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Abstract—Current metrics-based approaches to visualise un-
familiar software systems face two key limitations: (1) They
are limited in terms of the number of dimensions that can
be projected, and (2) they use fixed layout algorithms where
the resulting positions of entities can be vulnerable to mis-
interpretation. In this paper we show how computer games
technology can be used to address these problems. We present
the PhysVis software exploration system, where software metrics
can be variably mapped to parameters of a physical model and
displayed via a particle system. Entities can be imbued with
attributes such as mass, gravity, and (for relationships) strength
or springiness, alongside traditional attributes such as position,
colour and size. The resulting visualisation is a dynamic scene;
the relative positions of entities are not determined by a fixed
layout algorithm, but by intuitive physical notions such as gravity,
mass, and drag. The implementation is openly available, and we
evaluate it on a selection of visualisation tasks for two openly-
available software systems.

I. INTRODUCTION

Software visualisation is broadly concerned with the chal-
lenge of representing software systems, which are notoriously
intangible [1], in graphical terms that provide insight to a
developer. A plethora of techniques have been developed [2],
which can visualise various facets of a software system (e.g.
metrics, or code clones) at different levels of abstraction (from
individual lines up to architectural components). To facilitate
comprehension to the user, many techniques adopt metaphors,
such as cities [3], Minecraft worlds [4], or solar systems [5].

Existing approaches are ultimately restricted in terms of
the range of dimensions by which they visualize software
entities and their interrelationships. Entities are projected to
Cartesian coordinates (x, y in 2D or x, y, z in 3D), and their
attributes tend to be visualised in terms of space (e.g. the
height of a building or volume of a cell in a Tree map), or
colour (e.g. using a colour-scale from green to red to represent
complexity). Relationships between entities are commonly
visualised simply in terms of connecting lines or in terms of
their relative proximity (sharing a neighbourhood in a city) – a
feature that can lead to misinterpretation if two objects happen
to be close to each other without a corresponding relationship.

In this paper we introduce PhysViz - a software visualisation
system that is built with a Computer Games framework, and
takes advantage of several games technologies. PhysViz is
based on the idea of attributing physical properties to software
entities and relationships, thus increasing the dimensions in

which software can be represented. As with existing tech-
niques, PhysViz provides the means by which to represent
entities in terms of their spacial coordinates, proximity, and
visual properties such as colour, size and transparency. How-
ever, PhysViz also incorporates a basic implementation of
Newtonian point-mass physics (a standard component of a
games particle effects systems), which enables us to model
entities in terms of physical attributes, such as their mass,
action of drag or gravitational acceleration. These enable us
to consider relationships in terms such as interactions of these
forces. The resulting scene is therefore not (necessarily) static;
depending on the configuration, entities (or groups thereof)
can continuously interact with each other (e.g. by gravitational
pull). These forces can convey characteristics that would not
necessarily be apparent in a conventional visualisation, and
can indeed be highlighted by motion on top of location.

The key contributions are as follows:

• A physical framework for software visualisation.
• An openly available implementation (PhysViz).
• Three visualisation case studies on two openly available

systems. These visualisations re-interpret existing 2D
static visualisations (Hot spot views, Inheritance (System
Complexity), and Call Graphs) in a physical setting, and
explore the additional information that physical properties
can convey about a software system.

The case studies illustrate two of the key attractions of
PhysViz (or the use of games-physics to visualise software in
general). Firstly, a variety of different aspects of a software
system can be visualised and explored. However, whereas
existing visualisations rely on specific layout algorithms, the
layout of the elements in PhysViz is ultimately determined by
the same rules of Newtonian point-mass physics. Secondly,
there is continuous visual feedback to the user. There is no
need to wait for a layout to be rendered; the software system
can be explored while the layout is taking shape.

The rest of this paper is structured as follows. Section
II provides a motivation for this work, in the context of
related work in the area. Section III presents the necessary
background to games technology, focussing on the notions of
Asset Pipelines and Particle Systems. Section IV presents our
PhysViz physical model for software systems, along with the
implementation details. Section V presents three case study
visualisations on two openly-available software systems –



JEdit and Weka. Finally, section VII presents conclusions and
discusses our future work.

II. MOTIVATION

The task of understanding a software system and detecting
problems within it can be daunting. Software systems are
large, complex, and have possibly evolved over years (even
decades), with contributions from many different developers.
An unfamiliar developer who is tasked with the job of re-
engineering such a system has to rapidly acquaint themselves
with the core components of the system, their interrelation-
ships, and any apparent problematic aspects [6].

