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Abstract 

Transport models are widely used in the preparation of advice to policy makers on the future 

performance of the transport system and the appraisal of transport schemes and policies. A 

recent focus of funding in the U.K. has been on ‘smarter choices’ measures which aim to 

increase the use of public transport, walking and cycling through information, marketing and 

low cost infrastructure interventions. 

This study starts with the recent experience of UK transport modellers when assessing the 

impact of ‘smarter choices’ measures, using the widely applied ‘four stage’ model 

framework. It reports on interviews with the teams who built the latest generation of such 

transport models, developed with central government funding, and considers the reasons for 

their reported limited success in integrating the effects of ‘smarter choices’ measures into 

their multi-modal models.  

Alternative modelling approaches which could be used to develop multi-modal transport 

models are reviewed including sketch-plan methods, system dynamics, micro-simulation and 

agent based modelling. The main advantage of the latter two methods is the detailed 

representation of individuals which complements the targeted and individualised nature of 

many ‘smarter choices’ measures. 

The strengths and limitations of using an agent-based approach for modelling mode choice 

are investigated through the building of an agent based model for commuting trips using 

data collected from the 626 respondents to the 2010 Department for Transport funded stated 

preference survey for the ‘Climate Change and Transport Choices’ project. The agent based 

model is based on Triandis’ Theory of Interpersonal Behaviour, where both habits and 

intentions can influence a person’s observed behaviour. The incorporation of habitual 

behaviour into the model results in lagged responses to changes in transport costs as 

observed in the real world. Modelling at the level of the individual allows for more precise 
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specification of the choices facing each person and any external or personal constraints on 

the modes available to them.   

Finally the issues that would be encountered when applying the model to a particular area 

are considered, including the difficulties encountered in obtaining data on the attributes and 

constraints of each agent and their preferences. The use of latent class analysis is 

recommended as a method for grouping people together on the basis of their unobserved 

but shared preferences, rather than on directly observable characteristics such as their 

journey purpose or time of day of travel.  
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1 Introduction 

1.1 The use of transport models 

‘A model is a simplified representation of a more complex phenomena, process or system’. 

(Barnsley, 2007). Models are built for a variety of purposes and the actual process of 

building the model often leads to an increased understanding of the model’s subject. 

Strategic transport models are frequently developed as a tool that can be used to estimate 

the state of the transport system at a future point in time if current trends continue, or how it 

may respond to proposed interventions. This enables policy makers to investigate the likely 

consequences of various policy options and provide evidence to assist in decisions that 

need to be taken, for instance over the allocation of the transport budget. Visualisation and 

the clear reporting of the output of model runs can be used to share the knowledge and 

understanding gained from creating and running the model with the wider audience of 

stakeholders involved in transport related decisions and those affected by the future state of 

the transport network.   

Models of transport systems are often used to assist planners and policy makers in 

understanding the current and future performance of the transport system in an area and 

how this is likely to change in response to proposed changes in land use and the provision of 

transport infrastructure and services. Until recently the main changes to the transport system 

under consideration worked through the supply side, for example through the provision of 

new roads and bus services. Transport modelling techniques were developed to forecast the 

response of travellers to such changes. Now, however, attention is increasingly given to 

measures which directly influence the demand for transport which, in turn, brings the 

challenge of incorporating techniques capable of predicting the effects of these policies into 

models of transport systems. Various terms are used to describe these policies such as 

‘travel demand management’, ‘soft measures’ and ‘smarter choices’. 
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1.2 The emergence of ‘smarter choices’ in the UK 

The publication of the Labour government’s white paper, ‘A New Deal for Transport’, in 1998 

marked a new direction for transport policy in the UK (DfT, 1998). It stated that ‘people know 

we cannot build our way out of congestion with new roads’ and proposed improvements to 

public transport and ‘everyone doing their bit’ to ‘cut down on car use’. It encouraged 

organisations such as local authorities and employers ‘to produce their own green travel 

plans’ and for people to consider ‘their own travel habits’. The DfT co-funded pilot residential, 

school and workplace projects to encourage people to drive fewer miles through marketing 

campaigns, increased awareness of the public transport services in the area and the 

promotion of the benefits of walking and cycling.  

The term ‘smarter choices’ was first used in a report by Cairns et al. (2004) which 

documented the potential reduction in car trips that these demand management measures 

could achieve. The types of interventions they considered to be ‘smarter’ measures covered:  

• ‘Workplace and school travel plans; 

• Personalised travel planning, travel awareness campaigns, and public transport information 

and marketing; 

• Car clubs and car sharing schemes; 

• Teleworking, teleconferencing and home shopping.’ 

These are all policy interventions aimed at directly affecting the demand for transport rather 

than influencing it indirectly through changing the quantity or quality of the supply of 

transport provision. The objective of a ‘smarter choices’ approach to transport planning is to 

reduce the amount of car travel by encouraging people to walk, cycle, use public transport or 

to travel less. A typical ‘smarter choices’ package includes a variety of ‘carrots’ and ‘sticks’ 

as well as information and marketing campaigns. For example, a workplace travel plan for 

an employment site on the edge of a town may include a minibus service from the nearest 
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railway station to make public transport a more attractive option, together with the constraint 

of a restriction on the number of car parking spaces available on site and an incentive for car 

sharing by providing parking spaces for cars registered within such a scheme. Information 

events may be provided to inform staff of local bus services that run near the site and to 

promote the health benefits of walking and cycling.  

The coalition government in the UK, shortly after its formation following the 2010 general 

election, announced its intention to continue the pursuit of policies that fit within the ‘smarter 

choices’ umbrella. The Department for Transport‘s vision (2011) was ‘for a transport system 

that is an engine for economic growth but one that is also greener and safer and improves 

quality of life in our communities’.  As part of their programme to encourage sustainable local 

travel they stated their intention to ‘use insights from behavioural science to encourage lower 

carbon forms of travel’ and their desire to make public transport, cycling and walking ‘more 

attractive and effective’.  

1.3 The need to include ‘smarter choices’ in transport models 

The need to incorporate ‘smarter choices’ in transport models is a result of the noticeable 

difference that such measures can make on the level of demand in an area. The evaluation 

by Sloman et al. (2010) of the impact of the Smarter Choices Programme funded by the 

Department for Transport (DfT) in three towns in the UK, Darlington, Worcester and 

Peterborough (referred to as ‘Sustainable Travel Towns’), reported that when a variety of 

smarter choices measures are implemented together the impacts can be quite substantial.  

Their evaluation work showed that ‘in their four-year appraisal period, this produced a 

reduction of 5-7% in car driver distance travelled by residents for those journeys under 50km 

that were in-scope.’ Given the magnitude of this change, the outputs of transport models that 

do not allow for the implementation of smarter choice measures, if they are to be undertaken 

in an area, could be misleading and lead to poor transport-related decisions being taken.  
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The scale of the reduction in car trips achieved in the Sustainable Travel Towns and the 

findings from other studies influenced the decision of the incoming UK Government in 2010 

to allocate up to £560m towards funding similar programmes during the lifetime of that 

parliament through the Local Sustainable Transport Fund (LSTF). Since the initial 

announcement, the Government showed their continued support for these programmes 

through the allocation of additional funding. The successful bids in the first LSTF round all 

consisted of a mixture of infrastructure improvements, public transport changes, large scale 

personalised travel planning programmes and other smarter choices measures aimed at 

both the demand and supply side of the transport system. For example, the Plymouth bid 

(2011) included the building of a new cycle bridge over the river Plym, new cycle paths and 

improved lighting on existing cycle paths, complemented by a programme of home visits by 

travel advisors, cycle training schemes and marketing events. 

Developers have also been seeking to use transport models to justify their statements as to 

the extent to which smarter choices measures would mitigate the impact of their 

developments on the surrounding road network by reducing the number of car trips 

generated. For example, the 2012 planning application for the Alconbury Weald 

development near Huntingdon for 5000 homes and employment space for 8,000 jobs, was 

supported by a detailed transport strategy that combined new infrastructure such as road 

junctions with a mix of land uses on-site to maximise the number of internal and therefore 

short distance trips and a set of smarter choices measures aimed at reducing car use. 

(Urban and Civic, 2012). 

The challenge for the transport modelling is to find a method which can capture the impacts 

of such a transport strategy, which includes the provision of new infrastructure as well as a 

whole range of softer measures, on the forecasts of the impact of the development on the 

transport networks in the area. Ideally the method would be unified, so that the model can 

predict the impact of a change in any one element of the overall transport package on the 

overall forecast of the number and pattern of trips associated with the development. Such a 
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model would be a valuable tool for use in the process of developing a cost-effective package 

of transport interventions acceptable to the planning authorities. 

The motivation for this research comes from the need of the transport modelling community 

to extend the range of questions that can be answered with their current transport models, 

and in particular to meet the difficulties being experienced by practitioners when seeking to 

include the impact of smarter choices programmes into these models. An extension of 

current transport modelling practice is required to support policy makers who are deciding 

whether to invest in smarter choices programmes, and decision makers who need to 

understand the likely impact of such measures and their interaction with other proposed 

changes, such as the provision of new infrastructure and transport services, on the overall 

performance of the transport system in an area.  This research therefore has a 

methodological focus and seeks to consider an approach to modelling that could bring 

‘smarter choices’ into multi-modal transport models. 

1.4 The standard framework for strategic transport models 

The systematic analysis of the operation of the transport system in an area and the use of 

models to predict future conditions started in the United States of America in the 1950s 

(Bruce and Williams, 2003). A standard framework for these models was rapidly established, 

now known as the four stage transport model (McNally, 2007) and illustrated in Figure 1.1 

overleaf. This remains the predominant modelling framework used in transport models 

today. 
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FIGURE 1.1 THE FOUR STAGE MODEL 

 

In Stage 1 trip generation, the number of trips produced by or attracted to each zone is 

calculated as a function of the population and land use in that zone. In the second stage, trip 

distribution, the trips produced by each origin zone are allocated between possible 

destination zones on the basis of the travel time and / or cost to the possible destination 

zones and the land use in those destination zones. This gives the trip matrix, which is a two 

dimensional grid containing all the zones in the area on each axis. The number of trips in 

each cell represents the number of trips going from zone a to zone b. In Stage 3, mode 

choice, the trips in each cell in the matrix are allocated to each of the transport modes 

included in the model based on the relative time and cost of using each of the available 

modes. Finally in Stage 4, trip assignment, the trip matrix for each mode is assigned to the 

relevant transport network so predicting the number of vehicles using each road section and 

the number of passengers using each public transport service. 

Many criticisms have been levelled at four stage transport models over the years. These 

include the high level of specialised technical knowledge needed to implement these models 

(Vigar, 2006), the lack of transparency in the processes involved (Evans et al., 2007), the 

accuracy of the predictions made (Flyvberg, 2008) and the lack of behavioural realism in the 

assumptions and processes contained in the models (Givoni et al., 2012, Sivakumar, 2007). 

Trip Generation 

Trip Distribution 

Mode Choice 

Trip Assignment 
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The development of this modelling framework was strongly influenced by the original 

purpose of the transport models being built in the 1950s, the constraints of the processing 

power and memory of the computers then available and the prevailing economic ideas of the 

main neo-classical school of economics taught in universities at that time. 

The dominance of the need to evaluate highway schemes when the framework was 

developed resulted in design decisions that now affect the ability of the framework to assess 

‘smarter choices’ measures, such as the use of zones as the basic building block of the 

model, the characteristics that are used to describe the links in the network and the use of 

the logit model for mode choice. 

The four stage model ‘was primarily designed for the analysis of urban highway investment.’ 

(Hensher, 2007) in American cities in the 1950s which were facing an unprecedented growth 

in the ownership and use of private cars. Automobile production jumped from 70,000 

vehicles per year in 1945 to 3.5 million in 1947 and highway travel was increasing by 6% per 

annum (Weiner, 1992). The Housing Act 1954 introduced the requirement for regional urban 

planning of which transport planning was a key component. In 1954 Mitchel and Rapkin 

developed trip generation models with trip rates based on the demographics in each zone. 

Alan Voorhees used a gravity model approach in 1955 to model the distribution of trips. Trips 

were divided between car and public transport using diversion curves (where the proportion 

of trips using public transport was a function of the public transport travel time). Shortest 

path routeing algorithms were developed in 1957 for highway trip assignment.  

The Detroit and Chicago Area Transportation Studies in the 1950s brought these highway-

oriented elements together into the full four stage modelling framework. The team in Chicago 

made use of computers to assist in their calculations but at that time the processing speed 

and memory of computers was considerably slower and smaller than today’s machines. This 

led to the design decision to divide the study area into zones and to hold all trip information 
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in matrices. The calculations during the modelling process are applied to the number of trips 

in each cell of a matrix. 

The use of zones and matrices to hold data lies behind many of the difficulties encountered 

in incorporating smarter choices into the current generation of four stage models. Many walk 

and cycle trips are of a short distance and occur within zones and are therefore ‘lost’ or 

ignored by the models. The size of the zones results in aggregation bias and other errors, 

also encountered in Geographical Information Systems (Haining, 2003); for example the 

mean walk time from a zone to the nearest public transport stop is not representative of the 

actual walk time experienced by almost everyone in that zone. This leads to a discrepancy 

between the public transport journey times actually faced by the people in a zone which 

influences their mode choice decision and the mean value used in the modelling.  

The software developed to run four stage models is often limited in the number of matrices it 

can handle during certain modelling processes. ‘Smarter choices’ often target particular 

groups of people, for example with fare discounts, and the impacts then get lost in the 

aggregate measures used in the modelling when the same weighted average fare is applied 

in the model to all people. The restrictions on the number of matrices that can be handled by 

the software limits the degree of segmentation of travellers that can be implemented. This 

reduces the ability of the model to capture the impact of highly-targeted policies and can 

lead to the exclusion of key influencing variables such as income, season ticket holding 

status and employment type. The design decision to use matrices has led to a modelling 

system that cannot easily accommodate the very detailed information needed to represent 

many of the features of ‘smarter choices’ measures.   

The transport networks included in the original four stage models were designed primarily to 

represent the highway network and serve the zoning system. They often did not contain 

minor routes or walk and cycle-only links. Even when these are included today, the software 

is set up to handle those link and junction characteristics that influence highway capacity and 
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route choice rather than attributes that are relevant for decisions affecting other modes such 

as, for cyclists and pedestrians, the degree of segregation from cars and the quality of the 

urban realm. If these aspects of the network links are not coded, the models are not 

sensitive to changes in these factors. Again, this means that the models do not capture 

interventions that are often major components of ‘smarter choices’ packages such as cycle 

lanes, lighting, signing and other improvements to the walking environment (Eash, 1999). 

1.5 The influence of neo-classical economics  

Paul Samuelson’s influence on the people developing transport models in North America in 

the 1950s came through his work on utility theory (1938), his introduction of the use of 

mathematical optimisation models to explain economic behaviour (1947) and his widely 

adopted university textbook, Economics (1948), which popularised the neo-classical school 

of economics. The key working assumptions used in neo-classical economic analysis 

include rationality, perfect knowledge and the existence of a state of equilibrium in the 

market.  

The logit model now used in stage 3 of the four stage transport model to forecast the mode 

used by travellers replaced the use of diversion curves in the 1970s. It was developed by 

McFadden (1974) who first used it to forecast the patronage for work trips on the proposed 

Bay Area Rapid Transit public transport system in San Francisco. The logit model approach 

is based on Samuelson’s work on revealed preferences and utility theory (1938). Samuelson 

started from the assumption that individuals seek to maximise the utility they gain from the 

total bundle of goods they can purchase subject to their budget constraint. He argued that it 

was possible to derive the utility functions underlying a person’s choices from observations 

of their revealed preferences. The logit model developed by McFadden then extended 

Samuelson’s work to the mathematical modelling of the choices people make between 

discrete alternatives such as transport modes. 
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In the logit model as applied by McFadden to mode choice, the utility of each mode is 

calculated by combining together those attributes of a journey that can be quantified, usually 

the time and monetary cost elements of the journey by each mode. For a car journey this 

includes in-vehicle time, vehicle operating costs and any parking charges or tolls. For a 

public transport journey this could include in-vehicle time, walk time, waiting time, fares, 

boarding and interchange penalties. Revealed and stated preference surveys are often 

carried out to determine the weightings that people apply to these various factors, as for 

instance a minute spent walking has greater disutility than a minute spent in the bus. Values 

of time are used to convert monetary items into time equivalents.  

The model is calibrated to match the observed choices of groups of respondents by 

incorporating a mode specific constant into the utility function which captures aspects of 

generalised costs that are not captured by the time and cost variables and a scaling 

parameter which controls the sensitivity of changes in the proportion of people using each 

mode as the relative utility of using each mode changes. 

The logit model has become the engine of the four stage modelling process although the 

suitability of the logit model for this central role has been criticised. Beimborn (2006), looking 

at the application of the logit model in transport modelling, summarises these arguments as   

 the logit model is only sensitive to changes in elements that are captured in the 

generalised cost functions and avoids items such as levels of comfort and reliability 

(unless they can somehow be quantified) 

 the times used in generalised costs come from network models and are often 

simplified and inaccurate (acknowledged by McFadden (1984) and confirmed in 

Bhatta and Larsen (2011)) 

 people are not able to mentally combine time and cost elements to derive a single 

‘value’ for each option they are facing 
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 it is not the case, although assumed in the application of the logit model, that each 

person applies the same weights to the different components of the generalised cost 

functions. 

 

The logit model is based on the standard neo-classical economic assumptions, promulgated 

by Samuelson, that people have perfect knowledge of the options available to them, can 

calculate the total utility provided by each option and then consistently choose that option 

which maximises their utility. The realism of these assumptions was challenged in the 1950s 

by Herbert Simon (1955) who introduced the notion of ‘bounded rationality’, aiming to 

‘replace the global rationality of economic man with a kind of rational behaviour that is 

compatible with the access to information and the computational capabilities that are actually 

possessed by organisms, including man, in the kinds of environments in which such 

organisms exist’.  

The work of behavioural economists, Ariely (2008), Lund (2008) and cognitive psychologists 

have continued this strong challenge to Samuelson’s basic assumptions and his ‘homo 

economicus’ and adds to the evidence that the logit model is based on an incomplete view of 

human decision making.  

Behavioural theories, such as Ajzen’s Theory of Planned Behaviour (1991) emphasise the 

role of other factors in the decision making process such as the influence of beliefs, 

attitudes, personal and social norms and intentions on the final choice observed in a 

person’s behaviour. These theories suggest there is a need to include a wider range of 

objective and subjective factors in the modelling of the mode choice decision process. 

1.6 Influence of habits and life events on mode choice decisions 

The deliberative nature of travel mode decisions has itself been challenged by the view that, 

when considering trips made on a regular basis to the same place for the same reason, the 

use of a particular mode is a habitual action (Verplanken et al., 1998, Aarts et al., 1998, 
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Goodwin, 1977). Habits are ‘strong associations between goals (e.g. going to the 

supermarket) and actions (e.g. using a car)’ (Aarts and Dijksterhuis, 2000). The association 

between the goal and the means used to achieve it occurs as a result of the consistency of 

the choice made, such as always choosing to use a car. After a while, the use of the car for 

such a trip becomes automatic and no deliberation over the choice of mode occurs; rather 

the behaviour becomes script-driven (Garling et al., 2001).  

The strength of the habit developed to use a particular mode increases the challenge to 

policy makers hoping to voluntarily achieve a change in the mode used by people (Gardner, 

2009, Klockner et al., 2004). For example, decreasing bus journey times may not result in an 

immediate transfer of trips from car if potential travellers are not actively considering their 

travel options at the time of the change. The enactment of habitual choices may be 

interrupted by external shocks (Adamowicz et al., 2013) and can be forcefully curtailed, for 

example by temporary road closures, withdrawing parking spaces, (Gardner 2009, Brown, 

Werner and Kim, 2003; Fujii et al., 2001) or by changes in the internal context of people’s 

lives, such as following a change in residential or work location for commuting trips. 

(Bamberg, 2006). 

Studies into the influence of key life events on transport mode choice have highlighted the 

importance of changes in residential and workplace location in prompting changes in travel 

mode (Clark et al., 2014). Van der Waerden et al., (2003) suggest that key life events, such 

as passing the driving test and the acquisition of a car, can result in changes in the number 

of alternative modes available. Other changes may affect the characteristics of the modes 

available for a particular trip, for example a change of work location may affect the time and 

cost of the car journey to work. The main influential life events on travel mode choice for 

adults are moving house, changing work location, acquiring a car and becoming a parent 

(Chatterjee et al., 2013, Prillwitz et al., 2006; Klockner, 2004; Van der Wealden, 2003).  
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The interaction between these key life events and travel choices can be bi-directional, with 

considerations of travel options influencing the choice of residential location (Stanbridge et 

al., 2004). The outcome is to provide a ‘window of opportunity’ (Franke, 2001) in which travel 

choice is once again a deliberative process and open to external influence. Smarter choices 

measures have been designed to recognise the opportunity of life events. Some measures 

directly affect the availability of modes or their characteristics, some aim to change attitudes 

towards modes other than car and yet others seek to trigger the re-evaluation of transport 

choices which have become habitual. 

