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Abstract

In the foundational cybernetics text, Design for a Brain, W. Ross Ashby introduces an
adaptive system called the homeostat, and speculates about the possibility of creating a
mobile homeostat “with its critical states set so that it seeks situations of high illumina-
tion.” Simulations demonstrate the viability of using the classic homeostat architecture
to control a mobile robot demonstrating ultrastability in adapting to an environment
where the goal is to stay within range of a single source of illumination. This paper ex-
plores a novel physical embodiment of Ashby’s classic homeostat in a mobile robot with
three degrees of freedom (2 translational, 1 rotational). The hypothesis, borne out by
tests, is that the topological configuration of the robot as determined by simulation, will
carry over into the physical robot.

1. Introduction

Ashby’s homeostat was described by Strehl (1955) as “the most remarkable and inexpli-
cable machine which has yet been constructed.” Completed in March 1948, the homeostat
comprised four identical electro-mechanical, analogue computers identified by the colours
red, green, blue and yellow. Ashby (1948) described his machine thus: each unit supports
a suspended magnet with a read-out needle that could be deflected by currents in the
four coils beneath it. These currents flow from the other three units and also within a
feedback loop from each unit back to itself. The effect of one unit upon another can be
individually configured. A configuration is unstable if some or all of the read-out needles
get stuck at their physical limits for any appreciable length of time. There are however,
stable solutions where the needles freely come to rest or exhibit dynamic stability in a
steady oscillation.

Ashby (1952) defines the second-order differential equation of the homeostat in the
appendices of Design for a Brain which is reproduced in Equation 1.1 below, for n units
(1 ≤ i ≤ n). The variables xi represent the output of each homeostat unit. The signed
weights ai,k are applied to the input to unit i from unit k, while the factor h adjusts
their effect on the read-out needle via the coils. The factor j counteracts this effect,
representing drag on the movement of the read-out needle in response to the magnetic
field of the coils.

ẍi = h

n∑
k=1

ai,kxk − jẋi (1.1)

For simplicity, the constants h and j may both be set to 1, as verified in simulation.
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Figure 1. Construction of the mobile homeostat.

2. Essential variables

The innovation of the homeostat is Ashby’s double feedback loop. This models how an
organism detects conditions that threaten its survival. A subset of homeostat units are
characterized as essential variables with lower and upper bounds. When these bounds
are exceeded the homeostat undergoes a random reconfiguration, effectively transforming
itself into a new machine Boden (2006). The homeostat thus performs a random search
for a combination of weights that provide a stable configuration both internally and in
response to its environment, Ashby (1948). This is adaptation through ultrastability.

In the context of the mobile homeostat the primary essential variable is the level of
illumination by the light source as set out by Ashby. However, even the individual units
controlling the motors must be treated as essential variables to prevent them saturating
at their limits as a consequence of runaway positive feedback. The robot described here
moves freely in a 2 dimensional plane. Having differential steering it has 2 translational,
and 1 rotational degrees of freedom. This extends earlier work, Franchi (2013), that
explores a mobile homeostat with 1 degree of freedom.

3. Robot construction

Instead of read-out needles we connect the homeostat outputs to the motors of a physical
robot, illustrated in Figure 1. Simulations show that a two-unit homeostat is sufficient
to control a robot with 2 degrees of freedom, Battle (2014). Furthermore, Ashby’s Law
of Requisite Variety suggests that a control system need be no more complex that the
environment it has to control. Further simulations demonstrate that a homeostat with
reduced connectivity, breaking all internal connections between the two units, is capable
of controlling such a robot. Communication between the two units is still possible, but
any information must pass indirectly via the environment. This then, is the initial basis
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Figure 2. Data for the left and right front− rear photocell assemblies as the robot is rotated
at a fixed distance from the light source.

of the physical robot configuration. While it is expected that the physical robot and
environment will behave differently to the simulation, the hypothesis is that the broad
topological configuration of the robot (number of units, connectivity) as determined by
simulation, will carry over into the physical robot. If this hypothesis is true then there
should exist a stable solution for the 2-unit, internally disjoint mobile homeostat.

