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Abstract

Current dehazing approaches are often hindered when scenes contain bright objects
which can cause veiling light and transmission estimation methods to fail. This paper
introduces a single image dehazing approach for underwater images with novel veiling
light and transmission estimation steps which deal with issues arising from bright ob-
jects. We use features to hierarchically rank regions of an image and to select the most
likely veiling light candidate. A region-based approach is used to find optimal transmis-
sion values for areas that suffer from oversaturation. We also locate background regions
through superpixel segmentation and clustering, and adapt the transmission values in
these regions so to avoid artefacts. We validate the performance of our approach in com-
parison to the state of the art in underwater dehazing through subjective evaluation and
with commonly used quantitative measures.

1 Introduction
Veiling light is the atmospheric light that is scattered from particles in a hazy scene into
the line of sight of an imaging device, contributing to image degradation and resulting in
images with low contrast and colour cast [17]. Single image dehazing methods improve
the visibility of scenes which have been degraded due to scattered light such as fog, haze
and smoke by removing the haze in a scene so that objects can be seen more clearly [14].
Veiling light estimation is an important step in single image dehazing because it identifies
the colour of the atmospheric light which the dehazing process aims to remove. The veiling
light can be best estimated from the region of an image that is the most haze-opaque [14].
The transmission is the part of the light that is not scattered by the haze and reaches the
camera [17].

Single image dehazing methods can be used to improve the visibility in underwater im-
ages [4, 6, 7, 11]. A number of methods have also combined colour correction approaches
with dehazing to further enhance the appearance of underwater scenes [6, 11]. One of the
major challenges for dehazing approaches is to avoid selecting pixels from bright objects
during the estimation of the veiling light. We propose a method which aims to avoid objects
in the veiling light detection step. We find that regions with objects contain more edges and
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(a) (b) (c) (d)

Figure 1: Comparison of veiling light estimation methods. Veiling light estimates are taken
from locations highlighted in red. Current methods are biased toward areas of the Shipwreck
image with bright objects (e.g. bubbles) whereas our approach is able to avoid these regions.
(a) Underwater Dark Channel Prior [7]. (b) Quad-tree subdivision methods on the input
image converted to greyscale [16] and (c) into blocks that are filled with their minimum
value [20]. (d) Proposed method.

show more variation within each colour channel than pure veiling light regions. We also
consider all regions of an image in the final decision of which region is the most heavily
veiled. Fig. 1 compares state-of-the-art veiling light estimation methods together with our
proposed approach.

Another challenge is to estimate a transmission map which avoids output dehazed images
suffering from oversaturation and artefacts in the background regions. Under- and oversatu-
ration occurs when the dehazed image has values that are unphysical (i.e. values outside of
the range [0,1]). This often happens when bright objects are incorrectly estimated as being
located in the distance and therefore having inappropriate transmission values [20]. Arte-
facts in the background regions are caused by low transmission values in these parts of the
scene [22].

In this paper we introduce a single image dehazing approach for underwater scenes. We
employ a hierarchical rank-based method to estimate the veiling light and an adapted trans-
mission estimation step which prevents oversaturation and artefacts in the dehazed image.
We make use of a set of features which allows us to locate veiling light regions and to avoid
those regions which contain bright objects. We adapt a transmission map created with the
green-blue dark channel to produce dehazed images which are free from oversaturation and
noisy artefacts. Our method performs well in comparison to the state of the art in underwater
dehazing on commonly used quantitative measures and a subjective evaluation.