This study contributes to research on habitual behaviour by showing that the incorporation of 

habits in modal choice models can be achieved. The inclusion of habitual behaviour makes a 

significant difference to the predicted number of users of each transport mode in an area 

following the introduction of a change in the transport system. This work highlights the 

importance of relaxing the neo-classical economic assumptions of perfect knowledge and 

the constant re-assessment of utility maximising choices based on complete knowledge of 

the utility of each option. The replacement of these assumptions, made for the sake of 

simplicity and mathematical convenience, with more behaviourally realistic choice models 

results in a better representation of the gradual change observed in usage numbers of the 

various transport modes in an area following a change in the system.  

This study also contributes to the understanding of the importance of feedbacks between the 

numerous elements of the transport system and its users. This is currently only 

acknowledged in the transport models used to assess transport policies as a feedback 

between journey times and costs, when trips are assigned to the network, and the utility of 

transport modes in the choice modelling component of a model. Transport models are 

customarily run with several iterations between the assignment modelling and the demand 

modelling components, until an equilibrium situation is reached where there are minimal 

changes between iterations in travel times and the number of trips predicted to use each 
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mode. This study shows that it is possible to incorporate feedbacks between the demand for 

public transport and the level of supply into transport models. 

This work also extends current understanding of the effect of aggregation bias on the results 

of transport models. Castilglione et al., (2014) report that grouping people together and using 

an average cost change, for example an average parking charge increase of 10% for 

everyone in a zone, produces a different forecast change in the overall number of car users 

than if the actual change in costs for each person is modelled, i.e. a zero increase for those 

with free parking and a higher increase for those who pay to park. This study extends the 

treatment of aggregation bias by showing that it occurs, not only when average rather than 

individual input values are used with the logit models within transport models, but also when 

average rather than individual preference functions are used. 

1.7 The four stage model and smarter choices 

The UK Department for Transport issued a report in 2008 written by WSP (DfT, 2008) that 

considered possible methods for incorporating various ‘smarter choices’ measures that 

affected the journey to work into the standard four stage models used in the UK. A summary 

table of their findings regarding the modelling of workplace travel plans is presented in 

Appendix 1. They concluded that some measures could be modelled if: 

 the zones were made small enough to pick up location specific impacts e.g. running 

buses to particular employment sites 

 a sufficient number of matrices could be created to handle groups of people with 

different costs e.g. as a result of subsidised public transport fares or availability of 

free car parking.  

However, the experience of practitioners is that the software packages currently in use 

become cumbersome if many matrices are needed, which also increases the possibility of 

user error when setting up the models. There is also a limit to the number of matrices that 

can be handled by some of the popular modelling software packages, such as SATURN, 
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which is widely used in the UK because of the quality of its highway assignment algorithms. 

There are also practical and financial difficulties in obtaining enough data to calibrate the 

models for small groups of people. 

WSP also reported that some measures cannot be directly incorporated into the current logit 

based mode choice models (e.g. offering personalised travel plans to staff, providing secure 

cycle facilities) and they suggested that these measures be reflected in the modelling by 

adjusting the mode-specific constant used in calculating the utility of each transport mode. 

They recognised, however,  that there is no evidence on what level of adjustment should be 

made to this constant, which itself often varies between models as it is adjusted as part of 

the model calibration process.  

The report also acknowledged that there are some ‘smarter choices’ measures that cannot 

be reflected in the four stage model, such as preferential car parking for car sharers, 

demand responsive bus services, the option of working at home and flexible working hours. 

This is due both to the inability of the four stage model to handle these measures and the 

lack of observed data about the likely impact of these measures.  

The conclusion of the WSP report was that some measures can be incorporated into widely 

used four stage models although this requires much greater levels of segmentation than 

currently used. The impact of some measures could be approximated by adjusting the utility 

value of different modes but there still remain some ‘smarter choices’ measures that cannot 

be handled by the four stage modelling framework. 

This study aims to investigate whether there have been advances in the four stage 

framework since the WSP report was written which now make it more suitable as a tool for 

modelling ‘smarter choices’. It reviews a new approach to transport modelling, known as 

activity based modelling, and then investigates modelling systems used in other disciplines 

such as systems dynamics and agent based modelling, which may be suitable for capturing 

the impacts of the wide variety of interventions that can be part of a ‘smarter choices’ 
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package. The focus throughout this work is placed on commuting trips as many of these trips 

take place during the morning ‘peak’ period, which is generally the busiest time of day on the 

road network, and are the main target of many ‘smarter choices’ programmes. 

1.8 Research questions 

The primary question for this study is whether there are other modelling approaches, apart 

from the four stage framework required by the DfT in the UK by its WebTAG guidance, which 

would be better suited to tackle the task of modelling ‘smarter choices’ measures. This is 

addressed by answering three specific questions: 

First, what has been the experience of transport modellers when using four stage models to 

include the impact of ‘smarter choices’ programmes on the mode used for commuting trips?  

Second, what other modelling approaches could be used to model the impact of ‘smarter 

choices’ programmes on the mode chosen for commuting trips? 

Third, what are the strengths and limitations of using an agent-based approach for modelling 

the impact of a ‘smarter choices’ programme on the mode chosen for commuting trips?  

1.9 Thesis structure 

The research process undertaken for this study is illustrated in Figure 1.1 below and is 

reflected in the organisation of this thesis. This first chapter has presented the background to 

the research. Chapter Two reports on a qualitative research exercise into the experience of 

UK transport modellers in incorporating smarter choices into the four stage transport 

modelling framework. This chapter addresses the first research question. 

Chapter Three considers the work undertaken in the academic field that could assist in 

extending the existing four stage modelling framework to encompass smarter choices. It also 

reviews alternative modelling techniques which could be capable of modelling the impact of 

‘smarter choices’ measures.  
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Chapter Four presents the philosophical perspective on modelling adopted in this study. It 

considers the purpose and nature of modelling and how the modelling process can assist in 

understanding the subject of the model. This chapter addresses the second research 

question and the research perspective informs the selection of the modelling technique used 

in the remainder of this study 

Chapter Five describes the overall steps followed in the modelling exercise undertaken in 

this research. Chapter Six describes the structure of the agent based model built for this 

study and the data used in the model. 

Chapter Seven presents the results from using the agent based mode choice model of 

commuting trips. The purpose of the modelling exercise was to test the potential of this 

approach for incorporating smarter choices into the modelling of the mode choice decision. 

The model results are presented so as to illustrate aspects of agent based modelling which 

are particularly relevant to the task of incorporating the impact of ‘smarter choices’ measures 

into multi-modal models.  

Chapter Eight considers practical and theoretical issues that arise in applying agent based 

modelling to mode choice decisions and the impact of ‘smarter choices’ measures.  

The final chapter (nine) is based on the experience of building an agent based model to 

forecast the mode choice for commuting trips. It addresses the third research question and 

considers the suitability of agent based simulation modelling as a tool for incorporating 

smarter choices into multi-modal transport models. 
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2 Practitioner experience with modelling smarter choices  

2.1 Research methodology for practitioner study  

The motivation for this research comes from the desire to incorporate smarter choices into 

transport models. The WSP report for the DfT (2008) identified ways in which four stage 

models could incorporate some ‘smarter choices’ measures by using more matrices to 

handle a greater level of segmentation of travellers, having a finer zoning system, modifying 

the generalised costs and adding additional detail into the network coding. The first research 

question for this study is to investigate the recent experience of transport modellers of 

including the impact of ‘smarter choices’ programmes in their four stage models. 

Many of the most advanced transport models currently in use in the UK were built by local 

authorities when they were preparing bids to the Department for Transport’s Transport 

Innovation Fund (TIF). Substantial financial contributions were made by the Department for 

Transport (DfT) towards the cost of developing state-of-the-art transport models which were 

meant to be capable of testing the introduction of either a congestion charge or a workplace 

parking levy accompanied by complementary infrastructure improvements and ‘smarter 

choice’ measures to improve the attractiveness of public transport, walking and cycling.  Ten 

local authorities or consortium of local authorities built transport models to support bids to 

the Transport Innovation Fund. These were Manchester, Birmingham, East Midlands, Bristol, 

Reading, Cambridge, Durham, Tyne and Wear, Shrewsbury and Norwich. They employed 

many of the most experienced transport modellers in the UK, which made this a suitable set 

of models to investigate for this study. 

The research exercise undertaken for this study was designed to gain an understanding of 

current practice in the UK for modelling smarter choices. I had personal involvement in the 

TIF process as the author of the business case for the Reading bid. In this area the transport 

model was able to test the road pricing and bus rapid transit system elements of the 

proposed package of measures. As there were no forecasts available for the impact of the 
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proposed personalised travel planning programme and investments in walking and cycling 

infrastructure, I had to draw on the limited evidence from elsewhere in the UK to assess the 

value for money of this element of the Reading bid. Through attendance at meetings held by 

the DfT I was aware that some of the TIF modelling teams had been considering how to 

incorporate ‘softer’ measures such as personalised travel planning into their models. 

The aim of the first, exploratory, research exercise undertaken for this study was to 

investigate what methods practitioners in the UK had been using to incorporate ‘smarter 

choices’ into their multi-modal models and whether they regarded these as satisfactory.  The 

research design was to undertake this task in two phases. First the model documentation 

would be reviewed, as the Local Model Validation Reports are intended to provide a detailed 

account of how the models are structured and validated. They should provide details of the 

way in which the practitioners had incorporated ‘smarter choices’ into their models. The 

second task was to conduct a semi-structured qualitative survey with each of the TIF 

modelling teams to investigate their views on whether they regarded the methods they had 

used for modelling ‘smarter choices’ as satisfactory and whether they felt further work on 

developing these or alternative methods was required.  

The review of the available documentation for the multi-modal models built for the ten TIF 

congestion fund bidders showed that there was very limited documentation publicly available 

on the models that had used for modelling road pricing. As the preparation of the TIF bids 

progressed local politicians had become reluctant to introduce a road user charge in their 

area and the modelling work was either halted or diverted away from the specific 

requirements of the TIF projects. The models’ documentation recorded their innovations in 

modelling variable demand matrices for car and public transport use but, with the exception 

of Bristol, did not discuss the modelling of ‘smarter choices’. The Cambridge TIF bid 

explicitly said ‘the modelling framework does not capture the mode shift attributable to a 

smarter choice strategy’.  
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The research design was to conduct a semi-structured interview in person with each of the 

modelling teams.  The review of the model documentation informed the development of the 

survey questions used in the semi-structured interviews with TIF modellers. After securing 

permission from the University’s ethics committee, each of the local authorities which owned 

the transport models produced by the TIF modelling teams, was approached with a request 

to interview their TIF modelling team. The purpose of the interview was to ensure that the 

modelling methodology adopted had been correctly understood from the reading of the 

documentation and to ask the respondents additional details about their approach to and 

experience of modelling smarter choices. The local authorities were contacted first with an 

email, outlining the purpose of the study and requesting an interview with their consultants. If 

they were willing for their modelling teams to participate in the study, these teams were then 

contacted by email. Many of the consultants preferred to be interviewed on the telephone or 

to reply by email rather than be interviewed in person. Where a personal or telephone 

interview was agreed a follow-up email was sent confirming the date of the interview, 

accompanied by a project information sheet, which detailed the purpose of the study. An 

advance copy of the questions was also provided. It was made clear that the consent of the 

participants was voluntary and that the participant could withdraw at any time, even 

retrospectively, until the project was completed and published. 

Table 2.1 below summarises the response from each TIF bidder to the request to participate 

in the survey. In the West Midlands and Reading, the local authority officers responsible for 

the modelling work asked to be interviewed as well as their consultants, as they felt they had 

been closely involved in the technical modelling work supporting their bids. 
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Area Response Consultant Preferred interview method 

Greater Manchester arranged interview but withdrew MVA None 

West Midlands personal interview PRISM team personal interview 

Cambridgeshire telephone interview WSP and Atkins telephone interview 

Durham telephone interview Jacobs telephone interview 

Greater Bristol supplied documents Atkins no interview 

Tyne & Wear no response Jacobs telephone interview 

Reading personal interview PBA personal interview 

Shrewsbury response by email Mouchel Parkman answers provided by email 

Norfolk response by email Mott MacDonald answers provided by email 

Three Cities (Leicester) no response WSP None 

 

TABLE 2.1 CONTACT WITH TIF MODELLING TEAMS 

2.2 Results from practitioner survey 

The questions in the survey and the responses are presented here. 

Did you have any smarter choices measures, including walking and cycling, in your future 

year packages? 

The Transport Innovation Fund was politically contentious as a requirement of a bid to the 

fund was that the local authority had to introduce either a road user charge or a workplace 

parking levy. Both of these measures were unpopular with the general public and elected 

council members and in most cases the work was discontinued on bid modelling and 

preparation before the complete package of measures had been designed and tested. The 

bid packages most fully developed were those prepared by Manchester, Birmingham, 

Bristol, Cambridge and Reading. These all contained smarter choices measures and walk 

and cycle schemes. Work on the bids in Durham, Tyne and Wear, Shrewsbury and Norfolk 

did not reach the stage of defining the exact components of the proposed package of 

transport measures. 

How were these incorporated into the modelling? 

Durham, Tyne and Wear and Norfolk did not get as far as trying to model smarter measures. 

Norfolk used DIADEM, which is software produced by the DfT to conduct variable demand 
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modelling for a highway scheme. It incorporates the facility to model a variety of responses 

to changes in the supply of transport including changes in the frequency with which trips are 

made, the destination of trips, the time of departure and the mode used. It uses a logit model 

for mode choice based on describing journey alternatives in terms of their mode, time and 

cost. The model iterates between the demand modelling and the highway assignment so 

that the time and cost of travelling by car changes in response to changes in the level of 

highway demand. The time and cost of using public transport remains fixed throughout the 

modelling process i.e. a change in the number of people using public transport does not 

affect the time or cost of making a public transport trip. The use of fixed times and costs for 

public transport and the exclusion of walk and cycling means that the software is not suitable 

for testing many ‘smarter choices’ measures. 

 Manchester, Birmingham, Tyne and Wear, Bristol, Cambridge, Reading and Shrewsbury 

used other software packages and did develop walk and cycle matrices but these were not 

fully used in the demand modelling in the same way as the highway and public transport 

matrices. The walk and cycle matrices were developed with the intention of being able to use 

them in the demand modelling but each modelling team reported that in the end they were 

not used as they each failed to establish a suitable methodology for modelling changes in 

the demand for walk and cycle. There was a remarked degree of reluctance to discuss why 

these efforts had failed; the general feeling was that the problem was too difficult to be 

tackled in the time available and that there was a lack of data against which to calibrate the 

models. 

Birmingham mentioned the difficulties involved in constructing matrices of walk and cycle 

trips. As is usual practice, their modelling work was based on car park surveys, roadside 

interviews, public transport and household surveys. Walk and cycle trips were only covered 

in some additional surveys carried out later once modelling was already underway. Counting 

the number of pedestrians and cyclists and carrying our interviews with them proved to be 

very labour intensive and expensive. Given the limited budgets for modelling, even with the 
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financial contribution from the DfT, only a few surveys and counts were carried out, which 

resulted in only a small dataset being available to the modelling teams.  

There were concerns over using this data due to the small sample sizes. For example for 

vehicle counts the DfT advise using automatic traffic counters for at least 14 days at sites 

(DfT WebTAG Unit M1.2, 2014) in order to provide information on the daily variation in the 

number of vehicles. Some sites have permanent counters which provide additional 

information on the seasonal variation in vehicle numbers. As the pedestrian and cycle counts 

were conducted manually, which is expensive, they were only undertaken for a single day. 

As a result Birmingham council has since installed footfall cameras in the city centre, but 

these only supply count data, not origin and destination information, and only cover a very 

small proportion of all the walk and cycle trips carried out in the study area.  

Birmingham and Reading both commented that the TIF models were designed to be 

strategic models and covered a wide area in order to capture the possibility of people 

changing their destination as a response to the introduction of road user charging, As a 

consequence of this, each zone was quite large, for example in Birmingham the city centre 

was covered by nine zones. This meant that many walk and cycle trips were intra-zonal and 

as such never appeared in the trip matrices or were assigned onto the network. 

Birmingham, Bristol, Reading and Cambridge incorporated smarter choices into their 

modelling results by manually manipulating the vehicle matrices that came out of their 

transport model. They removed vehicles from the model output matrices in accordance with 

evidence from other studies as to the level of reduction in vehicles trips that could be 

expected if a smarter choices programme was implemented. They varied the percentage 

reduction in trips according to the distance of the trip, with a higher percentage reduction 

applied to shorter trips. The modified matrices were then reassigned to the highway network 

to provide results of the impact of these reductions on journey times and congestion levels. 
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No iterations with the transport model were then made, so there was no modelling of trips 

changing their mode or destination as a consequence of these changes. 

Bristol applied different reductions in vehicle numbers for each of the components of their 

smarter choices package in turn; workplace travel plans, school travel plans, tele-

conferencing, tele-working, car sharing, home shopping, car clubs, public transport 

marketing, travel awareness and personalised travel planning. Figure 2.1 below illustrates 

their handling of vehicle matrices, after the application of a logit model to predict mode and 

destination choices, in order to reflect the impact of smarter choices. 

 

 

FIGURE 2.1 BRISTOL'S SUBDIVISION OF THE CAR TRIP MATRIX BY SOFT MEASURE IMPACT 

Source:  Greater Bristol Strategic Transport Study, Working Paper - Soft Measures' Unit Rates, 2005 
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For workplace travel plans, for example, the modellers predicted the number of people who 

would be working at a place with a workplace travel plan, and reduced the number of 

commuter car trips to these destinations by 18%. All schools were assumed to have school 

travel plans which would reduce car travel by 12%. For tele-working, an assumption was 

made on the number of employees who could tele-work and how often they then worked at 

home. The number of car commute trips was then reduced accordingly. 

A similar approach, that is deciding what percentage of people were ‘in scope’ for each 

‘smarter choices’ measure and then reducing the relevant car trips based on evidence of 

achievements elsewhere was followed for the other ‘smarter choice’ measures with the 

exception of car clubs, public transport marketing and travel awareness where no evidence 

was found and so no reductions were made. Finally for personalised travel planning no 

specific reductions were made to avoid double counting with the other measures already 

considered. 

How satisfied were you with this way of modelling smarter choices?' 

None of the teams had modelled smarter choices using their preferred solution of building an 

integrated and fully multi-modal transport model that they could use to predict the changes in 

trip frequency, mode choice or destination that would result from measures such as road 

user pricing, changes in public transport provision, improvement to the walking and cycling 

infrastructure and ‘smarter choices’ measures.  

The DfT had provided guidance to the modelling teams on methods to incorporate income 

segmentation and variable demand modelling in the TIF models but had provided no 

guidance on how to model smarter choices. The view was expressed by Birmingham, 

Reading and Cambridge that they were disappointed in not being able to work out a method 

themselves to incorporate smarter choices within their modelling framework. They had 

manually manipulated the matrices by mode output from their transport model and used 
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these matrices in their appraisal work only because they could not devise a satisfactory 

alternative approach. 

Did you conduct a separate appraisal of any of the smarter choices components of the TIF 

package? 

Separate appraisals of their ‘smarter choices’ measures were carried out by Manchester, 

Birmingham, Bristol, Cambridge and Reading, They produced estimates of the number of 

people changing their behaviour as a result of these measures and then valued these 

impacts. The type of impacts which were valued and the valuations used varied between the 

bidders. 

Did you consider alternative ways of modelling walking and cycling to the approach you 

adopted? Why were these not implemented? 

The teams were generally unwilling to discuss the ideas they had considered for modelling 

‘smarter choices’. Reading had considered changing the lambda value in the logit model 

they used for mode choice modelling so as to increase its sensitivity to changes in time and 

cost between using public transport and car. The intention was to increase the public 

transport mode share in response to the same level of reduction in the cost of travel by 

public transport compared to car as a way to reflect ‘smarter choices’ resulting in a greater 

decrease in car use than would otherwise be expected, but this was approach was rejected 

because of the lack of calibration data. The DfT also rejected this method on theoretical 

grounds as although it gives a greater proportion of people using public transport if public 

transport costs go down it also increases the number of people predicted to use car if 

highway times decrease, and a reduction in car journey times is an intended consequence of 

implementing road user charging. 

The TIF modelling teams concentrated their initial efforts on developing modelling 

frameworks that encompassed variable demand modelling and the segmentation of matrices 

by income. When improvements to walking and cycling infrastructure and  ‘smarter choices’ 
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measures were added to the packages of proposed transport interventions, the modellers 

faced the challenge of adapting their models to face a task which was not envisaged when 

the models had been initially designed. Different amounts of effort were expended on 

dealing with this issue by the teams, including commissioning other consultants to work on 

the task, but none of the TIF bidders could devise a suitable way of incorporating ‘smarter 

choices’ into their models. 