In the early stages, a developer who is orientating them-
selves in the system will not necessarily be certain of what
they are looking for. They might be searching for beacons by
which to orientate themselves for future comprehension tasks
[7]. However, they will also want to flag up any indicators of
poor “software quality” – a term that has notoriously evaded
a concrete definition because it means different things to
different people [8].

To address this problem approaches such as Polymetric
Views [9] have been developed. These aim to present a large
amount of (relevant) information about the system (i.e. struc-
tural elements and associations, combined with their relevant
metrics) in a succinct visualisation, which can be customised
by the developer to highlight particular facets.

Such approaches present a useful solution to the aforemen-
tioned problems. They have inspired a plethora of subsequent
visualisations (c.f. Code City [3]). They attenuate the problem
of information overload. They also encourage (albeit to a
limited degree) exploration by the developer, by enabling them
to change the parameters of the visualisation. Nevertheless,
there remain two important (and closely related) limitations:

1) Conventional visualisations remain limited to a relatively
small number of dimensions: On the face of it, there seem to
be plenty of possible dimensions within a standard visualiza-
tion upon which to project a software system. The relative
locations of objects can be used to imply relationships such
as mutual relevance, either in 2D [9], or 3D [10]. Software
attributes (e.g. metrics) can be overlaid onto these locations
by varying standard rendering parameters such as colour,
geometry, line-thickness, opacity, etc. So location (x, y, z)
and colour with transparency (r, g, b, α) alone represent 7
dimensions. If we add typical additional visual attributes such
as shape and size, then a mere three-dimensional scatter plot
presents 12 ways in which to vary the appearance of an
element (or group of elements).

This can certainly be sufficient, especially when the de-
veloper already has a reasonably well-formed idea of what
they are looking for. There are well-established approaches
such as Goal-Question-Metric [11] that can be used to align
the ‘question’ to be answered about the software system with
the metrics that can be visualised to answer it. Indeed, most
visualisation approaches implicitly assume that the selection
of metrics is underpinned by such a process [12].

In practice however, this assumption is not necessarily
practical. A “goal” might be very non-specific, and its metrics
might accordingly be difficult to identify. This is especially the
case for exploratory tasks – e.g. when the goal is simply to
assess the state of the system, and in doing so pick up on any
key design features or potential flaws (c.f. “Read all the code in
one hour” [6]). In such cases the huge range of different types
of entities, relationships, and metrics by which to interpret
them cannot be reduced to a specific ‘ideal’ combination.

2) There is a trade-off between the number of dimen-
sions visualised and readability of the resulting scene: If
we acquiesce in the need to visualise a larger number of
dimensions, this has immediate consequences on readability
and comprehensibility [13]. Even relatively sophisticated 3-D
visualisations such as CodeCity [3] are only able to visualise
three metrics at a time (though they do so very effectively).
Thus an important question for us is: How can we effectively
accommodate a larger number of dimensions, whilst maintain-
ing the ease of interpretation for the developer?

III. GAMES ENGINES – ASSET PIPELINES AND PARTICLE
SYSTEMS

This paper is based on the observation that computer game
technology can potentially provide a solution to the above
problems. Computer games are similarly faced with the chal-
lenge of presenting a huge amount of information (a typical
computer game scene can contain hundreds or thousands of
characters and objects). It is crucial for game-play that the
game scene is computationally efficient to render – that it does
not make unrealistic demands on computational resources and
does not induce lag.

Modern games engines such as Unity [16] and Unreal [17]
provide comprehensive frameworks to enable this, indepen-
dently from the actual game content itself. This is achieved
by providing an extensive library, encompassing technically
advanced graphics, physics and HCI functionalities. This has
to be balanced with the need to be usable by a broad range
of skill-sets, from programmers to non-technical artists and
designers. On top of this, the resulting code should be as
maintainable and reusable as possible.

To accommodate these seemingly irreconcilable require-
ments, modern games engines incorporate a plethora of novel
design features. In this paper, for the sake of our software
visualisation, we focus on two of these: Asset Pipelines, a
process for efficiently loading data into a game, and Particle
Systems, which enable the highly efficient visualisation of
highly-complex physical scenes.

