
International Conference on New Interfaces for Musical Expression

Bespoke Anywhere
Benedict Gaster1, Ryan Challinor2

1University of West of England, 2Independent Developer

Published on: Jan 28, 2021

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

https://creativecommons.org/licenses/by/4.0/

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

2

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

Abstract
This paper reports on a project aimed to break away from the portability concerns of

native DSP code between different platforms, thus freeing the instrument designer

from the burden of porting new Digital Musical Instruments (DMIs) to different

architectures. Bespoke Anywhere is a live modular style software DMI with an instance

of the Audio Anywhere (AA) framework, that enables working with audio plugins that

are compiled once and run anywhere. At the heart of Audio Anywhere is an audio

engine whose Digital Signal Processing (DSP) components are written in Faust and

deployed with Web Assembly (Wasm).

We demonstrate Bespoke Anywhere as a hosting application, for live performance, and

music production. We focus on an instance of AA using Faust for DSP, that is statically

complied to portable Wasm, and Graphical User Interfaces (GUIs) described in JSON,

both of which are loaded dynamically into our modified version of Bespoke.

Author Keywords

WASM, Bespoke, plugins, native, DSP, Faust, Audio Anywhere

CCS Concepts

•Applied computing → Sound and music computing; Performing arts;

•Information systems → Music retrieval;

Introduction

The ideal of compile once and run anywhere1 has been a dream in computer science

for as long as it has been an area of research. From the early days of Lisp, through to

Java and Python with its import ideal. However, to date these offerings, as amazing as

they are, have failed to reach performance close to what system-based languages C

and C++ can achieve. Outside of general purpose programming, certain Domain

Specific Languages (DSL) [1] have achieved excellent performance. For example, in

the domain of graphics there are many, including GLSL [2], and in the audio domain

the language Faust [3] is an exemplar.

Over the last few years a new kid on the block has emerged as an interesting inflection

point in the search for a compile once, run anywhere target for compiling system-

https://creativecommons.org/licenses/by/4.0/

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

3

based languagesfor compiling system-based languages (such as C, C++, and Rust).

WebAssembly (or Wasm) is an open standard, originally developed by the four main

browser vendors, specifying a portable format for executable programs, including

interfaces for facilitating interactions between such programs and their host

environment [4].

The web browser is an amazing platform, however, while there have been some major

advances in real-time audio in the web, e.g. [5][6][7], latency limitations still exist.

Moreover, Digital Audio Workstations (DAWs) and other audio software that support

plugins still run outside the browser, while additionally there are many capable

embedded systems, that are not suitable for a browser. In this work we explore if

WebAssembly is a suitable compilation target for real-time audio for desktop OS.

Audio Anywhere (AA) [8] is a framework that explores the idea of compile once, run

anywhere for audio DSP code. Audio Anywhere combines Faust, for audio DSP code,

and HTML5 to enable development of modern audio synthesis and effects tools. The

Faust DSP code is complied once into WebAssembly, but unlike early work, the

resulting audio code is not hosted within a browser, instead it is translated on the fly to

native code running within a hosting application.

Bespoke is a modular synthesis environment akin to a DAW, but with the predefined

structure removed, and the routing instead left to the user. This allows Bespoke to

exist in a space between structured DAWs like Ableton Live or Logic, and low-level

patching environments like Pure Data or MaxMSP. This gives a user access to higher-

level sound synthesis modules while making the signal chain fully visible, and allows

users to intuitively create novel custom signal chains and modulate between arbitrary

modules with visible connections. This can be contrasted with traditional DAWs, where

the signal chain and modulation connections are typically more abstracted and implied

rather than directly visual.

In this paper we utilize the 10 plus years of development for Bespoke and integrate the

AA framework, with the addition of a JSON based DSL for static defining GUIs, to

provide an example of a DMI that runs both native and portable plugins. Image 1,

shows a screenshot of a Bespoke Anywhere in action.

To conclude this introduction below are links to a video demonstration and the source

code for both Audio Anywhere and Bespoke.

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

4

Image 1

Bespoke Anywhere in action.

The following video demonstrates Bespoke Anywhere and how a new module can be

easier added, without recompiling for any platform:

0:00

Bespoke AA in action

The following audio file documents a few bars from a simple Lofi beat produced

using Bespoke AA with a combination of Audio Anywhere modules, samples (for

drums), and VST plugins, recorded directly into Ableton Live:

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

5

More details on Audio Anywhere and links to the source code are available from the

project website2. Additionally, Bespoke is also open source and can be found on

Github3.