A major difficulty mentioned by the modelling teams was the production of the complete 

current year walk and cycle matrices needed for model calibration from very limited survey 

and count data. Birmingham raised the issue that the structure of the software used to 

implement four stage transport models is designed to operate over the whole of a matrix at 

the same time. Dealing with separate areas is possible but convoluted and requires the use 

of ‘masking’ matrices or code to apply actions to particular origin – destination zone 

combinations.  ‘Smarter choices’ measures are often aimed at specific corridors and so the 

impacts need to be modelled only on trips that use this corridor or have origins and 

destinations in specific areas. This spatial detail makes the treatment of such policies 

extremely complicated using existing matrix based software. 

The three teams that continued as far as producing a bid to the DfT for TIF funding, 

Reading, Bristol and Cambridge, all relied on manually manipulating the matrices that came 

out of their transport model to reflect the changes they expected to occur given the limited 

evidence available from experience elsewhere of implementing these measures. As the 

adjustment to the matrices was made outside of the automated modelling process there was 

no feedback within the model between the impacts of the smarter choices component of the 

TIF packages and the other policy measures tested. 

2.3 Reflections on the practitioner experience 

The TIF teams were already committed to a particular modelling framework before they 

started to consider how to model smarter choices. They had started work on their models 
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before they were asked by the DfT to include ‘smarter choices’ in the package of 

complementary measures to be introduced at the same time as road user charging. This 

extended the type of interventions that needed to be tested in the model beyond those which 

were usually tested, such as changes to the supply of public transport and fares policy. The 

TIF teams may have been more successful in incorporating smarter choices into their 

models if they had been aware of this requirement at the start of the process so that it could 

have been considered during the initial model design and development of the data collection 

strategy. 

The TIF modelling teams were required to build a model that was compliant with DfT 

guidance as contained in WebTAG. This forced them to use a particular modelling 

framework, the standard four-stage modelling approach, as this is the mandatory structure 

for a DfT WebTAG compliant variable demand transport model. This may however not be 

the most appropriate modelling framework to use for modelling smarter choices. 

The TIF teams had already started the data collection for their modelling before they 

considered how to extend the modelling to incorporate smarter choices. This again imposed 

a restriction as they may have collected different or additional data if they knew from the 

start that they would be modelling smarter choices. For example, the consideration of 

‘smarter choices’ places a greater emphasis on walking and cycling modes and so more 

attention may have been paid to the collection of data about the current number of walk and 

cycle trips and people’s preference for walking and cycling rather than using other modes. 

The segmentation used in the model had already been decided on the basis of needing to 

model responses to the introduction of road user charging. The trips in the area were 

grouped into matrices based on: 

 Car availability  

 Time of day 

 Journey purpose e.g. commuting, education, employer’s business, leisure 
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 Income 

The segmentation by income was novel in the UK at the time and was introduced because it 

was felt that people might respond differently towards being charged to use certain roads or 

to park at work depending upon the relative size of the charge compared to their income. 

Once this segmentation was established changing it to also divide people up into groups that 

might be appropriate for modelling smarter choices, such as by attitude towards safety 

(which affects preference towards cycling) or by employment in a job suitable for tele-

working was not feasible. This was because the data had not been collected with such 

segmentation in mind, the matrices had already been created and there was not time in the 

work programme to go back and re-do this work. Adding additional segments would also 

increase already long run times and the DfT’s TUBA software used for the economic 

appraisal work was already struggling with the memory requirements of the increased 

number of matrices as a result of the income segmentation.  

As the TIF teams were faced with adapting their current models to incorporate smarter 

choices, they moved directly to considering solutions that were technically possible with 

minimal change to their current modelling framework, such as extending their mode choice 

model to include the option of walking and cycling as well as public transport and cars. There 

was little or no thought as to how smarter choices affected the travel decisions and whether 

those mechanisms were present in the model. For example, personalised travel plans place 

a great emphasis on providing information on travel choices to people but the transport 

model assumes that people have perfect knowledge already of the options available to them 

and their time and cost. 

It is also possible that people are making rational travel choices but that these are based on 

other considerations as well as time and cost, such as the health benefits from active travel 

and the greater certainty over travel time if the trip is made on foot. There was no 

mechanism by which these factors could influence the mode choice in the modelling 
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because the original choice of variables for inclusion in the TIF models, which omitted these 

factors, was made before the need to include ‘smarter choices’ arose. 

2.4 First research question 

The first research question for this study is ‘what has been the experience of transport 

modellers when using four stage models to include the impact of ‘smarter choices’ 

programmes on the mode chosen for commuting trips?’ 

It was clear from the practitioner interviews that including ‘smarter choices’ programmes did 

not prove to be as straight forward as they anticipated before attempting it. All the modelling 

teams faced issues with collecting sufficient amounts of observed data on the current level of 

walking and cycling in their area to use when building base year matrices and calibrating 

their logit based mode choice models.  

The TIF modellers also found that some of the interventions they planned such as improving 

safety could not be dealt with directly in the model except by adjusting the mode specific 

constant for cycling, but there was little data available to indicate by how much the mode 

specific constant should be adjusted. In the end, rather than adjusting the model parameters 

to get the changes they expected, the modelling teams chose to adjust the output matrices. 

This was a more transparent exercise but an admission that the models could not be 

extended to cover the proposed ‘smarter choices’ measures.   

A key lesson learnt from the experience of the TIF modelling teams is that the requirement to 

include responses to ‘smarter choices’ measures should be part of the initial design 

specification of the modelling tool. The model developed should be able to handle a greater 

level of segmentation than is currently accommodated so that more differentiation is possible 

on the time and cost of travel by different modes for different groups of travellers. It should 

also use a fine zoning system in order to produce more precise time and cost information on 

trips and to reduce the loss of short distance trips to the intra-zonal category, as these are 

often walk and cycle trips.  
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In conclusion, the experience of practitioners reinforced the WSP report (2008). There is a 

lack of evidence on the impact of the various components of ‘smarter choices’ packages 

which hinders model calibration. Although some features of ‘smarter choices’ packages 

could be incorporated in a four stage transport model by, for example, increasing the 

segmentation of trips, using finer zoning systems and more detailed networks, difficulties 

were encountered in implementing these changes due to software constraints, increased run 

times and lack of data. 

The practitioners could not find a satisfactory method for incorporating many ‘smarter 

choices’ initiatives within their modelling framework. Measures such as personalised travel 

planning and marketing campaigns do not affect the variables, time and cost, which 

determine mode choice in the current modelling approach but have been observed to affect 

the number of people using each mode in the real world. These issues became the subject 

of a literature review which considered the work of other modellers in extending the current 

four stage modelling framework and then examined alternative modelling methodologies that 

may be better suited to the task of modelling ‘smarter choices’ within a multi-modal transport 

model. 
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3 Literature review 

3.1 Introduction 

This literature review first considers recent work to enhance the four stage modelling 

framework. It then reviews alternative approaches to modelling that could be used to study 

the transport system and offer the potential of incorporating ‘smarter choices’ measures. The 

review considers sketch plan methods, system dynamics modelling and the individual based 

modelling approaches of microsimulation and agent based modelling. 

3.2 Enhancements to the four stage model 

3.2.1 DfT review of the four stage model 

The recommendations of the WSP (2008) report for the DfT into ways of incorporating 

‘smarter choices’ such as workplace travel plans, school travel plans and targeted marketing 

initiatives, into current four stage models were to: 

 identify those aspects of a smarter choices package that affect the time and cost of 

travel and apply those to the people affected by using a finer zoning system 

 increase the segmentation of travellers so as to be able to better match people with 

the costs they actually face, and 

 to use a more accurate representation of those costs e.g. through parking charges 

and bus fare concessions.  

3.2.2 Finer zoning systems 

A more accurate representation of travel time can be gained by using a finer zoning system. 

The zoning system used in a model is a way of aggregating trips together spatially; 

combining trips in the same locality and giving them a common, representative travel time by 

loading them onto the network for trip assignment at the same point. Trips that start and 

finish within the same zone are never loaded onto the network and do not contribute towards 

flows on the network or travel times between zones. The smaller the zones, the more 
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representative the travel time is for all people in that zone and a higher percentage of trips 

are loaded onto the network but the time taken to run the model increases.  

Originally four stage models were used for modelling vehicle trips and as cars are seldom 

used for very short distance trips, the use of zones was a practical solution for reducing 

model run times while retaining virtually all trips in the model. When the need to consider 

public transport was added to the modelling requirement, extra care was needed when 

designing the zoning system to ensure that the travel times for a zone were truly 

representative. As the first part of a public transport trip is walk, zones tended to become 

smaller so as to distinguish between people with a short or a long walk to a bus stop or 

station.  

Eash (1999) investigated the impact of the distribution of housing in a zone on the difference 

between the actual and modelled average access time from a zone to a bus stop on the 

eastern edge of the zone. He noted that with an uneven spatial distribution of housing within 

a zone the distance between the geographical centre of the zone and the bus stop was 

different than the average distance between the houses and the bus stop. He recommended 

the use of an ‘access mode’ centroid rather than a geographic centroid in order to gain a 

truer estimate of the actual access time to public transport from a zone. He also 

recommended designing the zoning system so that public transport stops were at the centre 

of a zone. However this may conflict with the ideal design of zones and location of centroids 

needed to produce an accurate representation of typical highway times. 

When models are further required to incorporate walking and cycling modes, there is a need 

to have a yet finer zoning system in order to reduce the percentage of intra-zonal trips which 

are not assigned onto the network. A possible solution is to have a transport model that 

operates with several zoning systems and contains procedures to seamlessly convert 

matrices between the various systems during the modelling process. This is easier to 

achieve for trip matrices when the zones are designed with this in mind so that the process 
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becomes one of simple aggregation and disaggregation. Great care is needed when using 

time and distance matrix skims prepared from a fine zoning system for use in other routines 

in the modelling system, such as demand modelling, which usually operates with a coarser 

zoning system to avoid the difficulties arising from calibrating mode choice models to 

matrices which have many cells with very few or zero trips.  

3.2.3 Customised networks 

When public transport modes are introduced into four stage models the coding of the 

network is extended to include public transport services. Key bus stops and railway stations 

are selected and coded into the model and services described either using actual timetables, 

which means that accurate interchange times are used, or the frequencies of services. In 

this case approximate waiting and interchange times are used based on applying a factor to 

the headway time between services. This enables the models to calculate public transport 

times between zones and assignment algorithms were used to allocate trips to routes based 

on time, cost and crowding conditions. 

The extension of these models to include walking and cycling, which are important modes in 

many smarter choices packages, requires that the coding of the networks is extended to 

include walk and cycle only routes. The starting point for a walk and cycle network is often 

the highway network but additional links are required for walk / cycle only links and one-way 

links for cars need to be coded as two-way for pedestrians to ensure that the journey routes 

and times are accurate. There is an implicit assumption that people can cross the road 

where-ever they want.  

Assigning pedestrians and cyclists to the shortest route does not always match their actual 

route choice and the trip assignment may benefit from the coding of additional information, 

such as the degree of segregation from traffic, the quality of the urban realm and the amount 

of street lighting, as these factors can influence route choice.   
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Castiglione (2014) notes that ‘a number of studies have considered the factors that affect 

bicycle choices, but very little of this research has been incorporated into traditional four‐step 

or activity‐based travel demand model systems’. He reports on work in San Diego where the 

complete cycling networks were coded, including all cycle tracks. Additional variables which 

affected cycle route choice such as elevation changes along a link were coded and used in 

the trip assignment stage. Desyllas et al. (2003) built a strategic pedestrian model for 

London which had a pedestrian route assignment component. The walk network included a 

variable indicating the pedestrian capacity of each link which can affect the attractiveness of 

certain walkways for pedestrians.   

Using these techniques it is possible for four stage models to incorporate the impact of some 

smarter choices measures, such as improvements to public realm and lighting. It is resource 

intensive to maintain an inventory of the network at this level of detail and to code the 

information into a network model (Connectics Transportation Group, 2008). Further work is 

also required to determine which network characteristics are the most influential on route 

choice and should be included in the network coding and then to calibrate the route choice 

algorithms that use these variables. There is also a need to develop methods of 

incorporating this information into the mode choice modelling so that improvements, such as 

better lighting, can influence the overall number of walk trips as well as the routes that such 

trips take. 

3.2.4 Increased segmentation 

The four stage model stores and handles trips in matrices which represent the number of 

trips going between each pair of zones in the model area. The trips in each cell of the matrix 

share a common travel time and cost, derived by skimming the routes chosen in the network 

assignment between the relevant zone pairs for that cell. All travellers within each matrix are 

assumed in the choice modelling to have identical weightings or preferences for time, cost 

and any other variables included in the modelling. The four stage model can segment 



37 
 

travellers into different groups by creating separate matrices for the travellers in these 

groups.  

The benefits of increased segmentation are that the matrix holds a more accurate 

representation of the actual times and costs for that group of travellers. For example, 

travellers may be segmented by whether they qualify for a concessionary bus pass which 

affects their cost of travel by bus or whether they have to pay for a parking space at their 

destination. A more accurate representation of travel times can be achieved by segmenting 

travellers by the time of day when they travel, which allows, for example, for longer travel 

times in peak rather than off-peak periods. The TIF modellers used segmentation by income 

as a method of segmenting travellers by their value of time, or willingness to pay for time 

savings achieved by road user pricing. Segmentation by journey purpose is also common 

practice. It assumes that people can be grouped together with common values of time 

according to the purpose of their trip with those travelling on employers business having a 

higher value of time than commuters or those travelling for leisure purposes. 

The WSP report (2008) recommended greater segmentation as a method of incorporating 

some ‘smarter choices’ measures into four stage models. It could be used to separate out 

those travellers receiving free travel to a workplace for example, or those facing high parking 

charges. Simmonds et al. (2001) distinguish two separate tasks associated with 

segmentation; first the distribution of the segments, that is to determine how many trips there 

are in each cell of the matrix and secondly to determine the demand response for each 

segment. Even with moderate levels of complexity reflected in the segmentation through 

cross-classification, for example, time of day by income by availability of free workplace bus 

service, there is ‘the possibility of ending up with more categories than travellers. The 

question then arises as to whether it is either efficient or plausible to represent all the 

feasible combinations of traveller characteristics if the result is that each cell of the matrix 

contains only minute fractions of travellers’. The report suggests that microsimulation may be 
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a more suitable tool for implementing models with a high degree of segmentation. 

Microsimulation is considered further in Section 3.6. 

3.2.5 Variable demand modelling 

A key finding of the DfT’s Sustainable Travel Towns study (Sloman et al., 2010) was that the 

impact of smarter choices was not just on mode choice but also on trip distribution; a car trip 

to a destination some distance away may become a trip to somewhere nearer and then may 

switch mode as well from car to walk or cycle. The concept of changing both mode and 

destination in response to changes in travel costs was introduced into four stage models in 

the UK by the DfT in 2006 as a response to the SACTRA committee work on induced traffic. 

The WebTAG Units 3.10.1 to 3.10.4 (2006) explained that variable demand modelling would 

be required when a proposed transport intervention would produce a significant change in 

time of travel that could in itself influence the number of trips people make (quicker travel 

times leading a higher frequency of travel), and their destination (faster average journey 

speeds or lower costs leading to people travelling to other destinations further away) as well 

as mode switch (as journeys by one mode become relatively quicker some people switch to 

that mode).  

The modelling community developed procedures to implement variable demand modelling 

for car and public transport trips but were hindered by the lack of evidence on the strength of 

the responses and factors affecting them and their efforts have concentrated on the impact 

of variable demand on the number of highway and public transport trips. There is as yet little 

work on how changes on the supply side affect the number and destination of walk and cycle 

trips. The principle that these measures could affect more than just mode choice is accepted 

but the challenge of representing this mathematically in the model is still unmet, as illustrated 

by the experience of the TIF modellers. 

The current approach in the UK for variable demand modelling is to use an elasticity 

approach for trip frequency. A logit model is used for destination choice, mode choice and 
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time of day choice modelling. (DfT WebTAG Unit M2, 2014). This highlights the critical 

importance of the logit model in the modelling of the travel decisions that ‘smarter choices’ 

measures are intended to influence. The next section therefore examines recent work on 

enhancements to the logit model that may assist in the modelling of ‘smarter choices’. 

3.3 Enhancements to the logit model  

3.3.1 The logit model 

Discrete choice modelling has been widely used as the mechanism for determining the 

choices made by travellers in transport models. A logit model is a discrete choice model that 

predicts the probability that a person will choose a particular alternative when faced with a 

choice between a set of options, such as which mode of travel to use for a particular journey. 

(Gordon, 2009). When these probabilities are applied to a number of people this then gives 

the mode share. The binary mode choice is given by 

Pi   =            exp (Ui)  

      (exp Ui) + exp(Uj) 

where: 

Pi is the probability of choosing alternative i 

Ui is the utility of alternative i 

Uj is the utility of alternative j 

 

The utility of each mode is calculated by combining together attributes of a journey that can 

be quantified, usually the time and monetary cost elements of the journey by each mode. 

Ui  =  ci 

where 

Ui is the utility of alternative i 

ci is the generalised cost of alternative i 

 is a negative scaling parameter 
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For a car journey this would include in-vehicle time, vehicle operating costs and any parking 

charges or tolls. For a public transport journey this could include in-vehicle time, walk time, 

waiting time, fares, boarding and interchange penalties. Stated preference surveys are often 

carried out to determine the weightings that people apply to these various factors, as for 

instance a minute spent walking has greater disutility than a minute spent in the bus. Values 

of time are used to convert monetary items into time equivalents. The utility function for each 

mode often includes a mode specific constant which captures aspects of generalised costs 

that are not otherwise captured in the utility function. Without it, if the generalised cost of 

travel by car and public transport is identical then 50% of travellers would use car and 50% 

would use public transport. 

The scaling parameter is vital as it dictates the slope of the curve in the logit model and the 

sensitivity of mode share to the difference in the generalised cost of travel between each 

mode. This is illustrated in Figure 3.1 below. The calibration of a logit model involves 

adjusting the weightings applied to construct the generalised costs, adjusting the mode 

specific constants and adjusting the value of the scaling parameter (also known as lambda) 

so that the logit model replicates the observed mode shares in an area and changes in mode 

share as one of the variables in the generalised cost functions such as public transport fares 

are changed (DfT, 2009). 
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FIGURE 3.1 SENSITIVITY OF MODE SHARE TO VALUE OF LAMBDA IN A BINARY LOGIT MODEL 

Source: Diadem manual, DfT 2011.  

Originally in 1973, McFadden proposed the logit model as a behavioural model based on the 

assumption that people seek to maximise their utility. By 2002 he was a co-author of a paper 

which presented random utility logit models only as predictive choice models which 

‘emphasise the regularities of choice behaviour in quantitative models that can be used for 

prediction’ and acknowledged that they only captured some of the issues involved in how 

people made decisions.  

Recent development work on the logit model has considered two aspects of particular 

relevance for the modelling of ‘smarter choices’. The first is to segment people into groups 

not based on external observable characteristics such as journey purpose, but on 

unobservable characteristics, such as attitudes of the travellers towards using public 

transport. The intention of segmentation by attitudes is to produce segments which have a 

more accurate response to changes in the transport system by the individuals within each 

segment. This work is described in section 3.3.2 below on latent classes. 
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The other development has been on the inclusion of unobserved but important variables that 

affect the mode choice decision in the model. This work is described in section 3.3.3 below 

on latent variables. 

3.3.2 Latent classes 

Walker and Ben-Akiva (2002) extended the logit model by introducing segmentation based 

on unobserved attitudes or preferences, with travellers divided into segments knows as 

latent classes.  Latent Class Analysis (LCA) is described by McCutcheon (1987) as a 

methodology that ‘is well suited for the analysis of typologies’. 

The premise behind latent class analysis is that a group of people can be divided into distinct 

sub-groups based on their attitudes or behaviours with the members of each sub-group 

sharing the same attitudes or behaviours. The approach is based on the concept that there 

is an underlying unobserved or latent variable which accounts for the difference between 

groups and this latent variable can be used to allocate people into groups. The observed 

choices made by people within each group based on their preferences are similar, but those 

for each group are distinct from the other groups. The differences between the groups are 

due to the unobserved latent variable.  

The result of a latent class analysis is a distinct set of clusters known as classes based on 

unobserved or latent characteristics of the respondents. LCA also provides for each 

respondent the probability of their belonging to each of the classes. They are then allocated 

to the class for which they have the highest probability of membership. When setting up the 

latent class analysis key variables such as time and cost preferences are selected as 

primary drivers for the segmentation. Secondary drivers can also be designated, such as 

demographic data and these can be treated as either active, in which case they influence the 

clustering, or inactive, in which case they are used only in the profiling of individuals within 

each class.  
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The latent class solution is not dissimilar to the cluster analysis approach often implemented 

using the K-means technique, but LCA has some distinct advantages over cluster analysis. It 

can readily use data of different types, so it is possible to determine classes on the basis of a 

person’s preference weighting for time, cost, etc. and responses to other parts of a survey 

such as income, car ownership, location and even attitudinal responses to Likert scale type 

questions. It also produces output that gives the probability of a respondent belonging to a 

particular grouping. 