A. Asset Pipelines

Games tend to involve complex objects and characters. For
example, a game character might move in a complex manner,
make sounds for different types of movement, be adorned with
different types of clothing, and behave differently according to
their health, or the presence of other characters. All of these
features – 3D character motion, sounds, in-game behaviours,
graphical textures – are referred to as “assets”. These are often



dependent upon each other, meaning that an in-game character
is often the product of a complex construction process.

This construction process is referred to as the “asset
pipeline” [30]. The notion of an asset pipeline has helped
to enforce the separation of concerns in games development
[18]; specialists from different disciplines – sound artists,
graphical designers, physicists, are able to provide assets of
different types without needing to be particularly aware of
each other. Asset pipelines provide a mechanism by which to
efficiently weave these together into complex games objects,
whilst encouraging reuse for different games.

For each type of final asset, input files are supplied by the
artist or designer which can potentially be from a range of
formats. A piece of software, often know as a builder, parses
any of these files into a common internal data structure. The
builder then converts this structure into a “runtime asset”. This
will be the actually data file loaded by the engine and used
by the “runtime object”, the actual instance of the object used
by the running game engine.

B. Particle Physics Models

Particle systems are a so-called ancillary or secondary
animation system, and form a standard component of any
modern Game Engine. Particle effects [30] represent objects
as a potentially vast number of ‘particles’, each of which has
to be rendered individually – in games this tends to include
amorphous objects such as clouds, fire, smoke, sparks, spray,
splatter, etc. These have several features that separate them
from normal rendered geometry:

• Made up of a very large number of simple pieces of
geometry. Typical 2-D quads, each constructed from two
triangles.

• This geometry is usually “billboarded”, so that it is
always drawn face-on to the camera.

• The particles are heavily customisable and dynamic,
with their position, velocity, size, colour and level of
transparency (referred to as alpha in computer graphics),
varying over the lifetime of the particle as well as between
particles.

This simple geometry makes them straightforward to ren-
der in large numbers, but also very efficiently (i.e. in an
interactive games environment). Mechanisms such as additive
alpha blending can be used, coupled with the ability to take
advantage of the parallel processing capacities of GPGPUs,
whereby all the calculations for the particles physical simula-
tion, updating of parameters etc. are moved over to the GPU
alongside their actual rendering.

IV. PHYSVIZ: A PARTICLE SYSTEM FOR SOFTWARE
VISUALISATION

In this paper we present PhysViz - a system for modelling
and exploring software. PhysViz is built upon the concepts of
Asset Pipelines and Particle Physics models described above.
In this section we start in Section IV-A by describing the
particle model that we use (without relating it explicitly to
software systems). We then describe in Section IV-B the
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Fig. 1. Particle System characteristics in the PhysViz network model. Physics-
related attributes are in bold.

PhysViz asset pipeline, which takes structured descriptions of
software systems along with physical property configurations
and uses them to build the explorable physical model.

A. The PhysViz Particle Model

PhysViz adopts the reasonably widespread convention of
modelling software as a network of entities and relationships.
Its novelty is that it enables entities that can be imbued
with physical properties (such as mass and gravity), and
relationships to have properties such as strength or springiness.

The basic components of the physical model are shown in
Figure 1. Entities can have conventional visual properties -
colour, alpha (opaqueness), and size. However, they can also
be given physical primitives. For node / entities:

• (M) Mass: Measure of the inertia of the particle.
• (D) Drag: The resistance of an entity to movement,

equivalent to air resistance.
• (G) Gravity: A constant acceleration in a given direction,

equivalent to a gravitational force.
For relationships, we have a line linking two entities, as

well as the parameters of a force that pulls/ pushes along that
line:

• (S) Strength: Scaling factor for the force.
• (L) Length: Natural length of that type of link.
• (P) Power: The rate of drop-off of the force.
The functional form of the force acting along the link can be

modelled as follows (where X represents the current length):

FL = S(L−X)P (1)

For all the examples in this paper we have used P = −1 to
produce a standard Hooke spring [19], which represents the
standard model of spring-like behaviour. The link pushes and
pulls to achieve its natural length. This effectively produces
a 3D equivalent of Eades’ classical spring-based graph layout
algorithm [20]. However, it is also possible to manipulate P to
obtain other behaviours; for example, P = −2 would produce
something more akin to gravitational attraction.

