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Test statistics for comparing two proportions with partially overlapping samples. 

 

Abstract 

Standard tests for comparing two sample proportions of a dichotomous dependent variable 

where there is a combination of paired and unpaired samples are considered. Four new tests 

are introduced and compared against standard tests and an alternative proposal by Choi and 

Stablein (1982). The Type I error robustness is considered for each of the test statistics. The 

results show that Type I error robust tests that make use of all the available data are more 

powerful than Type I error robust tests that do not. The Type I error robustness and the power 

among tests introduced in this paper using the phi correlation coefficient is comparable to that 

of Choi and Stablein (1982). The use of the test statistics to form confidence intervals is 

considered. A general recommendation of the best test statistic for practical use is made.    
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proportions. 

 

1 Introduction 

Tests for comparing two sample proportions of a dichotomous dependent variable with either 

two independent or two dependent samples are long established. Let 1  and 2  be the 

proportions of interest for two populations or distributions. The hypothesis being tested is 

210 :  H  against 211 :  H . However, situations arise where a data set comprises a 



Page 2 of 23 
 

combination of both paired and unpaired observations. In these cases, within a sample there 

are, say a total of ‘
12n ’ observations from both populations, a total of ‘ 1n ’ observations only 

from population one, and a total of ‘
2n ’ observations only from population two. The 

hypothesis being tested is the same as when either two complete independent samples or two 

complete dependent samples are present. This situation with respect to comparing two means 

has been treated poorly in the literature (Martinez-Camblor et al, 2012). This situation with 

respect to comparing proportions has similarly been poorly treated. 

Early literature in this area with respect to comparing proportions, refers to paired samples 

studies in the presence of incomplete data (Choi and Stablein, 1982; Ekbohlm, 1982), or 

missing data (Bhoj, 1978). These definitions have connotations suggesting that observations 

are missing only by accident. Recent literature for this scenario refers to partially matched 

pairs (Samawi and Vogel, 2011), however this terminology may be construed as the pairs 

themselves not being directly matched. Alternatively, the situation outlined can be referred to 

as part of the ‘partially overlapping samples framework’ (Martinez-Camblor et al, 2012). 

This terminology is more appropriate to cover scenarios where paired and independent 

samples may be present by accident or design. Illustrative scenarios where partially 

overlapping samples may arise by design include: 

i) Where the samples are taken from two groups with some common element. For 

example, in education, when comparing the pass rate for two optional modules, 

where a student may take one or both modules.  

ii) Where the samples are taken at two points in time. For example, an annual survey 

of employee satisfaction will include new employees that were not employed at 

time point one, employees that left after time point one and employees that 

remained in employment throughout.  
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iii) When some natural pairing occurs. For example, a survey taken comparing views 

of males and females, there may be some matched pairs ‘couples’ and some 

independent samples ‘single’. 

Repeated measures designs can have compromised internal validity through familiarity (e.g. 

learning, memory or practise effects). Likewise, a matched design can have compromised 

internal validity through poor matching. However, if a dependent design can avoid 

extraneous systematic bias, then paired designs can be advantageous when contrasted with 

between subjects or independent designs. The advantages of paired designs arise by each pair 

acting as its own control helping to have a fair comparison. This allows differences or 

changes between the two samples to be directly examined (i.e. focusing directly on the 

phenomenon of interest). This has the result of removing systematic effects between pairs. 

This leads to increased power or a reduction in the sample size required to retain power 

compared with the alternative independent design. Accordingly, a method of analysis for 

partially overlapping samples that takes into account any pairing, but does not lose the 

unpaired information, would be beneficial.  

Historically, when analysing partially overlapping samples, a practitioner will choose 

between discarding the paired observations or discarding the independent observations and 

proceeding to perform the corresponding ‘standard’ test. It is likely the decision will be based 

on the sample sizes of the independent and paired observations.  Existing ‘standard’ 

approaches include: 

Option 1: Discarding all paired observations and performing Pearson’s Chi square test 

of association on the unpaired data.  