Atasoy et al. (2011) used latent classes in a Swiss study of mode choice. A qualitative 

survey of 20 people was used to investigate people’s mobility habits, residential choices and 

opinions on different transport modes. This informed the design of a revealed preference 

survey, completed by 1763 respondents, which contained a one-day travel diary and a set of  

five-point Likert scale questions on respondents’ opinions on topics related to environment, 

mobility, residential choice, lifestyle and their perceptions of different transport modes. Data 

was also collected on their household composition and socio-economic characteristics. 

Latent class analysis was carried out to discover what natural groupings there were amongst 

the respondents in terms of their preferences. A logit model was calibrated for mode choice 

for each of these groups. The work revealed two latent classes or groups of people who 

shared similar preferences. The first group consisted of individuals who were mostly middle 

aged, living with family and children, highly educated and with high incomes. The second 

class were young individuals, mostly students and old people who were mostly retired. The 

latter group were more sensitive to cost than the former.  

The performance of the choice models was tested by calibrating the latent class logit model 

using 80% of the observations selected at random and comparing the predicted mode with 

the reported mode choice for the remaining 20% of the observations. The logit model with 

the two latent classes had better prediction power compared to a single class logit model, 

with choice probabilities higher than 0.5 for 75.00% of the withheld data when using latent 
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classes compared to 72.87% for the base model. The percentage of choice probabilities 

higher than 0.9 was 27.93% with latent classes compared to 25.80% without.   

The use of latent classes offers the possibility of improving the overall performance of mode 

choice modelling as it provides a way of using the data to decide on the relevant segments 

and allocation of individuals to those segments rather than the groupings being pre-

determined before the data is collected and the models calibrated. For example, in the 

application of the logit model monetary costs are converted into a time equivalent by dividing 

the cost by the values of time. Applying logit models with a different value of time to market 

segments shown to have different values of time rather than a single model with one value of 

time applied to everyone, would be expected to improve the forecasts of those aspects of a 

smarter choices programme which sought to influence mode choice by affecting the cost of 

travel, for example, by providing subsidised bus services. 

3.3.3 Latent variables 

Latent variables are unobserved variables. With latent variables, attributes and values which 

cannot be directly quantified can be brought into the utility function. The use of latent 

variables has been developed to address the omission of factors which influence choice but 

cannot be directly observed, measured and incorporated in the utility function. These latent 

variables can be used to include unobservable psychological factors such as the desire for 

safety, convenience and attitudes towards environmental considerations. (Ben-Akiva et al., 

2002, McFadden, 1986). 

Work by Temme (2007) and Yanez et al. (2010) has shown that it is feasible using available 

software to use latent variables to introduce perceptions and attitudes into logit models and 

that this improves the ability of these models to replicate observed choices and improves the 

forecasts produced by logit models. Temme (2007) used latent variables in a logit model to 

look at the impacts of a change in the terms and conditions of a German railpass which 

reduced the cost of travel slightly but decreased the flexibility of its use. A traditional logit 
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model forecast an increase in rail travel as a result of the decrease in costs, but the inclusion 

of a latent variable that captured the value of flexibility correctly predicted the actual decline 

in rail travel that was observed as rail users rejected the new pass because it imposed too 

onerous a set of travel time restraints. 

Yanez et al. (2010) used panel surveys in Santiago, Chile, to record mode choice before and 

after a major change in the public transport network. Three latent variables were used in the 

modelling; reliability, comfort/safety and accessibility. The value that a person placed on 

each of these attributes is deduced from knowledge of the individual’s income, education, 

gender and age as shown in Figure 3.2 below. The relationship between these observable 

attributes and the value the individual would accord to the latent variables was estimated 

using a Multiple Indicator Multiple Cause model. The latent variables, with their deduced 

values, were then used in the logit model to extend the generalised cost functions to contain 

reliability, comfort/safety and accessibility. 

 

 

FIGURE 3.2 LATENT VARIABLES USED IN SANTIAGO 

Source: Yanez et al., 2010 

Yanez et al. (2010) reported that this hybrid choice model produced better predictions of the 

observed changes in mode share than standard logit models. They conclude that ‘hybrid 
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models are clearly superior in fit to traditional discrete choice models that do not incorporate 

latent variables’.  

The next section takes up the suggestion of Simmonds et al. (2001) that alternative 

modelling approaches may offer potential as ways of developing transport models with the 

greater degree of segmentation required for the modelling of ‘smarter choices’. It reviews 

five modelling approaches; sketch plan methods, system dynamics, microsimulation, activity-

based modelling and agent based modelling and considers their potential contributions 

towards the modelling of ‘smarter choice’ measures within an integrated multi-modal 

transport model. 

3.4 Sketch plan methods 

The popularity of sketch plan methods is due in part to the length of time it takes to build a 

four stage model for an area and even to undertake model runs from a model that is already 

built. Sketch plan methods aim to produce a similar result more quickly and offer the 

opportunity to make adjustments to the numbers based on professional judgement or factors 

not included in the full four stage model. They are often implemented in spreadsheets or GIS 

systems.  

Marshall and Grady (2006) used a sketch plan model to model the impact of land use on 

public transport patronage. The reasons provided for not using the full four stage model for 

the region were concerns over the model’s accuracy, its insensitivity to land use changes 

and institutional and cost barriers to using the full model. The accuracy concerns related to 

the validation of the four stage regional model concentrating on a correct representation of 

highway trips rather than public transport trips, and an insufficient level of detail in the 

validation, which considered only overall boarding numbers rather than validating individual 

stops and lines. The trip generation model in the full model was not very sensitive to land 

use changes in a zone. The institutional barriers they encountered included the high degree 

of training required of staff before they could use the model and the Washington 
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Metropolitan Planning Organisation, which owns the model, wishing to concentrate 

resources on modelling other issues such as air quality conformity. 

A sketch plan model was developed to include additional relevant variables such as 

household density, employment density and the presence of a Metro service in the area that 

would influence the number of trips made by public transport. It still used a logit model for 

mode choice but by concentrating on just one aspect of the full model and implementing it 

outside the complete structure of the four stage model they were able to develop a tool that 

could be used with a finer zoning system and incorporate more explanatory variables than 

were included in the full model. The sketch plan model produced a better match between the 

observed and modelled number of public transport trips for each zone, with a correlation at 

the home end of 0.899 for the regional model and 0.974 for the sketch plan model. When 

smarter choices can often result in small changes in small numbers, the opportunity to 

improve the accuracy of a model is valuable.  

As the model was implemented as a stand-alone module it was possible to run many tests in 

a short amount of time and it was feasible to test a greater range of measures that might 

influence the levels of public transport patronage than would have been possible using the 

full model. 

Sketch plan models have been used by planning authorities in the US for modelling smarter 

choices both to supplement and replace the mode choice component of the four stage 

model. This approach uses manual manipulation of trips matrices using spreadsheets or 

bespoke computer programmes which contain a database of the likely responses to 

particular smarter choices measures to provide an indication of the response to the package 

of measures under consideration (Jotisankasa and Polak, 2008).  

One of the more sophisticated of these bespoke programs is the COMMUTER model 

developed by the US Environmental Protection Agency (Carlson et al., 2005) which 

combines the database approach with logit models. First the current baseline mode shares 
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are adjusted to reflect the impact of support and incentive programmes, for example car 

share programmes and providing cycle facilities which do not affect the time or cost of travel 

and so are not captured in the utility functions used in the logit models. The extent of the 

impact on current mode shares is taken from an extensive database of the likely impact of 

such measure compiled from experience all over the United States. Then a logit model 

based mode choice model is used to estimate the impacts of strategies which are designed 

to change the time or cost of travel such as car park charges, high occupancy lanes and fare 

reductions. A pivot point logit model is used with either a set of locally calibrated model co-

efficients or a default set of national values. 

This approach has some value in that it makes the practitioner review each component of 

the package of measures and decide if their effects can be captured in the logit model or 

whether its influence on trips needs to be made explicit outside of the modelling framework. 

However, other than providing a database of the experiences of implementing these 

measures elsewhere it does not show in what ways the trips will be affected. Although the 

number of vehicle trips is reduced, is that because people have switched to other modes or 

chosen not to travel at all? It also requires the practitioner to be able to decide how much of 

the observed effect elsewhere came from elements that were captured in the logit model and 

how much came from other factors.  

The difficulties of these methods that rely on professional judgement to alter the matrices to 

account for smarter choices is that even experienced professionals are unsure of the nature 

and scale of the effects that will be produced in their area. Results observed elsewhere will 

have been affected by their local context and may not have the same impact when applied in 

a different context, 

Bonsall (2009), Stopher (2009) and Chatterjee (2009) have all noted the many failings of 

evaluation studies, such as the lack of sufficient sample size, inadequate description of the 

measures actually undertaken, only interviewing participants in a travel behaviour 
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programme, self-reporting of behaviour and the lack of a control group in order to 

understand the counterfactual. Even if a practitioner did have access to a high quality 

evidence base on the efficacy of these interventions, the context in which they were applied 

may well differ to the context of the area in which they are proposed and the actual 

combination of measures is likely to be different from those other studies. It places an 

impossible cognitive burden on the practitioner to transfer and modify mentally the results of 

programmes elsewhere into his area, while also separating out those impacts which will be 

due to aspects of the programme that can be modelled with the logit model. 

3.5 System dynamics 

Systems dynamics modelling considers the way the system to be modelled operates. It is a 

way of ‘systems thinking’ (Sterman, 2000) based on the belief that the subject of the model 

is a complex system, full of inter-dependencies between its component parts.  

The aim of systems dynamics is to gain an understanding of the system being modelled to 

assist in the prediction of the consequences of changing one part of it. Thomas (1974) warns 

that ‘you cannot meddle with one part of a complex system from the outside without the 

almost certain risk of setting off disastrous events that you hadn’t counted on, in another, 

remote, part. If you want to fix something you are first obliged to understand…the whole 

system…Intervening is a way of causing trouble’.  

Forrester (1989) traces the development of the systems dynamics approach to modelling 

back to when he was approached by General Electrics to consider why they experienced 

periods of working three or four shifts a day in the factory and then periods when they had to 

make staff redundant. Forrester mapped out the dynamics of the operations in the factory, 

their employment policies, production processes and inventories with pen and paper, 

concentrating on the dynamics in the system. The methodology he devised to explain the 

system forms the core of system dynamics. 
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A systems dynamics model is based on the links between the elements included in the 

model. It represents the direction and strength of causality of these links, which often leads 

to the description of causal loops. These loops may be positive (reinforcing) which amplify 

whatever is happening or negative (balancing) as shown in Figure 3.3 below.  An arrow 

indicates that there is a causal relationship between two elements in the systems dynamics 

model. The ‘+’ sign means that if the cause increases, for example the adoption rate of a 

new product such as mobile phones rises, the effect increases, and there is an increase in 

the number of people with a mobile phone. The ‘-‘ sign means that if the cause increases the 

effect decreases; so as the adoption rate rises the number of people without a mobile phone 

and therefore potential customers falls.  

 

 

FIGURE 3.3 CAUSAL LOOPS IN A SYSTEMS DYNAMICS MODEL 

Source: Blleininger, 2010 

The feedbacks within the system are often not instantaneous and the system is modelled 

through time in order to capture the time lags within these loops. This results in dynamic 

models that can capture non-linear relationships caused by the varying strength of several 
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inter-related causal loops. The systems do not always reach a steady state, or equilibrium, 

and may show instability and oscillations, such as the staffing level cycle observed by 

Forrester at General Electric. A common role of a systems dynamics model is to test 

possible interventions and to observe whether the consequences of these changes assist in 

the meeting of a policy objective, such as the maintenance of stable employment levels. 

A further standard feature of systems dynamics models is the use of stocks and flows to 

illustrate the workings of the system. For example the number of people employed at the 

factory is a stock, and the rate of recruitment and dismissal are flows. Stocks contribute to 

the modelling of the dynamics of a system as they act as a kind of memory, storing the result 

of past actions. In a feedback process, past decisions and actions come to influence present 

decisions and actions through the amount of stock available.  

The systems dynamics approach has been applied to several aspects of the transport 

system. Armah et al (2010) illustrated the issue of road congestion as a contributing factor in 

the air pollution problems in Accra in a causal loop diagram reproduced below in Figure 3.4. 

Complaints about road congestion leads to the building of additional road capacity which 

reduces travel times and results in more people using the car which leads to increased road 

congestion and worsening air pollution. This is the ‘induced traffic’ affect resulting from the 

feedback between the supply side of transport (build new roads) and the demand for 

transport. This extra traffic in turn leads to higher levels of air pollution which poses a health 

risk to the local population. 
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FIGURE 3.4 A CAUSAL LOOP DIAGRAM FOR ROAD CONGESTION 

Source: Armah, 2010 

Land use is a common subject for systems dynamics models, starting with Forrester’s Urban 

Dynamics model (1969) which concluded that building social housing without also providing 

employment in the same area exacerbated urban poverty and eventually led to the boarding 

up of the new houses as people left to find work.  

Swanson (2008) developed a model to capture the wider economic impacts of investment in 

transport infrastructure and used this model to support bids to DfT for investment in Leeds 

(Steer Davies Gleave, 2014). The model incorporates a zoning system which allows 

transport times and costs to vary across the modelled area.  These transport costs are one 

of the variables that affect the attractiveness of an area for housing; the more attractive an 

area the rate at which people wish to move into an area rises and the rate at which they 

leave falls. The rate at which new houses are built in an area depends upon the demand for 

housing there, the level of existing housing stock, the amount of land available for building 
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and the rate of return on new houses. For businesses, the attractiveness of an area depends 

on the transport times and costs which affects access to customers and suppliers, the ability 

to recruit staff and the availability of premises. The model was used in Leeds to trace the 

change in land use and GDP growth following the delivery of a new piece of transport 

infrastructure. 

In relation to smarter choices, MacMillan (2014) developed a system dynamics model of the 

choice of cycling for the journey to work in Auckland, New Zealand. The model was built 

from evidence gained by interviewing 16 stakeholders to establish the relationships affecting 

the level of cycling use for commuting trips. The preliminary causal loop diagram for the 

model was then refined at two workshops with over 30 participants involved either directly or 

indirectly in designing transport policy in Auckland. 

The causal loop diagram for the model, with two balancing and four reinforcing feedbacks, is 

shown in Figure 3.5 below. The dominant feedback loop is the balancing loop, B1. When 

there are more cyclists but no change in the bicycling infrastructure to accommodate them 

the number of cyclists involved in accidents rises, news of which deters people from cycling.  

The main reinforcing feedback is R1, more investment in cycle-friendly infrastructure 

reduces the real and perceived risk of cycling, encouraging more people to cycle which in 

turn encourages more cyclists. The other two reinforcing loops are, R2, as more people 

cycle it becomes more normal and socially acceptable to cycle and, R3, there is safety in 

numbers with cycling and that as more people cycle the rate of cycle injuries per total miles 

cycled reduces.  
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FIGURE 3.5 A CAUSAL LOOP DIAGRAM FOR BICYCLE COMMUTING TO WORK 

Source: MacMillan, 2014 

The strength and time delay in the feedback loops was quantified using available evidence 

from other studies. The model was validated by starting the model in 1991 and modelling 

forward to 2011, then checking against current cycle mode share in Auckland. The model 

was used to forecast annual cycling mode share forward to 2050. Cycling rates in Auckland 

between 1991 and 2011 oscillated around a low level of around 1% of all commuting trips 

during this period and this was replicated by the model. The point at which the strength of 

the reinforcing loops counteracts the balancing loops has not yet occurred in Auckland and 

is not shown in the model runs up to 2011 so, in my opinion, the conditions for this increase 

in cycle mode share, its timing and strength are not validated.  

The model was used to test five policy scenarios; 

 Baseline (no investment in cycling) 
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 Regional cycle network (RCN) investment - the current policy to invest in on-road 

cycle lanes and some new off-road shared footpaths 

 Arterial segregated bicycle lanes (ASBL) - a major investment in segregated cycle 

lanes on every arterial route and provision for bicycles at intersections 

 Self-explaining roads (SER) - the introduction of traffic calming measures and lower 

speed limits on all local roads 

 Arterial segregated bicycle lanes and self-explaining roads.  

The model was run for each of these scenarios and outputs reported for each year, such as 

the number of cyclists, the number of cycling injuries and savings in emissions level as trips 

switch from motorised modes. The cycling mode share predictions are reproduced in Figure 

3.6 below.  It shows that a modest increase in cycling rates can be achieved by the regional 

cycle network and traffic calming local roads but that a significant modal shift can only be 

achieved with the provision of segregated cycle lanes on arterial routes. 

 

FIGURE 3.6 PREDICTED CYCLING MODE SHARE FOR COMMUTING TRIPS IN AUCKLAND UP TO 2051 

Source: MacMillan, 2014 

The strength of systems dynamics lies in its ability to capture the dynamic complexity of 

systems. This complexity arises because systems are, as Sterman (2000) outlines: 

 constantly changing but at different rates 
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 tightly coupled, with elements interacting with other elements within the system 

 governed by feedbacks  

 non-linear, with an effect rarely proportional to its cause 

 history dependent, where ‘taking one road often precludes taking others and 

determines where you end up’ 

 self-organising, with the dynamics of systems arising ‘spontaneously from their 

internal structure’. Small random perturbations can be amplified and modified by 

feedbacks which generate patterns and create path dependencies. 

 adaptive, as a system evolves over time and participants learn from experience and 

change their actions 

 affected by time delays in feedback channels which may have different strengths of 

responses, resulting in the long-run response in the system to an intervention being 

stronger or contradictory to the short-run response  

 counterintuitive, the long term responses can be unexpected as unforeseen feedback 

loops come into force. 

Systems dynamics models in the transport field have mainly been developed in order to 

develop an understanding of the relationships between various elements of the transport 

system and to explore the way these elements interact. It could be useful for exploring some 

elements of ‘smarter choices’ measures and has the potential to include a wider range of 

causal links affecting mode choice rather than just time and cost. It highlights that there are 

alternative ways of considering the transport system other than through the neo-classical 

framework of the four stage model. The transport system in an area can be considered as a 

dynamic complex system, with a whole myriad of causal links of differing strengths, direction 

and timing. 

The main weakness for using systems dynamics to model ‘smarter choices’ is the very 

limited amount of segmentation that can be readily handled by these models. Given the 

heterogeneity of travellers in terms of their characteristics, preferences and the trips that 
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they make, a modelling approach which recognises the complexity of the transport system 

but attempts to model it in a far more dis-aggregate way may be more successful in 

modelling ‘smarter choices’. 

The ‘top down’ approach of system dynamics means that it concentrates on the processes at 

work in a system rather than the consequences of the changes in the system on individual 

players within it. When transport policies and schemes are appraised, a key consideration, 

as well as any impacts on mode share, time savings and vehicle operating costs, is the 

social impacts of the proposal. An assessment, however, of the distributional impacts of a 

scheme, which shows how people, including non-users of the scheme, are affected and in 

what way, is hard to achieve with a whole-system modelling approach. This suggests that a 

modelling approach that starts with the individual people using or affected by the transport 

system may be more appropriate for the appraisal of ’smarter choices’.    

3.6 Microsimulation 

Orcutt (1957) developed a ‘bottom-up’ modelling approach based on modelling each 

individual decision-making unit in a system. These units are ‘elemental decision making 

entities such as individuals, families, firms, labour unions and governmental units’. He was 

prompted to consider new approaches to modelling by his reflection ‘that current models of 

our socio-economic system only predict aggregates and fail to predict distributions of 

individuals, households, or firms in single or multi-variate classifications’. He felt that ‘there is 

an inherent difficulty, if not practical impossibility, in aggregating anything but absurdly 

simple relationships about elemental decision-making units’. If most relationships are non-

linear then aggregation becomes problematic and he proposed modelling at the micro level. 

Predictions about the future state of the system would be obtained by aggregating the state 

of each of these individual units. 

He proposed that this micro-level modelling was carried out in a series of discrete time 

steps. In each time step, the decision or action of each modelled unit depends upon its 
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inputs. ‘An input into a unit is anything which enters into, acts upon, or is taken account of, 

by the unit such as its age, gender, employment status’. The output is often drawn from a 

probability distribution, for example, that shows the likelihood of a person getting married 

given their age or from the application of a set of rules. The model traces the state of these 

units over time and the overall state of the system is obtained by aggregating the state of 

each of the individual units.  

Static microsimulation models which model only a single time step became popular in the 

1970s, primarily in the modelling of the impact of changes in the tax and social security 

systems. The rules in these systems are often non-linear and the exact change experienced 

by a person depends on that individual’s circumstances, such as the age and income of 

other members of the same household. A microsimulation model can calculate the impact of 

the proposed change for each individual and it is by aggregating the individual outputs that 

the total absolute change is predicted, for example the change in the total level of social 

security benefits after a rule change in entitlement. When aggregating the individual changes 

it is possible to present the distribution and scale of the impacts and to identify the winners 

and losers from a proposed change. 