The mobile homeostat is a simple robot platform designed to demonstrate Ashby’s
principle of ultrastability applied to a robot. Its movement need not be especially accurate
so two DC motors are sufficient to provide differential steering. The motor output from
the homeostat is bounded within the range [-1,1] with +1 corresponding to full-speed
forward and -1 corresponding to full-reverse. The only other object in the universe of
the robot is the central light source. If the robot collides with the light source itself,
as detected by a load (current) sensor on the motor driver, then a simple avoidance
strategy reverses the robot for one second before triggering a new random configuration.
The robot also has a recovery behaviour that returns the robot to a predefined distance
from, and orientation with, the light source. This behaviour is invoked when the robot
strays too far from the light, which again is accompanied by a random reconfiguration.

The homeostat implementation solves Equation 1.1 using Euler’s forward method
which provides a rapid iterative approach that lends itself to solving differential equations
in real-time. Ashby suggested that essential variables should not be checked continuously
but perhaps every 3 seconds or so, the trial period used in these experiments. When a
given configuration survives a full minute (20 trial periods) then the solution is deemed
to be stable. The robot has a small EEPROM to which it can record stable configurations
and log its state variables for analysis.

4. Phased sensors

Four photocells provide the robot with information about its position relative to the
single light source. These photocells are spaced at 90◦ around the outside of the chassis.
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If we take the front of the robot to be at 0◦ then the photocells are mounted at 45◦, 135◦,
225◦, and 315◦, such that the two forward facing photocells are mounted 45◦ either side
of centre. The amount of light energy falling on a surface is proportional to the cosine
of the angle of incidence. Photocells facing away from the light source receive little or
no energy. Therefore, if the robot is rotated the signal from each sensor is a half-wave
rectified sinewave. The photocells on opposite sides of the robot are then paired up such
that the forward facing photocells provide the positive component of the signal, while
rear facing photocells provide the negative component. The output from the rear facing
photocells may be subtracted from the forward facing photocells resulting in a pair of
sinewaves 90◦ out of phase with each other. In Figure 2 the robot was held at a fixed
distance from the light source and the combined forward/rear facing outputs are plotted
against each other as the robot is rotated through 360◦.

5. Brightness constancy

The key to providing input to the homeostat is to eliminate unnecessary variability. As
light intensity falls with distance according to the inverse square law, the amplitude of
the raw photocell data varies as a function of distance as illustrated in Figure 3. The
variety of the input can be reduced by eliminating this dependency. The normalized input
signal will vary only as a function of the angle of incidence. This brightness constancy,
irrespective of distance, is common in nature allowing visual objects to be perceived as
having the same brightness under different illumination conditions.

In order to recover the angular data, the magnitudes of the combined photocell signals
must be discarded. Because of the placement of the photocells, the ratio between the left
and right photocell assemblies is the tangent ratio so the angle θ can be recovered by
taking the arctangent (atan2) based on the simple trigonometric relationship, below.

tan(θ) =
photoleft
photoright

(5.1)

The normalized inputs for the left and right-hand photocell assemblies can then be
obtained using the trigonometric equations for the unit circle.

normleft = sin(θ) (5.2)

normright = cos(θ) (5.3)

Figure 3 contrasts the raw signal from the photocells with the normalized input. The
robot is held directly facing the light source so that the amount of light falling on the
left and right-hand photocells is equal. The robot is moved between 50cm to 450cm from
the light source so that the decrease in intensity due to the inverse square law can be
observed at the photcells. For comparison, the normalized value for the left-hand input
is plotted and this is seen to be relatively constant reflecting the constant angle. The
normalized output for the right-hand side is almost identical, θ is determined as above.