2 Background
The most commonly used model for a hazy image is [17]

I(x) = S(x)t(x)+(1− t(x))V, (1)

where I(x) is the observed intensity at pixel location x in an RGB image, S(x) is the scene
radiance (without haze), t(x) is the transmission and V is the global atmospheric light (veiling
light). The first term of the right-hand side describes how the scene radiance deteriorates
in a medium. The second term models the global atmospheric light scattering in a hazy
environment. The transmission can be expressed as t(x) = e−βd(x), where β is the scattering
coefficient and d(·) is the estimated scene depth (distance between objects and the camera)
[14]. The aim of dehazing methods is to recover S(x), V and t(x) from I(x). Eq. 1 can be
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rewritten as

S(x) =
I(x)−V

t(x)
+V, (2)

where we aim to estimate the veiling light V and transmission t in a scene.

2.1 Veiling light estimation
Early dehazing methods took the brightest pixel in a scene [10, 21]. However, this can lead
to erroneous estimates as a pixel containing a white or bright object is often selected. The
Dark Channel Prior (DCP), a method based upon the observation that haze-free images have
at least one colour channel with very low intensity values and therefore the values in the
dark channel of hazy images can be attributed to the haze, addressed this by choosing the
0.1% brightest pixels in the dark channel and then selecting the highest intensity pixel from
this group [14]. However, this method fails in scenes with large bright objects. Underwater
the red channel has little information at depth and therefore cannot perform correctly as
a dark channel. Underwater specific methods deal with this issue by constructing the dark
channel in various ways. One method introduces a novel prior, The Red Channel Prior (RCP)
[11], which is based on the observation that intensities in the red channel deteriorate more
quickly as distance increases underwater (see also Eq. 6). The veiling light is estimated as
the furthest pixel in the scene which is taken to be the pixel with the maximum intensity in
the red channel [11]. The Underwater Dark Channel Prior (UDCP) [7] estimates the veiling
light from the pixel with the highest intensity in the green-blue dark channel. Carlevaris-
Bianco et al. [4] estimate the veiling light from the pixel that contains the minimum value in
the transmission map which indicates the furthest point in the scene, where the transmission
is estimated from the difference between the maximum in the red channel and the maximum
in the green and blue channels (see also Eq. 5).

Methods for veiling light estimation in terrestrial scenes include calibration [12], tak-
ing the maximum intensity in the sky region [24] and introducing a bright channel and then
taking the difference between the dark channel and the bright channel [23]. A recent hier-
archical veiling light estimation approach demonstrated it could improve current methods in
the case of terrestrial scenes that contain bright lights [5]. Bright regions in an image are
found by constructing a histogram in the luma channel of YCbCr colour space and outliers
are discarded. Further refinement is achieved by searching for pixels with a high colour sim-
ilarity. Veiling light is taken as the average value of the remaining candidates [5]. A number
of approaches make use of a hierarchical search using quad-tree subdivision [16, 20]. A
greyscale version of I(x) can be divided into 4 equal size blocks, the block with the brightest
mean pixel value is selected, then the process is repeated until the size of the block is un-
der a pre-defined threshold. Finally, the veiling light is chosen from the input image as the
brightest pixel in the selected block [16]. The quad-tree methods work on the assumption
that the average brightness of the blocks in the veiling light regions is larger than the average
brightness in the ground-based regions, which, although containing bright objects, are pre-
dominantly dark. However, when bright objects are present in the veiling light regions of an
image, the increase in the average intensity values of the block containing the object makes
a bias towards that block being chosen. In order to reduce the effect of bias from bright ob-
jects, a quad-tree search can be applied on a greyscale version of I(x) which is divided into
blocks of 30×30 pixels and the pixels in each block are given the minimum value from that
block [20]. This method is still limited by the fact that bright objects may cause the estimate
to drift.
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2.2 Transmission estimation
In order to estimate the amount of transmission for each pixel in a scene the majority of
approaches make use of the Dark Channel Prior (DCP) [14] or adaptations of it [4, 7, 11].
For an image I, its dark channel Cd can be described as [14]

Cd(x) = min
y∈Ω(x)

