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This article explores the linear and nonlinear stability of double-diffusive density-driven convection in
the context of carbon sequestration in deep saline aquifers. The anisotropy, due to the thermal and solutal
diffusivities, is considered in a porous layer where the permeability is assumed to be layer dependent.
Solute concentration is assumed to decay via a first-order chemical reaction. It is observed that vary-
ing the ratio of vertical to horizontal solutal and thermal diffusitivies does not significantly affect the
behaviour of linear instability. This is in contrast to the nonlinear stability results. It is also observed that
when the solute and thermal diffusion rates dominate the solute and thermal reaction rates, a change in
the permeability has no significant effect on the onset of convection. However, when the solute reaction
rate dominates the diffusion rate a change in permeability has a notable effect on the instability of the
system. It is observed that the effects of geothermal gradient on the onset of convection are negligible as
compared to the solutal effects induced by the diffusion and dissolution of CO2 in deep saline aquifers.

Keywords: double-diffusive convection, anisotropic porous media, carbon sequestration, chemical reac-
tion, stability theory

1. Introduction

The capture and geological storage of carbon dioxide (CO2) in subsurface formations for the purpose
of reducing anthropogenic emissions of CO2 into the atmosphere is a highly promising technological
advance, see Benson et al. (2008), Izgec et al. (2008), Nordbotten & Celia (2011) and Niem et al.
(2017). The combustion of fossil fuels, mainly in power plants, is the biggest contributor to climate
change through the increase of CO2 in the atmosphere, IPCC (2013).

The storage capacity of storing CO2 in underground deep saline aquifers has the potential for reduc-
ing greenhouse gas emissions while continuing the use of fossil fuels, see Metz et al. (2005), Holloway
(2005). These saline aquifers are very large, unused and available in many parts of the world, see Gale
(2004).

When supercritical CO2 is injected above its critical point of pressure and temperature into deep
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saline aquifers, dissolution of supercritical CO2 in brine increases the density of CO2-rich brine as
compared to under-saturated brine, see Ennis-King & Paterson (2005), Ennis-King et al. (2005), Has-
sanzadeh et al. (2007) and Neufeld et al. (2010). As a result of density differences, the supercritical
CO2 migrates upwards and is trapped under impermeable cap-rock as a separate phase, see Bachu et al.
(1994). Density-driven convection can occur, reducing the reservoir mixing time from thousand to hun-
dred of years, see Harfash (2013), Ennis-King & Paterson (2005), Ennis-King et al. (2005), Kneafsey
& Pruess (2010), Backhaus et al. (2011) and Slim et al. (2013).

The role of geochemical reactions on the dissolution of CO2 in deep saline aquifers is largely unex-
plored despite it being able to contribute to a change in density, see Riaz et al. (2006) and Ward et al.
(2014). Chemical interactions between carbon dioxide and brine are complex and can lead to a long-
term stability and storage for CO2 in subsurface formation. Many researchers have studied the effect of
first and second order chemical reactions on the onset of convection for carbon dioxide sequestration in
deep saline aquifers, see e.g. Ennis-King & Paterson (2007), Ghesmat et al. (2011), Andres & Cardoso
(2011), Andres & Cardoso (2012), Kim & Choi (2014), Ward et al. (2014), Hill & Morad (2014), Kim
& Kim (2015) and Kim & Wylock (2017).

Ennis-King & Paterson (2007) investigated the effect of a geochemical reaction on the convective
mixing of CO2 and showed that it accelerates the dissolution rate of CO2 in geological formations.
Kim & Choi (2014) analyzed the effect of a first-order chemical reaction in an isotropic porous media
and suggested that the chemical reaction makes the system more stable and convective motion doesn’t
occur up to certain values of the Rayleigh and Damkohler number. Ward et al. (2014) studied stability
analysis for convection in an isotropic porous media by using spectral and asymptotic methods where
they assumed that the solute concentration decayed via the first order chemical reaction. They observed
that the base flow undergoes numerous secondary bifurcations and there is an intricate network of mixing
mode states.