Option 2: Discarding all unpaired observations and performing McNemar’s test on the 

paired data.  
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Option 3: Combining p-values of independent tests for paired and unpaired data. This 

can be done by applying Fisher’s inverse Chi square method or Tippett’s test. These 

approaches make use of all of the available data. These techniques were considered by 

Samawi and Vogel (2011) and are shown to be more powerful than techniques that 

discard data. However, it should be noted that the authors did not consider Type I 

error rates.  

Other ad-hoc approaches for using all available data include randomly pairing any unpaired 

observations, or treating all observations as unpaired ignoring any pairing. These ad-hoc 

approaches are clearly incorrect practice and further emphasise the need for research into 

statistically valid approaches. 

Choi and Stablein (1982) performed a small simulation study to consider standard approaches 

and ultimately recommended an alternative test making use of all the available data as the 

best practical approach. This alternative proposal uses one combined test statistic weighting 

the variance of the paired and independent samples, see Section 3.2 for definition. The 

authors additionally considered an approach using maximum likelihood estimators for the 

proportions. This approach was found to be of little practical benefit in terms of Type I error 

rate or power. Others have also considered maximum likelihood approaches. For example 

Thomson (1995) considered a similar procedure, using maximum likelihood estimators, and 

found the proposed procedure to perform similarly to that of Choi and Stablein (1982). It was 

noted by Choi and Stablein (1982) that given the additional computation, the maximum 

likelihood solution would not be a practical solution. 

Tang and Tang (2004) proposed a test procedure which is a direct adaption of the best 

practical approach proposed by Choi and Stablein (1982).  This adaption is found to be not 

Type I error robust in scenarios considered when 1n  + 2n  + 122n = 20. The test proposed by 
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Choi and Stablein (1982) is found to be Type I error robust in this scenario. The literature 

reviewed suggests that a solution to the partially overlapping samples case will have to 

outperform the best practical solution by Choi and Stablein (1982). Tang and Tang (2004, 

p.81) concluded that, ‘there may exist other test statistics which give better asymptotic or 

unconditional exact performance’.  

In this paper, we introduce four test statistics for comparing the difference between two 

proportions with partially overlapping samples. These test statistics are formed so that no 

observations are discarded. The statistics represent the overall difference in proportions, 

divided by the combined standard error for the difference. 

This paper will explore test statistics for testing 0H , in the presence of partially overlapping 

samples. In Section 2, existing ‘standard’ approaches and variants of are defined.  In Section 

3, our alternative proposals making use of all the available data are then introduced, followed 

by the most practical proposal of Choi and Stablein (1982). 

In Section 4, a worked example applying all of the test statistics is given, followed by the 

simulation design in Section 5. 

In Section 6.1, for all of the test statistics, the Type I error robustness is assessed when 0H  is 

true. This is measured using Bradley’s (1978) liberal criteria. This criteria states that the Type 

I error rate should be between nominal 0.5 nominal . 

There is no standard criteria for quantifying when a statistical test can be deemed powerful. 

The objective is to maximise the power of the test subject to preserving the Type I error rate 

nominal . If Type I error rates are not equal it is not possible to correctly compare the power of 

tests. The preferred test where Type I error rates are not equal should be the one with the 
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Type I error rate closest to nominal  (Penfield 1994). In Section 6.2, power will be considered 

under 1H  for the test statistics that meet Bradley’s liberal criteria. 

There is frequently too much focus on hypothesis testing. Confidence intervals may be of 

more practical interest (Gardner and Altman 1986). Confidence intervals allow insight into 

the estimation of a difference and the precision of the estimate. In Section 6.3, the coverage 

of the true difference under 1H  within 95% confidence intervals is considered. This is 

considered only for the most powerful test statistics that are Type I error robust. 

 

2 Definition of standard test statistics 

Assuming a dichotomous dependent variable, where a comparison in proportions between 

two samples is required, the layout of frequencies for the paired and the independent samples 

would be as per Table 1 and Table 2 respectively.  

Table 1. Paired samples design for two samples and one dichotomous dependent variable.  

 

Response Sample 1 

Response Sample 2 

Yes No Total 

Yes a b m 

No c d 
12n - m 

Total k 
12n -k 12n  

 

Table 2. Independent samples design for two samples and one dichotomous dependent 

variable.  