(
min
c∈ϕ

Ic(y)
)
, ϕ = {R,G,B} , (3)

where Ic(·) is an intensity value of a specific pixel in colour channel c of I and Ω(x) is a
local patch centred at x. Except in the sky regions, the Cd in a haze free image is close to
zero [14]. Therefore in hazy images Cd is representative of the haze and, if the veiling light
V is known, the DCP method estimates the transmission as [14]

t̃(x) = 1− min
y∈Ω(x)

(
min
c∈ϕ

Ic(y)
V c

)
, ϕ = {R,G,B} , (4)

assuming the transmission in a local patch Ω(x) is constant, it is denoted as t̃(x).
Long wavelength (red) light is attenuated in water more than short wavelength (blue)

light [19], so the DCP method suffers from the limitation that the darkest channel is usually
the red channel. Because at depth there is no red light and therefore no variation in informa-
tion in the darkest channel, the transmission estimate will be corrupted [7]. In order to deal
with this limitation the Underwater Dark Channel Prior (UDCP) [7] applies DCP only to the
blue and green channels CdGB

(x).
Another method developed for dehazing underwater images focusses on the difference,

D(·), between the maximum in the red channel and the maximum in the other channels
(green and blue) [4]

D(x) = max
y∈Ω(x)

IR(y)− max
y∈Ω(x)

(
max
c∈ϕ ′

Ic(y)
)
, ϕ ′ = {G,B} ,

t ′(x) = D(x)+(1−max
x

D(x)),

(5)

where the estimated transmission at each pixel location t ′(x) is calculated by adjusting the
values of D(x) until the maximum difference (which indicates the nearest point in the scene)
is one [4].

The Red Channel Prior method (RCP) modifies the DCP based on the observation that
in underwater images intensities in the red channel deteriorate more quickly as distance
increases. For a non-degraded image RCP states the following [11]

t̄(x) = 1−min

 min
y∈Ω(x)

(1− IR(y))

1−V R ,

min
y∈Ω(x)

IG(y)

V G ,

min
y∈Ω(x)

IB(y)

V B

 , (6)

where V R,V G,V B are the individual colour channels of V . For a degraded image the prior
is also valid as the red channel retains some intensity. The prior rapidly becomes invalid
as distance increases. This information is used to estimate a transmission map for each
colour channel [11]. This method also colour corrects the dehazed image by weighting the
contributions of each colour channel using the reciprocal of the veiling light coefficients [11].
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Ω1,1 Ω2,1

Ω3,1 Ω4,1

L1
L2
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Figure 2: Hierarchical decomposition of an image. An image is represented as a set of layers
L1,L2, ...,LJ where each layer is divided into a different number of regions Ω.

Dark channel approaches fail when bright objects are present in a scene. When the dark
channel is used to estimate t, nearby bright objects are classified as being far away. This then
causes issues in the final dehazed image as these low values in the transmission map can lead
to oversaturation in the output image. Other methods make use of block-based approaches
where the optimum transmission for each local block is found by using an objective function
[16, 20]. In [16] the transmission was selected to maximise the contrast via the standard
deviation and the uniformness of the histogram on the luminance channel. Alternatively,
[20] aims to increase the contrast whilst reducing the loss of information due to under- and
oversaturation. The objective function aims to maximise the contrast measured with entropy
and to minimise the amount of pixels that are truncated in the dehazed image. Another issue
that has been highlighted in the literature is that the sky regions can suffer from noise and
artefacts resulting from the dehazing process [22]. A number of ways have been suggested
for how to deal with this problem, such as making use of semantic priors [22] or applying a
binary adaptive threshold to the green-blue dark channel for underwater scenes [15].

3 Veiling light estimation

Given image I with intensity values between 0 and 1 we define a set of layers L =
{

L j
}J

j=1,

which in turn are composed of a set of regions L j =
{

Ωi, j
}M j

i=1, where i denotes the region, j
the layer and Ωi, j is the ith region of the jth layer which contains a set of pixels. We make an
assumption that veiling light regions dominate certain areas of an image and so we use layers
to incorporate global and local information. For each layer the whole image is divided into
a different number of regions which ensures that information from different sized regions in
an image is taken into consideration (Fig. 2). Each layer is composed of M j = 4 j regions
which are of a uniform size and rectangular shape.