The instability occurs due to the density difference between CO2-rich brine and unsaturated brine.
Modelling this physical phenomena is the main impetus behind the extensive research in this field and
leads to the mathematical idealization of the stability of flows through the use of partial differential
equations. Stability analysis of flows in porous medium helps to determine whether diffusive phenomena
are stable or not. It has been of fundamental interest in various areas of science and engineering, such
as geothermal engineering, physics and in carbon sequestration etc. For more details on the convection
in porous media and applications, we refer to the book Nield & Bejan (2010) and the references therein.

Relevant to this article, Ennis-King & Paterson (2005) and Ennis-King et al. (2005) performed a sta-
bility analysis to investigate the role of the anisotropy in porous media at the onset of convection. Riaz
et al. (2006) presented a linear stability analysis of density-driven miscible flow in a porous medium,
based on the dominant mode of the self-similar diffusion operator to predict the critical time, the asso-
ciated unstable wavenumber and a scaling relationship for the onset of convection. Xu et al. (2006)
also studied the same problem and confirmed that linear theory gives a good understanding of the onset
of convection. Hill & Morad (2014) studied the stability analysis in an anisotropic porous media in
the presence of a first-order chemical reaction and have shown that anisotropy in porous media plays
an important role in convective instabilities. They observed that when the diffusion rate is dominated
by the reaction rate, varying the ratio of horizontal to vertical solute diffusivities does not significantly
affect the behaviour of instabilities, while changes in the permeability has a substantial effect on the
instability.

In the process of carbon dioxide sequestration in aquifers, the geothermal gradient (temperature)
along with the concentration of CO2 may contribute to the instability of the brine due to the increase in
the density of brine. Javaheri et al. (2010) studied the effects of geothermal gradients on the stability
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of double-diffusive natural convection induced by dissolution of CO2 concentration and geothermal
gradiant for a horizontal porous layer saturated with the brine in deep saline aquifers. They found
that the natural geothermal gradient does not have a significant impact on the onset time of convective
dissolution of CO2 whereas concentration gradient has a significant effect.

Islam et al. (2013, 2014) investigated double-diffusive convection in two-dimensional brine satu-
rated homogeneous and heterogeneous horizontal porous media subjected to the dissolution of CO2
concentration and geothermal vertical gradients. Their results demonstrated that variation in tempera-
ture across the boundaries does not significantly affect the onset time of convection but the variation
in the concentration played a significant role on the stability of the system. It was also observed that
convection increases with increasing both RaS (solutal Rayleigh number) and heterogeneities and con-
centration of CO2 increases over time with increasing the ratio of vertical to horizontal permeability in
reservoirs. Islam et al. (2014a) analysed the effect of geochemical reaction rate of different orders on the
density driven double-diffusive natural convection of CO2 in brine saturated geothermal reservoir and
showed that geothermal gradients play a minor role in storing the CO2 in deep saline aquifers. However
they may have an effect over long periods, and heterogeneity plays an important role in depositing CO2.

Sabet et al. (2017) performed a linear stability analysis and direct numerical simulation to study
the stability of double-diffusive convection in a horizontal porous media in the presence of variable
viscosity. Their results showed that a higher Lewis number and viscosity contrast helps to increase the
fluid mobility in the diffusive boundary layer.

In this work, we study the linear and nonlinear stability of double-diffusive convection in the con-
text of carbon sequestration. Both thermal and solutal effects drive the convective instabilities in an
anisotropic porous medium with constant solutal and thermal diffusivities and linearly layer-dependent
permeability. Convective mixing and diffusion play an important role for trapping of CO2 in forma-
tion brines in deep saline aquifers. The porosity (φ ) here considered to be 0.30 for a typical reservoir,
see Oldenburg & Pruess (1998). The eigenvalue problems obtained from both linear and non-linear
stability theories is solved by the Chebyshev-tau method , which is a spectral technique coupled with
QZ-algorithm, see Dongarra et al. (1996); Straughan & Walker (1996).

2. Mathematical formulation of the problem

Let us consider a fluid saturated porous layer Ω bounded by two horizontal infinite parallel plates sepa-
rated by distance 2d. Let Ω =R2× (−d,d) and Oxyz be a Cartesian frame of reference. Assuming that
the permeability varies in the vertical direction k(z) = k0S(z), the flow governing Darcy equation under
the Oberbeck-Boussinesq approximation can be written as

µ

k(z)
v =−∇P−bgρ, (2.1)

where b = (0,0,1) is the unit normal vector in the z−direction, v is the velocity vector, P is the pres-
sure, g is the acceleration due to gravity, µ is the dynamic viscosity of the fluid, k0 is the reference
permeability and S(z) = 1+λ z/d.