 Response 

 Yes No Total 

Sample 1 e f 
1n  

Sample 2 g h 
2n  
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2.1 Option 1: Discarding all paired observations 

For two independent samples in terms of a dichotomous variable, as per Table 2, a Chi-

square test of association is typically performed. This test will be displayed in standard 

textbooks in terms of 
2

1 . A chi square distribution on one degree of freedom is equivalent to 

the square of the z-distribution. Therefore under the null hypothesis an asymptotically N(0,1) 

equivalent statistic is defined as: 
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For small samples, Yates’s correction is often performed to reduce the error in 

approximation. Yate’s correction is given by: 
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The statistic 2z  is referenced against the upper tail of the standard normal distribution.  

An alternative to the Chi square approach is Fisher’s exact test. This is computationally more 

difficult. Furthermore, Fisher’s exact test is shown to deviate from Type I error robustness 

(Berkson, 1978). Fisher’s exact test will not be considered for the analysis of the partially 

overlapping samples design in this paper. 

 

2.2 Option 2: Discarding all unpaired observations 

For two dependent samples in terms of a dichotomous variable, as per Table 1, McNemar’s 

test is typically performed. Under the null hypothesis, the asymptotically N(0,1) equivalent to 

McNemar’s test is: 
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When the number of discordant pairs is small, a continuity correction is often performed. 

McNemar’s test with continuity correction is the equivalent to: 

 
cb

cb




2

4

1
=z . 

The statistic 4z is referenced against the upper tail of the standard normal distribution.  

Test statistics based on Option 1 and Option 2 are likely to have relatively low power for 

small samples when the number of discarded observations is large. A method of analysis for 

partially overlapping samples that takes into account the paired design but does not lose the 

unpaired information could therefore be beneficial.  

 

2.3 Option 3: Applying an appropriate combination of the independent and paired tests 

using all of the available data 

Given that test statistics for the paired samples and dependent samples can be calculated 

independently, an extension to these techniques which makes use of all of the available data 

would be some combination of the two tests.  

In terms of power, Fisher’s test and Tippett’s test are comparable to a weighted approach 

using sample size as the weights (Samawi and Vogel, 2011). Tippett’s method and Fisher’s 

method are not as effective as Stouffer’s weighted z-score test (Kim et al, 2013). Stouffer’s 

weighted z-score, for combining 1z  and 3z  is defined as:   
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Under the null hypothesis, the test statistic 5z  is asymptotically N(0,1). 

Many other procedures for combining independent p-values are available, but these are less 

effective than Stouffer’s test (Whitlock, 2005).  

The drawbacks of Stouffer’s test are that it has issues in the interpretation and confidence 

intervals for the true difference in population proportions cannot be easily formed. 

 

3 Definition of alternative test statistics making use of all of the available data 

The following proposals are designed to overcome the drawbacks identified of the standard 

tests. In these proposals observations are not discarded and the test statistics may be 

considered for the formation of confidence intervals. 

 

3.1 Proposals using the phi correlation or the tetrachoric correlation coefficient. 

It is proposed that a test statistic for comparing the difference in two proportions with two 

partially overlapping samples can be formed so that the overall estimated difference in 

proportions is divided by its combined standard error, i.e.  
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and xr  is a correlation coefficient. 

Test statistics constructed in this manner will facilitate the construction of confidence 

intervals, for example a 95% confidence interval   would be equivalent to: 

 )p,p(2)p()p(96.1)pp( 212121 CovrVarVar x . 

Pearson’s phi correlation coefficient or Pearson’s tetrachoric correlation coefficient are often 

used for measuring the correlation xr  between dichotomous variables.  

Pearson’s phi correlation coefficient is calculated as 
))()()((

1
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 . 

The result of 
1r  is numerically equivalent to Pearson’s product-moment correlation 

coefficient and Spearman’s rank correlation coefficient applied to Table 1, using binary 

outcomes ‘0’ and ‘1’ in the calculation. In this 22 case, 1r  is also numerically equivalent to 

Kendall’s Tau-a and Kendall’s Tau-b as well as Cramér's V and Somer’s d (symmetrical). 

This suggests that 
1r  would be an appropriate correlation coefficient to use. 

