Identification and U-control of a state-space system with time-delay
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Summary:

This article presents a state-space model with time-delay to map the relationship between known
input-output data for discrete systems. For the given input-output data, a model identification
algorithm combining parameter estimation and state estimation is proposed in line with the
causality constraints. Consequently, this article proposes a least squares parameter estimation
algorithm, and analyses its convergence for the studied systems to prove that the parameter
estimation errors converge to zero under the persistent excitation conditions. In control system
design, the U-model based control is introduced to provide a unilateral platform to improve the
design efficiency and generality. A simulation portfolio from modelling to control is provided with
computational experiments to validate the derived results.
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1 ' INTRODUCTION

Various conventional algorithms have been used first for estimating the parameters of control
systems*and some identification algorithms have been developed for linear systems>® and nonlinear
systems’™ but some of them assume that input-output data are available at every sampling instant
and most of control algorithms assume that the parameters of the considered systems are known.*13
The law of dynamic motion of a system can be described by differential/difference equations. These
equations can be transformed into a set of the first-order differential/difference equations, which are
called the continuous-time/discrete-time state-space models. The state space models are convenient
for controller design, system modelling and identification, signal processing and filtering,'* for
example, the pole placement, the observer design,’® and Kalman filter. Time-delay systems are very
common in practical situations in nature like, for instance, transmission problems, communications,
population growth models and other control systems.!®

Many control processes (e.g., three-tank water tank, the continuous reactor and the distillation tower)
can be best modelled by systems involving time-delay in the state.!” Effects of time-delay on the
stability and performance of control systems have drawn attention of many investigators in different
engineering disciplines, including structural systems, chemical processes, remotely controlled
undersea and aerospace robots and structures, and manufacture processes. Sanz et al. studied the
observation and stabilization of linear time-varying systems with time-varying measurement delay,*®
Javier and Zheng proposed the unknown input functional observability of descriptor systems with
neutral and distributed delay effects,'® Chen et al. presented the variational Bayesian approach for
ARX systems with missing observations and varying time-delays.?’ The recursive or iterative search
schemes can be used for finding the solutions of linear and nonlinear matrix equations?** and of
deriving new system identification algorithms.?>3! The convergence analysis of identification



algorithms is important to provide assurance/effectiveness for the applications in control system operation® and the
other related areas. Earlier convergence analysis assumed that the input and output signals of the system under consid-
eration had finite nonzero power, and the noise was an independent and uniformly distributed random sequence with
finite fourth-order moments. Such ideal assumptions are difficult to meet in practice. The convergence rate of the stan-
dard recursive least squares parameter estimation is obtained by assuming that the process noise has finite second order
and higher order moments. Since then, most of the convergent results of the least squares algorithm have made so-called
“weak" assumptions. Zhang et al. proposed the recursive parameter estimation methods and convergence analysis for
bilinear systems.****

Since a foundation study, the U-model based control, the U-control in short, has received certain range of attention,
even not greatly. Regarding the U-control approach, it is different from those model based design approaches in essence
of separating system performance from plant models and also different from data driven design approaches as using the
plant models to determine the controller output by solving the dynamic inverse of the plant models. The merit U-control
claimed is that the control design on this platform is no long classify linear/nonlinear, polynomial/state space model
structures, secondly U-control provides great simplicity/generality using linear control system design principle to nonlin-
ear control systems, especially in specifying the system transient response and steady state performance in a systematic
formulation.

For the U-control progression, polynomial including ration (fotal nonlinear) model based design has been predomi-
nantly studied with pole placement,’® general predictive control, and Neural control,” the U-Smith predictor enhanced
control with input delay. A comprehensive review of U-control has been reported. It has noted that the critical challenge in
U-control is the uncertainty in dynamic inversion. This article expands the U-control to a class of linear state space mod-
els with state delay. Except a recent work using U-control for dealing nonlinear systems with input delay, the U-control
has not been introduced for dealing systems with state delay.

Regarding the related research, it should be noted that the stochastic gradient (SG) identification algorithm has a small
amount of calculation, but low estimation accuracy, and slow convergence speed.” This article focuses on the modeling
and control of state-space systems with time-delays. The key idea is to integrate the Kalman filter and the recursive least
squares algorithm to directly identify the parameters of the systems, which has high accuracy. Compared with the previous
work in Reference 39, the proposed algorithm gives the joint state and parameter estimation to improve the convergence
speed, and gives the convergence analyzes to ensure the stability of the algorithm.