Physical models are inherently dynamic. Accordingly, the
natural length of the link between entities (L) is seen as an
‘ideal’ target length. The actual length in the physical model
will vary according to all of the forces acting upon a given
entity via all its links pulling or pushing it around. At each
time-step of the simulation we have an acceleration acting on
each particle of the form:
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Where the sum is over all links to the particle and v is the
current velocity of the particle. Using the standard concepts
of a Newtonian point particle and Euler integration, this can
easily be used to update the current position of the particle.

B. The PhysViz Asset Pipeline

We construct our physical model of a software system from
two “assets”: We take a textual description of the software
system itself, replete with any metrics that we wish to factor-
in to our visualization, and we take a mapping that relates the
metrics to the various physical or visual properties shown in
Figure 1. In games engine terms, the software system and the
description of the visualisation are the designer’s input data, a
representation of direction network graph is out interim build
format, and the particle system is our runtime asset/object.

It is worth noting that, thanks to the separation of concerns
afforded by the asset pipeline, the PhysViz framework is in
principle capable of visualising any relational data. Although
the principal purpose is to visualise software, it is not neces-
sarily tied to this domain.

We adopt the definitions contained in the FAMIX meta-
model [15] to discuss the entities and relationships in a
software system. Thus, an entity can refer to a package, a
class, a method, or a class attribute. A relationship can refer
to inheritance between classes, an invocation of one method
by another, the ownership of an attribute by a class, or the
relationship between a class attribute and its type.

The relationship between these, and the PhysViz network
model is highlighted in Figure 2. Combining this with the more
detailed class diagram for PhysViz in Figure 1, it is possible
to give packages, classes, methods, and attributes their own
physical attributes – mass, drag, and gravity. Their various
interrelationships can also be given physical properties such
as length, strength, and power.

In practice, we take as input two JSON files (two assets)
– one representing the software system and one representing
the mappings from attributes such as metrics to physical

TABLE I
SUBJECT SYSTEMS

System Classes Methods LOC
jEdit 5.2.0 1,803 9,920 155,127
Weka 3.7 3,098 23,668 429,006

properties. For our work we have constructed this file by ex-
tracting the necessary information from MSE files, generated
by software analysis programs such as InFusion1.

C. Implementation

PhysViz is openly available2. It has been built on top of
DirectX 11. Our tool is therefore developed in C++, and is
targeted towards for Windows desktops. However, the underly-
ing asset build process is purely data driven, and the graphical
components use standard techniques. The majority of platform
specific code is in derived classes based on platform agnostic
base classes, so it would be relatively straightforward to port
to other platforms.

There are two possible modes in which the user can interact
with PhysViz. The default mode is to use the keyboard to
navigate, and to use the mouse to look around (as one would in
a first-person game). Alternatively, the user can navigate with
an XBox-style controller. These both being standard control
methods for intuitively navigating around a 3-D environment
for an increasing majority of people due to the rise of computer
games.There is a further, separate component (MSE2JSON3),
which generates the input JSON files.

V. CASE STUDIES

The goal of PhysViz is to intuitively convey a large amount
of information to the user without obscuring the information
that might be particularly relevant to them. Here we provide a
preliminary assessment of whether or not this can be achieved.
We choose two openly available systems as subjects, and
provide three visualisations that focus on different structural
and behavioural aspects of these systems. Two of these are
“physical” equivalents to established Polymetric views [9], for
the sake of establishing a comparison to the state-of-the-art.

The systems considered are JEdit4, an extensible text editing
program, and Weka5, a popular Java Machine Learning frame-
work. Their sizes (in terms of number of classes, methods and
lines of code) are shown in Table I.

A. Visualisation objectives

We selected three visualisation tasks, focussing on two com-
plementary aspects of a software system [21] – structure and
behaviour. For the former, we introduce a PhysViz derivative
of System Hotspots and System Complexity (first introduced
in Lanza et al.’s Polymetric views [9]). For the behaviour
perspective, we introduce the PhysViz Call Graph view. In the

1https://www.intooitus.com/
2https://bitbucket.org/physviz/physviz
3https://bitbucket.org/physviz/mse2json/overview
4http://http://www.jedit.org/
5http://www.cs.waikato.ac.nz/∼ml/weka/



Fig. 3. Polymetric Hotspot views for JEdit (left) and Weka (right).

rest of this subsection we introduce the visualisation objectives
in more detail, and present current baseline visualisations.

a) Hot spots: A hot spot visualisation should highlight
classes that contain “a lot of activity”. The polymetric view
for this [9] is shown in Figure 3. It represents the system
as rows of boxes ordered by the number of methods (NOM).
The width of each box corresponds to the number of attributes
(NOA), and the height of a box corresponds to the NOM. The
colour corresponds to the sum of the lines of code over all of
its methods (the WLOC).