sin(θ) ≈ cos(θ) ≈ 0.70 ± 0.005 (5.4)

6. Illumination level

A reliable estimate of the overall level of illumination is required, being the primary
essential variable in the environment. The data from the photocells must be combined to
provide an esitmate of illumination that is independent of the angle of the robot to the
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Figure 3. Photocell data is plotted for the left-hand input, falling with distance in accordance
with the inverse square law. The normalized left-hand input is plotted for comparison. The robot
is held directly facing the light source so the data for the right-hand side are almost identical.

light source. The inverse square law states that the light intensity falls proportionally
to the square of the distance from the light source as in Equation 6.1. However, for a
non-perpendicular angle of incidence Lambert’s cosine law may be used instead to model
the light falling on a given photocell. The light energy E falling on the left and right-hand
photocell assemblies is modelled in Equations 6.2 & 6.3 below where I is the intensity of
the light source at the origin and d is the distance. As the photocells are oriented at 90◦

to each other, sine and cosine are used in the expression of Lambert’s law.

E =
I

d2
(6.1)

photoleft =
I sin(θ)

d2
(6.2)

photoright =
I cos(θ)

d2
(6.3)

The Pythagorean theorem is used to combine the sensor data into a single estimate
for E. Substituting E for r in Equation 6.4 below we obtain Equations 6.5 and finally
Equation 6.6 expressed in terms of the raw photocell data.

r2 = (r sin(θ))2 + (r cos(θ))2 (6.4)(
I

d2

)2

=

(
I sin(θ)

d2

)2

+

(
I cos(θ)

d2

)2

(6.5)(
I

d2

)2

= photo2left + photo2right (6.6)

We thus obtain an estimate of the overall light intensity independent of its angle with
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Figure 4. Illumination E derived from a pythagorean combination of photocell sensor data.
The robot is held at distances of 50cm, 100cm, 150cm and rotated through 360◦.

respect to the light source. This is tested on the robot in Figure 4 where the light intensity
is calculated while the robot is held at a fixed position and rotated through 360◦. It may
be seen that the error is reduced with increasing distance as the light source better
approximates a point source of light.

7. Analysis

The mobile homeostat finds many stable solutions, many of which may be described as
degenerate as they simply involve the robot spinning on the spot. Staying still is often the
easiest way to maintain a constant level of illumination. However, we’re more interested
in goal-seeking, dynamic stability. Here we examine a so-called orbital solution where the
robot maintains dynamic stability for at least one minute.

Figure 5 spans 30 seconds of telemetry from the robot in orbit around the light source,
with each orbit lasting approximately 6.7 seconds; the cycle time of the oscillations seen in
the plot. The 5 traces represent 2 state-variables with 3 additional inputs. The two solid
lines are the left/right motor outputs. Observe that both motor traces are less than zero
which means that the robot is actually driving in reverse. The left-hand motor output has
a consistently greater magnitude than the right-hand side resulting in an anticlockwise
circular motion. The dashed lines are the normalized inputs from the left/right photocell
assemblies. The photocell data, normalized for brightness constancy, is positive on the
right-hand side and negative on the left-hand side indicating that the light-source lies
to the right of the robot. The photocell data are combined in the green trace which
represents the derived illumination level, E, independent of angle. This never falls below
the minimum illumination level (0.1) at which point the weights would be randomized.