Here we consider the dissolution of a solute in Ω , where the solute undergoes a first-order chemical
reaction, in which the solution density is increased due to the convective mixing. where the heat of the
reaction is also modelled, as Ghesmat et al. (2011) and Islam et al. (2014a). Due to this effect, we are
considering that there is a first-order reaction in solution by the natural geothermal temperature gradient.
We denote the dissolved concentration in solution by C and temperature by T .

For a small change in density due to the temperature and concentration at a constant pressure, the
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brine density is assumed to be linear with C and T . The density ρ(T,C) is therefore given by

ρ(T,C) = ρ0(1−αT (T −T0)+αC(C−C0)),

where

αT =− 1
ρ0

[
∂ρ

∂T

]
C

and αC =
1
ρ0

[
∂ρ

∂C

]
T
,

ρ0, T0 and C0 are the reference values of density, temperature and concentration respectively. αT and
αC are the coefficients for thermal and solutal expansions. Along with the equation for conservation of
mass, the governing equations of the flow i.e. Darcy’s law, concentration and heat transport are given
by Islam et al. (2014a) and Ward et al. (2014)

∇ ·v = 0, (2.2)

µ

k0s(z)
v =−∇P−bgρ0(1−αt(T −T0)+αc(C−C0)), (2.3)

1
M

∂T
∂ t

+v ·∇T = Lh∇
′2T +Lv

∂ 2T
∂ z2 −βT T, (2.4)

φ
∂C
∂ t

+v ·∇C = φkh∇
′2C+φkv

∂ 2C
∂ z2 −βCC, (2.5)

where ∇′2 = ∂ 2

∂x2 +
∂ 2

∂y2 . In these equations, βT and βC are the reaction rate constants of temperature
and solute, Lh and Lv are the constants horizontal and vertical thermal diffusivities and kh and kv are the
constants horizontal and vertical solutal diffusivities.

(ρ0h)m = (1−φ)(ρ0h)s +φ(ρ0hp) f ,

denotes the effective heat capacity of the matrix (fluid and rock), where h is the specific heat of the solid,
hp is the specific heat of the fluid at constant pressure. Subscripts s, f and m denote the solid, fluid and
porous component of the medium, respectively. The coefficient M is the ratio of heat capacities defined
by M = (ρ0hp) f /(ρ0h)m.

We assume that the top and bottom boundaries are impermeable to the fluid flow, i.e. v= 0 at z=±d.
The upper boundary conditions for temperature T and solute concentration C are C = C0, T = T0 at
z = d. The lower boundary conditions are assumed to be a no-flux boundary condition,

∂C
∂ z

∣∣∣
z=−d

= 0,
∂T
∂ z

∣∣∣
z=−d

= 0.

Let (vB,PB,TB,CB) be the basic steady-state solution of the system (2.2)−(2.5) for the motionless case,
i.e. vB = 0. Utilizing the boundary conditions yields the temperature and concentration fields in the
steady-state as

TB(z) =
T0 cosh(

√
d2βT/Lv(z/d +1))

cosh(2
√

d2βT/Lv)
, (2.6)

CB(z) =
C0 cosh(

√
d2βC/φkv(z/d +1))

cosh(2
√

d2βCφkv)
. (2.7)
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To assess the stability of the system, we introduce a perturbation (u,π,θ ,Φ) to the basic steady-state
solutions (vB,PB,TB,CB) such that v = vB +u, P = PB +π, T = TB + θ , C = CB +Φ , and governing
equations are parametrized using the following scaling variables ( * denotes dimensionless quantity)

t =
d2

LvM
t∗, u =

Lv

d
u∗, π =

µLv

k0
π
∗, x = x∗d,

θ =

√
µLvθ0

gρ0αtk0d
θ
∗, Φ =

√
Φ0µkv

gρ0αck0d
Φ
∗.