Static models calculate the immediate effect of a change whereas dynamic models consider 

the effect over time. Static models consist of two parts (Martini and Trivellato, 1997); an 

initial data set which contains the relevant attributes such as age or income of each 

individual or household unit, and a set of accounting rules which are used to calculate the 

effect of a proposed change. The accounting rules are applied once to model the immediate 

effects of a proposed change and so are sometimes termed ‘morning after’ models. (Collins, 

2006). The attributes of each individual remain constant in a static microsimulation model. If 

the model is used to predict the effect of a proposed change some time into the future then 

the individual units are re-weighted to reflect a forecast of the future composition of the 

population for the relevant model year (Spielauer, 2010)   
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In Europe the EUROMOD model provides a standard microsimulation framework for 

modelling European tax systems and has been applied in over a dozen European countries, 

using the relevant database of individuals and the tax rules for each country. (Harding,2007). 

In the UK, H.M. Treasury (2014) has a tax and benefit microsimulation model that is used to 

model the distribution of the impacts of budget changes. They regularly publish the results of 

their modelling work. 

Orcutt’s vision for microsimulation was to model a whole series of time steps, now known as 

dynamic microsimulation. In dynamic models the state of a unit in one time period can affect 

the outcome in the next time period, which means that the approach can model path 

dependency and collect information on the life-histories of the modelled units. Orcutt’s 

attempts at building such models in the late 1950s though were hampered by ’the lack of 

sufficient computer power and data availability at that time’ (Spielauer, 2010).  

The main areas of application of this modelling approach in the transport field are the 

modelling of the movement of vehicles on the road network and activity based modelling. 

During the 1990’s a number of commercial software packages became available, such as 

Vissim, Paramics and Aimsun, which model the movement of each vehicle individually 

through the network. The vehicles are assigned routes and car-following and lane-changing 

rules are applied to the movement of vehicles through the network, with vehicles responding 

to the actions of other vehicles or agents. The decisions of each agent depend on factors 

such as ‘their age, gender, risk-taking behaviour, driving skill, vehicle size, and vehicle 

performance characteristics’, the position and speed of other agents and the physical 

characteristics of the environment as specified in the description of the road network. 

(Panwai and Dai, 2005, Laufer, 2007). This approach to trip assignment is commonly known 

in transport modelling as microsimulation. 

3.7 Activity based models 

3.7.1 The structure of activity based models 
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The activity based approach to transport modelling has established itself in the past 10 years 

as an alternative approach to the four stage model. Most of the activity based models 

currently in use have been developed in the United States.  As of 2012, there were 12 

completed models in the USA and a further 10 under development, Activity based models 

are also used in Toronto, Jerusalem, Tel Aviv and Copenhagen (Gliebe and Picado, 2012). 

Activity based modelling is based on the idea that travel is a derived demand, not 

undertaken for its own sake, but in order to undertake an activity at a specific location 

(Jones, 1977). The modeller focuses on predicting the schedule of each person’s activities 

for the day. The trips made by that person then follow from this schedule, often known as a 

‘day plan’. 

The activity based modelling approach is based on the work of Hägerstrand (1970) who 

proposed a theoretical framework of time geography where each individual could undertake 

their activities with a set of resources but facing a set of constraints. The resources are time 

and space and the constraints are: 

 capability constraints on the physical and technological limitations of an individual. 

 coupling constraints arising from the need for a person to undertake certain activities 

at the same time-space locations as other people  

 authority constraints from institutionally imposed restrictions and regulations, such as 

shop opening hours. 

The two most common modelling platforms for activity based models are CT-Ramp and 

DaySim. The developers of both these systems describe their models as microsimulations. 

‘The CT-RAMP system is implemented in a fully-disaggregate microsimulation framework’ 

(Parsons Brinckerhoff, 2011) and DaySim ‘uses a microsimulation structure’ (Bowman et al., 

2006). Activity based models (ActBM) are micro-simulation models; the units in their models 

are individuals and a set of rules are followed to determine the activities they are likely to 

follow and the time, destination and mode of the associated trips. Most ActBMs use a set of 
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nested logit models to determine the probability of a person undertaking each of the possible 

activity schedules and associated trips in their choice set and then compares these 

probabilities with a random seed to determine which activity schedule and transport choice is 

assigned to that individual. A minority of ActBMs, such as the ALBATROSS model, use a set 

of heuristics to model the activity plans and transport choices of each person. 

The typical structure of an ActBM is shown in Figure 3.7 below. The modelling of a person’s 

choices is unified by using of a series of linked logit models for each choice. The utilities are 

based on journey times and costs. These are passed up the modelling structure, while the 

components of each person’s choice sets are passed down the model, to ensure 

consistency in the application of time/space constraints and in the modelled decisions for 

each individual. This consistency in mode choice, for example, means that if a person drives 

to work in the morning they are not allocated to public transport for their final trip home at the 

end of the day.  

 

FIGURE 3.7 MAJOR STEPS AND INFORMATION FLOWS IN AN ACTIVITY BASED MODELLING SYSTEM 

Source: Castiglione, Bradley and Gliebe, 2014 
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The basic components of an activity based model are as follows: 

Synthetic Population: This is a database of all the individuals living in an area, containing 

information on the attributes for each person required for the model and the location of their 

home. Typical attributes, such as those used in the Chicago model (Parsons Brinckerhoff 

2011) are, for persons, their age and employment status and for households, their size, 

number of workers, income, car ownership and housing type. The techniques used to create 

‘synthetic populations’ are considered in more detail in Chapter 8. 

When modelling future years, a synthetic population is needed which matches forecast 

numbers for key household and person variables such as the number of households, 

number of individuals in each age category and future employment levels. A current 

research area is the further development of microsimulation household evolution models to 

predict the changes in a population over time, for example through births, deaths and 

migration, in order to produce the future population for input into forecast year runs of an 

ActBM directly from the base year synthetic population. (Gliebe and Vovsha, 2012). This 

approach has already been adopted in the ILUTE model for Toronto (Miller 2009). 

Long term choices: In recognition that some choices that affect a person’s activity plans 

are not made on a daily basis, separate models are used to predict a person’s usual work 

and school locations. (Outwater and Vovsha, 2012).  

Mobility choices: Separate models are also often used to predict factors that affect a 

person’s mobility decisions but do not change on a daily basis such as car ownership, 

possession of a driver’s licence, bicycle ownership and season ticket ownership. The results 

of these models, for example, whether a person owns a car or possesses a season ticket 

affects the modes in an individual’s choice set and the costs for that individual of using each 

mode.  

Daily activity patterns: The creation of individual daily activity patterns ‘is the cornerstone 

of activity based modelling and key differentiating feature from 4-step’. (Vovsha and Gliebe, 
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2012). The daily activity pattern lists the time and place for each of the activities scheduled 

for each person during the model’s 24 hour time period. A typical classification system is: 

 location: at home or out-of-home 

 type: mandatory, maintenance, or discretionary 

 purpose: work, education, shop 

 priority: primary activity/destination vs. secondary activity/stop 

 intra-household interaction: individual or joint. 

For each person there are a large number of potential daily activity plans. For example in the 

Sacramento DaySim model, even after excluding unobserved and infrequent combinations, 

each person has a choice of one out of 2080 possible daily plans when considering the 

order and type of activity alone (Bowman el al., 2006). The choice of daily activity plan is 

modelled using a logit model with the utility of each plan based on the sum of a constant 

value, the utility of each activity which varies for each household/person type and the utility 

of the travel options.  

Many ActBMs take account of household characteristics, such as income and car ownership, 

when constructing activity plans for the people in those households. Some also take account 

of joint travel arrangements between household members and the constraints imposed by 

family obligations such as escorting children to school.  

Tour and trip details: A tour is the linked set of trips from the primary origin point, to a 

series of secondary destinations, and back to the origin point. Once an activity plan has 

been selected for an individual it is converted into a set of tours and their component trips. 

For example, for a person with a daily activity plan of leaving home, dropping the children at 

school, going to the office, going to a café at lunchtime and then shopping at a supermarket 

on the way home, their daily activity plan converts into two tours, with a total of six trips: 

 Home - school - work -  shop -  home (4 trips) 

 Work - café - work (2 trips) 
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A set of logit models is used to determine the time of day, destination and mode used for 

each of the trips, although the order in which the decisions are taken varies between 

different implementations of the ActBM framework. The software is designed to ensure that 

consistency is maintained between all trips and the other elements of the model, so that for 

instance if the person does not have access to a car they are not able to choose the car 

driver mode or if they take cycle to work in the morning they do not return home as a car 

driver.  

Auxiliary demand: some trips in an area are not derived from the population’s daily activity 

plans. This includes goods vehicle movements and trips made by people living outside of the 

study area who are visiting or travelling through the study area. These trips are modelled 

separately. 

Trip assignment: once the origin, destination, mode and time of day for each trip has been 

determined, the trips are combined into trip matrices and assigned to the transport network 

to derive travel times and costs. In most ActBMs the assignment is carried out with the static 

assignment algorithms used in the software that implements four stage models but some 

areas, such as San Francisco, are moving towards the use of traffic micro-simulation, 

(Erhardt, 2013).  

3.7.2 Strengths of activity based modelling 

One of the main advantages of activity based models compared to four stage models is that 

they can be sensitive to more policy variables. In addition to modelling responses to changes 

in the time and cost of trips, they can consider changes brought about by policies that affect 

a person’s activity schedule, such as home-working, flexible working hours and extended 

shop opening hours. They can also model the ‘knock-on’ impact of a person’s mode choice 

on their daily plan For example if a person chooses to walk to work it may well take them 

longer and that additional time may lead to them foregoing another activity such as a visit to 

the gym, or altering the time of other activities in their schedule for the day. 
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The ActBM approach achieves greater internal consistency within the model. Origin – 

destination (OD) based four stage models work solely on the basis of trips so a person could 

be assigned to public transport in the morning when congestion is high and car for the return 

trip in the evening when congestion is lower and/or public transport frequencies are lower. 

Greater consistency can be achieved by using Production – Attraction (PA) matrices with a 

four stage model but there are issues with converting these PA matrices into the appropriate 

time slice matrices for assignment which requires OD matrices.  

The ActBN approach should produce more accurate forecasts of the number of people using 

each mode, as the use of specific costs for each individual reduces the aggregation bias 

found in the matrix based four stage models. By modelling each individual, the model uses a 

more accurate set of costs for that person than with the four stage approach, where the 

same set of costs is used for all the trips between the same origin – destination and the only 

level of differentiation in travel time/costs between travellers is provided by the limited 

degree of segmentation in the matrices.  As Figure 3.8 below shows, the use of an average 

cost in the logit model when predicting mode choice, rather than an individual’s actual costs 

leads to aggregation bias. The figure shows the typical S-shape of a logit curve and two 

travellers with different costs, a and b. The average of the probabilities of using a particular 

mode is different when the costs are used separately in the logit model, ‘average P’, than if 

the average cost faced by the travellers is used, which results in ‘P at average cost’.  
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FIGURE 3.8 AGGREGATION BIAS THROUGH THE USE OF AVERAGE COSTS 

Source: Castiglione, Bradley and Gliebe, 2014 

ActBMs work at an individual level which also allows for greater spatial detail in the model 

outputs. Policy-makers are concerned with the details of who will be affected by proposed 

changes in the transport system and the more detailed output provided by ActBMs improves 

the information required for social and distributional impact assessments and equity 

analysis.  

The benefit of the ActBM approach for the modelling of ‘smarter choices’ is that it provides a 

way of meeting some of the recommendations made by WSP (see section 3.2.1) for the 

enhancements needed to four stage models to enable them to better model the impact of 

‘smarter choices’ measures. By modelling individuals, it enables the models to use a more 

accurate set of times and costs for each traveller. This enables it to model ‘smarter choices’ 

policies that affect the times and cost of travel of very specific groups, such as dedicated 

employer provided bus services and on-site parking restrictions or aim to remove constraints 

on mode choices such as providing bicycles and secure cycling facilities.  It also offers the 
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possibility of modelling some policies which WSP acknowledge could never be incorporated 

in four stage models, such as the impact of employer policies to permit some home - working 

which would reduce the need to travel for commuting purposes and flexible working hours 

which may enable staff to commute outside of peak times.  

3.7.3 Weaknesses of activity based modelling 

The main disadvantages of activity based models come from their ambition to model both a 

person’s activity choices and their transport choices which are inter-related decisions. This 

means that activity models become large and complex and, in practice, simplifications are 

often made when calculating the journey times faced by individuals in order to reduce the 

run times of the models (Bekhor et al., 2010). The use of ever more powerful computers, 

sometimes using cloud based resources, is reducing the impact of the complexity of the 

models on run times but there are often budget limitations which affect the use that can be 

made of these expensive computing resources. 

The complexity of the nested logit models used in ActBMs makes the calibration of these 

models a skilled task and there are a limited number of practitioners who can undertake this 

very specialist work. This can mean that the practitioners using the final models are not fully 

aware of the compromises made during the calibration process and how these may be 

influencing the final model outputs.  

There is also some difficulty in being confident in the final model calibration as the model 

incorporates a multitude of decisions both on the nature, place and length of activities as 

well as travel decisions. There is the danger that as Polak (2011) observed ‘the mismatch 

between ambition and capability means we just create bigger messes’.  

Recent work in the USA has considered the impact on model results of the way in which the 

random numbers are produced and applied which affects the conversion of probabilities 

produced by the logit modelling into the actual travel pattern for a person. Bowman et al., 

(2006) reported that different runs of a model’s base case, with absolutely identical inputs, 
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would produce varying results due to the different random numbers used during the model 

run. When the model is then run to test a policy scenario ‘the difference in the predictions 

resulting from changing the random numbers…will be mixed with the differences resulting 

from changes in the policy variables, with no way of separating the two’. When the authors 

tested the Sacramento model with a variety of policy measures such as a congestion charge 

for the central business district and increasing the connectivity of the network they found 

‘that the difference in results for the same scenario but with different random numbers is 

typically greater than the difference in results for different scenarios’. 

They concluded that ‘because most policy differences at the regional level are quite small, it 

does not take a great deal of random error to outweigh the policy effect, and thus the “law of 

large numbers” is not sufficient if different random sequences are used’. In the Sacramento 

model they programmed the model so that the same random number was used for the same 

resident/tour/trip combination in both the base case and the scenario test in order to reduce 

the amount of variation in model results that was due to the use of random numbers. There 

remains though a concern that the effect of the use of random numbers is not well 

understood by model developers and how or whether it is handled in the modelling can 

affect the final results produced.   

Another concern raised over ActBMs is the amount of data they require. They are very 

reliant on data from household travel diaries which contain information on the trips and 

activities undertaken by each person, as well as their personal characteristics, in order to 

develop and calibrate the scheduling and travel choice models. This data is expensive to 

obtain, especially if care is taken to ensure that diaries are completed by a representative 

sample of the population in an area and that all trips made by each person are recorded. 

Activity based models are heavily reliant on the use of random utility logit models and there 

are concerns as to whether these models are able to capture all the behavioural responses 

to changes in a transport system. This has led some activity based modellers, such as the 
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developers of the MATSIM software, developed at ETH University and the University of 

Berlin, to incorporate some aspects of agent based modelling into the ActBM framework in 

order to increase the behavioural realism of these models (Balmer, Nagel and 

Axhausen,2005). Consideration is now given to agent based modelling. 

3.8 Agent based modelling 

Agent based modelling (ABM) is a bottom up approach to modelling which produces 

dynamic models of the development of a system over time. The basic unit of these models is 

agents, ‘autonomous units … capable of processing information and exchanging this 

information with other agents in order to make independent decisions’ Castle and Crooks 

(2006). Each agent has a set of rules that determine its behaviour and a set of goals to 

achieve. The agents interact with each other and their environment to pursue these goals 

and the state of the overall system emerges from the individual actions of its agents. 

Agent based modelling (ABM) is a recent but rapidly developing approach to simulation 

modelling that has its roots in the modelling of complex systems. A common theme from the 

investigation of complex systems is that the behaviour of the complex system emerges from 

the activities of its lower level components as they interact with each other (Miller and Page, 

2007). The patterns detected at the more aggregate level come from the ‘bottom up’ in 

systems which can have both positive and negative feedbacks as the lower-level 

components carry out their own agendas (Arthur, 1995). It provides a way of examining the 

dynamics of a system as it develops over time and tackles issues such as the level of 

dependence on initial conditions, thresholds, tipping points (Gladwell, 2000), criticality and 

phase transitions. 

3.8.1 Agents 

An agent based model has three components: 

 the agents 

 the environment 
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 the interactions between agents  and between each agent and the environment. 

3.8.1.1 Agent characteristics 

O’Sullivan and Haklay (2000) state that ‘a precise definition of agent-based models is 

elusive’, but the general idea is portrayed by envisaging an artificial world of heterogeneous, 

autonomous agents each following a set of rules governing their behaviour in an attempt to 

achieve their own goals.  

Wooldridge and Jennings (1995) describe the characteristics of agents from the perspective 

of computer science and propose that agents are: 

 Autonomous - agents are independent and separate, operating without the direct 

intervention of humans or others, and have some kind of control over their actions 

and internal state (Castelfranchi, 1995). 

 Socially able - agents can interact with other agents (Genesereth and Ketchpel, 

1994). 

 Reactive - agents perceive their environment and are able to respond to changes in 

it. 

 Pro-active - agents do not simply act in response to their environment, they take the 

initiative to achieve their goals. 

Franklin and Graessner (1996), built on this definition by adding the following characteristics: 

 Temporally continuous – an agent is continuously existing 

 Goal - oriented – an agent has a goal or goals 

 Learns – from its experience 

 Adaptable – can change behaviour based on previous experience 

 Mobile – can move around 

 Flexible – it’s actions are not scripted 

 Has character – an agent has a believable "personality" and emotional state. 
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Not all agents in a particular implementation of an agent based model need to have all these 

characteristics. The aim of modelling is to distil the essence of a system and to capture it in 

the modelling, using just enough detail to make the model realistic and true to the original 

but preserving as much simplicity as possible to aid understanding of the processes 

contained in the model.  

3.8.1.2 Agent behaviours 

The ABM approach is well suited to the modelling of alternative approaches to decision 

making to those used in the neo-classical economic model. Standard methodologies used by 

economists involve solving sets of mathematical equations to deduce the equilibrium state, 

with the underlying assumption that all the entities in the model always make perfectly 

rational choices. Rational choice is an optimisation process where the preferred choice 

among alternatives is that which maximises utility given constraints (Gilboa, 2010). This 

approach incorporates the assumption that everyone has perfect knowledge of the 

alternatives available to them, is capable of trading-off the different attributes of the costs 

and benefits of each alternative e.g. the cost and time elements and can pick the option that 

will be best for them. Agent based modelling provides a tool that enables the development of 

models that relax these assumptions. 

ABMs are able to control and monitor the information available to each agent at the time 

they take their actions. It can record what information they retain about the past and what 

predictions, if any, they may make about the future. This enables it to depart from the 

assumption that all agents have perfect knowledge of the past, present and future. It is also 

able to incorporate other constraints that may operate on rational choice. 

ABMs can incorporate a variety of methods for handling constraints on optimisation. These 

include constraints on human cognitive and processing constraints and response constraints 

(Maynard 2010), such as the impact of habitual behaviour which leads to inertia and an 

undue influence of a past decision on a current choice. An ABM can also record an agent’s 
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history and so be aware of past decisions and incorporate a mechanism for allowing these to 

influence its current behaviour. 

The work of behavioural economists and psychologists has reported a wide range of 

heuristics used by people to make decisions. The growing evidence on human decision 

making being garnered by behavioural economists can be used to inform the design of the 

decision making process in ABM models. An interesting opportunity presented by agent 

based models is that different individuals can use different choice processes within the same 

model. 

Girengezer (2011) has conducted research for many years into heuristics used by 

individuals to make decisions and believes these better represent the way people make 

decisions than utility maximising models. These heuristics (Schwanen and Lucas, 2011) can 

include: 

 

 maximum, where the highest score of a single attribute is used to make the choice,  

 dominance, where an alternative is selected if it scores the highest on each of a key 

set of attributes  

 conjunctive and disjunctive choices where the scores on several characteristics are 

used to select or eliminate some options, so narrowing the field of possible 

alternatives 

 lexicographic, where options are ranked on a scale for a number of attributes valued 

by the decision maker and the option with the highest combined score is selected.  

Schwanen and Lucas (2011) note that there has been very little research into these 

heuristics as applied to transport decisions. Foerster (1979) found evidence from a survey of 

mode choice decisions of 91 respondents that conjunctive and lexicographic models fitted 
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observed mode choice data better than models with people making trade-offs between time, 

cost and other journey attributes as assumed in logit modelling.  

Research in other fields, such as the choice of food in a canteen (Scheiberhenne et al., 

2007) found that ‘everyday food decisions can be understood and predicted based on a 

surprisingly small amount of information and very simple rules of thumb’. When decisions 

were modelled based on utility functions, the model replicated current decisions better than 

rules of thumb but when the same models were used to forecast the food decisions of an 

alternative set of diners, the rule of thumb models performed better. They suggest that this is 

because the abundance of data for the calibration enabled the utility functions to be fitted 

well with the observed data. However these observed parameters did not match the choices 

of the unobserved diners and the rules of thumb performed better at predicting their choices. 