The main contributions of this article are listed as follows.

+ The convergence of the least squares algorithm is proved better than that of the stochastic gradient algorithm.

» In order to reduce computation and storage costs, a joint state and parameter estimation is proposed for state-space
systems with time-delays and its convergence of the proposed algorithm is proved under the weak persistent excitation
condition.

« U-control expansion to state space model with state delay, which considers the problem by dynamic inversion, different
from the predictor based and the other popular approaches.

» Provides a simulation portfolio with model identification and U-control system design, which could be an integrated
package for potential users with their ad hoc applications.

For the rest of this article, Section 2 derives the Kalman filter to estimate the states of the time-delay system. Section 3
proves the convergence of the parameter estimates obtained from the proposed recursive least squares algorithm. Section 4
gives the U-model control. Section 5 presents the case studies. Numerical validation of the analytical results is derived in
Sections 2-3. Finally, Section 6 gives some concluding remarks.

2 | AUGMENTED STATE ESTIMATION ALGORITHM
Consider the following state-space system with time-delay,

X+ 1) = Ayx() + Agx(f — 1) + byu(t) + wit), (1)

W) = eyx(f) + v(t), (2)
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where x(f) £ E" is the state vector, u(f) € & is the system input, y(f) € R is the system output, vif) € [ is a random noise
with zero mean, w(t) € " is a noise vector with zero mean, A, € ™", 4, € B™", b, € B"and ¢, € B™" are the system
parameter matrices/vectors.

Let I'be an identity matrix of appropriate sizes, v(f) is the observation noise which is assumed to be zero mean Gaussian
white noise with covariance 2.

Remark 1. If A; =0, then Equations (1)-(2) have no time-delay term A x(f —1) and thus reduce to the standard
state-space model. Because the delay term Ajx(f — 1) exists, the standard Kalman filtering method for the standard
state-space model with known parameters cannot be applied to the time-delay state-space system in (1)-(2). This is the
difficulty of the state estimation of the time-delay state-space system with unknown parameters. This motivates us to
present new parameter and state estimation algorithm for time-delay state-space systems.

Remark 2. This article is to develop the Kalman filter and recursive algorithm for combined parameter and state estima-
tion based on the given measurement data {u(f). y(f)}, taking causality constraints into consideration. The identifiability
of a system depends on its controllability and observability. Therefore, it is very important whether the state-space mod-
els with time-delays are controllable and observable. We assume that the state-space model with time-delay is a minimal
implementation. The controllability and observability can be achieved under a mild condition.

Remark 3. In real industry, not all states can be measured by sensors. In the face of this problem, one approach is to con-
sider the corresponding input-output representation by eliminating the available state vector.*>** But such an approach
cannot solve the identification and state estimation of the system under consideration. In this article, a recursive state
estimation algorithm is presented to update the state estimation by constructing a state observer.

Define an expanded state vector and some matrix/vectors:
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Equations (1) and (2) can be equivalently rewritten as
A4 A b w(t
X+ 1= [ ' “] X+ [ ”] u(£)+[ }], (3)
I 0 0 0
W = [er, 01X + W)
= CX(t) +w(t). 4)

The Kalman state estimation algorithm of estimating the state vector X{f) in (3)-(4) can be expressed as



X(t+ 1) = AX() + bu(t) + LIO[y(H) — CX(1)). (5)
L(t) = AP(NC"[6* + CP(HCTT, (6)
P(t+ 1) = AP(DAT — AP(1)C"[? + CPOCT ' CPINAT. (7

About the state estimation algorithm of the system in (1)-(2), we have the following theorem.

Theorem 1. If the parameter matrices/vector A, Ay and b, are known, then we have the following state estimation
algorithm to generate the estimate X(t) of the state vector x(t) in (1) and (2):

Xt + 1) = Ay X(0) + Agk(t — 1) + AgLa(t — Dyt — 1) — e1(t - 1)]

+buu(t) + LiOy(D) — e (1), (®)
Li(0) = [ArP1(D) + APT, (0T (0), (9)
Ly(t) = Py(hel (), (10)

Pi(t + 1) = [A/Pi(0) + AaPTL(D]AT + [A1 Pra(D) + AgP2(1)]A]

— [A,Py(1) + AGPT, (D]} [e, Py (DAT + ¢, Pyy(DA] I (D), (11)
Pyy(t+1) = Ay Py(t) + AgPL (1) — [A1 Pi(t) + AgP,(D]e] e Pr(ty (1), (12)
Py(t + 1) = Py(t) — Pr(O)ci e Po( ' (8). (13)

The proof is given in the appendix.