Substituting the perturbations and non-dimensionalised variables into the system (2.2)− (2.5) and
dropping the starred form, the system of dimensionless governing equations is given as

1
f (z)

u =−Oπ +b
√

RT θ −b
√

RS

Le
Φ , (2.8)

O ·u = 0, (2.9)

∂θ

∂ t
+u ·Oθ +RT

√
DaT M1(z)w =

∂ 2θ

∂ z2 +ηO2
1θ −RT DaT θ , (2.10)

φ̂
∂Φ

∂ t
+u ·OΦ +RS

√
DasM2(z)w =

φ

Le

(
∂ 2Φ

∂ z2 +ξO2
1Φ−RSDasΦ

)
, (2.11)

subject to the perturbed dimensionless boundary conditions

u = 0, θ = 0, Φ = 0, at z = 1,

u = 0,
∂θ

∂ z
= 0,

∂Φ

∂ z
= 0, at z =−1. (2.12)

Here u = (u1,u2,u3) with w = u3, f (z) = 1+λ z with |λ |< 1 to ensure that f (z)> 0,

M1(z) =
sinh(

√
RT DaT (z+1))

cosh(2
√

RT DaT )
, M2(z) =

sinh(
√

RSDaS(z+1))
cosh(2

√
RSDaS)

and φ̂ = φM, ξ = kh
kv
, η = Lh

Lv
,

RT =
gρ0αtdk0θ0

µLv
, RS =

gρ0αcdk0Φ0

µkv
, Le =

Lv

kv

DaT =
βT dµ

gρ0αtk0θ0
, DaS =

βcdµ

gρ0αck0Φ0φ

with RT ,RS are the thermal, solute Rayleigh numbers and DaT ,DaS are the thermal, solute Damkohler
numbers, respectively. ξ is the ratio of horizontal to vertical solutal diffusivities and η is the ratio of
horizontal to vertical thermal diffusivities. Le is the Lewis number.

We assume that the perturbations (u,π,θ ,Φ), defined on (x,y,z) ∈ℜ2× [−1,1], are periodic func-
tions in x and y directions of periods 2π/ax,2π/ay, respectively, with ax > 0,ay > 0 and the wave

number a =
√

a2
x +a2

y . We will denote the periodicity cell by Ωp = [0,2π/ax]× [0,2π/ay]× [−1,1].
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3. Stability Analysis

It is crucial to assess the onset of convection (i.e. instability) after dissolution of carbon dioxide in brine
to understand the processes occurring in the carbon dioxide sequestration in saline aquifers. To achieve
this we perform two different stability analyses; namely a linear instability and a non-linear stability
analysis (using the energy functional approach Straughan (2004, 2008)). Linear theory gives only suf-
ficient conditions for instability, whereas non-linear analysis (via energy functionals) gives sufficient
conditions for stability. The motivation for exploring both the linear and non-linear stability analyses is
to identify the regions of sub-critical instabilities (if they exist) for the given flow governing parameter
space.

3.1 Linear instability analysis

In order to investigate the linear instability analysis of the base flow, it is assumed that the perturbed
velocities, pressure, concentration and temperature are small, such that the quadratic and higher order
terms are neglected from the system (8)− (11). As the resulting system of governing equations is linear
and autonomous, we may seek solutions of the form

[u,v,w,π,θ ,Φ ] = [u(z),v(z),w(z),π(z),θ(z),Φ(z)]p f (x,y)eσt , (3.1)

where p f (x,y) is a plan-form which tiles the plane (x,y) with O2
1 p f (x,y) =−a2 p f (x,y) and a2 = a2

x +a2
y

is the overall wavenumber (ax and ay are the wave numbers in x and y directions). The plan-forms rep-
resent the horizontal shape of the convection cells formed at the onset of instability. These cells form
a regular horizontal pattern tiling the (x,y) plane, where the wavenumber a is a measure of the width
of the convection cell. Here σ = σr + iσi is a growth rate parameter, where σr and σi are the real and
imaginary parts of σ , respectively. Re(σ)< 0 corresponds to the case when the disturbance to base flow
decays exponentially with time to zero which makes the system stable. Re(σ) > 0 corresponds to the
case when disturbance grows exponentially with time leads to the system becomes unstable.