Veiling light regions that contain bright objects often have a lower average intensity in
the green-blue dark channel in comparison to regions dominated by pure veiling light. How-
ever, because bright objects can bias veiling light estimates, we negatively weight regions
that contain objects. Objects in comparison to areas of veiling light generally display more
variation within each colour channel of the input image and contain more edges. We aim to
use features to find the regions of an image which are the most haze-opaque, and which do
not contain objects. These regions can be characterised by high intensities in the green-blue
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dark channel, little variation within individual colour channels and an absence of edges. We
extract 3 features f1, f2 and f3 which make use of the green-blue dark channel, the standard
deviation of each colour channel in I and the gradient magnitude of a greyscale version of I.
We define µdGB

i, j , the mean of the ith region of the jth layer of the green-blue dark channel, as

µ
dGB

i, j =
1∣∣Ωi, j
∣∣ ∑

x∈Ωi, j

CdGB

i, j (x), (7)

where CdGB
(x) is the dark channel created with only the green and blue colour channels

(from Eq. 3) and
∣∣Ωi, j

∣∣ is the number of pixels in Ωi, j. The first feature f1 is defined as

f1i, j = 1−µ
dGB

i, j ∈ [0,1]. (8)

We subtract the mean from one so that smaller numbers indicate a higher likelihood of veiling
light. We define σ c

i, j, the standard deviation of a colour channel as

σ
c
i, j =

√
1∣∣Ωi, j
∣∣−1 ∑

x∈Ωi, j

(µc
i, j− Ic

i, j(x))2, (9)

where µc
i, j is the mean and Ic

i, j(x) are pixels of the ith region and jth layer of each colour
channel of the input image. For individual colour channels, we can find σR

i, j,σ
G
i, j,σ

B
i, j using

Eq. 9. Our second feature f2 is defined as

f2i, j =
σR

i, j +σG
i, j +σB

i, j

3
∈ [0,1]. (10)

Finally, we define our third feature f3, the mean of the gradient magnitude, as

f3i, j =
1∣∣Ωi, j
∣∣ ∑

x∈Ωi, j

(G
′
i, j(x)) ∈ [0,1], (11)

where G
′
i, j(·) is the ith region and jth layer of the gradient magnitude of a greyscale version

of the input image. The intermediate difference operator calculates the gradient magnitude
between data points which are then interpolated [3].

For each feature f1i, j , f2i, j , f3i, j we calculate the average value across all of the layers. For
example, if we take a region Ωi,J in the finest-grained layer J of feature 1. Let Ωk, j be the
region in layer j that contains the pixels of region Ωi,J , then we define the average feature
as f̄1i,J =

1
J ∑

J
j=1 f1k, j , where

{
f̄1i,J

}MJ
i=1 is the size of 4J . The same process is applied to all

the features resulting in f̄1i,J , f̄2i,J , f̄3i,J . To estimate veiling light regions more robustly than
considering individual features alone we plan to fuse together the outputs from each feature.
Initially we normalise them so that they are weighted with equal importance within [0,1].
In order to standardise the data we fit a Gaussian distribution with mean µ and standard
deviation σ . We define the limits of each distribution as µ ± 3σ to discard outliers in the
normalisation process. Data within these limits is stretched between 0 and 1 which results
in the normalised outputs f̄ α

1i,J
, f̄ β

2i,J
, f̄ γ

3i,J
. An example of the normalised veiling light features

(rescaled to image size) can be seen in Fig. 3. Finally, we add together the normalised

outputs to produce Fi,J =
f̄ α
1i,J

+ f̄ β

2i,J
+ f̄ γ

3i,J
3 , the fusion decision map. Where {Fi,J}MJ

i=1 is the
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(a) (b) (c)

