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Abstract
Collision-based computing (CBC) is a form of unconventional computing in which travelling

localisations represent data and conditional routing of signals determines the output state;

collisions between localisations represent logical operations. We investigated patterns of

Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polyce-
phalum, with confocal microscopy and observed them colliding regularly. Vesicles travel

down cytoskeletal ‘circuitry’ and their collisions may result in reflection, fusion or annihila-

tion. We demonstrate through experimental observations that naturally-occurring vesicle

dynamics may be characterised as a computationally-universal set of Boolean logical oper-

ations and present a ‘vesicle modification’ of the archetypal CBC ‘billiard ball model’ of com-

putation. We proceed to discuss the viability of intracellular vesicles as an unconventional

computing substrate in which we delineate practical considerations for reliable vesicle ‘pro-

gramming’ in both in vivo and in vitro vesicle computing architectures and present optimised

designs for both single logical gates and combinatorial logic circuits based on cytoskeletal

network conformations. The results presented here demonstrate the first characterisation of

intracelluar phenomena as collision-based computing and hence the viability of biological

substrates for computing.

Introduction
Collision-based computing (CBC) is a form of unconventional computing in which travelling
localisations represent data—the presence of which in a specific location represents a logical ‘1’
(TRUE) and vice versa—which are conditionally routed to represent an output state. When two
objects collide, it can be said that computation has been achieved as signal routing is altered.

CBC is best demonstrated with Fredkin and Toffoli’s CBC billiard-ball model (BBM) [1], in
which hypothetical billiard balls of equal mass and dimensions that travel along the grid lines
of a Cartesian lattice at uniform speed may collide with each other, altering their final trajecto-
ries and hence the output of the billiard ball machine. Designed to exploit the laws of physics in
order to maximise computational efficiency, the BBM is a reversible (time-invertible), conser-
vative computing paradigm.
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A computing device comprised of billiard balls will of course never be a viable alternative to
a conventional computer, but rather research in the field will inspire future electrical computer
designs and drive the development of unconventional computing substrates whose range of
uses will extend beyond those of extant architectures. Indeed, in addition to billiard balls, a
great many theoretical and experimental collision-based computing systems have been pre-
sented using such diverse media as pliable soft spheres [2], cellular automata [3, 4] and even
live soldier crabs [5].

Inspired by Margolus’ soft sphere model (SSM) modification of the BBM [2], which differs
from the BBM in that spheres compress on impact and travel as one entity for a finite amount
of time, we designed the following investigation into the viability of live cells as a substrate for
implementing CBC or CBC derivative paradigms. The plasmodium of slime mould Physarum
polycephalum was utilised as the research organism.

P. polycephalum is a true (acellular) slime mould that exists as a macroscopic multinucleate
ameoba-like eukaryotic organism when in its plasmodial (vegetative) life cycle phase (Fig 1).
Slime mould is much-lauded in its value as an unconventional computing substrate [6], but
our choice in utilising is was simply by virtue of it being a giant eukaryotic cell whose cultiva-
tion is rapid, frugal, safe and bereft of ethical considerations.

Intracellular computing is a contentious topic: although organisms can be said to function
in a manner analogous to computers (e.g. solving problems of arithmetic or logic), the way in
which they undertake computation is so divergent from the in silico equivalent that any direct
comparison between the two is, at best, unhelpful. Unconventional computation is dependent
on creative interpretation of the natural world: in this investigation, we observe and interpret
intracellular phenomena in the language of computation—regardless of whether the organism
can be said to undertake conventional computation.

Intraplasmodial calcium stores were regarded as cellular ‘information’ due to our previous
observations and historical literature indicating that slime mould contains significant amounts
of calcium which is transported through the organism in vesicles [7, 8]. Calcium is a well
known secondary messenger with defined roles in many life processes, see [9–11].

From a computing perspective, any chemical that provokes a response within an organism
can be thought of as carrying ‘information’ as it provides a means of coupling an operation to
an effect, or more broadly, environment to entity. Furthermore, as the delivery, release and
response to such a substance are quantifiable phenomena, output recognition is aided. We are
by no means the first to recognise that calcium can be viewed as a component of an excitable
chemical processor [12, 13], although other authors have only presented theoretical models
based on the concept of reaction-diffusion computing.