The remainder of this paper is structured as follows:

Background
There is a wide variety of work and technologies that are related to and has inspired

this current work. This section considers a few to help provide context and plant seeds

for future work, both in audio DSP and Digital Musical Instrument (DMI) design.

The history of the modern Web includes the standardization of what is now termed

HTML5. Beginning with work by Mozilla, Apple, and Opera begun in the mid 2000s,

which pushed the Web towards technology capable of running 3D Games, real-time

audio, and more. Javascript is at the heart of today's Web technology and Just In Time

(JIT) compilers such as the V8 engine, provide amazing performance, however, it is not

without its drawbacks and it is often hard to predict an application's performance. To

address some of the performance unknowns of JIT JavaScript compilation Alon Zakai,

at Mozilla, developed Emscripten [9], a compiler for C and C++ that targeted a subset

of JavaScript, called Asm.js4 , which enabled performance characteristics closer to

native code.

Building on Asm.js success, Mozilla and the other popular browser developers came

together to specify WebAssembly [10], a binary instruction format for a stack-based

virtual machine that targets the web. WebAssembly emerged at a similar time as other

innovations in web technology, in particular, Worklets5, that in combination enable low-

level access to both the rendering pipeline and low-latency audio within the browser.

A wide selection of proposals for real-time audio on the web have emerged during this

fruitful time for development and in particular, building on from work on the Web

0:000:00 / 0:23/ 0:23

A few bars recorded live from Bespoke

AA

Section Background takes a look at related and background work;

Section Design provides insight into the design of Bespoke AA; and

Finally, Section Conclusion concludes with pointers to future work.

https://nime.pubpub.org/pub/8jaqbl7m/draft#background
https://nime.pubpub.org/pub/8jaqbl7m/draft#sec:design
https://nime.pubpub.org/pub/8jaqbl7m/draft#sec:conclusions

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

6

Audio API [11], recent proposals have introduced Native Web Audio API Plugins [12]

and Faust for the Web [13]. Faust for the Web saw its compiler being extended with a

new backend that specifically targeted WebAssembly for the audio DSP code. An

important difference in our approach is that Audio Anywhere does not target the web,

although it is easy to see that it could indeed be applied there. WebAssembly's

development is tightly linked to that of the Rust programming language and there are

a number of possible benefits that might be gained by utilizing Rust as an intermediate

language for Faust, before compiling to WebAssembly, and the approach is investigated

here. One feature that has been enabled by using Rust as an intermediate language is

the ability to have Rust's LLVM compiler apply auto-vectoriazation to Faust's resulting

compute loop.

The design of portable GUIs is difficult and in the development of Digital Musical

Instruments often complicated by the use of tactile controls that go beyond the

QWERTY keyboard and computer mouse. While C++ frameworks such as GTK and Qt

have gone a long way to address early issues with GUI toolkits, they are still often

limited to certain platforms and not easy to access for many programmers. The

introduction of Electron6, a cross-platform toolkit for building applications with

JavaScript, HTML, and CSS, showed again the promise of Web technology for

application development. In particular for GUI applications that could be written in

modern web technologies, and customized to the look and feel required by the

application developer, not, necessarily, matching the native look and feel of the host

OS. A downside of Electron is the dependency on NodeJS and Chromium. With the

development of Audio Anywhere we were keen to support desktop applications with

modern custom GUIs, but at the same time wanted to avoid the heavy dependencies

that Electron introduces. Instead we chose to use light weight Webviews7, aiming to

utilize a common HTML5 UI abstraction layer for the most widely used platforms.

Work by Gaster et al [14] on specifying musical interfaces using SVGs anotated with

meta-data, played an important role in the development of the portable UIs specifed

with JSON. This work originally targeted the design of physical interfaces that are

combined with Faust DSP to build a hardware and software audio toolkit, with

synthesizers, a sampler, effects, and sequencers. In this work we extended this toolkit

to derive interface specifcations for Bespoke, from the SVG descriptions.

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

7

Design

Bespoke is built with JUCE 8 using a custom renderer, based on NanoVG9. It is

implemented in C++11 and provides a framework for defining modular synths, effects,

and instruments, along with the ability to script with Python. A set of predefined UI

components, such as sliders, envelopes, buttons, and so on are provided for use in

building new modules. A specific Bespoke module, e.g. FM synth, implements a

generic interface, overriding methods, such as number of inputs, note on, process

audio, etc.

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

8

{

 "wasm": [String],

 "gui": String,

 "info": {

 ...

 "inputs": int,

 "outputs": int,

 ...

 }

 }

Image 2

Bespoke Anywhere Module Compilation.