The mobile homeostat is described as a machine with input, Ashby (1956). The home-
ostat Equation 1.1 is adapted to accept n+ p weights for each of n units where there are
p additional input parameters. These define an (n+p)×n matrix. The mobile homeostat
has n = 2 units and p = 3 additional parameters. The matrix of Equation 7.1, below
represents the weight matrix for an orbital behaviour discovered by the robot. Each col-
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Figure 5. Telemetry from the mobile homeostat over a 30sec window showing two state
variables representing motor outputs, and three sensor inputs derived from the photocells.

umn defines a set of input weights for one unit. The 0 entries are the severed connections
that cannot be changed automatically. The values of −0.7 represent an arbitrary level of
feedback that is also not under automatic control. Similarly the 1 entries which enable
the thresholded illumination signal at full strength also cannot be changed because this is
an essential variable in the environment that cannot be ignored. The outputs from each
unit and the parameters are marshalled together into a 1D matrix x defined in Equation
7.2 that is multiplied by the weight matrix giving e.

e = x×


−0.7 0

0 −0.7
0.10 0.34
−0.72 0.10

1.0 1.0

 (7.1)

x = (motorleft, motorright, normleft, normright, min ≮ E)) (7.2)

One analysis that can be performed is to explore where idealized stable solutions exist,
or don’t exist, for this weight matrix. The homeostat Equation 1.1 is a second-order
system, where the output from the weight multiplication represents the error. To achieve
a (static) stable solution the error e must be zero and the 2nd order term ẍi would then
tend to zero. This is clearer in Ashby’s reformulation of the homeostat as a first-order
system in Equation 7.3 which holds over longer timescales, showing the homeostat to be
state-determined and linear.

ẋi =

n∑
k=1

ai,kxk (7.3)

We solve the linear equations represented by the matrix assuming an error of zero;
e is the zero matrix. The machine with input is not represented by a square matrix so
the problem is underspecified and there are infinitely many solutions. Given this and to
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avoid the trivial solution where x equals the zero matrix, we introduce representative
bounds on the solution. In the telemetry data of Figure 5 it was observed that the robot
is driving in reverse, so both motor units are less than zero. The left-hand sensor input is
less than zero, while the right-hand sensor input is greater than zero. This set of bounds
is verified using the GNU Octave solver setting representative upper bounds of −0.1 on
motorleft, motorright and an upper bound of 0 on normleft, and a lower bound of 0 on
normright. The equation solver finds one solution for x below, in Equation 7.3, verifying
that at least one stable solution exists within these bounds (see Appendix).

x = (−1.00000, −0.10000, −0.47253, 0.90659) (7.4)

For comparison, the relative positions of the robot and light source may be reversed, re-
quiring the left-hand sensor to be positive and the right-hand sensor negative. This set of
bounds has no solution corroborating the evidence that this is an unstable configuration.

8. Conclusion

The construction of the physical mobile homeostat and the fact that it finds an orbital
solution validates the hypothesis that the topological configuration of the robot as deter-
mined by simulation, carries over into the physical robot. The robot itself demonstrates a
number of interesting features. A surprising amount of information can be gleaned from
four simple photocells supporting brightness constancy independent of distance, and illu-
mination independent of angle. These experiments validate Ashby’s thought experiment
about the possibility of creating a mobile homeostat.

9. APPENDIX: GNU Octave bounded model for ax = b

a =[ −0.7 ,0; 0 , −0.7 ; 0 . 1 , 0 . 3 4 ; −0 . 7 2 , 0 . 1 ] ’ ; b = [ 0 , 0 ] ’ ; c = [ 1 , 2 , 3 , 4 ] ’ ;
lb =[−1 ,−1 ,−1 ,0]; ub =[ −0.1 , −0.1 ,0 ,1 ] ; ctype=”SS ” ; vartype=”CCCC” ;
s=−1; param . msglev =1; param . i t l i m =100;
[ xmin , fmin , s tatus , ext ra ] = . . .

g lpk ( c , a , b , lb , ub , ctype , vartype , s , param ) ;
xmin
# ax=b i s unso lvab l e a f t e r r e v e r s a l o f the s e n s o r s
lb =[−1 ,−1 ,0 ,−1]; ub =[ −0.1 , −0.1 ,1 ,0 ] ;
[ xmin , fmin , s tatus , ext ra ] = . . .

g lpk ( c , a , b , lb , ub , ctype , vartype , s , param ) ;
xmin
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