When the parameter matrices/vector A,, A;. and b, are unknown, then we use the estimated parameter vector B(t) =
[A, (), A(t), by ()] to construct the estimates A, (1), A (f), and b,(f) of A,, A;, and b, and use the estimates to compute
the estimate &(f) of the state vector x(f):

Ft+ 1) = Ay (D) + Ag(DR(F — 1) + Ag(OLa(f — DY — 1) — ey 30t — 1]

+ by (u(t) + Ly (0[¥(0) — e %(0)], (14)
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by (1) = [by(D). by (D). ... . b, (D] (21)

The estimated parameters are used to compute the system states, the proposed algorithm has low computational cost
and high accuracy.

3 | RECURSIVE PARAMETER ESTIMATION ALGORITHM

In order to derive the identification model of the time-delay system in (1) and (2), here ignores the noise term w(f). From
(1), we have

Xt + 1D =x (0 +agx(t — 1)+ bu(f), i=12,....n-1, (22)
X (t 4 1) = @pXy (D) + @y X500 + - - - + 01X, (1) + A, X(E — 1) + bu(t). (23)
Leta =@y, Q1. ... .0 |" € E". Using the property of the shift operator z and multiplying (22) by z=! and (23) by z " give

Xfi—i+D=xqt-D+agx(t—i—1D+but—-10, i=12,....n—1,
Xplf—n+ 1) = ax(t — n) + agpx(t — n— 1) + byult — n).

Adding all expressions gives

X0 = ax(t —n) + dg X0 — 2) + ageX(f — 3) 4+« -+ U X — )+ agxif —n—1)
+ bt — 1)+ bault — 2) + - - - + byult — n)

= ax(t—n) + 3 agx(t—1— 1)+ ¥ bult - j). (24)
i=1 =1

Define the parameter vector & and the information vector ¢(t) as
@ :=[aaq.....a+ Qe 1. @n. b} |T € R, (25)
@) 1= [xX7(t— 20Xt = 3), . Xt —n—Du(t— ... .u(t—n)|" € R7*", (26)

The identification model of the system is
W =08 + (1. (27)

Equation (27) is the parameter identification model of the systems. The proposed algorithms in this article are based on
this identification model. Many identification methods are derived based on the identification models of the systems.
Since Wt) is a white noise, forming a quadratic cost function,*-*

'_it _ aTenal2
Jlfe)—zgw} P (O'F.

and minimizing J,(€') lead to the following recursive least squares algorithm of estimating 6':
6/'(H)=6'(t — 1) + Ls([)(0) — "(06'(t — 1), (28)
Li(t) = Ps(t — D@1 + ¢ (OP3(t — Dp(t)] ™, (29)

P = Pt = 1) + (D" (D). (30)



Because the information vector ¢b(f) contains the unknown variables x(f — i), the above algorithm cannot be implemented.
The solution is to replace the unknown x(f — i) in ¢p(f) with its estimate X(f — ), we have the state estimate-based recursive
least squares parameter estimation algorithm for time-delay state-space systems:

O'(1)=0'(t— 1)+ L0 — P (D€'t — 1. (31)

La(t) = Pa(t = DO + d (OPs(t — D] (32)

P D)= P (t— 1)+ (01 (1), (33)

PO =[-8t -3).... F(t—n—D.ut—1.... .ult—m", (34)
6(1) = [gy (1), .. (D) + gy (1), (00, By (D] (35)

The initial value é’(l:l} is taken as a zero matrix of appropriate sizes, y(i), lilti)fitl), w(i), u(i), and y(i) are zero for i < 0. The
proposed state and parameters estimation algorithm for time-delay state-space systems in this article can combine other
parameter estimation algorithms***¢ to study the identification problem of other linear and nonlinear stochastic systems
with colored noises®™ % and can be used to estimate the parameters of other linear, bilinear, and nonlinear systems and
can be applied to fields™* such as chemical process control systems. )

The steps of computing the state estimation vector in (14)—(21) and the parameter estimation vector & (t) in (31)—(35)
are listed in the following.