Hess et al. (2008) reviewed mode choice data from stated preference surveys in Denmark, 

the United Kingdom and Australia. They found evidence for inconsistent responses, non-

trading choices, lexicographic decision-making as well as the anticipated utility-maximising 

choices. In the Danish study 22% of respondents displayed non-trading decision making, 

with 16% always choosing the cheapest of option and 6% choosing the quickest. The 

Australian survey found that the degree of non-trading varied by journey purpose, with 12% 

of commuters and 22% of non-commuters always choosing the cheaper option when a toll 

was included in the choice set. The United Kingdom study found that the degree of non-

trading behaviour varied according to the current mode used with 46% of car users never 

changing mode and 20% of bus users always choosing the bus. The general split of 

respondents between non-trading, lexicographic and compensatory decision making cannot 

be determined from these surveys, as this was not the intention of the original survey design.  

For example, non-trading could be lexicographic behaviour but the level of attributes needed 

to detect this for a particular individual were more extreme than those used in a survey 

intended to produce weightings for attributes in a utility maximising decision making model. 
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Hess et al. (2012) found that the removal of these non-trading individuals from the dataset 

affects the resulting weightings applied in the calibration of a logit model. 

3.8.2 Environment 

The environment is defined by Teahan (2010) as ‘being everything that surrounds the 

agents, but which is distinct from the agent and its behaviour’. The environment is the world 

in which the agent operates. It usually has a spatial dimension and each agent has a 

position in a space bounded in two or three dimensions. Sometimes this is a representation 

of a specific physical location and the agent based model is linked to a geographic 

information system.  

Russell and Norvig (1995) suggest that an environment can be described in terms of its 

position along several axes, as shown in Figure 3.9 below. Their five key characteristics of 

an environment are: 

Accessible vs inaccessible. In an accessible environment, an agent has ready access to 

all the information that is relevant to its choices i.e. it has perfect knowledge. This is seldom 

the case and most environments are inaccessible to some degree. 

Deterministic vs non-deterministic. An environment is deterministic if the effect of a single 

action is certain, that is ‘the next state of the environment is completely determined by the 

current state and the actions selected by the agents’. Many ABMs contain stochastic 

processes which make the outcome non-deterministic. 

Episodic vs non-episodic. In an episodic environment, the agent experiences a set of 

separate episodes in which it perceives and then acts. Each episode is self-contained; it is 

not affected by the previous episode and it does not affect future episodes.  

Static vs dynamic. An environment is dynamic if it can change while the agent is 

deliberating on its course of action.  
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Discrete vs continuous. An environment is discrete if there are a limited number of 

possible actions. 

Accessible ---------------------- Inaccessible 

Deterministic ---------------------- Non-deterministic 

Episodic ---------------------- Non-episodic 

Static ---------------------- Dynamic 

Discrete ---------------------- Continuous 

Simple ---------------------- Complex 

 

FIGURE 3.9 THE ENVIRONMENT 

Source: Russell and Norvig, 1995 

3.8.3 Interactions 

The interactions in an agent based model consider with which other agents a particular 

agent interacts and how it interacts with its environment. One of the defining characteristics 

of an agent based model is that only local information is available to agents so each agent 

only interacts with a subset of all the agents in the model. The typology of a model describes 

which agents are connected with which others.  

The role of networks is crucial in many agent based models and part of the model building 

process is to determine how links are established between agents and hence the extent, in 

each point in time, of the network for each agent. There could be a consistent rule which 

determines the links from each agent, for example, they are only linked to the closest two 

agents if the model has a spatial dimension. The number of links coming into, or out of a 

node (or agent) in a network is known as its degree of clustering. In a tight knit community, 

most of the agents would have many connections and the spread of activity such as 
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messages regarding the quality of a newly introduced bus service between the agents would 

be more rapid than in a loosely connected community.  

3.8.4 Agent based modelling and microsimulation 

Agent based modelling and microsimulation are both individual-level modelling approaches, 

In pure agent based models the emphasis is on interactions between individuals and their 

environment and the behaviour of the individuals which may evolve over time.  The 

emphasis is on incorporating a few simple behavioural rules into the model and then 

observing the emerging behaviour of the system as the individuals follow these over time. 

In pure microsimulation models, a set of mathematical rules or transition probabilities are 

applied to each individual to determine their state in the next time period. (Williamson, 2007). 

These models are usually very rich in data on the attributes and circumstances of each 

individual. There is a debate within the ABM community as to whether these two approaches 

will combine over time as microsimulation models begin to add behavioural rules and ABMs 

seek to empirically ground their models (Rounsevell, 2012) by adding more detail into the 

models. Chattoe-Brown (2009) believes that it is not ‘the case that agent based modelling 

and microsimulation will naturally meet in the middle’ as the use of behavioural rules makes 

a model distinctively ABM. This allows ABMs models to seek to explain the observed 

behaviour of the system being modelled rather than just to predict its outcome as the result 

of the application of transition probabilities as in microsimulation models.  Williamson (2009) 

believes that there is ‘a continuum from a ‘pure’ microsimulation model, totally fitted to 

empirical data, on the one hand, to a ‘pure’ agent based model, entirely based on theory 

driven rule sets on the other’. The software that supports agent based models can readily 

handle microsimulation models, including links with GIS and the spatial detail that is needed 

for spatial microsimulations. This allows for the development of models that draw upon both 

techniques. AnyLogic software takes this further and allows the creation of models that 

combine elements of system dynamics, agent based modelling and microsimulation within 

the same model. 
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3.8.5 Agent based modelling and transport applications 

The dynamic microsimulation traffic assignment models developed for the final, trip 

assignment, stage in the four stage model are an example of the merging of agent based 

modelling and microsimulation. These packages, described in section 3.6 above are known 

as ‘microsimulation packages’ but the drivers could be considered as simple agents, 

displaying a few of the characteristics listed by Wooldridge and Jennings (1995). Macal and 

North (2007) use the term ‘proto-agents’ to describe drivers in these traffic simulation tools to 

acknowledge their limited number of agent based features. 

Further additions to agent behaviours have been made in some of these models by adding 

interactions between agents and their environment. Dia et al., (2002) added the influence of 

real time information on driver behaviour. A discrete choice survey was used to calibrate a 

logit model which was then used to allocate drivers to one of a set of choices when faced 

with real time information about delays such as whether to continue on the current route or 

to change route. The extension of microsimulation assignment models to include richer 

methods of modelling behaviour reflects the more general move towards the merger of the 

two techniques seen in other disciplines.  

The SUSTAPARK parking model (Dieussaert et al., 2009) is described as an ABM of parking 

search behaviour. It relaxes the assumption of perfect knowledge by the agents but applies 

a logit model to the choices available to the agent. The utility of the option of parking in an on 

or off street place near the driver is calculated and a logit model, based on work by Hess and 

Polak (2004), is used to determine the choice made by drivers. Benenson’s (2008) 

PARKAGENT model was developed for residential parking in the evening. It uses a set of 

complex rules constructed by the author to model the decisions made by drivers. The rules 

are applied at various stages of the journey, such as the probability of a driver choosing to 

park or drive on depending upon the number of free spaces passed. Once the destination 

has been reached the driver will choose any free space as long as it is not too far from the 

final destination and as search time increases the driver considers paying to park. 
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McConnell and Zellner (2011) built a prototype ABM for a single route with the mode choice 

decision making using a simple rule based approach rather than a logit model. People have 

the choice between driving or using a bus rapid transit (BRT) service. In the model 

initialisation, a set proportion of users were assigned to bus on the first day. The model was 

run for 20 days and on each day a user changed mode if the time they experienced on the 

previous day was higher than their pre-set threshold. The model was used to assess the 

effectiveness of an exclusive lane for BRT rather than the BRT using the lanes for general 

traffic. The threshold values did not come from observed data. Sensitivity tests were carried 

out on the impact on the final mode share of BRT of varying the initial proportion of bus 

users and the threshold levels that trigger mode switching. 

Han et al., (2011) applied ABM techniques to the modelling of destination choice. In a 

prototype model they considered the choice of shopping destination in a synthetic city. 

Agents are only aware of a limited number of shopping destinations. They vary in their 

knowledge of the attributes of each destination in their choice set and in the weighting they 

give to those attributes. The model concentrates on the role of social networks in the choice 

of destination. Information from contacts in an agent’s network can make him aware of new 

destinations which may enter his choice set and update his knowledge of the details of 

locations he has not visited recently. The agent may amend the weightings applied to the 

various attributes of a location to better reflect those of other members of his network. As 

long as a destination remains ‘satisfactory’, agents exhibit habitual behaviour. Otherwise 

they consider alternative locations and choose the destination which gives them the highest 

utility. 

The MATSIM software (Balmer, Axhausen and Nagel, 2005) adds features of agent based 

modelling into an activity based modelling framework with its ‘strategy’ module. In MATSIM 

each agent starts with a day plan of activities and travel between them. These agents are all 

assigned to the network and the time taken to make the trips is recorded. The travel times 

come from a dynamic microsimulation traffic assignment model within the MATSIM package. 
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Each agent’s day plan is then given an overall utility score, with the activities having a 

positive utility and travel a negative utility. In the strategy module an evolutionary algorithm is 

used to improve the value of an agent’s plan. In each iteration a copy of the original plan is 

made for a proportion of the agents and random alterations made to their planned activities. 

The utility of the new plan is calculated and the plan adopted if it has a higher overall utility 

than the current plan. The model is run for many iterations. Over these iterations the average 

score of agents’ plans rises as more highly valued plans replace those with lesser values. 

This approach allows for the current travel times on the network to feed back into the scoring 

and possible replacement of a person’s day plan affecting their activity and travel behaviour. 

3.8.6 Agent based modelling and smarter choices 

The key characteristics of an agent based model are: 

 each agent can carry detailed personal information which reflects their heterogeneity 

 the model is dynamic and shows the development of the system over time 

 the model has built in mechanisms for feedback between the environment and 

agents which leads to emergent behaviour 

 it is possible to model different decision rules for different agents 

 the history of each agent is recorded. 

This provides the opportunity for agent based modelling to tackle many of the modelling 

refinements needed to incorporate smarter choices as suggested by WSP. The use of 

individual agent characteristics means that the model can be aware of very detailed data 

such as the exact location of the origin and destination of a trip. Combined with networks 

based on the fine level of detail available from GIS networks, accurate representations of the 

time and distance of even short distance trips is possible. The implementation of policies to 

restrain the availability of car parking at certain locations, or to levy differential prices for 

parking and public transport fares can be modelled more accurately as the actual individuals 

affected can be identified.  
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The dynamic nature of the model means that it can provide insights into how a transport 

system may develop over time and provide measurements of key indicators over time. The 

four stage model assumes that a stable equilibrium state is achieved by the transport 

system. In an agent based model this is not necessarily the case and the model may show 

either the progress toward such an equilibrium state, or constant flux as no such state is 

reached. Being a dynamic modelling tool the model can show how long the system takes to 

respond to changes, reflecting the level of change in response to a policy measure (such as 

increasing car parking charges) in both the short and long term.  

The interactions between agents mean that the outcome of the model is not obtained by 

solving a set of mathematical equations but rather by recording the emergent patterns. This 

is particularly valuable when the relationship between two variables is non-linear. An ABM 

enables observation of processes as they pass through these critical points. It also allows 

the modelling of processes operating in the real world that may reinforce or counteract each 

other and suggests to policymakers how they could intervene, if desired, to affect these 

processes. 

The bottom up approach to modelling enables the model to apply different decision making 

rules to different individuals which may be a better representation of reality. It is also 

possible to use the same decision making rule, for example utility maximisation, but to vary 

the preference given to different elements of the utility function. (Rounsevell et al., 2012). A 

further characteristic of ABM, of particular relevance to the modelling of ‘smarter choices’, is 

its ability to record the history of each agent. This means that the decision making of an 

individual does not have to be based on the assumption of perfect knowledge. A person may 

only know the travel times and costs they have personally experienced or of which they have 

been informed by people in their social network or external agencies. ABMs can therefore be 

used to model responses to marketing initiatives. 
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The ability of ABM to model the networks between agents also provides a mechanism for 

representing the spread of information about travel modes and the influence of others on an 

individual’s attitudes and choices. 

In the WSP review on the capabilities of the four stage model to handle ‘smarter choices’ 

measures, they reviewed a variety of such measures and considered how they could be 

incorporated in current models. The table presented here in Appendix 1 comes from this 

report and considers workplace travel plans which are relevant for commuting trips. It is 

extended in this study by the addition of a final column, shaded grey, which shows the 

characteristics of agent based modelling that could be utilised to incorporate each measure 

in an ABM model of a transport system. 

3.9 Conclusion 

The second research question for this study asks ‘what modelling approaches could be used 

to model the impact of ‘smarter choices’ programmes on the mode chosen for commuting 

trips?’. This chapter has reviewed the academic literature for work on both enhancements to 

the current four stage modelling framework and alternative modelling approaches which may 

be suitable. Before addressing the second research question consideration is given in the 

next chapter to the philosophical approach to transport modelling underlying this research 

project and which influenced the response to the second research question. 
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4 Research perspective 

4.1 Introduction 

This research focuses on the ability of different forms of transport models to assess the 

impacts of ‘smarter choices’ measures. The interviews with practitioners led to the 

understanding that ‘smarter choices’ pose a real challenge to the current four stage 

modelling framework used in transport modelling. The previous chapter reviewed recent 

work on extending the capabilities of four stage models and considered the potential of 

alternative modelling approaches. This chapter considers the essential characteristics 

needed in a model of a transport system. It presents critical realism as an appropriate 

philosophy of science to apply to the task of assessing the merits of different modelling 

approaches. The second research question is addressed at the conclusion of this chapter. 

4.2 Purpose of modelling 

In an explicit model the assumptions are laid out, the processes contained in the model 

specified and the outputs presented for inspection by others (Epstein, 2008). A key objective 

of building a transport model is to be able to use it to predict the future state of the modelled 

system in a way that the knowledge of the predicted outcome can be shared. Parties 

interested in the prediction include those who will be affected by the outcome and those 

involved in making plans to either accommodate that outcome or to attempt to influence the 

system such that an alternative outcome is realised.  

As well as providing predictions a model can produce information on a range of possible 

outcomes, yield an understanding of how the system being modelled operates and assist in 

communication amongst interested parties. Exact knowledge of the future state of the inputs 

into a model are seldom known but an estimate can often be made of the likely range of 

values. For example, a key input into many strategic transport models is the level of GDP 

growth. In the UK a ‘most likely’ value is issued by the Bank of England within fan charts 

which also show the probability distribution of the likely future growth rates in GDP. An 
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explicit model can be run a number of times using different input values taken from within 

this range to provide an indication of the range of likely outcomes. Models can also be used 

to test the range of outcomes when a number of input values are changed simultaneously. 

The running of a model over a range of input values and the analysis of the subsequent 

outputs gives an insight into how the system being modelled operates and which variables 

have the greatest influence on the outcome achieved. This will assist in identifying those 

areas likely to be the most effective for policy makers to influence and which variables 

warrant careful monitoring. A close examination of the results may also provide an insight 

into the processes at work in the system, particularly which reinforce each other or produce 

counteracting influences. 

A model can assist in communication amongst people as it requires making explicit the 

assumptions and the relationships incorporated in the model. This provides a basis for 

discussion as to whether the current state is accurately portrayed in the model and the 

values which should be assumed for the future. The model also provides a concrete 

portrayal of a future state so that discussions on future policies can be based on a shared 

understanding of future conditions. As Epstein (2008) comments, ‘models do not obviate the 

need for judgment. However, by revealing trade-offs, uncertainties, and sensitivities, models 

can discipline the dialogue about options and make unavoidable judgments more 

considered’.  

4.3 A model and its subject 

Having considered why a model can be useful for policy makers, this section considers the 

features required of a model. Miller and Page (2007) suggest that a model is like a map that 

allows ‘people to easily acquire and productively use information about a complex reality’. It 

portrays the area it covers,  distilling the essential information and revealing insights 

otherwise obscured by the detail. It can be used not only to provide directions but also to 

assist in our understanding of the world. The simplicity of a map, which highlights selected 
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aspects of reality, can make apparent patterns which are lost in the complexities of the real 

world. Snow’s seminal mapping of the cholera epidemic (Brody et al., 2000) is an early 

example of using a model to reveal the underlying cause of observed events. 

Holland et al. (1986) expanded this metaphor of maps to illustrate the process of modelling a 

system that changes over time. It is not sufficient for a model to accurately represent the 

current state of the system it is modelling,  it should also contain representations of the key 

processes at work in that system. Such a model can then be used to predict the future state 

of the modelled system. The model is validated by showing both that: 

 it provides an accurate representation of the current state of the modelled system 

 when the model is used for prediction, the future state in the model is still an accurate 

representation of the future state of the system it is modelling. 

The main implications of Holland’s work for transport modelling are that the model should not 

only contain an accurate representation of the current state of the transport system but also 

of the processes at work in its transformation. The scope of the model also needs to be well 

defined so that it captures all the key influences on these processes. 

4.4 Philosophical influences on transport modelling 

Timms (2008) observes that ’the main philosophy actually used in transport modelling has 

been positivism’ which is unsurprising given the fields from which it has borrowed its tools 

and the engineering background of many transport modellers. This is manifest in the 

reverence that is accorded to observed data in model building and the great attention that is 

played to ensuring a transport model accurately replicates current conditions. Current 

transport modelling practice uses models which consist of a series of mathematical 

equations. The transitions coded into the models are ‘laws’ of travel behaviour based on key 

concepts taken from neo-classical economics such as the assumption that people have 

perfect knowledge of all the transport options available to them and seek to minimise their 

travel costs and time. 
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Timms (2008) calls for transport modellers to consider an alternative philosophy of science 

to underpin their modelling and to consider other approaches. He puts forward the idea of 

modelling as a process of communication and ‘perceives transport modelling as a linguistic 

activity within the overall context of transport planning, which is in turn considered as a 

communication process’. Timms’ perspective draws on the hermeneutic philosophical 

tradition and highlights the usefulness of using models as part of a communication process.  

Following Timms’ admonition, the research reported in this thesis is based on an alternative 

philosophy; one which places an emphasis on the processes at work in the real world. 

Models are trying to capture the essence of this world and for this, the uncovering of the 

processes at play within it (which are more than manifests of language) is vital. The 

perspective of this research is that the process of building a model and presenting its results 

can assist in the communication of ideas but that an understanding of the processes at play 

in the transport system is essential to producing models that can provide accurate 

predictions. 

4.5 Critical Realism 

Critical realism offers a comprehensive philosophical background in which to embed the task 

of transport modelling. This research adopts as its basis for determining the worth of a model 

the critical realism framework as set out by one of its leading originators, Roy Bhaskar, in his 

works ‘A Realist Theory of Science’ (1975) and ‘The Possibility of Naturalism’ (1979).  The 

next section outlines the main ideas of critical realism. The implications of the insights 

gained from critical realism for the choice of a modelling approach for incorporating ‘smarter 

choices’ into transport modelling are drawn out in Section 4.6. 

4.5.1 Key concepts in critical realism 

Bhaskar started his thinking that led to critical realism when he tried in the late 1960s to 

apply the theories of neo-classical economics to the problems facing the economies of 

developing countries.  He was confronted with the issue that the assumptions lying behind 
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neo-classical economics, such as perfect knowledge and utility maximising behaviour, did 

not seem to describe the world he was studying.  

Bhaskar asked himself what the world was actually like, rather than the world as simplified 

by economists in their modelling. He sought the answer to the transcendental question “what 

must the world be like for science to be possible?’’. He concluded that the world must consist 

of real objects independent of whether we observe them or not, and tendencies (or 

mechanisms or laws of nature) which may be ‘possessed unexercised, exercised unrealised, 

and realised unperceived (or undetected)’.  

The real is whatever exists regardless of whether we understand it or not. It does not have 

to be a physical object; it could be a mechanism such as gravity. The actual world refers to 

what happens when these mechanisms are activated. The empirical world is defined as the 

domain of experience. It is the things we actually observe or experience. This is illustrated in 

Table 4.1 below. In a modelling exercise the aim is to model the world by capturing the 

essence of its characteristics and operations in the area of interest, while being aware that 

our observation and understanding of these mechanisms is hampered by the fact that many 

aspects of the world exist in open systems which contain many mechanisms, often with 

countervailing impacts at work simultaneously. 

 Domain of Real Domain of Actual Domain of Empirical 

Mechanisms √   

Events √ √  

Experiences √ √ √ 

 

TABLE 4.1 THE STRUCTURED WORLD 

Source: Bhaskar, 1975 
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4.5.2 Critical realism and transport modelling 

The critical realist philosophy of science provides four insights which can usefully be applied 

when designing models to test ‘smarter choices’ policy interventions in transport systems. 

First, there is a need to be explicit about which world is being modelled; the actual, the real 

or the empirical. Some models are simply mapping the world at the level of the empirical 

(observed) level. They may be accurate descriptions of what is observed but lack any 

explanatory powers as they do not attempt to capture the processes involved. For a model to 

act as a useful forecasting tool for policy makers, it needs to be modelling the real world and 

aiming to replicate not only observed events but the underlying observed and unobserved 

processes that give rise to the observed events.  