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

9

AA modules consist of a DSP element, written in Faust and compiled to Web Assembly,

and a GUI description, written in JSON. Image 2, captures the compilation process into

a AA bundle. A bundle is JSON description of a module’s metadata, e.g. number of

inputs and outputs, along with URLs for its DSP (Wasm) and GUI (JSON) code. AA

supports some small extensions for Faust, mostly for handling multiple voices, and

compiles to Rust, which is in turn compiled to Web Assembly. An example of single

voice sine oscillator is defined as follows:

declare aavoices "1";

 import("stdfaust.lib");

 f = hslider("freq",440,50,2000,0.01);

 phasor(freq) = (+(freq/ma.SR) ~ ma.frac);

 osc(freq) = sin(phasor(freq)*2*ma.PI);

 process = vgroup(

 "voices",

 par(n, 1, vgroup("aavoice%n", osc(f)))) :> _ ;

Details of Faust is beyond the scope of this paper, but it is worth noting that UI

elements can be specified directly, here, for example, a slider (hslider) is specified to

control the frequency. Additionally, as the slider is named freq AA DSP compiler will

automatically connect incoming note messages to "play" the oscillator, e.g. with a MIDI

keyboard. To this end, compiling with the AA compiler kit will generate a resulting

Wasm binary, conforming to the AA audio API, which in turn can be loaded, via a AA

bundle description, directly into Bespoke Anywhere, on all platforms, with no

additional work. Image 3, shows our module connected to the software keyboard

within Bespoke.

Adding interface widgets is straightforward, the developer of an AA module need

simply define a UI description, in JSON, and then reload the module dynamically.

Adding a slider to control the frequency can be done simply by adding the following to

the UI description:

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

10

Image 3

AA Mono Sine Synth (no UI).

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

11

{

 "type": "float_slider",

 "name": "freq",

 "x": 5, "y": 18,

 "w": 80, "h": 15,

 "init": 440.0,

 "min": 50.0,

 "max": 2000.0,

 "digits": 2,

 "node": 0,

 "index": 0

 }

Of note are the node and index, which connect the widget to the AA Wasm audio-graph

node and parameter index. Image 4, shows our module, now with a slider, connected to

the software keyboard within Bespoke.

A major drawback of the current Bespoke Anywhere UI design is that it is good for

describing static interfaces, but it becomes unwieldy when programmatic control of

widgets is required or when it is necessary to control a widget by the input of one or

more other widgets or controls multiple parameters within the audio-graph. For

example, a play button widget, when pressed might trigger a number samplers to

Image 4

AA Mono Sine Synth (with UI).

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

12

begin playback. In the future, recent work in declarative UI design [15] may provide an

interesting avenue for describing portable interfaces, as they are defined via a data

driven model it is possible to define the view in a fashion similar to Bespoke Anywhere,

while enabling the update to be independently described using a Wasm based API,

similar to our approach for audio.

Conclusion
The early results from exploring the use of Wasm within the context of DMI design is

very promising. The desktop audio application supported on Windows and MacOS

demonstrates that Wasm for native platforms scales well, integrating easily with a

medium size C++ source base. It additionally shows that the systems programming

language Rust, used as an intermidate language, looks promising for audio runtime

and plugin development.

While JSON worked fine for describing GUIs for our initial implementation, it clearly

has drawbacks, in particular describing dynamic behaviour is, at best, difficult, and, at

times, simply impossible. For example, custom interfaces, as those demonstrated in the

4-track tape player in Image 1 could not be directly described in our JSON DSL alone,

and instead required modifications to Bespoke itself. To address this we have begun

work on again using Wasm, but this time to describe GUI behaviour, with the host

application providing a GUI toolkit based on a Elm style UI model [16].

Finally, an important direction of future work is to develop an embedded AA

framework, with the potential of opening up portability on standalone DMIs. Early

work using Daisy micro-controllers has shown this to be a promising direction.

Acknowledgments
The first author would like to acknowledge the consistent support and insight from

colleagues in the Computer Science Research Centre and Creative Technology Lab.

Special thanks to Nathan Renney.