Materials and Methods
Stock cultures of P. polycephalum (strain HU554 × HU560) plasmodia were cultivated on 2%
non-nutrient agar (NNA) plates at 22 ± 2°C in the absence of light. Plasmodial tubes were pre-
pared by creating two 1mL ‘islands’ of 2% NNA on a large glass coverslip with a gap of c.
10mm separating them. A 20mm2 sample of plasmodium, taken from its anterior margin, was
removed with a scalpel blade and placed onto one agar blob. The coverslip was then placed in a
9cm plastic Petri dish, which was sealed with paraffin film and left in the dark for 48 hours to
propagate to the second agar island, forming a tube between the two (Fig 1).

The fluorescent calcium dyes, Fura-2 and Calcium Green-5N (Life Technologies, USA),
were prepared in distilled water at concentrations of 5mM and 1mM respectively, and were
introduced into the P. polycephalum plasmodium via microinjection using hollow glass needles
with a tip diameter of c. 30μm and a CellTram microinjection system (Eppendorf, Germany).
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Approximately 750nL of dye solution was delivered. Samples were imaged immediately after
microinjection.

Confocal imaging was performed with a Zeiss Axiovert 200 inverted microscope combined
with a Perkin Elmer Ultraview ERS FRET-H spinning disk confocal microscopy system. Details
of image post-processing are listed in the appendices.

Results
Calcium was found to travel through the plasmodial cytoplasm in discrete, spherical deposits
and tended to travel in pre-determined directions, as opposed to taking random routes through
the cytoplasm, at a rate of approximately 5μm s−1. Collisions of these quantities of calcium
were observed as regular occurrences. The types of collision observed may be summarised as
follows, based on the observation of 42 collisions (Fig 2):

1. Type I: Reflection—57.1% of all collisions; two vesicles collide and ricochet. The incident
paths are divergent from their apparent initial course.

2. Type IIa: Fusion, adhesion—9.5%; following collision, both vesicles appear to cling to each
other but their appearance is that of two separate structures. The vesicles may dissociate
after an indeterminate length of time.

3. Type IIb: Fusion, assimilation—14.3%; as with type IIa, but the contents of one are notice-
ably assimilated into the other. The shape of the resulting vesicle is still spherical but must
appear to be approximately the same volume of its two constituent vesicles.

4. Type III: Unloading (annihilation)—9.5%; following a type I or type IIb collision event,
the contents of the vesicle disperse immediately following the collision.

5. Type IV: Unknown—9.5%; no apparent outcome from collision, or collision did not occur
despite appearance, e.g. if vesicles passed in close proximity.

Collisions whose outcome was unclear due to the vesicles passing out of the microscope’s
depth of field were discounted. Localisations of calcium substantially larger than surrounding

Fig 1. Photograph of the P. polycephalum plasmodium (yellowmaterial) cultivating two ‘islands’ of
agar substrate overlying a glass coverslip.Note how the organism forms a tube-like structure linking the
two agar blobs, which is discoloured following microinjection with the fluorescent calcium indicator, Fura-2.
Scale bar = 10mm.

doi:10.1371/journal.pone.0139617.g001
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counterparts were also discounted as no measures for distinguishing between the endoplasmic
reticulum and vesicles were utilised.

Discussion

Identification and characterisation of vesicles
The spherical quantities of calcium were deduced to be vesicle-bound due to their comparative
size, elastic interactions with other similar objects, indications from literature and their propen-
sity to travel down distinct paths through the cytoplasm. These well-circumscribed pathways
are highly likely to be the cell’s cytoskeletal network, as vesicle transport is mediated by the
cytoskeleton in other protists [14] as well as plant and mammalian cells [15, 16]. It should be
noted, however, that the majority of eukaryotic cells do not contain such an abundance of cal-
cium-filled vesicles, the role of which in slime moulds is analogous to that of a striated muscle
cell’s sarcoplasmic reticulum [17]. The cytoskeleton was not tagged with fluorescent proteins
in this study so as not to induce deleterious effects to the health of the organism and/or disrupt
vesicle transport mechanisms, although we refer the reader to Ref. [18] which details a study
into plasmodial cytoskeleton topology and functionality as an intracellular data network.