Letting D = d
dz and taking double curl of the linearized version of Eq. (2.8), where the third com-

ponent is chosen (i.e. u3 = w and the fact that u is solenoidal), we have the following set of governing
equations for the linearized system

f (D2−a2)w−λDw+
√

RT a2 f 2
θ −
√

RS

Le
a2 f 2

Φ =0, (3.2)

(D2−a2
η)θ −RT DaT θ −RT

√
DaT M1(z)w =σθ , (3.3)

(D2−a2
ξ )Φ−RSDaSΦ−

(
Le
φ

)
RS
√

DasM2(z)w =σ(MLev)Φ , (3.4)

subject to the boundary conditions

w = 0, θ = 0, Φ = 0 at z = 1,

w = 0,
∂θ

∂ z
= 0,

∂Φ

∂ z
= 0 at z =−1. (3.5)

The sixth-order system (3.2)− (3.5) is solved by using the Chebyshev-tau method, which is a spectral
technique coupled with the QZ-algorithm, see Dongarra et al. (1996) and Straughan & Walker (1996).
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Numerical results for the linear theory will be presented Section 4. During the numerical simulation it
is noted that for the given set of flow governing parameters the growth rate parameter σ is always found
to be real at the onset of convection.

3.2 Nonlinear stability analysis

To achieve a global nonlinear stability bound in the stability measure L2(Ω), we first remove the pressure
term from Eq. (2.8), by taking double curl and using Eq. (2.9) to yield

O2w− λ

f
∂w
∂ z
−
√

RT fO2
1θ +

√
RS

Le
fO2

1Φ = 0. (3.6)

To proceed further with the global non-linear stability analysis, we use generalized energy functional
technique by adopting the differential constraint approach, see Van Duijn et al. (2002), Pieters et al.
(2006), Hill (2009), Capone et al. (2010), Capone et al. (2011), Hill & Morad (2014) and Gautam &
Narayana (2019). Multiplying Eq. (10) by θ and Eq. (11) by Φ , respectively and integrating over
domain Ω yields

d
dt

(
1
2
‖θ‖2

)
=−

∣∣∣∣∣∣∣∣∂θ

∂ z

∣∣∣∣∣∣∣∣2−η‖O1θ‖2−RT DaT‖θ‖2−RT
√

DaT 〈M1(z)w,θ〉, (3.7)

Le
φ

d
dt

(
φ̂

2
‖Φ‖2

)
=−

∣∣∣∣∣∣∣∣∂Φ

∂ z

∣∣∣∣∣∣∣∣2−ξ‖O1Φ‖2−RSDaS‖Φ‖2−
(

Le
φ

)
RS
√

DaS〈M2(z)w,Φ〉, (3.8)

where ∇1 =
∂

∂x i+ ∂

∂y j and 〈. , .〉 and ‖ · ‖ denote the inner product and norm on L2(Ω) respectively. We
now define the energy functional E(t) as

E(t) =
1
2
‖θ‖2 + τ

(
Le
φ

)
φ̂

2
‖Φ‖2, (3.9)

where τ is a positive coupling parameter. Differentiating E(t) with respect to t and using Eqs. (3.7) and
(3.8), we derive the following identity

dE
dt

= I −D ,

where
I =−RT

√
DaT 〈M1(z)w,θ〉− τRS

√
DaS〈M2(z)w,Φ〉,

D =

∥∥∥∥∂θ

∂ z

∥∥∥∥2

+η‖O1θ‖2 +RT DaT‖θ‖2 + τ

∥∥∥∥∂Φ

∂ z

∥∥∥∥2

+ τξ‖O1Φ‖2 + τRSDaS‖Φ‖2.

Defining the maximization problem

1
RE

= maxH

(
I

D

)
,

where H is the space of admissible perturbation solution to equations (2.8)− (2.11) subject to con-
straint equation (3.6), we have

dE
dt

6−D

(
RE −1

RE

)
.
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Utilising the Poincare inequality 2π2‖u‖L2(Ω) 6 ‖∇u‖L2(Ω), where Ω is an open connected locally
compact Hausdorff space, it follows that D > rE for some positive constant r. Hence

dE
dt

6−
(

RE −1
RE

)
rE.