There are two inherent weakness with the visualisations
shown in Figure 3. Firstly, the visualisation alone cannot be
used to gauge what, for example, the actual number of methods
or attributes is in any of the classes; it merely sizes them
in relative terms. Secondly, for situations where a class has
few methods, but where these methods are disproportionately
large, this visualisation offers no means by which to compare
the “hotness” of these hotspots to other hotspots with large
numbers of (smaller) methods.

b) System Complexity: A system complexity visualisa-
tion is intended to indicate which areas of the system are
structurally particularly complex. As with the hotspot view,
the complexity of individual classes (and their internal meth-
ods and attributes) plays an important role. From a systems
perspective however, it is important to place a class into its
broader context - to incorporate the other classes in the system
from which it inherits.

The polymetric views [9] for JEdit and Weka are shown in
Figure 4. Here, classes are again given dimensions accord-
ing to NOA (width), NOM (height), and WLOC (colour).
However, they are also arranged into their respective class
hierarchies.

As can be seen from the figure, for any reasonably large
system a high degree of zooming is required to home-in on
areas of interest. As with the hotspots view, the eye is drawn to
big, dark classes that stand out from the rest. However, very
large classes can distract from large inheritance hierarchies
with lots of smaller classes (even though these can be just as
intricate and complex from an engineering standpoint).

c) Call Graph View: Call graphs provide an overview
of which methods in a system invoke each other at run-time.
This can provide insights into what the potential modules are

TABLE II
PHYSVIZ CONFIGURATIONS

Hot Spot
Class M = 1.0, D = 5.0, G = −1.0

Method M = 1.0, D = 1.0, G = 0.1 ∗ LOC
Attribute M = 1.0, D = 1.0, G = 2.0

belongsTo S = 1.0, P = 1.0, L = 10.0

System Complexity
Class M = NOM , D = NOM , G = −1.0

Method M = 0.05 ∗ LOC, D = 1.0, G = −0.05 ∗ LOC
Attribute M = 1.0, D = 1.0, G = 1.0

belongsTo S = 5.0, P = 1.0, L = 5.0
attributeOf S = 1.0, P = 1.0, L = 5.0

inheritsFrom S = 4.0, P = 1.0, L = 30.0

Call Graph Analysis
Class M = NOA, D = NOA, G = −1.0 ∗NOACCM

Method M = 0.1 ∗ LOC, D = 0.2 ∗ LOC, G = 0.1 ∗ LOC
belongsTo S = 2.0, P = 1.0, L = 2.0

calls S = 1.0, P = 1.0, L = 50.0

within the system, or which classes are functionally related to
each other [22].

As with the above visualisation tasks, there are several ex-
isting means by which to visualise call graphs [23]. Traditional
visualisation approaches have adopted traditional graph layout
algorithms (e.g. force-directed layouts), or more recently,
Holten’s Hierarchical Edge Bundling view [24].

In these traditional visualisations, the layout of the final
graph is entirely determined by its topology and the choice of
layout algorithm. The metrics of the nodes have no effect on
the layout, even though they could clearly play a useful role
(e.g. for grouping together classes according to complexity).
Also, the process of rendering can be slow (Telea et al. [23]
mention that the baseline in their paper took 2 minutes to
render a relatively small call graph).

B. PhysViz Configurations

The process of selecting the parameters requires a degree
of judgement and adjustment to ensure that the resulting
visualisation is navigable and readable. We adopt an iterative
approach. The first iteration assigns the desired metrics and
scales to the key parameters. Since extreme values (e.g. giving
an object a mass of zero) could result in pathological behaviour
(the entire software system shooting off into the distance), the
second iteration focussed on ensuring the use of scales, and
maximum / minimum values, to ensure that even with extreme
metrics, the system does not shoot-off, and is easy to navigate.
This process of parameter selection is further discussed in
Section V-D.