Let t = 1, set the initial values 9’ (0) = 1yayn/Po, P3(0) = polyzsy, P1(1) = I, P3(1) = I, pp = 10°, &(1) = 0.
Collect the input-output data u(t) and w(f), form n?:(r) by (34).

Compute the gain vector L3(f) by (32) and the covariance matrix Ps(f) by (33).

Update the parameter estimalinp vector 8'(f) by (31). )

Read d,(1), @4(f) and b,(f) from & (1) according to the definition of & (f).

Form A, (1), A4(t) and by (t) by (20) and (21).

Compute the gain vector L;(f) by (32) and the covariance matrix Ps(f) by (33).

Compute the state estimation vector X(t + 1) by (14).

Increase f by 1 and go to step 2, continue the recursive calculation.

Ll L

Remark 4. The novelty of the article is to present a new parameter estimate-based state estimation algorithm in (14)-(21)
and the state estimate-based parameter estimation algorithm in (31)-(35), that is a joint state and parameter estimation
algorithm for time-delay state-space systems with unknown parameters. Although the least squares is basic for linear
systems, the parameter estimation algorithm in this article is based on the state estimates because the states in the infor-
mation vector are unknown and they are replaced with the estimated states in our algorithm. Also, we have analyzed the
convergence of the proposed algorithm.

Remark 5. The recent work used the dynamic regressor extension and mixing (DREM) technique to establish the param-
eter convergence of continuous-time linear regression without the usual requirement of the regressor persistency of
excitation. Also, the DREM technique was also applied to nonlinear regressions with “partially™ monotonic parameter
dependence.”” Here we study the convergence of the state estimate-based parameter estimation algorithm under the
persistent excitation condition. The condition can be improved by means of the DREM technique.

Theorem 2. Forthe system in (1)-(2) and the recursive least squares algorithm, suppose that {v(t)} is a white noise sequence
with zero mean, E[Wt)] = 0, E[v(t(i)] = 0.t # 1, EN*(H)] = 62(t) < 2 < oo, and that there exist constant 0 < a; < f; < oo
and ty = 0 for t = ., the persistent excitation condition hold:™

ol < %gnﬁamm) <plL as.

assume that E[||é'(0) — &'’ =8 < o, é’(D) and v(t) are uncorrelated. Then the parameter estimates E;'(t) given by the
recursive least squares algorithm converge uniformly to the true parameters & at the speed of (1/ \./E),
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or limy . & ()= 6.m.s., where Amax[X] is the maximum eigenvalue of matrix X.
The proof can be done in a similar to the way in Reference 70.

4 | U-MODEL CONTROL

Consider a class of general state-space (including state delayed) representation for single-input single-output (SISO)
nonlinear discrete time systems

x(k + 1) = Flx(k), x(k — d), u(k)), (36)
W) = hix(k)), (37)

where x(k) € [R" is the state vector, u(k) € [t is the control input, d > 0is an integer denoting state delay, y(k) € |t is the
system output respectively. F € " is a smooth vector function to describe the model dynamics and h € E is a smooth
function to map the state and input to the output. Throughout the study, assume the system relative degree r equals to
the system order n and has stable zero dynamics (that is the system model has stable inverse), the full state vector x is
available for measurement.

The state space model of (36)-(37) can be converted into a multilayer U model as

M,
nlk+1)= E Ay (k)fy 0 (D),

=0

MJu—'I
X sk 4 1) = 3 Ay (00O, ),
=0

M,
ok + 1) = Y Aok (),
=0
yik) = hixik)),

where fj;(x;(k)) is a smooth function of the ith state.
Back stepping root resolving routing to determine control input u(k) from the U-state space model. The algorithm is
listed below.

1. For a given desired trajectory y,,(k), assign y(k + 1) = yu(k).
2. Solve x,(k + 1) = b~ Yym(k)).
3. In back step order, solve

M,
nEk+Dexnk+1)— Zﬂl,-(k}futxz(k}) =0,
=0
M,
Xk +1) € Xpa(k + 1) = 3 An gk} i1 (K)) = 0.
=0

4. To determine the control input u(k), solve the last line of the U-state space model by

Mn
uk) € Xyl +1) = Y Ar()fis(ulk)) = 0.
j=0



With reference to Figure 5, the design procedure is outlined below:

1. Establish a stable linear feedback control system structured in Figure 5, assign G for the closed loop system transfer
function.