After integration, we obtain
E(t)6 E(0)e−art , (3.10)

where a = RE−1
RE

. The inequality (3.10) gurantees that E(t)→ 0 exponentially as t → ∞ for RE > 1.
Clearly, the decay of Φ and θ follows by the definition of E(t). Using the Holder’s and Young’s
inequalities in Eq.(8) yields

1
1+λ

‖u‖2 6
Λ

2
√

RT‖θ‖2 +
χ

2

√
RS

Le
‖Φ‖2 +

1
2
‖u‖2

(
1
Λ

+
1
χ

)
,

for constants Λ > 0 and χ > 0. Choosing Λ = 2
√

RT (1+λ ) and χ = 2
√

RS
Le (1+λ ) gives

‖u‖2 6 (1+λ )2
[

Ra‖θ‖2 +
Rs
Le2 ‖Φ‖

2
]
. (3.11)

From Eqs. (3.9) and (3.11), it is observed that the decay of u follows from the decay of E(t). Hence
the system is stable for RE > 1 in the stability measure L2(Ω).

Introducing the Lagrange multiplier Ψ , such that

Ψ(x)
(

∇
2w− λ

f
∂w
∂ z
−
√

RT f ∇
2
1θ +

√
RS

Le
f ∇

2
1Φ

)
= 0,

and using normal modes representation which is of the form as given in Eq. (3.1), the Euler-Lagrange
equations for the maximization problem 1/RE are

RE

(
f (D2−a2)w−λDw+

√
RT a2 f 2

θ −
√

RS

Le
a2 f 2

Φ

)
= 0, (3.12)

RE

(
f 2(D2−a2)Ψ −λ

2
Ψ +λ f DΨ −RT

√
DaT f 2M1θ − τ

Le
φ

f 2RS
√

DaSM2Φ

)
= 0, (3.13)

RE
(
RT
√

DaT M1w−a2 f
√

RTΨ
)
= 2(D2−a2

η)θ −2RT DaT θ , (3.14)

RE

(
Le
φ

RS
√

DaSM2w+

√
RS

τLe
a2 fΨ

)
= 2(D2−a2

ξ )Ψ −2RSDaSΨ , (3.15)

with the corresponding boundary conditions

w = 0, Ψ = 0, θ = 0, Φ = 0 at z = 1,

w = 0, Ψ = 0,
∂θ

∂ z
= 0,

∂Φ

∂ z
= 0 at z =−1. (3.16)

Eqs. (3.12)− (3.16) forms an eight-order eigenvalue problem for RE , where global stability holds
if RE > 1 for all eigenvalues RE (while maximizing over RS,τ and minimizing over a2). This eigen-
value problem is solved numerically by using the Chebyshev-tau method, which is a spectral technique
coupled with QZ-algorithm, see Dongarra et al. (1996) and Straughan & Walker (1996).
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4. Numerical results

In this section, the linear instability and non-linear energy theory numerical results are presented in
relation to the physical variables in the system; namely the critical solutal Rayleigh number RS, the
thermal Rayleigh number RT , the solutal Damkohler number DaS, the thermal Damkohler number DaT ,
the ratio of horizontal to vertical solutal and thermal diffusivities ξ and η and λ (such that 1+ λ z
describes the non-dimensional variable permeability varying in z−direction).
Figure 1 gives a visual representation of the linear instability thresholds with varying λ for different

FIG. 1. Visual representation of linear instability threshold for DaS = 0.005,0.01,0.05,0.2 and 0.5 with critical solutal Rayleigh
number RS plotted against λ , where RT = 10,DaT = 0.01,η = 1,ξ = 1,Le = 1.

values of DaS, respectively. From this figure it is noted that for the values of DaS being between
0.005 to 0.05 (i.e. diffusion rate dominates solutal reaction rate), increasing the permeability λ in the
vertical direction causes the system to become stable. In contrast to this, as the value of DaS is further
increased (i.e. when solutal reaction rate dominates diffusion rate, for values of DaS = 0.2 and 0.5) a
change in permeability λ causes system to become unstable. Therefore, there is a critical value of DaS
approximately 0.1 between two distinct behaviours for which λ becomes independent of the stability
behaviour.
Figure 2 gives a visual representation of linear instability threshold with varying Le for different values
of ξ . From Figure 2, it is clear that with increasing Le up to 0.9 an increase in ξ stabilizes the system.
After Le = 0.9, there is no effect of ξ to be observed.
Figures 3a and 3b give a visual representation of the stability thresholds obtained in both linear and

nonlinear theories with varying RT for different values of η . Harfash (2013) pointed out that the two
theories would contradict each other by providing entirely opposite phenomena on the stability of the
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FIG. 2. Visual representation of linear instability threshold for ξ = 0.5,1.0,and1.5 with critical solutal Rayleigh number RS
plotted against Le, where RT = 10,DaS = 0.001,DaT = 0.01λ = 0.5,η = 0.01.