Alternatively, assuming the underlying distribution is normal, a polychoric correlation 

coefficient may be considered. A special case of the polychoric correlation coefficient for two 

dichotomous samples is the tetrachoric correlation coefficient.  

An approximation to the tetrachoric correlation coefficient as defined by Edwards and 

Edward (1984) is: 
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Other approximations are available, however there is no conclusive evidence which is the 

most appropriate (Digby, 1983). In any event, 1r  is likely to be more practical than 2r  

because if any of the observed paired frequencies are equal to zero then the calculation of 2r  

is not possible. 

Constructing a test statistic using correlation coefficients 1r  and 2r  respectively, the 

following test statistics are proposed: 
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Under 0H ,   21 , therefore two additional test statistics that may be considered are 

defined as: 
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The test statistics 6z , 7z , 8z  and 9z are referenced against the standard normal distribution. 

In the extreme scenario of 012 n , it is quickly verified that  98 zz
1z . Under 0H , in the 

extreme scenario of 021  nn , as 12n  then 38 zz  . This property is not observed for 

9z . The properties of 8z  give support from a mathematical perspective as a valid test statistic 

to interpolate between the two established statistical tests where overlapping samples are not 

present. 

 

3.2 Test statistic proposed by Choi and Stablein (1982). 

Choi and Stablein (1982) proposed the following test statistic as the best practical solution for 

analysing partially overlapping sample: 

D
nnnn

z

2
)1()1(

)p1(p

pp

12

2

2

2

2

2

12

2

1

1

2

1

21
10








 










 

where 
121

1
1

nn

n


  , 

122

2
2

nn

n


 and 

12

2

21 )p)(1)(1(

n

p
D a 



. 

The test statistic 10z  is referenced against the standard normal distribution. 

The authors additionally offer an extension of how optimization of 1w  and 2w  could be 

achieved, but suggest that the additional complication is unnecessary and the difference in 

results is negligible. 

In common with the other statistics presented, 10z  is computationally tractable but it may be 

less easy to interpret, particularly if 1 + 12  .  
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4 Worked example 

The objective of a Seasonal Affective Disorder (SAD) support group was to see if there is a 

difference in the quality of life for sufferers at two different times of the year. A binary 

response, ‘Yes’ or ‘No’ was required to the question whether they were satisfied with life. 

Membership of the group remains fairly stable, but there is some natural turnover of 

membership over time. Responses were obtained for 12n 15 paired observations and a 

further 1n 9 and 2n 6 independent observations. The responses are given in Table 3. 

Table 3. Responses to quality of life assessment. 

 Response Time  2 

Response Time 1 Yes No Total 

Yes 8 1 9 

No 3 3 6 

Total 11 4 15 

 Response 

 Yes No Total 

Time 1 5 4 9 

Time 2 6 0 6 

 

The elements of the test statistics (rounded to 3 decimal places for display purposes), are 

calculated as: 1p̂ 0.556, 2p̂ 1.000, p̂ 0.733, 1p 0.583, 2p 0.810, p 0.689, 1r 0.431, 

2r 0.673, w 0.333, 1 0.375, 2 0.286, D 0.002. The resulting test statistics are 

given in Table 4. 

Table 4. Calculated value of test statistics (with corresponding p-values). 

 
1z  2z  3z  4z  5z  6z  7z  8z  9z  10z  

z-score -1.907 1.311 -1.000 0.500 -1.747 -2.023 -2.295 -1.937 -2.202 -1.809 

p-value 0.057 0.190 0.317 0.617 0.081 0.043 0.022 0.053 0.028 0.070 
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At the 5% significance level, whether 0H  is rejected depends on the test performed. It is of 

note that the significant differences arise only with tests introduced in this paper, 6z , 7z  and 

9z .  

Although the statistical conclusions differ for this particular example, the numeric difference 

between many of the tests is small. To consider further the situations where differences 

between the test statistics might arise, simulations are performed.  