Footnotes
1. A play on Sun Microsystems’ slogan "Write once, run everywhere (WORE)". ↩

2. https://muses-dmi.github.io/audio_anywhere/overview/ ↩

3. https://github.com/awwbees/BespokeSynth ↩

4. https://en.wikipedia.org/wiki/Asm.js ↩

https://muses-dmi.github.io/audio_anywhere/overview/
https://github.com/awwbees/BespokeSynth
https://en.wikipedia.org/wiki/Asm.js

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

13

Citations

5. https://developer.mozilla.org/en-US/docs/Web/API/Worklet ↩

6. https://www.electronjs.org/ ↩

7. https://github.com/webview/webview ↩

8. https://juce.com/ ↩

9. https://github.com/memononen/nanovg ↩

1. Hudak, P. (1996). Building domain-specific embedded languages. ACM Comput.

Surv., 28(4es), 196-es. https://doi.org/10.1145/242224.242477 ↩

2. Rost, R. J., Licea-Kane, B., Ginsburg, D., Kessenich, J. M., Lichtenbelt, B., Malan,

H., & Weiblen, M. (2009). OpenGL shading language (3rd ed.). Addison-Wesley

Professional. ↩

3. Orlarey, Y., Letz, S., & Fober, D. (2009). New computational paradigms for

computer music. In G. Assayag (Ed.). Paris, France: Delatour. ↩

4. Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., …

Bastien, J. (2017). Bringing the web up to speed with WebAssembly. In Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language Design and

Implementation (pp. 185–200). Barcelona, Spain: Association for Computing

Machinery. https://doi.org/10.1145/3062341.3062363 ↩

5. Choi, H., & Berger, J. (2013). WAAX: Web Audio API eXtension. In NIME’13 (p. 4).

Korea. ↩

6. Roberts, C., Wakefield, G., Wright, M., & Kuchera-Morin, J. (2015). Designing

Musical Instruments for the Browser. Computer Music Journal, 39(1), 27–40.

https://doi.org/10.1162/COMJ_a_00283 ↩

7. Kleimola, J., & Campbell, O. (2018). Native Web Audio API Plugins. In Proceedings

of the 4th web audio conference (wac-2018). ↩

8. Gaster, B., & Cole, M. (2020). Audio Anywhere with Faust. In Proceedings of the

2nd international faust conference. ↩

9. Zakai, A. (2011). Emscripten: An LLVM-to-JavaScript Compiler. In Proceedings of

the ACM International Conference Companion on Object Oriented Programming

https://developer.mozilla.org/en-US/docs/Web/API/Worklet
https://www.electronjs.org/
https://github.com/webview/webview
https://juce.com/
https://github.com/memononen/nanovg
https://doi.org/10.1145/242224.242477
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1162/COMJ_a_00283

International Conference on New Interfaces for Musical Expression Bespoke Anywhere

14

Systems Languages and Applications Companion (pp. 301–312). Portland, Oregon,

USA: Association for Computing Machinery.

https://doi.org/10.1145/2048147.2048224↩

10. Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., …

Bastien, J. (2017). Bringing the Web up to Speed with WebAssembly. In Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language Design and

Implementation (pp. 185–200). Barcelona, Spain: Association for Computing

Machinery. https://doi.org/10.1145/3062341.3062363 ↩

11. Choi, H., & Berger, J. (2013). WAAX: Web Audio API eXtension. In NIME’13 (p. 4).

Korea. ↩

12. Kleimola, J., & Campbell, O. (2018). Native Web Audio API Plugins. In

Proceedings of the 4th Web Audio Conference (WAC-2018). ↩

13. Letz, S., Orlarey, Y., & Fober, D. (2018). FAUST Domain Specific Audio DSP

Language Compiled to WebAssembly. In Companion Proceedings of the The Web

Conference 2018 (pp. 701–709). Lyon, France: International World Wide Web

Conferences Steering Committee. https://doi.org/10.1145/3184558.3185970 ↩

14. Gaster, B. R., Renney, N., & Parraman, C. (2019). Fun with Interfaces (SVG

Interfaces for Musical Expression). In Proceedings of the 7th ACM SIGPLAN

International Workshop on Functional Art, Music, Modeling, and Design (pp. 25–36).

Berlin, Germany: Association for Computing Machinery.

https://doi.org/10.1145/3331543.3342579 ↩

15. Levien, R. (2019). Towards a unified theory of reactive UI.

\textlesshttps://raphlinus.github.io/ui/druid/2019/11/22/reactive-ui.html\textgreater. ↩

16. Czaplicki, E., & Chong, S. (2013). Asynchronous functional reactive programming

for guis. In Proceedings of the 34th acm sigplan conference on programming

language design and implementation (pp. 411–422). New York, NY, USA: Association

for Computing Machinery. ↩

https://doi.org/10.1145/2048147.2048224
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3184558.3185970
https://doi.org/10.1145/3331543.3342579
http://raphlinus.github.io/ui/druid/2019/11/22/reactive-ui.html/textgreater