system. Similar to Harfash (2013), in the present problem we observe that the nonlinear theory provides
precisely the opposite phenomena observed in linear theory as shown in Figures 3a and 3b. From
Figures 3a, 3b, it is noted that as the thermal Rayleigh number is increased in the linear theory the
critical value of RS is increased while in the case of nonlinear theory the same is reduced. This shows
that RT in linear theory has a strong stabilization affect whereas the same has a destabilization effect in
the nonlinear theory.
Figure 4 gives the variation of critical RS in both the linear and nonlinear theories against DaS with

varying ξ for fixed other flow governing parameters. It is clear from this Figure that the behaviour of
neutral stability curves follow the similar trend in both linear and nonlinear theories for different values
of ξ . It is observed that increasing ξ stabilizes the system. Destabilization is seen from DaS = 0.0001
to DaS = 0.1 and apparently stabilization afterwards.

When all the thermal parameters are fixed, the linear theory results obtained in the present paper
strengthen the observations made by Hill and Morad (2014) for pure solutal convection. In particular,
in spite of having quantitative effects on the stability of the system, the nonlinear stability neutral curves
follow the similar trend as that of linear stability curves. The critical RS in nonlinear theory is lesser
than that of the critical RS in linear theory yielding the regions of sub-critical instabilities. Furthermore
it is observed that the region of sub-critical instabilities is narrowed from DaS = 0.0001 to DaS = 0.1
and this region is widened with further increase in DaS.
Figure 5 gives a visual representation of the linear instability threshold with varying DaT for different

values of η , respectively. From Figure 5, it is observed that for fixed values of η with increasing
the values of DaT = 0.0001 to DaT = 0.08 (i.e. when diffusion rate dominates thermal reaction rate)
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FIG. 3. Visual representation of linear instability threshold for ξ = 0.5,1.0,and1.5 with critical solutal Rayleigh number RS
plotted against Le, where RT = 10,DaS = 0.001,DaT = 0.01λ = 0.5,η = 0.01.
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FIG. 4. Visual representation of linear (solid line) and nonlinear (dashed line) stability threshold for ξ = 0.5,1.8 with critical
solutal Rayleigh number RS plotted against DaS, where RT = 10,DaT = 0.01,η = 1,λ = 0.2,Le = 1.

stabilizes the system and further increasing (i.e. when thermal reaction rate dominates diffusion rate)
destabilizes the system. The threshold for the onset of convection reduces with increasing the value η .
Figure 6 gives the variation of critical RS in both the linear and nonlinear theories against DaS with

varying λ for fixed other flow governing parameters. From this Figure, it can be seen that there are
potential regions for possible sub-critical instabilities. In region 1 (up to DaS = 0.08), the region of
sub-critical instabilities is decreased and the same is increased in region 2 where DaS > 0.08. For mono-
diffusive case it is observed by Hill and Morad (2014), that when the solutal diffusion rate dominates
the solute reaction rate a change in the vertical permeability has no effect on the stability of the system.
This is not true in the case of double diffusive convection with varying permeability in vertical direction.
The threshold for the onset of convection in linear theory is increased with increasing λ up to DaS = 0.1
and this threshold is decreased from DaS = 0.1 onwards with an increase in λ . Similar behaviour is seen
even in the nonlinear thresholds with marginal changes.
Figure 7 gives the variation of critical RS in both the linear and nonlinear theories against DaS with vary-
ing η for fixed other flow governing parameters. With increasing DaS, the ratio between the horizontal
and vertical thermal diffusivities (η) has no significant effect on the onset of convection. However in
this case too, it is observed that the sub-critical instabilities would arise and follow the similar trend with
DaS as pointed out in the previous case. In conclusion, the ratio of horizontal to vertical thermal diffu-
sivities (η) has no significant effect on the linear and nonlinear thresholds with the solutal Damkohler
number.
Figures 8a, 8b give a visual representation of the stability thresholds obtained in both linear and non-