Second, the transport modeller needs to be aware of the danger of attributing causality to 

the mere conjunction of events. ‘Explanation depends instead on identifying causal 

mechanisms and how they work, and discovering if they have been activated and under 

what conditions. Events arise from the working of mechanisms which derive from the 

structures of objects and they take place within geo-historical contexts (Sayer, 2000). The 

mathematical relationships contained in many transport models describe a conjunction of 

events e.g. the number of cars as a function of the number of houses rather than explaining 

why a certain number of houses generates a particular number of car trips. This means that 

they are of limited value in forecasting the number of car trips in the future and how this 

number could be changed. They can only vary the number of car trips as the number of 

houses changes but the underlying conjunction between the number of houses and the 

number of car trips may not be constant over time. The transport modeller needs to consider 

whether he is modelling conjunctions or causality. 

Third, the modeller needs to consider whether the model contains sufficient depth in order to 

capture all the relevant mechanisms at work. The processes operating in the system can 

lead to the emergence of other structures.  Danermark et al. (2001) writes that ‘the outcome 
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of the mechanisms – the events we can observe – is a complex combination of the 

influences from other mechanisms reinforcing each other while others counteract each 

other’s manifestations’. The transport modeller needs to consider whether his model has 

sufficient depth and complexity to capture all the relevant influences and emergent 

behaviour. 

Finally, the observation that the social world operates mainly as a series of open systems is 

a reminder that transport models are delineating part of an open system to create a closed 

system. Care needs to be exercised in the setting of the boundaries of transport models and 

a clear description provided of the chosen boundaries and which factors are considered to 

be exogenous to the model. When making predictions using the model, it must be 

remembered that the assumed values of these exogenous factors can change and the 

influence of the exogenous processes may change over time.  

4.5.3 Critical realism and choice of modelling approach  

A critical realist philosophy has three ground rules, ontological realism (our world is real), 

epistemological relativism (our knowledge is fallible) and judgemental rationality (we can 

choose between theories). It allows for the recognition that it is possible to influence the 

outcomes in the transport arena, and that although our knowledge of the processes at work 

may be fallible, these should be captured in the transport model. Exploring a transport 

system in the artificial laboratory of a transport model may provide insights into the inter-

relationship between factors, improve our understanding of them and produce clues as to 

which variables could be targeted in order to move the performance of the transport system 

from one state to another.  

For a critical realist, the minimum needed to appraise an intervention is: 

 the context 

 the action 

 the intervention 
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 the mechanism 

 the outcome. 

This provides a set of criteria which can be used to judge the appropriateness of a transport 

modelling methodology for capturing the effects of ‘smarter choices’ measures. It can be 

assessed with regard to its ability to describe the context of the transport system, its success 

in replicating the current activity observed in the system, the way in which it formalises the 

processes at work in the system and the decisions made by the individuals within it, and 

finally how well it predicts the outcome of an intervention against the observed outcome 

when it is implemented.  

The Critical Realist philosophy suggests that the choice of modelling methodology should be 

guided by the needs of the study and its ability to illuminate the mechanisms at work in the 

area under study. Fleetwood (2005) considered critical realism as applied to organisational 

and management studies, and noted  that critical realism states that there is ‘one’ reality but 

‘advocates selecting research methods and techniques according to the nature of the 

phenomena under investigation’. Outhwaite (1987) adds that critical realism does not 

’exclude any method a priori, but the choice of method should be governed, on the one hand 

by what we want to know, and on the other by what we can learn with the help of different 

methods’. 

Critical realism also emphasises that the events we observe are the outcome of the 

interactions between individuals and groups within society and that investigations should not 

be conducted solely at a single level, i.e. individuals, groups or society level. ‘One cannot 

concentrate solely on a single level of investigation of the society, group or individual: critical 

realism argues for a relational perspective’ (Dobson, 2002).  

These insights from critical realism are of relevance to the selection of a modelling approach 

that can accommodate the whole range of ‘smarter choices’ measures. They led to the 

selection of two criteria for use when assessing possible modelling approaches. The first is 
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that the resulting model needs to be able to contain behaviourally realistic representations of 

the processes involved in a person’s travel decisions. The second is that the modelling 

technique should operate at the level of the individual. It should be capable of capturing the 

impact of a person’s context on their travel behaviour choices, the constraints and 

capabilities of each person and the interactions both between individuals and between 

individuals and their environment. This insight was combined with the findings of the 

literature review recorded in the previous chapter to address the second research question. 

4.6 Second research question 

The second research question for this study is ‘what modelling approaches from other fields 

could be used to model the impact of ‘smarter choices’ programmes on the mode chosen for 

commuting trips?. The previous chapter reviewed extensions to the current four stage model 

that could assist in modelling ‘smarter choices’ such as using finer zones and more detailed 

networks to achieve a better representation of travel times and costs, the inclusion of latent 

variables such as attitudes in the choice modelling and implementing greater segmentation 

of travellers so as to better group them according to their preferences. Latent class analysis 

provides a useful clustering technique for identifying such groupings and allocating 

individuals to the appropriate segment. Even if these enhancements are made though, there 

will always be difficulties arising from the holding of information in the form of matrices rather 

than having the trip information associated with particular individuals. The framework also 

does not lend itself to the modelling of some ‘smarter choices’ such as car sharing which 

require very detailed knowledge on the potential car sharers and their working 

arrangements. 

Critical Realism points to the importance of modelling the individual and therefore the 

selection of a modelling approach which uses the person as the basic unit, building the 

pattern of travel in an area from the bottom up based on the decisions of these individuals.  

This led to the rejection of the four stage modelling approach as it is based on the opposite 

approach. It starts at the aggregate level, with total person trips, and subdivides them until it 
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reaches the number of trips made by mode and time of day between zones used in the 

assignment of trips to the network.  

The use of sketch plan methods was rejected as this is not really a distinct modelling 

framework but rather a method developed for the swift application of selected parts of a four 

stage model. It is often adopted to compensate for deficiencies in a complete four stage 

model such as the long length of time taken to build a complete model, the lack of fine levels 

of detail about the actual origin and destination of trips and local influences on mode choice 

decisions. The spreadsheet and GIS tools used to implement these models restrict the ability 

to expand them to cover the full range of choices affecting trips in an area such as 

destination and time of day choice. The approach also does not provide a coherent 

framework in which to model the actual processes involved in transport decisions and the 

way in which the full range of ‘smarter choices’ measures may influence them.  

Systems dynamics is a useful tool for considering the processes involved in the system as a 

whole and how they may re-inforce or counteract each other over time. It could be usefully 

employed to consider which processes need to feature in a more detailed model. It was 

rejected for use in this study, as it cannot handle information on the different constraints 

operating on each person and the fine level of detail required on the time, cost and other 

characteristics of each of their journey options. 

Microsimulation meets the ‘individual’ criteria adopted for testing possible modelling 

approaches as it adopts a ‘bottom up ‘ rather than ‘top down’ approach. By modelling at the 

level of the component units of a system, the aggregate state of the system emerges from 

the state and decisions of each part of the system. Microsimulation operates, however, in a 

very formulaic manner, applying rules to determine the state of each agent in each time 

period or drawing a state at random from a probability distribution. Activity based models 

have shown that a modelling approach that is based on the person as the basic modelling 

unit has the capability of modelling more components of a ‘smarter choices’ package of 
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policies than a four stage model. It does however lack the ability to offer a richer capture of 

the processes involved in the transport system which is offered by agent based modelling. 

Agent based modelling appears to offer all the benefits of microsimulation, with its emphasis 

on modelling individual people, the basic component units of the system, but combines this 

with a greater emphasis on modelling behaviour processes together with the interaction 

between agents and between agents and their environment. Bonabeau (2002) proposes that 

ABM is suitable when one wishes to describe a system from the perspective of its 

constituent units and their activities. This is appropriate when: 

 the behaviour of individuals cannot be clearly defined through aggregate transition 

rates  

 individual behaviour is complex and so describing it with equations becomes an 

intractable mathematical problem 

 activities are a more natural way of describing the system than processes 

 stochasticity applies to agents’ behaviour. ABM can be used to apply randomness in 

the right places rather than as a more general noise term as used in aggregate 

equations 

 when validation and calibration of the model will need to be assisted by the use of 

expert judgement.  

 

Agent based modelling was selected for use in the third stage of this research. It offers great 

potential for the modelling of ‘smarter choices’ but there is a gap in our knowledge as to how 

it can be applied to this task. The remainder of this study seeks to address this by building a  

proof-of-concept agent based model of commuter mode choice and using this model to 

consider the insights that the ABM approach could provide to the assessment of ‘smarter 

choices’ packages under consideration by policy makers. 
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5 Overview of the modelling process 

5.1 Introduction 

This chapter presents the methodology used to build the agent based model used in this 

study to assess, through practical application, the potential for modelling mode choice 

decisions and incorporating ‘smarter choices’ into multi-modal models. The research design 

adopted for the third stage of the research project was to develop a model using the stages 

shown in the modelling cycle shown in Figure 5.1 overleaf. The model would then be used to 

test techniques made possible by the agent based modelling approach which could be 

usefully employed in modelling ‘smarter choices’. Finally the insights gained from the 

experience of building and using the proof of concept model were used to present guidance 

on how the technique could be used in applications which modelled the transport system for 

a specific area.  

The stages used in the development of the agent based model for commuting trips 

developed in this research project are based on those presented by Lay-Yee and Cotterell 

(2012) supplemented with a prior stage proposed by Thalheim (2011) and a final stage 

advocated by Rounsevell (2012) and Railsback and Grimm (2011). The seven stages in the 

modelling process are: 

 Statement of purpose 

 Conceptualisation 

 Computing platform 

 Data integration 

 Implementation 

 Application 

 Presentation of results 

 

Apart from the initial stage, the stages form a modelling cycle, shown in Figure 5.1 below, 

which may be followed through in its entirety several times and/or involve the repetition of 
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several stages in smaller loops, such as between data issues, implementation and 

application (Railbacks and Grimm, 2012). 

 

 

 

FIGURE 5.1 MODELLING CYCLE 

5.2 Setting the model purpose 

The purpose of a model is the ‘intentions, goals, aims, and tasks that are going to be solved 

by the model’ (Thalheim, 2011). Thalheim proposes that the whole modelling process should 

be governed by the purpose of the model and this purpose provides the overriding 

consideration whenever decisions are made. Once the purpose is settled it should be 

preserved by the model and be invariant during the modelling process. This means that the 

model will be particular and appropriate to its own objectives and purpose and should not 

then be used for other purposes without consideration as to whether it is transferable to 

these other proposed contexts and uses (Law, 2006). 

The purpose of the model developed in this project is to assist in answering the third 

research question ‘what are the strengths and limitations of using an agent-based approach 
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for modelling the impact of a ‘smarter choices’ programme on the mode chosen for 

commuting trips?’ 

Shemli (2010) describes three main purposes of modelling; description, explanation and 

prediction. A descriptive model aims to present and summarise the main features of the 

subject being modelled, without attempting to examine any underlying causal mechanisms. 

The focus of these models is on the measurement and representation of the elements in the 

model’s subject domain, for example a regression model which shows the association 

between journey distance and the proportion of trips made on foot. 

Explanatory modelling in contrast has the specific purpose of aiming to test and uncover 

causal explanations; the emphasis is on determining causality rather than just describing 

and recording correlation. Epstein (2008) provides the example of the plate tectonics model 

which can usefully explain why earthquakes occur but does not predict when and where the 

next one will happen.  

Predictive modelling uses a model in order to predict the outcomes associated with a 

particular set of inputs. It can be used to predict values at a future point in time or in another 

place. This sort of modelling is of particular value to policy makers in predicting the results of 

policy interventions which will change the values of key inputs into the transport system (for 

example changing fuel prices), as the model will show the outcomes of those policies. The 

complexities of the real world and the strength of second order impacts can make it 

impossible for the likely results of a policy change to be realised by a ‘thought exercise’ 

alone (MacLeod et al., 2013).  

Heath et al. (2009), in their review of 279 simulation models published between 1998 and 

2008 categorised each model’s purpose in terms of the level of understanding available to 

the modeller of the workings of the real / target system which was the subject of the model. 

When little is known about the real system, then only a Generator model can be built, 

capable of generating hypotheses and theories about the behaviour of target system. The 
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purpose of such a model is to test whether a particular theory is capable of generating the 

behaviour observed in the real system. 

When the working of the real system is moderately understood a Mediator model (Morrison 

and Morgan, 1999) can be built. A Mediator model does not contain a complete 

representation of how the target system behaves but can be used to test theories and 

provides insights into the characteristics and behaviours of the real system. As 

understanding of the real system grows and real data is collected a Mediator model has the 

potential to be developed into a Predictor Model.  

A Predictor model can be built when the real system is well understood and can be used to 

give clear predictions of the future behaviour of the real system. 

 

FIGURE 5.2 ROLE OF A SIMULATION 

Source: Heath et al, 2009 

A critical realist approach would aim at producing a Mediator model and the needs of policy 

makers to make decisions regarding which transport interventions to fund suggest that the 

agent based modelling approach should also be tested to investigate whether it is capable of 

producing Predictor models. This requirement means that the model developed for this 

project will have to be capable of incorporating real data relating to transport systems. 

The availability of new software languages based on object oriented techniques means that 

data no longer needs to be stored in matrices and that processes can be coded to operate 
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directly on individuals rather than to manipulate the numbers stored in matrix cells. It also 

allows for the relaxation of some of the basic assumptions of neo-classical economics such 

as perfect knowledge and consistent rational decision making. 

The model purpose is therefore to illustrate that by using agent based modelling techniques 

it is possible to model mode choice decisions on an individual basis and incorporate added 

behavioural realism, such as the influence of habitual behaviour, on the number of people 

using each mode. The model is not intended to provide accurate predictions of the mode 

shares in a particular place but rather to be a more generic model that can be used to 

investigate the potential of this approach for modelling mode choice. The model will have the 

characteristics of a ‘Mediator’ model. It will not contain a complete representation of all the 

factors affecting commuting mode choice decisions but it should be capable of testing 

theories. The model will provide insights into the characteristics and behaviours of the real 

system and assist in the design of the collection of data required to develop a Predictor 

model. 

5.3 The conceptual model 

5.3.1 Mapping the world 

After the model purpose is set the next step is to develop a conceptual model which will then 

be implemented in the computer model. Conceptual modelling is defined by Mylopoulos 

(1992) as the “activity of formally describing some aspects of the physical and social world 

around us for the purposes of understanding and communication”. The conceptual model 

presents descriptions of the entities and processes included in the model.  The static 

elements of the model are the real world entities which are described by their attributes and 

relationships with each other. The dynamics elements of the model are described by the 

processes included: their interfaces with the entities and their behaviours (Kung, 1989). In 

the language of critical realism, the processes are the mechanisms at work in the world and 

the entities are the objects in the world upon which they operate. 
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Mapping the real world to the model is crucial in the development of the conceptual model. It 

necessitates formalising decisions which establish both the scope and the scale of the 

model. The scope of the model sets the model boundaries: what will be internal to the model 

and what influences will be considered as exogenous. The scale of the model, whether it is a 

micro, meso or macro level model influences the units chosen for the objects in the model 

such as, for example, individual animals or species. 

Figure 5.3 below adapted from Holland et al. (1986) illustrates the mapping of the real world 

to its model. The top section of the diagram reflects the real world and the bottom section 

depicts the modelled version of the real world. The boundaries for the domain to be captured 

in the model are shown by the black circle. This boundary needs to be chosen with care in 

order to ensure that it contains all the relevant objects and the influences on them that are 

required for the model to fulfil its purpose. 

Once the boundary is established the objects or entities required for inclusion in the model 

and their attributes are recorded. A key principle of modelling is abstraction or simplification. 

One way of simplifying the model is to group similar objects together using a classifying rule. 

This means that many objects which are identical as far as the relevant attributes for the 

purpose of the model are concerned can be represented by a single object in the model. 

This abstraction is shown in the left hand side of the figure, where the classification of 

objects is recorded using colour. All the objects sharing the attribute red are represented by 

a single red object in the model. The classification rules are represented in Figure 5.3 below 

by the box marked C. 
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C: classification rules 

Tr: transmission processes in real world 

Tm: transmission processes in model 

FIGURE 5.3 MAPPING THE REAL WORLD (ADAPTED FROM HOLLAND, 1986) 
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Abstraction also applies to processes and is achieved by isolating and often simplifying the 

mechanism at work in the real world. The model mapped in Figure 5.3 depicts a system that 

changes over time, from time t to time t+1. The transitions (in Holland’s language or 

mechanisms in the language of critical realism) that affect the objects over time are 

represented in the upper central box marked Tr. 

Consider Holland’s (1986) example that the figure illustrates a model of how different areas 

of an oil painting picture fade over time. The different areas of a picture are classified 

according to the colour of the pigment used in the paint applied to that area. The conceptual 

modellers may decide that they consider the transmission mechanism in the real world 

relates the decrease in pigment colour to the strength of the sunlight to which the picture is 

exposed, for a given number of hours. This results over time in the picture having less bright 

colours. The real world is shown in the top half of Figure 5.3 above. 

This transmission mechanism is encoded into the model so that the model can be used to 

predict the future state of the picture. The modelled world is shown in the lower half of Figure 

5.3. The final state of the picture in the model, lower right hand corner, could be compared 

with the final state of the real world, shown in the upper right hand corner. Differences 

between the two can be investigated and could lead to further improvement of the model 

such as a refinement of the classification rules or the number and nature of the 

transmissions. For example it could be observed that some parts of the picture are covered 

with varnish. The entities in the real world (areas of the picture) could then be classified 

according to their pigment and whether they are covered in varnish. The transition rules 

could be expanded to have different rates of colour loss for varnished and unvarnished 

painted areas. If the modelled state in time t + 1 then better matches the actual state of the 

world in time t + 1 these changes can be considered to have improved the model. 

The quality of the final model is dependent on the quality of the underlying conceptual model 

which in turn depends on the quality of understanding of the real world system and the skill 
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with which the key entities, their attributes and processes that affect them are identified and 

maintained in the trade-off between model simplicity and its accuracy in replicating the real 

world.  

5.3.2 Theories of behaviour 

The conceptual model for this study is based on Triandis’  Theory of Interpersonal Behaviour 

(1977) which builds on Fishbein and Ajzen’s Theory of Reasoned Action (1975) shown in 

Figure 5.4 below. Their model proposed that a person’s observed behaviour could be 

predicted by their intended behaviour, which in turn was influenced by their own attitude 

towards the proposed act and their beliefs about what other people think about the proposed 

act (social norms). 

 

FIGURE 5.4 THEORY OF REASONED ACTION, FISHBEIN AND AJZEN 1975 

Source: Jackson, 2005 

Triandis expanded this theory in a number of ways, crucially for this research by proposing 

that observed behaviour is not solely influence by intentions but is a result of the relative 

strength of both habitual and intended behaviour. His theory is illustrated in Figure 5.5 

below. 
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FIGURE 5.5 THEORY OF INTERPERSONAL BEHAVIOUR, TRIANDIS 1977 

Source: Jackson, 2005 

A person’s intended behaviour is determined by their attitude, social factors, and affect. 

Attitude refers to the extent to which the individual has a positive or negative evaluation of 

performing the behaviour under consideration. This depends upon their beliefs about the 

outcome, for example, in the desirability of the outcome and their evaluation of the outcome, 

for example, how likely is it to succeed and whether the benefits exceed the costs of the 

undertaking the behaviour and any associated risks (Chatterton, 2011). 

Social factors include norms, roles and a person’s self-concept. Social norms are the usually 

expected behaviours in society and relate to how people behave in general in society. Roles 

are defined by Triandis as “sets of behaviours that are considered appropriate for persons 

holding particular positions in a group” and relates to how other people holding a similar 

position in society behave. Self-concept is a person’s perceived identity, such as, for 
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example if they identify with pro-environmental climate change believers and wish to avoid 

the use of fossil fuels in their travel arrangements. 

Emotions (affect) are a person’s mood at the time of the behavioural decision, which 

combined with their attitude and social factors result in a person’s intended behaviour. The 

actual behaviour, though, may be different from this intended behaviour as a result of the 

influence of habits. 

Habit is routine behaviour undertaken without any conscious thought. Habitual behaviour is 

developed as a result of frequent and consistent choices made to achieve specific goals 

(Aarts and Fijksterhuis, 2000). Applying this to the context of the commuting mode choice 

decision, a habit could be always to use the car to travel to work. Originally the choice of 

travel mode is the result of conscious choice, but over time the consistency and frequency of 

choosing to use the car increases the strength of this habitual behaviour. Triandis 

considered there to be a trade-off between intention and habit, so that a strong habitual 

behaviour can overwhelm any changed intention, for example to cycle to work instead.  

The final behaviour undertaken is affected by facilitating conditions. These are personal or 

external factors which may help or hinder a person from carrying out their intended or 

habitual behaviour. Triandis’ description of facilitating conditions covers a person’s ‘ability to 

perform the act’, their ‘level of arousal in regard to the act, the difficulty of the act… 

possession of the knowledge required to perform the act and environmental factors that 

increase the probability of the act’. (Triandis, 1977). So for example, the absence of a bus 

service or lack of knowledge of the availability of a bus service thwarts an intention to travel 

by bus while the ownership of a bicycle enables the fulfilment of an intention to cycle to work.  