Figure 3: Veiling light estimation features (normalised and rescaled to image size) for Ship-
wreck using (a) the green-blue dark channel, (b) the standard deviation of each colour chan-
nel and (c) the gradient magnitude.

size of 4J and lower values indicate a higher likelihood of veiling light. Fig. 1 (d) shows the
fusion decision map (rescaled to image size). By assuming that the veiling light V is constant
throughout the scene and that there are no other sources of illumination (e.g. artificial light
sources), we choose v∗ = argmin(Fi,J)

i
as the region which is most likely to contain the

veiling light. Within v∗ the brightest pixel in the green-blue dark channel is selected and
then the RGB values of that pixel from I is taken to represent the veiling light V = (xv,c).
Where xv ∈ R2 is the location of the veiling light and c ∈ R3 is the RGB value in xv.

4 Transmission estimation

We aim to find the transmission t(x) where the dehazed image S(x) does not suffer from
oversaturation due to bright objects in the scene and where there are no artefacts and noise
in the background regions. We make use of a transmission map created with the green-
blue dark channel CdGB

(x) (from Eq. 3) and refined with the WLS filter [9] (see Fig. 4 (a)),
an edge-preserving operator based on weighted least squares. We then modify this refined
transmission map to account for bright objects and background regions in the scene.

We find that low t values can lead to bright objects in an image becoming oversaturated
in the final dehazed image (see Fig. 4 (b)). We employ a region-based approach and make
use of the regions from the layer L where j = J. Initially CdGB

(x) is used as the transmission
map in Eq. 2 and we flag regions where pixels are truncated in any colour channel of S. For
these flagged areas we then employ a range of values r between 0 and 2 for t to calculate
S in Eq. 2. We aim to find the minimum possible transmission value without issues due to
truncation. For each region i, we find the values r where S is between 0 and 1, then we take
min(r) which ensures the minimum transmission value and results in the least amount of
haze in S.

Artefacts often occur in the background regions of dehazed images (see Fig. 4 (b)). We
assume that images contain background regions and that in these regions the haze is denser
than in foreground regions. We attempt to adjust the transmission map within these regions
so that noise and artefacts are not produced in the dehazed image. It is important to select
only the background regions as altering the transmission in other regions would worsen the
dehazing result. In order to find regions in an image with homogeneity and that are char-
acterised by their similarity in colour to the veiling light estimate we employ SLIC super-
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(a) (c) (e)

(b) (d) (f)

Figure 4: Transmission estimation. (a) Transmission map generated with green-blue dark
channel (refined with weighted least squares (WLS) filter [9]) and (b) the resulting dehazed
image. Red boxes highlight an area which is oversaturated due to a bright object being under-
estimated in the transmission map and a background region containing noise and artefacts.
(c) Background region estimation using SLIC superpixel segmentation [1] and refined with
DBSCAN clustering [8]. (d) Transmission map with adaptations for truncated and back-
ground regions. (e) Refined transmission map using WLS filter [9] and (f) the resulting
proposed dehazed image.

pixel segmentation [1] and DBSCAN clustering [8], which is used to refine the segmentation
(Fig. 4 (c)). The distance in CIELAB space is used to define which clusters are grouped to-
gether. We selected parameters between 1.6 and 4.5. We make use of the fusion decision
map Fi,J to find the superpixel segments S̃ which are likely to predominantly contain veiling
light. As the size of Fi,J is smaller than the input image I we create an image P the same size
as I. We define P(x) = Fi,J if x ∈ Ωi,J , where Ωi,J denotes the regions in the finest-grained
layer. P is shown in Fig. 1 (d). For each S̃ we find the corresponding mean value of P and if it
is equal to or below a threshold it is designated as a background region, where the threshold
is defined as the mean value of the S̃ that contains the veiling light estimate. Background re-
gions are given a high transmission value so that they are only slightly dehazed in the output
image.