2. Specify G as a linear system with damping ratio, undamped natural frequency, and steady state error and/or the other
performance indices (such as poles and zeros, and frequency response).

3. Let the plant model be a constant unit or the virtual pant G, = G;le =1 : u — y have been achieved. To determine
a linear invariant controller G, by taking inverse of the closed loop transfer function G using G, = ic ={1-G)r'G.
Accordingly, the desired system output is equivalently determined by the output y,, of the controller_Gcl.

4. Convert plant model G, into G, (U-model).

5. To achieve G = G;,] Gp=1: u—y to guarantee the desired output y.(f), determine the controller output u(f) by
solving an equation y,,(t) — Go(U-model)= 0, that is, u(f) £ yn(t) — Gp(U-model)= 0.

6. Locate/connect the blocks with reference to Figure 5.

5 | CASESTUDIES

Case study 1. The model identification
Consider the following state-space system with time-delay:

0 1 0.35 —-0.38 1.00
xt+1)= [ ]x(r)+[ ]x(r—l)+[ ]u(r),
—0.25 —-0.95 0.18 —-0.05 0.97
v = [1,0]x(0) + wit).

In simulation, the initial value is randomly generated and should be distributed in the unit circle to ensure the stability
of the system.”™ The input {u(f)} is taken as an uncorrelated persistent excitation signal sequence with zero mean and
unit variance, and {v(f)} as a white noise sequence with zero mean and variances o2 = 0.10° and &2 = 0.50°. Applying the
proposed RLS algorithm to estimate the parameters of this example system, the parameter estimates and their estimation
errors are shown in Tables 1-3 and Figures 1-4.

From Tables 1-3 and Figures 1-4, we can draw the following conclusions.

« The convergence of the least squares algorithm is better than that of the stochastic gradient algorithm.

« The proposed algorithm is effective for estimating the parameters of the state-space model. With the data length
increasing, the parameter estimation errors become smaller and converge to zero.

« A low noise variance leads to higher accuracy of parameter estimates. As the data length f increases, the parameter
estimates approach their true values.

« It is clear that the proposed state observer can generate accurate state estimates because the state estimates are close
to their true values as f increases. The predicted outputs match well with the actual outputs.

TABLE 1 The RLS parameter estimates and errors with &% = 0.50%

k 100 200 500 1000 2000 3000

a; = —0.25 —0.33525 —0.28095 —0.25048 —0.243%96 —0.25789 —0.25759
a, = —0.95 —0.98993 —0.91664 —0.91787 —0.92302 —0.95503 —0.95990
ax =018 0.17029 0.16224 0.16971 0.17816 0.18697 0.18745
dz =—0.05 —0.10814 —0.04455 —0.02085 —0.02857 —0.05779 —0.05399
b, =0.97 1.01024 0.94950 0.98804 0.96431 0.97949 0.97858
ay =035 0.33398 0.34280 0.34241 0.35291 0.35606 0.34878
ay; =—0.38 —0.34817 —0.33635 —0.35828 —0.35574 —0.36390 —0.36977
b, = 1.00 0.75219 0.94818 0.95514 0.99924 0.98418 0.98300