The configurations are summarised in Table II. Any entities
or relationships that are absent are also absent in the model.
For space reasons we only cover the key parameters here;
elements such as colour and size are left out. The full JSON
configuration files for each configuration are available in the
supplementary material for this paper.

a) Hotspot view: In our PhysViz model we turn the
classes into physical, passive objects that are attached to



Fig. 4. Polymetric System Complexity views for JEdit (top) and Weka (bottom). In both cases, parts have been magnified to highlight the structural aspects.

smaller physical objects – their methods and attributes. Meth-
ods and attributes are given an intrinsic gravity (computed
relative to their LOC) that draws them upwards. The gravity
and mass of attributes is fixed. The end effect is that classes
with large methods and lots of attributes will be dragged
upwards more quickly than smaller classes with fewer, small
methods. Alongside the physical attributes, we also tie the
visual width and height of the methods to their LOC, so that
larger methods appear visually larger. Similarly, the size of a
class is relative to its NOM.

b) System Complexity: We “anchor” any classes that do
not have any ancestors on a plane along x and z. Classes are
linked to each other by inheritance links, and each class is
again attached to its methods and attributes. This time, each
method and attribute is given a negative gravity and mass
that is proportional to its LOC (more complex methods pull
downwards). We also give the inheritance relationship some
“springiness”, so that the relationship is stretched if it is pulled
by a great force. The effect is that class hierarchies are all
hanging alongside each other (as in the polymetric view).
However, in our hierarchies, the complex classes should be
dragged down further by the weight of their methods and
attributes, making them stand out more.

c) Call Graph View: For the methods, we adopt the same
gravity, mass, and drag settings as we did for the Hotspot view.
Methods gravitate upwards depending on their size, and drag
classes along with them. Conversely, trivial methods and their
classes are not lifted up. In this visualisation, methods are
connected to each other by call edges. In contrast to the edges
that link methods to classes (which are short and firm), the
call edges are relatively long and springy. The end-effect is
that the scene should arrange itself into “clusters” of activity,
where relatively isolated groups of methods that carry out a
well-defined function stand out from the rest. There is also a
deliberate bias, such that data-classes sink to the bottom, and
function-intensive classes rise to the top.

C. Results
Given that the visualisations are inherently dynamic, it is

of course difficult to provide a single figure that concisely
captures what is conveyed to the user. Watching the scene
unfold and monitoring the physical interactions between the
classes, methods, and attributes can provide insights that
cannot be conveyed by a static scene, where the elements are
in fixed position.

In the results shown below, screen-shots were taken after
letting the model adjust for a approximately 30 seconds6. The
screen shots are taken by zooming the camera into a suitable
position where the vast majority of the classes are on screen.

In the screen-shots, the labels have been added post-hoc.
In practice, the labels appear and disappear according to the
location of the POV (Point Of View). As the POV moves
closer, the labels gradually appear into vision.

1) Hotspots: The hotspot screen shots are shown in Figure
5. As the simulation progresses, the classes with more methods
or attributes are pulled upwards. Bigger methods pull harder,
because their gravity is relative to their LOC. There are lots of
small trivial classes (particularly visible at the bottom of (a),
which are not pulled upwards at all. Classes are represented
as “flares”, where the size and brightness is relative to the
number of methods. Methods are represented as stars, where
the size of the star (and its gravity and mass) are relative to
the LOC.

At a glance, the screen-shots show the spread of complexity
within the system. Focussing on the classes alone, just by
looking at their size and brightness it is possible to determine
whether the complexity is focussed on a relatively small bunch
of classes (as in JEdit), or is widespread (as in Weka).

However, if we also consider the speed and direction in
which the classes are being pulled, and look at the methods
that are attached to them), there are further insights to be
gained. In some classes, the bulk of their complexity might be
contained within one or two exceptionally large methods (e.g.
BufferOptionPane or JEdit in JEdit, or Evaluation
and InstallTask in Weka. On the other hand, the com-
plexity might be spread more evenly through a multitude of
methods (e.g. KnowledgeFlowApp in Weka).

2) System Complexity: The System Complexity screen-
shots are shown in Figure 6. As with the Polymetric views
in Figure 4, the view gives a succinct impression of the extent
to which inheritance has been used in the system design. In the
case of JEdit, there are very few deep inheritance hierarchies.
Inheritance hierarchies tend to be ‘top-heavy’; there are several
large (bright pink) classes along the top, with very few large
complex classes further down the hierarchy.

It is apparent that inheritance hierarchies play a greater role
in WEKA. The key components of Weka [25] are the filters

6To begin with the entities are placed randomly, so in the first few seconds,
and entities that are connected by a relationship are pulled towards each other



Fig. 5. Hotspot screen-shots: (a) is JEdit, (b) is a close-up of CBZip2OutputStream, (c) is Weka.