Both tubulin microtubules and actin microfilaments transport vesicles through a cell via
motor proteins—dyneins and kinesins in the case of microtubules and myosin for microfila-
ments [16, 19]—bound to the surface of the vesicle that physically ‘walk’ or ‘slide’ the structure
along the cytokeletal protein chain. Thus we may state that collisions occur on a three-dimen-
sional planar surface in Euclidean space, the cytoskeleton, analogous to the manner in which
objects travel along grid lines in the BBM and SSM.

Computing within the vesicle collision model
Let us describe how computing may be implemented with vesicles on cytoskeletal highways
with a hypothetical collision event under the assumption that a system for adequately control-
ling vesicle collisions were developed. Consider an abstracted cytoskeletal protein chain. It has
multiple branches that articulate onto it (which may or not be composed of the same protein)
via intermediate link proteins: vesicles may travel onto or exit our original cytoskleletal protein
via these branches depending on the orientation of the branch, the branch protein type and/or
the type of motor proteins residing on the surface of the vesicle (we direct the reader to the fol-
lowing review of vesicle targeting [20]). Collisions may occur when two vesicles travel on the
same protein in opposing directions or the same direction but at different speeds, or when two
vesicles meet following the convergence of two paths via a branch.

The collision outcome is determined by some as-of-yet unelucidated factor/s but could
include the quantity of calcium in each vesicle relative to their critical capacities, vesicle-surface
proteins, the variety of cytoskeletal protein the vesicles travel down, the total velocity of colli-
sion and/or the angle of collision. To address a salient criticism of the work presented here, we
do not differentiate between actin, tubulin or intermediate filament-related collisions, or
indeed any collisions that may occur independently of the cytoskeleton (see following sections),

Fig 2. Snapshots of confocal video footage showing calcium vesicle collisions. (A–D) TI. The vesicles collide and reflect. (E–H) TIIa. Note the rotation
of the fused object. (I–L) TIIb. The arrowhead-marked vesicle appears to merge into the arrowed vesicle. Upon colliding, the incident vesicle temporarily
reverses the direction of its movement against the flow of cytoplasm. (L–P) TIII. Vesicle contents dissipate into the cytoplasm in the fourth pane. (Q–T) TIV.
Both vesicles continue to move as if they did not actually collide. (A–H) Fura-2, (I–T) Calcium Green-5N. Scale bar = 10μm, time steps approx. 250ms.

doi:10.1371/journal.pone.0139617.g002
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and hence we present our preliminary model statistically based on relative probabilities of colli-
sion type.

The predominant reflection-type (Type I) collisions may result in either one or both vesicles
assuming a new trajectory. Vesicles appear to deform and temporarily merge upon collision for
approximately 50–100 ms (e.g. Fig 2A–2D), indicating that the resulting reflection occurs due
to elastic recoil. The change in incident vesicle trajectory is likely to be caused by their diversion
onto a different branch of the cytoskeletal network, which may result from their changing
‘track’ on the original protein chain (e.g. the motor protein’s feet ‘skip’ to a different protein
molecule). This is consistent with our knowledge of vesicle targeting as vesicle movement is
generally towards the cell’s periphery (see following section): the cytoskeleton is extremely
dense, meaning that it is likely to be highly redundant and hence multiple paths are compatible
with a vesicle’s targeting mechanisms. As such, TI collisions may be used to simulate collision
events according to Margolus’ SSM [2], subject to a few alterations in what we will name the
‘vesicle collision model’ (VCM).

Type II (fusion) and III (annihilation) collisions cannot be directly equated to conservative
logical functions as the quantity of vesicles changes following a collision. Both mechanisms
may still hold practical use, however e.g. as delay elements, 2–to–1 FAN-IN or STOP operations.
Furthermore, the natural incidence of vesicle annihilation would suggest that it is a route
towards controlled calcium release which, if adequately controlled, could hold singular value in
provoking a measurable output by the cell.