linear theories with varying λ for two different values of η and ξ , respectively. From these Figures it is
observed that varying the vertical permeability of the medium stabilizes the system. From Figure 8a it is
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FIG. 5. Visual representation of linear instability threshold for η = 0.5,1.5 with critical solutal Rayleigh number RS plotted
against DaT , where RT = 10,DaS = 0.01,λ = 0.5,ξ = 1,Le = 1.
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FIG. 6. Visual representation of linear (solid line) and nonlinear (dashed line) stability threshold for λ = 0.0,0.9 with critical
solutal Rayleigh number RS plotted against DaS, where RT = 10,DaT = 0.01,η = 1,ξ = 1,Le = 1.

clear that increasing η (i.e. horizontal thermal diffusivity dominates vertical thermal diffusivity) reduces
the linear instability threshold for the onset while the nonlinear stability threshold is unaffected. The
region of sub-critical instabilities exists between these two theories but this region is slightly reduced
with η . In contrast to this, from Figure 8b, it is noted that increasing ξ (i.e. horizontal solutal diffu-
sivity dominates vertical solutal diffusivity) has a significant effect on the thresholds obtained in both
linear and nonlinear theories by stabilizing the system. However, the region of subcritical instabilities
is enlarged with increasing ξ . From Figures 8(a) and 8(b), it is observed that the parameter ξ has
precisely the opposite behaviour as compared to η for varying λ .
Figure 9 give a visual representation of the stability thresholds obtained in both linear and nonlinear

theories with varying λ for different values of DaT for fixed values of all solute parameters. From this
Figure it is observed that for the fixed value of DaT , increasing the vertical permeability of the medium
stabilizes the system in both linear and nonlinear cases. When thermal reaction rate dominates diffusion
rate (i.e. for higher values of DaT ) a change in the vertical permeability of the medium has a significant
effect on the instability of a system. Furthermore it is noted that increasing the value of λ , the region of
sub-critical instabilities is increased in both linear and non-linear theories.
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FIG. 7. Visual representation of linear (solid line) and nonlinear (dashed line) stability threshold for λ = 0.0,0.9 with critical
solutal Rayleigh number RS plotted against DaS, where RT = 10,DaT = 0.01,λ = 0.2,ξ = 1,Le = 1.
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FIG. 8. (a), (b) : Visual representation of linear (solid line) and nonlinear (dashed line) stability threshold for η = 0.5,1.5 and ξ =
0.5,1.5 with critical solutal Rayleigh number RS plotted against λ , where (a) RT = 10,DaT = 0.001,DaS = 0.01,ξ = 1,Le = 1.
(b) RT = 10,DaT = 0.01,DaS = 0.001,η = 1,Le = 1.
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FIG. 9. Visual representation of linear (solid line) and nonlinear (dashed line) stability threshold for DaT = 0.005,0.5 with critical
solutal Rayleigh number RS plotted against λ , where RT = 10,DaS = 0.01,η = 1,ξ = 1,Le = 1.
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5. Conclusion

In this work we have numerically investigated double-diffusive convection subject to vertical concen-
tration and geothermal gradients in the context of carbon sequestration in deep saline aquifers. We
performed linear and nonlinear stability analyses in an anisotropic porous media. In previous studies,
Islam et al. (2013, 2014) and Javaheri et al. (2010), linear stability analyses were conducted subject
to time dependent double-diffusive convection. In the present problem, we have analyzed the stability
of the convective flow where concentration and temperature gradients are derived under a steady-state
condition. Here, nonlinear theory was applied utilising an energy functional approach. The eigen-
value problem in both linear and nonlinear analyses are solved numerically by using the Chebyshev-tau
method.

Based on our numerical results, we observed the following:

• in the linear theory, when the thermal diffusion rate dominates the reaction rate, the system is
stabilized up to DaT = 0.08 while destabilization is seen in the other case;

• RT in linear theory corresponds to a strong stablization whereas the same has a destabilization
effect in the nonlinear theory;

• the effect of permeability is observed to stabilize the system;

• when the thermal reaction rate dominates the diffusion rate, a change in permeability does not
have a significant effect in both the linear and nonlinear stability analyses.
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