(for pre-processing data), the classification algorithms, and
the clustering algorithms. These are nicely reflected in Figure
(b); AbstractClassifier is the root of a reasonably
complex hierarchy for implementing classifiers; Filter is
the root of a hierarchy for implementing various data-filters,
and Cluster is the root of the hierarchy for implementing
different clustering algorithms.

The physical model helps to highlight the different com-
plexities of these hierarchies. Complex methods with lots of
code will drag their classes down, stretching the inheritance
relationship edge in the process. Looking at the SimpleNode
hierarchy in JEdit, the root class is large, has lots of methods,

and is extended by numerous very small classes. On the other
hand, for the Cluster hierarchy in Weka, the child classes
are relatively large and complex (c.f. SimpleKMeans).

3) Call Analysis: The Call Analysis screen-shots are shown
in Figure 7. The blue edges represent the calls, and the red
edges represent the edges linking methods to their classes.

For both systems, the call analysis has the effect of pulling-
together classes and methods that are functionally related to
each other. In JEdit, various sub-systems responsible for pars-
ing, archiving, installing, etc., are separated out. In Weka, the
separation is especially pronounced (the various functionalities
are annotated in the Figure.



Fig. 6. System complexity for JEdit (a) and Weka (b).

Fig. 7. Call analysis - JEdit is shown on the left, Weka on the right.

The fact that classes are pulled-up by large methods has
the effect of lowering the classes that are primarily used as
data-classes to the lower area. Call edges are also coloured in
a gradient from dark blue to white to indicate the direction of
the edge (white represents the destination of the edge). Any
method that has lots of dark-blue edges is producing lots of
calls, whereas any method with lots of white edges is receiving
lots of calls.

This in turn presents a useful starting point for exploring
the system, both in terms of what the key data-concepts are,
and for determining data-classes that potentially need to be
re-engineered. Classes in the lower area of the call graph (few
notably complex methods and lots of accessor methods), with

lots of white edges (lots of incoming calls and few outgoing
ones) represent probable data containers.

WEKA presents a nice example of this. Figure 8 shows
the lower area of the bulk of the call graph. Here, one class
stands out – ResultsMatrix has mostly incoming calls (it makes
several internal calls, but not to other classes in the system).
As confirmed by the Weka API - ResultMatrix is a container
for the datasets and classifier setups and their statistics.

D. Discussion
Conventional visualisation approaches pick specific layout

algorithms to suit a given visualisation task. This is certainly
the case for current tools that visualise Hotspots, System Com-
plexity, and Call Graphs. In PhysViz, all of the visualisations



Fig. 8. Data-classes at the bottom of the WEKA call graph

are achieved by the same underlying physical model, and by
just changing the parameters (via the mapping files). Thanks
to the asset pipeline, it becomes very easy for the developer
to experiment with different configurations, to gain different
insights into a software system.

One striking feature about this Particle Systems-driven
approach is that there is continuous feedback to the user.
Whereas traditional software visualisations can take several
minutes to compute and render a fixed layout, the user can
watch and interact with the visualisation as it unfolds.

From a navigation perspective, some of the visualisations
can become challenging to navigate when the POV is in
amongst the bulk of the entities and relationships. For example,
with respect to the call graph visualisation, the most valuable
insights (the general structural amalgamations) are observed
from afar. If the user tries to navigate to the centre of the
calls, it can rapidly become disorientating. This can to an
extent be mitigated by pausing the scene (to make it easier to
gain a point of reference). Our ongoing work is investigating
approaches by which to make it easier to navigate through
denser regions.

VI. RELATED WORK

Within the field of software visualisation, there has been a
substantial amount of work on trying to address the dimen-
sionality problem. Several authors have proposed the use of
more sophisticated 3D visualisations, and even games engines
to visualise software. Metrics-based visualisation is also well
established. In this section we consider some of these key
approaches, and contrast them to PhysViz.

a) 3D metrics-based software visualisation: 3D software
visualisation has long been advocated, because it presents an
intuitive means by which to project and navigate through a
large amount of information [10]. Several techniques such as
those proposed by Lewerentz et al., [26], [27] or Graham et
al. [5], and Wettel and Lanza [3] enable a software system
to be projected onto a 3D scene. Their essential framework

is similar to ours; software is parsed, and the metrics are
used for projection in a 3D space. However, there are several
important differences. For one, the final visualisation is a static
scene, whereas ours is dynamic. They rely on a fixed algorithm
by which to calculate distances between objects (assisted
by techniques such as Principal Analysis), whereas ours is
underpinned by a physics engine. Finally, their approach does
not use elements such as the Artefact Pipeline, which afford
a significant degree of customisability.