Type IV collisions likely arise from two vesicles passing very close to each other on the same
protein chain or on adjacent chains, although it is difficult to ascertain the exact mechanism
with any certainty. On the assumption that vesicles pass close to each other on the same path,
we can equate this with the SSMmechanism of two signals crossing at points between vertices
that do not result in a collision: this is an attractive mechanism for signal synchronisation in
practical VCM circuits.

Experimental characterisation of collisions as Boolean logic
It must be made emphatically clear that cells do not themselves compute with vesicles, but we
conceive that collision phenomena may be characterised as in vivo Boolean operations.

It is, for example, apparent that TI collisions can be characterised as a realisation of Fredkin
and Toffoli’s interaction gate. This gate may be configured to function as the AND gate when its
output is recognised as TRUE as a result of the input configuration hA^Bi (Fig 3), although it
may also be considered as a variety of other gates depending on how the output is interpreted.
Conversely, a TIII collision’s output is consistent with that of an XOR gate—i.e.
hA ^ �Bi _ h�A ^ Bi, due to the annihilation of both signals when the input is configured as
hA^Bi. These examples illustrate that slime mould vesicle interactions can be characterised as
a computationally-universal set (i.e. AND and XOR) of Boolean operations.

Practical implementation of the VCM
It is now pertinent to discuss how these natural mechanisms may be hijacked for practical use
and the challenges to be overcome towards this goal. As with other CBC models, the topology
of the interaction environment will dictate the types of logical operation that can be imple-
mented therein. Minute manipulation of cytoskeletal protein chains has been achieved [21],
but only in vitro. Furthermore, whilst cytoskeletal growth is essentially programmable—
through the use of of actin binding proteins that drive tip growth of the actin network during
pseudopodic extension [22], although controlled polymerisation technology is still very much
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in its infancy [23]—the assembly of designer cytoskeletal circuitry is likely to be difficult to
achieve in practice.

This highlights the need to design VCM circuitry using logical gates based on common
topological features so that all of the necessary components are already present within a model
cell. It may also be the case that the point at which the vesicles collide within the circuitry does
not need to be exact due to the expected redundancy of cytoskeletal networks: as long as a colli-
sion occurs within a given section of cytoskeletal protein chain, there are several incident paths
along which a vesicle may be reflected that lead to the same point.

With regards to achieving vesicle synchronisation, as slime mould calcium transport is
heavily linked to shuttle streaming [24]—the rhythmic bi-directional flow of cytoplasm insti-
gated by muscle protein contraction and hence intracellular calcium flux—manipulation of
streaming feedback mechanisms will be the most feasible approach to this end. Indeed, if the
streaming mechanism is considered to be an abstracted biochemical oscillator whose frequency
can be altered with relative ease [25, 26], then clocked circuit designs would seem to be the sim-
plest route to achieving synchronisation. That said, synthetic approaches such as in vitro syn-
thesis of vesicles and their associated membrane proteins may also be profitable to explore [27,
28]. The introduction of delay elements would greatly aid the problem of synchronisation.

Although vesicle transport is a cooperative effort between microtubules and microfilaments,
it is crucial to emphasise that the properties of the circuit—principally, its topology—will be
entirely dependent on the protein/s from which they are formed. The following designs for

Fig 3. Confocal micrographs to illustrate how vesicle trajectories may be interpreted as an implementation of the interaction gate following a TI
collision. (A–D) TI collision event. (E) Enlarged frame from image [D] with trajectories of vesicles shown, where grey components represent the output of the
collision shown (i.e. both inputs = 1) and dashed lines show the presumed unperturbed course for each vesicle. Calcium Green-5N staining, scale bars [A–
D], [E] = 10μm, time steps approx. 250ms.

doi:10.1371/journal.pone.0139617.g003
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practical circuits are entirely based on actin microfilaments arranged in well-characterised con-
formations. Actin was chosen as over tubulin as we have previously emphasised its role in
intracellular computation [18]: whilst the high strength of actin networks [29, 30] and their
recent demonstration to participate in purposeful long-range vesicle transport [31] as well as
local transport make actin an apparently exemplary VCMmedium, its choice over tubulin or
indeed mixed-protein networks is essentially arbitrary. Crucially, our devices are based on the
assumption that they are integrated into dense, highly interconnected, stable cortical networks,
wherein directional vesicle transport occurs.