 

5 Simulation design 

For the independent observations, a total of 1n  and 2n unpaired standard normal deviates are 

generated. For the 12n  paired observations, additional unpaired standard normal deviates ijX

are generated where i = (1,2) and j = (1,2,…., 12n ). These are converted to correlated normal 

bivariates ijY  so that: 

 jY1 jj XX 21
2

1

2

1  



 and jY2 jj XX 12

2

1

2

1  



 

where     correlation between population one and population two. 

The normal deviates for both the unpaired and correlated paired observations are transformed 

into binary outcomes using critical values iC  of the normal distribution. If iij CX  , 1ijY , 

otherwise 0ijY   

10,000 iterations of each scenario in Table 5 are performed in a 445557=14000 

factorial design.  
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Table 5. Values of parameters simulated for all test statistics.  

Parameter Values 

1  0.15, 0.30, 0.45, 0.50 

2  0.15, 0.30, 0.45, 0.50 

1n  10, 30, 50, 100, 500 

2n  10, 30, 50, 100, 500 

12n  10, 30, 50, 100, 500 

  -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75 

 

A range of values for 1n , 2n  and 12n  likely to be encountered in practical applications are 

considered which offers an extension to the work done by Choi and Stablein (1982).  

Simulations are conducted over the range   from 0.15 to 0.5 both under 0H  and 1H . The 

values of  have been restricted to   <= 0.5 due to the proposed statistics being palindromic 

invariant with respect to   and 1 . Varying   is considered as it is known that   has an 

impact on paired samples tests.  Negative   has been considered so as to provide a 

comprehensive overview and for theoretical interest, although   < 0 is less likely to occur in 

practical applications.    

Two sided tests with nominal 0.05 is used in this study. For each combination of 10,000 

iterations, the percentage of p-values below 0.05 is calculated to give the Type I error rate  . 

The Type I error rate under 0H ,  for each combination considered in the simulation design, 

should be between 0.025 and 0.075 to meet Bradley’s liberal criteria and to be Type I error 

robust.    

All simulations are performed in R.   
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6 Simulation Results 

A comprehensive set of results with varying independent and paired sample sizes, correlation, 

and proportions was obtained as outlined in Section 5. 

 

6.1 Type I error rates 

Under 0H , 10,000 replicates were obtained for 45557=3500 scenarios. For assessment 

against Bradley’s (1978) liberal criteria, Figure 1 shows the Type I error rates for all 

scenarios where 1 2  using nominal 0.05. 

Figure 1: Type I error rates for each test statistic. 
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As may be anticipated, 1z  is Type I error robust because matched pairs are simply ignored. 

Similarly, 3z  performs as anticipated because the unpaired observations are ignored. 

Deviations from robustness for 3z  appear when 12n  is small and   is large. Although 

deviations from stringent robustness are noted for 3z , this is not surprising since the cross 

product ratio is likely to be small when the proportion of success is low and the sample size is 

low. Crucially, the deviations from Type I error robustness of 3z  are conservative and will 

result in less false-positives, as such the tests statistic may not be considered unacceptable. 

The corrected statistics, 2z  and 4z , generally give Type I error rates below the nominal alpha, 

particularly with small sample sizes. Ury and Fleiss (1980) found that 1z  is Type I error 

robust even with small samples, however applying Yate’s correction is not Type I error 

robust and gives Type I error rates less than the nominal alpha. It is therefore concluded that 

2z  and 4z  do not provide a Type I error robust solution.  

The statistics using the phi correlation coefficient, 6z  and 8z , are generally liberal robust. For 

6z  there is some deviation from the nominal Type I error rate. The deviations occur when 

min{ 1n , 2n , 12n } is small, max{ 1n , 2n , 12n }   min{ 1n , 2n , 12n } is large and 0 .   In these 

scenarios the effect of this is that 6z  is not liberal robust and results in a high likelihood of 

false-positives. It is therefore concluded that 6z  does not universally provide a Type I error 

robust solution to the partially overlapping samples situation. 

The statistics using the tetrachoric correlation coefficient, 7z  and 9z , have more variability in 

Type I errors than the statistics that use the phi correlation coefficient. The statistics using the 

tetrachoric correlation coefficient inflate the Type I error when 25.0 and 12n  is large. 