The new regions that form the adapted transmission map protrude from the image and
require smoothing so that the transmission map is cohesive (Fig. 4 (d)). We again make
use of the WLS filter [9] which provides a good balance between computation speed and
performance. Smoothing and scaling parameters set to 1 and 1.2, respectively, removed
sharp edges at the borders of regions whilst maintaining overall information (Fig. 4 (e)).

5 Results

We validate our approach through comparison with underwater dehazing methods [4, 7, 11].
The 10 images used for the evaluation have all previously been used to assess underwater
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(a) (b) (c) (d) (e)

Figure 5: Dehazing results. Top row Galdran1. Bottom row Shipwreck. (a) Input hazy
images. Dehazed images with: (b) Carlevaris-Bianco’10 [4], (c) Drews-Jr’13 [7], (d) Gal-
dran’15 [11] and (e) Proposed method.

image processing methods [2, 4, 10, 11]. The dehazed results for two of the images can
be seen in Figure 5.1 For our experiments we define the number of layers J as 6. For the
generation of all the dark channels we make use of a patch size of 15x15 pixels. In the
transmission estimation step, the segments S̃ that are assigned to the background region are
set with a transmission value of 0.85.

A method that is commonly used to quantitatively evaluate dehazing approaches is blind
contrast enhancement assessment [13]. This measure compares the gradient ratios of edges
between greyscale versions of the input and output images and results in three scores e, Σ

and r̄. The score e is defined as the newly visible edges after dehazing, Σ is the percentage
of pixels that become completely black or white after dehazing and r̄ is the mean ratio of the
gradient norms at the visible edges [13]. We do not include the results from Σ as the values
were all very close to zero. One limitation with this assessment method is that undesirable
artefacts produced by dehazing methods are counted as edges. Due to the unreliability of this
measure we use it together with other contrast measures, the Global Contrast Factor (GCF)
[18] and a visibility metric (VM) based on contrast-to-noise ratio [25]. We also undertake
a subjective evaluation of the methods. Ten participants (none of which had experience
developing software for underwater image processing) were shown two dehazed images at a
time and asked to decide which they preferred. One point was awarded for the best method,
zero for the worst and if both methods were deemed the same, half a point for each. This
was repeated so that all of the methods were compared for all of the images. For all of the
measures the higher the value the better the performance. The results can be seen in Table 5.

The method of Carlevaris-Bianco et al. [4] achieves a high performance on images taken
in clear waters (e.g. Fish, Reef1, Reef2 and Reef3) with high scores on both the r̄ and VM
measures. However, this approach performs badly with turbid scenes (e.g. Shipwreck, Gal-
dran1, Galdran9, Ancuti1, Ancuti2 and Ancuti3). Another limitation is that the background
regions in some of the images are oversaturated (e.g. see Shipwreck in Fig. 5 (b)) and this
could explain why the high r̄ and VM scores coincide with poor performance on the sub-
jective evaluation. In contrast the method of Galdran et al. [11] performs well in the more
turbid waters. This approach makes use of a colour correction step which permits a more
desirable output for these water types. In less turbid waters, the dehazed images display a

1The dehazed results for all of the images can be found in http://www.eecs.qmul.ac.uk/~andrea/
dehazing.html
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Carlevaris-Bianco’10 [4] Drews-Jr’13 [7] Galdran’15 [11] Proposed
e r̄ VM GCF SE(%) e r̄ VM GCF SE(%) e r̄ VM GCF SE(%) e r̄ VM GCF SE(%)

Shipwreck 0.9 2.4 53.23 7.55 4.17 1.69 1.16 41.47 6.16 20.83 0.86 2.09 48.81 7.89 37.5 0.94 1.34 44.64 8.52 37.5
Fish 1.08 2.39 52.79 9.11 34.17 1.74 1.66 41.06 8.88 29.17 0.27 0.71 42.94 3.11 5 0.68 1.95 53.11 9.45 31.67