b) Games engines: Balogh and Beszdes introduced
CodeMetropolis [4] - a code visualisation in the popular
MineCraft games environment. The analogy used in their
visualisation is essentially similar to that of CodeCity - files
are “sky-scrapers” - albeit ones that are built out of blocks.
However, given that the program is in MineCraft, it is easier
to use the game navigation infrastructure to interact with
and explore the environment. Although the use of games
engines is similar to PhysViz, CodeMetropolis does not link
metrics to physical properties such as gravity, and the layout is
correspondingly not dynamic (it is restricted to Wettel’s city-
block analogy [3]).

c) Graph clustering with software metrics: PhysViz is
related to a line of work that has investigated the use of
generic clustering algorithms to group software metrics [28].
The underlying rationale for this line of work is not necessarily
visualisation or exploration, but to investigate questions with
respect to the similarity of code elements, to inform tasks such
as software restructuring. However, any clusterings also pro-
duce “distances” between software elements, which can also
form the basis for software visualisation. One problem with
such clustering algorithms is that the results can sometimes
be difficult to explain. For example, two classes might be
clustered together because they happen to have variables with
similar names, but this might not be visible or apparent to the
person visualising the clusters. This problem is attenuated with
PhysViz, because the rules by which elements are attracted to
or repelled from each other are provided in (we argue) more
intuitive, physical terms.

VII. CONCLUSIONS AND FUTURE WORK

We have presented PhysViz, a system that makes extensive
use of Games technology to produce dynamic, explorable
visualisations of software systems. Thanks to the use of par-
ticle models, software elements can be given various physical
attributes such as mass and gravity, and the user is able to
explore their interactions as they take place.

In the case studies we have shown how PhysViz can provide
useful insights into program structure and behaviour. Its ver-
satility is one of its real strengths; it can replicate software
visualisations that would usually require specialised layout
algorithms. The efficiency of the underlying games engine
also means that the feedback to the user is instantaneous. The
user can watch and explore the software system as the layout
unfolds, monitoring the elements as they push and pull each
other according to their intrinsic forces.



The added insights are largely thanks to the addition of
physical dimensions to software entities. Nearly 20 years ago,
in their work on cognition and software visualisation, Petre et
al. [13] argued against the development of approaches such as
PhysViz:

Dimensional restraint will be best discovered by
[. . . ] devising new coding strategies for informa-
tional challenges. This means breaking out of the
shallow (but entertaining) concerns of building sexy
virtual reality systems and thinking a lot harder
about what to do with the two dimensional display
devices that are already in front of our eyes.

Though eminently sensible at the time, we posit that today
their stance might be different. Technology has advanced to a
point where typical desktop PCs are equipped with powerful
graphics devices, and games engines are widely available (not
to speak of the games consoles that are as ubiquitous). It
surely makes sense to make use of the advanced physical
and graphical models that are afforded by such devices.
Indeed, what were then high-end “sexy virtual reality systems”
are becoming increasingly main-stream, with the release of
a number of consumer product level head-mounted display
devices: Oculus Rift, Morpheus, SteamVR. Along with people
generally having a higher-level of experience of navigating
through 3-D generated computer environments via activities
such as computer gaming.

Our current work is focussing on ways to refine the tool.
We are especially focussing on ways by which to improve
navigation through crowded scenes. One approach that offers
potential is to make the scene interactive, by creating a special
particle representing the Point of View, that repels other
particles, to give the effect of pushing them aside as the viewer
moves through the system.

For our future work, we will carry out a user-study to
fully explore the role of physical models, and the PhysViz
exploration environment, in users’ understanding of software
systems. Our second priority is to explore the various exciting
opportunities for software exploration that Games Technology
offers. It is for example reasonably straightforward to enable
the use of immersive VR devices such as the Oculus Rift 7, or
more sophisticated interaction devices such as the Microsoft
Kinect 8 and the LEAP motion 9 . As well as apply the split-
screen and multi-controller concepts of local multi-player to
allow collaborative exploration of a visualisation.
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