When min{ 1n , 2n , 12n } is small the test statistic is conservative. A test statistic that performs 
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consistently would be favoured for practical use. It is therefore concluded that  7z  and 9z  do 

not provide a Type I error robust solution to the partially overlapping samples situation. 

Three statistics making use of all of the available data, 5z , 8z  and 10z , demonstrate liberal 

robustness across all scenarios. Analysis of Type I error rates show near identical boxplots to 

Figure 1 when each of the parameters are considered separately. This means these statistics 

are Type I error robust across all combinations of sample sizes and correlation considered. 

 

6.2 Power 

The test statistics 2z , 4z , 6z , 7z  and 9z  are not Type I error robust. Therefore only 1z , 3z , 5z , 

8z  and 10z  are considered for their power properties (where 1H  is true). Table 6 summarises 

the power properties where 1 0.5.  

Table 6. Power averaged over all sample sizes. 

1  2    
1z  3z  5z  8z  10z  

0.5 0.45 
0  

0.095 

0.173 0.208 0.221 0.221 

0  0.133 0.168 0.186 0.186 

0  0.112 0.150 0.166 0.166 

0.5 0.3 
0  

0.509 

0.653 0.807 0.856 0.855 

0  0.569 0.772 0.828 0.827 

0  0.508 0.746 0.801 0.801 

0.5 0.15 
0  

0.843 

0.874 0.975 0.989 0.989 

0  0.834 0.970  0.985 0.986 

0  0.795 0.966 0.980 0.982 

 

For each of the test statistics, as the correlation increases from -0.75 through to 0.75 the 

power of the tests increase. Similarly, as sample sizes increase the power of the test increases.  
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Clearly, 5z  is more powerful than the other standard tests 1z  and 3z , but it is not as powerful 

as the alternative methods that make use of all the available data.  

The power of 8z  and 10z  are comparable. Separate comparisons of 8z  and 10z  indicates that 

the two statistics are comparable across the factorial combinations in the simulation design. 

Either test statistic could reasonably be used for hypothesis testing in the partially 

overlapping samples case.  

 

6.3 Confidence interval coverage 

For 8z  and 10z , the coverage of the true difference of population proportions within 95% 

confidence intervals has been calculated as per the simulation design in Table 5 where 1

2 . The results are summarised in Figure 2. 
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Figure 2: Percentage of iterations where the true difference is within the confidence interval. 

 

Both 8z  and 10z  demonstrate reasonable coverage of the true population difference 21   . 

However, Figure 2 shows that 8z  more frequently performs closer to the desired 95% success 

rate. Taking this result into account, when the objective is to form a confidence interval, 8z  is 

recommended as the test statistic of choice in the partially overlapping samples case. 

 

7 Conclusion 

Partially overlapping samples may occur by accident or design. Standard approaches for 

analysing the difference in proportions for a dichotomous variable with partially overlapping 

samples often discard some available data. If there is a large paired sample or a large 
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unpaired sample, it may be reasonable in a practical environment to use the corresponding 

standard test.  For small samples, the test statistics which discard data have inferior power 

properties to tests statistics that make use of all the available data. These standard approaches 

and other ad-hoc approaches identified in this paper are less than desirable.  

Combining the paired and independent samples z-scores using Stouffer’s method is a more 

powerful standard approach, but leads to complications in interpretation, and does not readily 

extend to the creation of confidence intervals for differences in proportions. The tests 

introduced in this paper, as well as the test outlined by Choi and Stablein (1982) are more 

powerful than the test statistics in ‘standard’ use. 

The alternative tests introduced in this paper, 6z , 7z , 8z  and 9z , overcome the interpretation 

barrier, in addition confidence intervals can readily be formed.  

Tests introduced using the phi correlation coefficient, 6z  and 8z , are more robust than the 

equivalent tests introduced using the tetrachoric correlation coefficient, 7z  and 9z .  

The most powerful tests that are Type I error robust are 8z  and 10z . The empirical evidence 

suggests that 8z  is better suited for forming confidence intervals for the true population 

difference than 10z . Additionally, 8z  has relative simplicity in calculation, strong 

mathematical properties and provides ease of interpretation. In conclusion, 8z  is 

recommended as the best practical solution to the partially overlapping samples framework 

when comparing two proportions. 
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