& (%) 12.19427 4.04025 3.17803 1.95805 1.25696 1.21002



TABLE 2 TheRLS parameter estimates and errors with % = 0.10%

k 100 200 500 1000 2000 3000
a, = -025 —0.26399 —0.25426 —0.24912 —0.24401 —0.25495 —0.25148
a; = —-0.95 —0.96078 —0.94307 —0.94232 —0.93860 —0.95422 —0.95184
ay; =018 0.17273 0.17103 0.17933 0.18115 018146 018047
az = —0.05 —0.05890 —0.04254 —0.04315 —0.04081 —0.05417 —0.05022
b, =0.97 0.72608 0.82876 0.93568 0.94028 096824 0.97125
ay; =035 0.33903 0.34153 0.35004 0.35390 0.35013 0.34874
a3 =—0.38 —0.18443 —0.38131 —0.37458 —0.37553 —0.37624 —0.37910
b, =1.00 0.84029 0.98227 0.96844 1.00587 0.98853 0.98538
& (%) 12.84049 6.29245 2.11585 1.53185 0.64056 0L.e6005
TABLE 3 TheSG parameter estimates and errors with ¢ = 0.10°
k 100 200 500 1000 2000 3000
a; = -0.25 0.90459 0.42713 —0.10452 —0.19756 —0.21675 —0.24012
a; = —-0.95 —0.30568 —0.35767 —0.45342 —0.64689 —0.89432 —0.93467
a,; =018 0.19274 0.19183 0.17453 0.16435 0.15176 0.15756
dz = -0.05 —0.01935 —0.01478 —0.03982 —0.04378 —0.05017 —0.05867
b, =097 0.58348 0.63886 0.72358 0.80438 0.90646 (.94865
ay;; =035 0.24783 0.24765 0.26434 0.28356 0.31073 031564
ay; = —0L38 —0.30453 —0.31907 —0.32970 —0.32776 —0.34235 —0.36875
b, =1.00 0.80989 0.84217 0.85841 0.90527 0.91013 091788
& (%) 62.22479 48.02295 32.33475 20.88767 11.85797 6.86405
0.35 T T T
03r -
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FIGURE 1 The parameter estimation error & versus f
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Case study 2. U-control system design

For showing off the efficiency of the U-control system design directly, take up the plant model

D]
u(r).
1

] [0.19 —o.os] [x](k—l)] [
+ +
016 —0.12| |xk-1

X (k)
Xxa(k)

| S
| ——
-
~
- o
|
—
=
< o
_|__
1]
|
—_— -
- -
+ +
Ao b
= T
el

|

xi(k)
xa(k)

yit =1, OI[

and convert it into U-state space model below

xp(k + 1) = Apolk) + An(k)xz(k),
Xk + 1) = A3plk) + Ay (Kulk),

YK = x (k).



where

A(k) = 020a(k — 1) — 0.01xz(k — 1),

An(k)=1,
izu(k) = —O.D]J:](k) - 022}:2(;:} + Dlﬁxl(k - 1) + OlZJ:g(k - l}.
An(k)=1.

With reference to the general U-control system design routine, make the following step-by-step design:

1. Establish a stable linear feedback control system structured in Figure 5, assign the closed loop system transfer function
with _i‘—; =G = Hﬁ%, where 7 is the Z transform operator, the two poles are p; = 0.1, p; = 0.5, and no
steady state error to a step input.

2. Todetermine a linear invariant controller G;; by taking inverse of the closed loop transfer function G gives G, = % =
1-6ric= %. Accordingly, the desired system output is equivalently determined by the output y,, of
the invariant controller G .

3. To achieve G, = G;] G, =1: u—y toguarantee the desired output y,,(t), determine the controller output u(t) by
solving an equation y,,(f) — G,(U-model)= 0, that is, u(t) € y,,(f) — G,(U-model)= 0. In this case, the back stepping
routine is used in the root solving.

4. The established control system is consistent with structure in Figure 5.

Figures 5 and 6 show the simulated responses, which confirm the specified performance and design efficiency.
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6 | CONCLUSIONS

This article has taken up a category of state-space models with state time delay as the research background, and accord-
ingly developed the solution for the model identification {parameter and state estimation in specific) and control system
design. The unknown states of the system are obtained under the framework of the state observer. The unknown param-
eters are estimated by the least squares from sampled data. The numerical example shows that the parameter estimates
converge to their true values and the state observer based on the estimated parameters makes the estimated state curves
match the actual state curves. The proposed state and parameters estimation for dual-rate state-space systems with
time-delays in this article can combine other estimation algorithms’ ™ to study the parameter identification of other
linear and nonlinear stochastic systems with colored noises”* and can be applied to other literatures such as infor-
mation processing and transportation communication systems.** The U-control has been adopted from the authors’
recent research, but this article has presented a comprehensive back stepping routine for dynamic inversion for the
U-state space models in such delayed control system design, which is different from those predominant approaches in
this field. Hopefully, this can stimulate a new research/application direction in the future. The modeling-control studies
have been explored and demonstrated that the proposed algorithms/procedures are effective and efficient in design and
implementation.”!
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APPENDIX. PROOFOF THEOREM

The proof of Theorem 1. Let
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Similarly, from Equation (7), we have
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Thus, we have
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Equations (A2)-(A8) form the state estimation algorithm in (8)-(13) for the time-delay state-space systems in (1) and (2):
The proof is completed.