Reef1 0.18 1.33 76.64 8.85 24.17 0.2 1.32 80.74 8.92 37.5 0.04 0.72 72.29 2.86 8.33 0.12 1.33 79.45 8.66 30
Reef2 0.73 2.13 73.33 9.59 28.33 0.92 1.22 55.54 7.9 29.17 0.04 0.67 58.34 3.96 9.17 0.05 1.15 58.63 7.84 33.33
Reef3 0.08 1.92 104.98 9.01 15.83 0.12 1.19 83.24 8.92 40 0.1 0.87 88.39 4.01 16.67 0.05 1.78 89.93 9.83 27.5

Galdran1 0.22 1.51 70.08 6.15 16.67 0.51 1.35 67.34 8.78 21.67 0.24 1.16 59.11 4.9 25 0.29 1.99 93.35 8.02 36.67
Galdran9 0.86 1.51 43.73 5.9 22.5 3.46 1.58 30.65 4.53 27.5 1.6 2.29 41.81 3.03 17.5 1.96 2.28 36.13 7.59 32.5
Ancuti1 2.03 1.35 26.86 5.9 6.67 1.88 1.28 19.84 6.8 19.17 5.04 2.01 27.99 8.21 44.17 3.67 1.58 23.79 7.05 30
Ancuti2 0.46 1.07 13.21 3 7.5 8.98 2.21 17.63 4 21.67 6.05 2.34 18.53 3.62 39.17 7.51 2.2 16.66 4.98 31.67
Ancuti3 0.34 1.14 44.26 2.83 1.67 1.85 1.8 40.97 4.93 24.17 2.18 2.4 48.56 6.83 42.5 1.8 1.97 43.85 4.68 31.67
Average 0.69 1.68 55.91 6.79 16.7 2.13 1.48 47.85 6.98 27.08 1.64 1.53 50.68 4.84 24.5 1.71 1.76 53.95 7.66 32.25

Table 1: Results for underwater dehazing methods. e: newly visible edges after dehazing
[13], r̄: mean ratio of the gradient norms at the visible edges [13], visibility metric (VM):
difference based on contrast-to-noise ratio from the input image [25], Global Contrast Factor
(GCF): difference in contrast from the input image [18] and SE(%): percentage results for
the subjective evaluation. Red: best performance. Green: second best performance.

reddish veil.
The method of Drews-Jr et al. [7] performs consistently well across all of the images,

especially on the e and GCF measures. However, the high e scores can be attributed to
the production of artefacts in background regions which are counted as edges. Another
limitation is that due to incorrectly estimating the veiling light many of the images appear
overly dark green and blue (see Fig. 5 (c)). The proposed approach achieves good scores
for all of the measures and, on average, outperforms the compared approaches on the r̄
and GCF metrics and the subjective evaluation. In comparison to [7] the low e values for
our method can be attributed to fewer newly visible edges appearing in the background
regions. Limitations of our method include the fact that false colours are introduced in
some dehazed images (e.g. Fish and Galdran1) and that in the turbid images further colour
correction is required. Another drawback with our approach is the step to locate background
regions which makes use of computationally expensive segmentation and clustering, and the
clustering method requires input parameters to be set. We plan to automate this step and
improve the computational efficiency.

6 Conclusion
Our approach takes into account scene features, and thereby avoids estimating the veiling
light from regions that contain objects. It introduces a transmission estimation step which
deals with issues such as oversaturation and the production of artefacts. The dehazed images
produced by our method show good performance in comparison to the state of the art across a
range of underwater images when evaluated both subjectively and on a number of commonly
used quantitative measures. In the future we aim to further develop the approach to improve
the colour cast of the output images and to increase the computational efficiency to facilitate
video dehazing.
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