By way of demonstration, Fig 4 contains schematic diagrams for actin-based interaction
AND, NOT and FAN-OUT logical circuits which demonstrate that with suitable control over cyto-
skeletal topology (or indeed a probabilistic approach based on common protein conforma-
tions) a computationally universal set of gates could be implemented. These designs capitalise
upon TI collisions occurring at ‘X-shaped’ junctions, which can be realised by microfilament
cross-linking proteins such as spectrin or filamin, and branches created by Arp2/3 complex.

Fig 4. Schematic diagrams of three vesicle collision circuits based on TI collisions occurring on actin structures. Solid arrows represent starting
trajectories which continue to their final destination if no other signal is present and dashed arrows represent the trajectories resulting from a collision. (a) The
interaction gate functioning as an AND gate, formed from one cross-shaped junction and two branches. (b) A NOT gate formed from three branches. Note that a
constant ‘control signal’, denoted by the number ‘1’ is required. (c) A FAN-OUT gate formed from two NOT gates. Again, control signals are used, ‘a’ and ‘f’, but
the output configuration is altered to allow for signal duplication, with ‘c’, ‘g’ and ‘h’ representing outputs, ‘e’ and ‘h’ are garbage bits.

doi:10.1371/journal.pone.0139617.g004
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There are an enormous range of possibilities when designing ‘useful’ cytoskeletal circuits
(indeed, only two-dimensional schemes are listed here for ease of recognition) and in acknowl-
edgement of this, the designs presented detail a feasible schematic for a collision type we have
experimentally observed (the interaction gate) and two we have not. The NOT and FAN-OUT
make use of constantly TRUE control signals, i.e. a regular, synchronous supply of vesicles,
which despite not having been observed to occur naturally would be a plausible method for
overcoming the notorious difficulties in implementing logical disjunction and FAN-IN/OUT in
conservative logic [32]. Furthermore, if a certain degree of control over the type of collision is
exerted (e.g. through selective expression of vesicle surface proteins), VCM circuit design
becomes significantly more flexible, as demonstrated in Fig 5, which shows a half adder circuit
based on the principle of TIIb collisions.

In his treatise on reversible computing, Toffoli [33] emphasised that the concept of function
composition must equate to 1-to-1 mapping of inputs in physical models of computing, mean-
ing that the use of the FAN-OUT function in our devices invalidates this criterion: in other words,
the devices presented here that utilise signal replication are not isentropic systems. Despite
classical models of CBC being hypothetically non-dissipative, this is not the case with the VBM
as, being essentially powered by chemical energy (mostly the hydrolysis of ATP), a certain
amount of heat will be lost from the system (see following subsection).

For completeness, we estimate an experimental model of an adder circuit using NAND

(formed from NOT plus AND) and FAN-OUT gates to be c. 1μm in length (at approximately 10
gates long, each consisting of two branching sections spaced a realistic distance of c. 50nm
apart [34, 35]) with an operation time ranging between 0.1–1.0s, using maximum and mini-
mummeasured estimates of vesicle transport velocity ranging across all known types of cyto-
skeletal vesicle transport [16, 36].

