to 10 and DB index was calculated for each run. Figures 5-7 illustrate average DB index versus number of clusters (k). According to these figures the optimum number of clusters which minimizes the DB index is four. Hence, four damage mechanisms are expectable during mode I delamination test.

[bookmark: OLE_LINK27][bookmark: OLE_LINK28]Figure 5. Davis-Bouldin validity index versus number of clusters in specimen S1
Figure 6. Davis-Bouldin validity index versus number of clusters in specimen S2
Figure 7. Davis-Bouldin validity index versus number of clusters in specimen S3

Figures 8-10 show frequency content of clustered AE signals versus amplitude. The dominant ranges of other AE parameters are listed in Table 4. The results indicate that among different AE descriptors, frequency is the best distinguished parameter; hence it can be used as an efficient AE parameter for damage classification of sandwich composites. 

[bookmark: OLE_LINK89][bookmark: OLE_LINK110]Figure 8. Frequency – amplitude plot of clustered AE signals in specimen S1
Figure 9. Frequency – amplitude plot of clustered AE signals in specimen S2
Figure 10. Frequency – amplitude plot of clustered AE signals in specimen S3

[bookmark: OLE_LINK29][bookmark: OLE_LINK30]Table 4. Dominant ranges of AE parameters

According to the results of primary experiments conducted on pure failure modes (Table 3), the AE signals of each cluster could be assigned to a different damage mechanism. Although there are some differences between pure failure results and mode I delmaintion results, the most important point is the relationship between frequency range and damage mechanisms. As mentioned above, the highest and the lowest frequency ranges are representatives of fiber breakage and core failure, respectively. Meanwhile, the frequency ranges of adhesion failure and matrix cracking are between core failure and fiber breakage frequency ranges. Considering this relationship, the AE signals of the first cluster are associated with core failure, the second cluster with adhesion failure, the third cluster with matrix cracking and the forth cluster with fiber breakage. 
Also, the dominance of damage mechanisms was determined according to the distribution of AE signals in different clusters, as summarized in Table 5. 

[bookmark: OLE_LINK31][bookmark: OLE_LINK32]Table 5. Dominance of damage mechanisms

[bookmark: OLE_LINK151][bookmark: OLE_LINK152]Hence it can be concluded that, core failure and fiber breakage are the most dominant failure modes in specimen S1. These two damage modes contain 65% of total AE events. However, there is some matrix cracking (about 20%). In this specimen, due to appropriate adhesion between core and skin, debonding is not noticeable. Only 15% of AE signals are related to this kind of damage mechanism. Although failure of the adhesive bond is negligible in specimen S1, it is the most prevailing damage mode in specimens S2 and S3. Adhesion failure contains 35% and 45% of total AE events of specimens S2 and S3, respectively. The second significant damage type in specimen S2 is core failure, while for specimen S3 core failure involves only 15% of AE events. In specimen S3 matrix cracking is more dominant as well as adhesion failure. 
SEM observations of damage mechanisms are illustrated in Figures 11-13. The figures show dominant damage modes in different interfaces. The results are in good consistence with k-means genetic algorithm results. 

[bookmark: OLE_LINK33][bookmark: OLE_LINK34]Figure 11. SEM observation of damage mechanisms in specimen S1
Figure 12. SEM observation of damage mechanisms in specimen S2
[bookmark: OLE_LINK111][bookmark: OLE_LINK113]Figure 13. SEM observation of damage mechanisms in specimen S3

5. CONCLUSION
During mode I delamination test of sandwich composites various damage mechanisms appear. Identification and classification of these damage mechanisms is an important task that was studied in this paper. For this purpose, Acoustic Emission technique was used as an efficient non-destructive testing method. In order to cluster AE signals generated during mode I delamination test, integration of k-means algorithm and genetic algorithm was applied. Based on the relationship between AE events and damage mechanisms, the AE signals were assigned to distinct damage mechanisms. Among different AE parameters, frequency was the best distinguished descriptor to characterize damage modes. It was found that frequency ranges of 35-65, 100-130, 170-250 and 350-450 kHz were concerned with the core failure, failure of adhesive bond, matrix cracking and fiber breakage, respectively. Considering the distribution of AE signals in different clusters, the dominance of damage mechanisms was achieved for each of the layups. It was found that core failure and fiber breakage were the most prevailing failure mechanisms in specimen S1; while adhesion failure and core failure were more dominant in specimen S2. For specimen S3 adhesion failure and matrix cracking were the most important damage mechanisms. SEM observations were consistent with these results. The results show that AE technique accompanied by clustering algorithms can be promising methods for identification and classification of damage mechanisms in sandwich composites.
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	Figure 1. A concise explanation of damage classification procedure
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	Figure 2. Experimental set-up of mode I delamination test
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	Figure 3. Flowchart of KGA
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	Figure 4. Frequency distribution vs. power spectrum: a) core failure, b) failure of the adhesive bond, c) matrix cracking, d) fiber breakage
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	Figure 5. Davis-Bouldin validity index versus number of clusters in specimen S1
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	Figure 6. Davis-Bouldin validity index versus number of clusters in specimen S2
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	Figure 7. Davis-Bouldin validity index versus number of clusters in specimen S3
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	Figure 8. Frequency – amplitude plot of clustered AE signals in specimen S1
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	Figure 9. Frequency – amplitude plot of clustered AE signals in specimen S2
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	Figure 10. Frequency – amplitude plot of clustered AE signals in specimen S3
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	Figure 11. SEM observation of damage mechanisms in specimen S1
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	Figure 12. SEM observation of damage mechanisms in specimen S2
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	Figure 13. SEM observation of damage mechanisms in specimen S3



Table 1. Lay-up of specimens
	Interfaces
	No. of Specimens

	Woven (-45/45)/Foam
	S1

	90/Foam
	S2

	Woven (0/90)/Foam
	S3



Table 2. Initial parameters of KGA
	Initial population
	Crossover rate
	Mutation rate
	Maximum number of iterations

	100
	0.75
	0.01
	1000



Table 3. AE characteristics of pure failure modes
	Failure mode
	Dominant Amplitude ranges (dB)
	Dominant Energy ranges (aj)
	Dominant Frequency ranges (kHz)

	Core Failure
	40-60
	0-30
	30-80

	Failure of the Adhesive Bond
	60-80
	5-230
	100-150

	Matrix Cracking
	75-85
	90-390
	160-250

	Fiber Breakage
	85-105
	350-1250
	250-500



Table 4. Dominant ranges of AE parameters
	Specimen
	Dominant Amplitude range (dB)
	Dominant Frequency range (kHz)
	Dominant Count range
	Dominant Duration range (μs)

	S1
	35-55
40-60
40-70
45-70
	25-100
100-150
160-240
240-500
	20-1500
10-550
5-250
5-40
	25-10000
10-2400
5-1500
5-500

	S2
	35-50
40-60
40-65
45-65
	30-95
100-160
170-250
250-500
	20-1100
10-545
5-265
5-35
	20-9100
15-5400
10-2000
5-600

	S3
	35-45
40-65
40-70
45-70
	35-90
95-170
170-255
260-450
	25-560
15-560
5-250
5-40
	10-6000
10-2100
5-1500
5-500



Table 5. Dominance of damage mechanisms
	[bookmark: OLE_LINK5][bookmark: OLE_LINK6]Specimen
	Core Failure (%)
	Failure of the Adhesive Bond (%)
	Matrix Cracking (%)
	Fiber Breakage (%)

	S1
	35
	15
	20
	30

	S2
	30
	35
	25
	10

	S3
	15
	45
	25
	15
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