It should be noted that vesicle direction—both in the correct general direction and along the
correct microfilament in orthogonal junctions—is dictated by the central microfimalent’s ori-
entation towards the cell surface, as the vast majority of vesicle transport in actin networks is
directed by the myosin motor proteins that link vesicles to the network [31]. As previously

Fig 5. Schematic diagram for a half-adder circuit where TIIb (fusion; assimilation) collisions are
utilised. If only one vesicle is present, it will pass down the XOR (Sum) pathway: note that in this instance, the
fact that it crosses the AND (Carry) pathway does not matter as it will not meet and collide with another vesicle.
If two vesicles are present, they meet and fuse, leading to one signal being present on the Carry path. Path
lengths not to scale.

doi:10.1371/journal.pone.0139617.g005
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mentioned, vesicle targeting and possibly also collision type is dictated by the physical proper-
ties of the vesicle, principally the proteins bound to its surface. We conceive that through the
selection of desirable vesicle properties (whether this is through extraction from live (possibly
genetically-altered) cells [37, 38], differential centrifugation of cell homogenate [39, 40] or in
vitro synthesis) [27], when coupled with careful introduction of vesicles into specific areas of
the system—likely through microinjection for in vivo systems or specialised, synchronous
input lines for in vitro systems—is a plausible method for achieving complete control over a
VCM system whose interaction environment topology is suitably prepared.

On the robustness of biological computing substrates
It is an inescapable fact that a living system will contain an extremely large number of degrees
of freedom. This implies that elucidating the precise interactions between each individual com-
ponent is virtually impossible—especially in a system such as this where several underlying
principles of operation are incompletely characterised. On face value, therefore, it would be
reasonable to state that slime mould intracellular vesicle collisions are nondeterministic and
hence the system is of limited use as a computing substrate. In the original description of the
BBM [1], however, it was noted that in ‘real world’ systems, the degrees of freedom may be
divided into a small number of highly regular (mechanical) modes—those that obey strict
physical laws—and a much larger number of disordered (thermal) modes: the laws which the
former obey are necessarily well-defined (rooted in classical mechanics as opposed to statistical
laws) and hence predictable (and also technically time-invertible, although this is a moot point
when discussed in relation to a system that does not attempt to implement conservative logic).
Thus, when we observe non-reversible, non-conservative behaviour, this is the result of from
energy transfer from mechanical to thermal modes (damping).

We conceive, therefore, that vesicle dynamics are programmable on the basis that their
behaviour is predominantly controlled by its deterministic modes, which are likely to include
vesicle-surface proteins as previously discussed. In vivo, initial conditions of the system are
such that the energy levels of the mechanical modes are vastly greater than those of the thermal,
as energy must be able to flow preferentially from the former to the latter. This energy gradient
is maintained by constant signal regeneration: this is unsurprising as biological organisms tend
to be extremely good at maintaining homeostatic equilibrium, but critically this implies that a
hijacked cell or an in vitro system’s behaviour will be inherently predictable if the same condi-
tions are maintained.

Summary
The motivation for research into unconventional/biological computing includes, briefly, our
attempts to curtail the rapid approach to the physical limitations of the materials in silicon-
based architectures, the apparent computing power to energy consumption ratio of biological
substrates, the polluting nature of conventional computer manufacture and the emergent prop-
erties of biological substrates, such as self-assembly/organisation, massive parallelism and the
huge potential information density of macromolecules, the retrieval of which poses signifi-
cantly fewer issues concerning heat dissipation. Devices that utilise whole or components of
live organisms are not putative successors or even competitors with general purpose comput-
ers, but will provoke nature-inspired designs for artificial systems and find niche uses in a
range of research disciplines such as biomedical science and sensing.

We have demonstrated here the viability of a living biological system for implementing a
computationally universal collision-based computing system using vesicles filled with signal-
ling molecules. Vesicle collisions may be used by slime mould as a component of important
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intracellular signalling processes, but we suggest that this natural mechanism may also be
‘hijacked’ for implementing Boolean logic. Future work will consist of differential observation
of collisions in separate actin and tubulin networks, network analysis of collision circuits (e.g.
with directed network graphs derived from vesicle motion tracking [41]), vesicle synthesis and
tagging, in vitro growth of cytoskeletal networks and investigations using different cell types.

Appendix

Image post-processing
Photographs were captured with an Olympus SP-820UZ digital camera. All micrographs were
post-processed with Volocity (Improvision, USA) and underwent colour assignment and con-
trast enhancement. Deconvolution was not used. Image plates were produced with Cytosketch
(Cytocode, NZ). Unprocessed image files will be made available on request.
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