Azjen extended his and Fishbein’s Theory of Reasoned Action in 1985 to cover its 

application to situations where the possibility of a person carrying out a particular behaviour 

was not entirely dependent upon their intentions, but was affected by personal and /or 

external constraints. His Theory of Planned Behaviour, shown in figure 5.6 below, 
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incorporated an additional element, ‘perceived behavioural control’, so that a person’s actual 

behaviour ‘depends jointly on motivation (intention) and ability (‘behavioural control’), (Azjen 

1991). Perceived behavioural control refers ‘to people’s expectations regarding the degree to 

which they are capable of performing a given behavior, the extent to which they have the 

requisite resources and believe they can overcome whatever obstacles they may encounter.  

(Azjen 2002). 

 

 

FIGURE 5.6 THEORY OF PLANNED BEHAVIOUR, AZJEN 1985 

Source: Jackson, 2005 

The Theory of Planned Behaviour has been applied in a wide variety of transport studies. 

The usual methodology in these studies is to conduct a survey with Likert scale questions to 

derive a score for each respondent for the TPB variables (attitudes, subjective norms, 

perceived behavioural control) and their intention to perform the behaviour being studied. 
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Some studies also survey whether the behaviour is then performed. Walsh et al (2008) 

studied the intention to use a mobile phone while driving and concluded that attitude was the 

most significant predictor of intention to use a mobile phone while driving, followed by 

perceiving the approval of others towards using a phone while driving (subjective norms). 

Poulter et al (2008) investigated truck drivers and found that general law abiding driving 

behaviour in truck drivers was related more to attitudes, subjective norms and intentions 

than perceived behavioural control, however regarding compliance with UK truck 

regulations, perceived behavioural control had the largest direct effect.  

Parker et al (1992) also found that the most significant factor for predicting behavioural 

intention to commit road offences was perceived behavioural control when they investigated 

four driver behaviours; intention to speed, drive whilst drunk, close following and dangerous 

overtaking (Parker et al 1992).  Perceived behavioural control (PBC) was also found to be 

the main predictor for pedestrians crossing roads in dangerous places (Evans et al 1998). 

Many studies in the transport area have extended the TPB to include a measure for past 

behaviour. Chorlton et al (2012) found that past behaviour was the ‘most consistent, strong 

and significant predictor of intention by motorcyclists to ride above speed limits and at 

inappropriate speeds. Callaghan et al (2006) studied intended and actual cycle helmet use 

amongst 293 Australian teenagers. They found that past behaviour was the single most 

important predictor of intended and actual helmet use, as had also been found in similar 

studies by Quine et al (1998). Brijs (2011) studied the use of seat belts amongst a group of 

Belgium teenagers and concluded that the main determinants of actual behaviour were ‘past 

behaviour, behavioural intentions and perceived behavioural control’. 

Conner and Armitage (1998) reviewed applications of TPB across multiple disciplines and 

concluded that ‘there do appear to be good empirical and theoretical reasons to incorporate 

habit measures (frequency of past behavior) as predictors of behavior in the TPB alongside 

intentions and PBC, at least for frequently performed behaviors’. The impact of the 
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frequency of the behaviour on the strength of a habit was also examined in a meta-analysis 

by Oullette and Woods (1998) of studies into habits in everyday life. This showed that the 

direct influence of past behaviours on future behaviour was greater for behaviours that were 

executed often. Gardner et al (2009) used TPB in two studies with car commuters and cycle 

commuters in the Netherlands. They found that in both groups ‘intention predicted behaviour 

when habit was weak, but where self-reported habit was strong, behaviour was dominated 

solely by habit and not by intention’.   

The efficacy of three alternative behavioural models to predict travel mode was investigated 

by Bamberg and Schmidt (2003). They studied the use of car for travel to university by 321 

students in Germany who completed both an initial survey, with questions designed around 

the behavioural theories, and a follow up survey three weeks later on their actual travel 

choices. Using structural equation modelling, they confirmed the position in Triandis’ model 

that ‘intention marks the end of the conscious choice process’ and that, in the context of 

mode choice for a regular travel to university, behaviour is affected by both conscious choice 

and habitual car use. They found that the addition of the ‘car use habit’ variable from the 

Triandis model significantly increased the predictive power of Ajzen’s Theory of Planned 

Behaviour model’. Based on this finding, Triandis’ Theory of Interpersonal Behaviour, which 

includes habit, was used as the basis for the conceptual model in this study. 

5.3.3 Design decisions 

A key design philosophy of agent based modelling is to ’Keep It Simple Stupid’ (Gilbert, 

2005): starting with a simple model and then adding in complexity. The intention in this 

project is to build a model that captures the emerging patterns observed in the real world by 

first modelling the simple processes and then adding further detail and processes 

incrementally, informed by the understanding created by the original model.  

This led to the following design decisions: 
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 to model each person’s mode choice decision over time and observe the resulting 

mode shares [Reason: packages of ‘Smarter choices’ measures are targeted at 

shifting people away from car to public transport, walking and cycling so a model 

designed to test ‘smarter choices’ policy should include the modelling of mode choice 

decisions]. 

 to model the mode chosen as 100% intentional (deliberative) or 100% habitual rather 

than varying the degree of trade-off between intention and habit [Reason: this 

simplifying assumption facilitates the inclusion of habit in the model, with the intention 

of testing how the inclusion of habitual behaviour could affect model results]  

 a person’s choice, whether determined by intention or habit, is affected by facilitating 

conditions such as whether a person has a car licence or there is a bus route 

available. [Reason: the choice set of modes for each person should only represent 

the modes actually available to them and possible for them to use] 

 to base the initial mode chosen by a person on their intention [Reason: without this 

the mode used by people will change more frequently in early time periods as people 

move away from their randomly assigned initial mode]  

 to base subsequent mode choices for an individual on habit until a ‘trigger event’ 

occurs [Reason: commuting is a frequent and regular activity and so is likely to 

carried out with minimal thought, as a script-based activity (Garling et al., 2001)] 

 for the occurrence of a ‘trigger event’ to switch the dominance back to intention over 

habit for the next mode choice decision [Reason: the trigger event is assumed to 

cause a person to actively consider their choice of travel mode] 

 to base the estimation of a person’s intended choice on the option that maximises 

their utility. Each person’s preference for time and cost will determine their evaluation 

of the outcome and hence attitude towards each possible mode. The influence of 

social factors and emotion will be reflected in the ‘utility’ value held by them for each 

mode. [Reason: behavioural economics seeks to add psychological realism into 
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standard economic models. The standard rational economic model assumes utility 

maximising choice behaviour and is used here to predict the mode chosen when an 

intentional choice is made]. 

Trigger events can come from a variety of sources. Potential triggers include key life events, 

a critical incident (van der Waerden et al., 2003), a change in travel times and costs above a 

person’s threshold, or an act of persuasion from a marketing or information campaign that 

causes a person to re-assess their travel habits. Van der Waerden reports on a survey of 

173 respondents who were asked about life events that influenced their mode choice 

behaviour. The most common events reported were a house move, entering the workforce, a 

change in work situation, passing the driving test and getting a car. The latter two events 

could be considered in this conceptual framework as changes in facilitating constraints, 

leaving house move and job changes as two key events which trigger a re-assessment of 

mode choice. 

The aim of the model is to investigate the potential of agent based modelling for modelling 

‘smarter choices’ so a visit by a personalised travel planning adviser, representing the 

effects of a marketing campaign, is included in the model as a trigger event. Other triggers, 

such as journey costs for a particular mode rising above a person’s threshold could be 

added to the model in future but would require the collection of suitable data.  

Returning to the language of Kung, in this agent based model of commuter mode choice, the 

entities in the model are the individuals. The processes are the ‘mechanism’ of mode choice 

based on Triandis’ Theory of Interpersonal behaviour and the occurrence of the trigger 

events which switches the mode choice from habitual to intentional determination.  
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5.4 Selection of a computing platform 

5.4.1 Hardware 

The choice of hardware platforms was between using a personal computer or using a main 

frame computer. For larger simulations, model runs can be carried out using a local main 

frame computer or by using cloud computing where modellers make use of third party owned 

processors, store input/output data remotely and access this data using the internet. The 

widely used Cube transport modelling software now offers a Cloud facility that can be used 

on the very powerful computers owned by Amazon. By cluster computing, which uses many 

computers at the same time, the run time for an agent based model for example, can be 

reduced from 175.13 minutes using 32 processors to 7.17 minutes using 542 processors. 

(Brown, 2013) The hosting of the model on the third party servers, combined with software 

optimised to use multiple processors means that run times are reduced considerably and 

model outputs can be examined by users and model developers at multiple locations. Costs 

are also lowered as users rent time on the most powerful machines only when model runs 

are needed and can acquire lower specification machines to use as terminals when 

preparing input data and reports.   

The rapid increases in the speed of computer chips now available in personal computers, 64 

bit systems which allow programs access to larger chunks of memory at one time and the 

simultaneous use of several processors means that it is feasible to run some quite large 

simulations on personal computers. There is also a wide selection of software available for 

personal computers to run computer simulations and analyse the results. A personal 

computer with an Intel i5 processor was used for this project as it was capable of running the 

model in less than 10 minutes and was the lowest cost option.  
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5.4.2 Software 

‘The ideal is a system that requires a minimum of learning, is completely flexible in the 

models that it will support, and runs efficiently on any hardware’, (Gilbert and Bankes, 2002). 

The decision regarding the choice of computing software for this research was made in two 

stages, first by comparing the features of a selection of software options and secondly by 

writing a test model using the shortlisted packages. 

Gilbert and Bankes (2002) identify three approaches to coding an agent based model. The 

first is to write the model directly with a high level programming language such as C++, Java 

or Python. These object oriented programming languages are ideally suited to coding agent 

based models as they deal naturally with objects that have attributes and methods that work 

upon them. A high level language, Netlogo, has been written specifically for coding agent 

based modelling. 

The second approach is to use libraries of routines, or computer code, written to implement 

common tasks required in agent based models to supplement customised code written in a 

high level programming language by the user. These ready prepared libraries include code 

to handle common tasks such as data input, processing tasks, the saving of output results 

and the user interface. Examples of such libraries for agent based models include Swarm, 

Mason, Repast and AnyLogic.  

The third approach is to use software specifically designed to build agent based models 

which require the user only to use a visual interface to manipulate symbols and then the 

software builds the corresponding model. Examples of such programmes include Starlogo 

and Agentsheets. However the trade-off for the ease of use of such software is the limited 

range of functions available which can constrict the features of the model.  

The selection of the software package is important as much time and effort will be invested 

in learning the software. The capabilities of the software are also important, as well as the 

steepness of the learning curve for the software and the ease of building models once 
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climbed, as the lack of capabilities in a particular package could limit the future development 

and enhancement of a model. In the first stage the software options for this project were 

considered against the following set of general criteria suggested by Castle and Crooks 

(2012): 

 ‘ease of developing the model/using the system; 

 size of the community using the system;  

 availability of help or support (most probably from the user community);  

 size of the community familiar with the programming language in which the system is 

implemented (if a programming language is necessary to implement the model); 

 is the system still maintained and/or updated;  

 availability of demonstration or template models; technical and how-to 

documentation, etc.’ 

 

and criteria regarding the functionality of the software: 

 ‘the number of agents that can be modelled;  

 degree of interaction between agents;  

 ability to represent multiple organisational/hierarchical levels of agents;  

 variety of model environments available (network, raster, and vector);  

 possible topological relationship between agents;  

 management of spatial relationships between agents, and agents with their 

environment; mechanisms for scheduling and sequencing events, etc.’  

The first stage of the selection process was to read published reviews of agent based 

modelling software. Although these reviews each had their own criteria for grading the 

software, many of their considerations were similar to those described above. In addition, the 

recommendations of the reviewers would assist in the selection of three packages for more 

detailed investigation. The earliest review of software for agent based modelling was 
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undertaken by Serenko et al. (2002). He found 20 packages and evaluated them in terms of 

their suitability as a tool for teaching agent based modelling. As well as considering their 

functionality, Serenko asked 87 teachers for their user perspective on the software. This 

study suggests that the search for the software tool for this project should consider user 

experience as well as software features. 

Tobias and Hofmann (2004) limited their review to free software that was based on the Java 

programming language. They examined four ABM toolkits Repast, Swarm, Quicksilver and 

VSEit and recommended Repast as ‘the clear winner’.  

Railsback, Lytinen, and Jackson (2006) examined four packages, NetLogo, Mason, Repast, 

and Swarm, by building the same example models (the Stupid Model suite) in each package. 

They recommended Netlogo for learning about ABM and as a tool for building prototype 

models. They recommended Repast as the most complete package, but noted that it was 

not very accessible to beginners in programming or agent based modelling. 

Castle and Crooks (2006) considered eight toolkits, Swarm, Mason, Repast, StarLogo, 

NetLogo, Obeus, AgentSheets, and AnyLogic. They were concerned primarily with their 

geospatial capabilities but also considered their general functionality. They also considered 

the age of the software, the level of programming experience required and the availability of 

demonstration models. They did not recommend any particular package, but have used 

Repast in their own work.  

Nikolai et al. (2009) examined the documentation for over thirty toolkits and compared them 

according to five characteristics: the language required to program a model and to run a 

simulation, the operating system required to run the toolkit, the type of licence that governs 

the toolkit, the primary domain for which the toolkit is intended, and the types of support 

available to the user. They did not use any of the software packages but provided a useful 

long list of software to start the search for a suitable software platform. Allan (2009) also 

reviews over thirty packages, but not always the same packages as Nikolai. This 
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supplements the Nikola review, as, although it is not as consistent in its comparison of the 

features of each package, the author provides a commentary on their main distinguishing 

features and for some packages his experience from using them, although this was 

sometimes limited to running supplied demonstration models. Neither of these reviews made 

any specific recommendations on preferred software packages.  

After considering these reviews, noting the software used in the papers on agent based 

modelling covered in the literature review, and comparing the features of the software 

packages against the Castle and Crooks criteria, the short listed packages for this study 

were Netlogo, Repast and AnyLogic.  

For the second stage of the selection process, the ease of developing a model and the 

quality of the documentation were assessed by attempting to build a sample model in each 

of these three packages. This experience provided a fuller understanding of the capabilities 

of the software and the ease of using them. This approach to evaluating software was used 

by Railsback et al. (2006) who tested the software packages in turn by building the same 

model, named by them as ‘Stupid Model’.  

In this assessment, the software packages were tested by building an implementation of 

Schnelling’s segregation model (1978). Coding this simple model covered the main tasks 

involved in coding an ABM: building a user interface, creating agents, implementing a 

behaviour rule at each time step and recording the results of a simulation run. 

Implementations of the Schnelling model are available in each of these agent based 

modelling software packages so after attempting to build the model, a solution by more 

experienced programmers was available for inspection. 

Netlogo is free and was found to be the easiest package to learn. The manual was clearly 

written, the tutorials were followed successfully and the Schnelling model built. The code for 

the model on the internet was then examined which pointed to other more efficient ways of 

coding the model. However the experience showed that the Netlogo manual was incomplete 
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and often lacked information on how to code even basic tasks. The user forum indicated that 

the dynamic scheduling of events was not well developed at the time the review was 

undertaken, and was computationally intensive. Although there is an online user forum there 

is no dedicated software support facility. The graphics output is rather rudimentary and is 

based on displaying agents in rows and columns in a grid. Interrogation of particular agents 

is also rather basic and cumbersome. 

Repast is also free but was found to be very inaccessible even in the most recent version, 

Repast Symphony, which has a graphical interface as well as a command line. This 

experience accorded with the reviewers’ opinion that the package has a very steep learning 

curve and is more suited to experienced Java programmers.  

Anylogic has a very comprehensive and detailed manual. There are training materials 

available and on-line videos, including many from the MSc course in Computer Science 

taught by Nataniel Osgood at the University of Saskatchewan, Canada, and M.I.T. Boston 

There is support from the developers and many example models are available. Anylogic also 

produces high quality output in the form of graphs, summary statistics and information 

written to text files and databases. It is commercial software but academic licences and a 

free personal edition are available. The software is very comprehensive and is able to deliver 

all the required functionality for this project’s model. It can also combine agent based and 

systems dynamics functions in the same model which would make it possible to model some 

aspects of a system at an aggregate or macro level and others at a disaggregate or 

individual level. 

Following the software review exercise, AnyLogic was selected as the software platform for 

this study. Training in the software was received and personal experience gained by building 

small models to test the functions that would be needed in the model built for this study. The 

software has a graphical interface that links with pre-written libraries of code. These are 

supplemented with Java code written by the user to meet specific needs of the model being 
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built. The availability of many example programs and extensive documentation was 

invaluable in learning how to build an agent based model and the first version of the model 

produced for this study was written in AnyLogic. 

During the course of verifying the model it became apparent that the timing of events in the 

model controlled by closed libraries in the software was not occurring when expected. Castle 

and Crooks (2012) warned that a risk of using libraries of code is that ‘since access to their 

source code is prohibited, a model developed with proprietary software is essentially black 

box. A modeller will therefore, to some extent, be left unsure about the internal validity of a 

model constructed with a proprietary system. This situation is compounded when the output 

of a model is emergent or unexpected’.    

As a result of this experience with the timing of events in the first model and taking heed of 

the above warning, the second version of the model for this project was written using 

Python. This programming language was chosen as it is an object oriented language but is 

also used as the scripting language in several transport modelling software packages. This 

means that an agent based model of mode choice written in Python could be called as part 

of a larger transport model built in an industry standard software package such as VISUM. 

This has great benefits for the eventual use of ABM in multi-modal transport models as they 

can be built in the same application that can handle other requisites such as routeing 

algorithms needed to determine the cost of travel on the network. 

The next stage in the modelling process, after the selection of computing hardware and 

software, was the gathering of input data for the model and the preparation of this data into a 

suitable form for use in the model. This is reported in the next chapter. 
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6 Data preparation and model overview 

6.1 Introduction 

The emphasis of this study is on the assessment of the potential for agent based modelling 

to provide a framework for modelling mode choice which is sensitive to a wider range of 

policy interventions than the conventional four stage transport models currently used in the 

UK. The decision was taken to search for a secondary data set rather than collect primary 

data for the study due to the costs of collecting a sufficiently large data set to use in building 

the model. The experience of building an ABM would inform the type of data which would 

need to be collected in any future work to develop the model further from a Mediator to a 

Predictor model and so help ensure that any future specifically commissioned surveys could 

be designed to collect the type of data required by an agent based mode choice model. 

This chapter describes the search for data required for the model. It then describes the 

selected dataset and the work undertaken on that data to transform it for use in the model. 

There was a need for some information on the frequency of house moves and changes in 

employment for people living in the UK which was not available from the selected dataset. 

This chapter describes the use of other data sources to provide this data.  

6.2 Empirically grounded agent based models 

The purpose of many of the first generation of agent based models was to generate and test 

theoretical propositions in highly stylised artificial worlds with no empirical data, such as the 

sugar scape models developed by Epstein and Axtell in their use of ABM as ‘a generative 

approach to social science’ (1996) and Axelrod’s game theory models reported in ‘The 

Complexity of Cooperation: Agent-Based Models of Competition and Collaboration’ (1997)  

Agent based modelling was viewed as a new branch of the experimental sciences; the 

computer model was considered to be a laboratory where it was possible to compensate for 

the unavoidable weakness of empirical and experimental knowledge in social science. 

(Prietula et al., 1998).  



117 
 

There is now a growing recognition of the need to increase the role of empirical data in agent 

based models and to produce ‘empirically grounded models’ (Rounsevell, 2012). Hassan et 

al. (2008) point to the potential role of data in ABMs to inform the design of the model, set 

the initial conditions of the model and to validate the model output by comparing the model 

output with real world observed data.  

Boeri and Squazzoni (2005) promote the ‘fruitfulness’ of bringing empirical data into agent 

based modelling practice and differentiate ABMs into ‘case-based models’, ‘typifications’ and 

‘theoretical abstractions’. The difference lies in the target of the model and the intended role 

of data in the model which has a strong impact on the strategy required to locate suitable 

empirical data. A ‘case-based model’ relates to a particular time-space domain and in an 

ABM seeks to capture the micro generative mechanisms that are operating in a very 

particular domain to produce the observed real world macro-level features. Such a model 

may be of value, particularly if the model purpose is prediction, as the output provides a 

forecast of the results of policy changes in a particular location. It is likely to demand high 

amounts of very specific data on the entities and processes in the target world of the model. 

‘Typifications’ are more theoretical models built to investigate processes that may operate in 

a more general context. These models involve a greater level of abstraction from the real 

world and aim to produce models that create findings that are relevant to more real world 

contexts than a case-based model. These models may still demand large amounts of 

empirical data in order to determine the classification rules and processes and to define the 

required attributes of the model entities. 

‘Theoretical models’ have little direct reliance on empirical data but the initial formulation of 

the theories used in them will have been informed by at very least general observations of 

the world. 

In this research the role of data was determined by the purpose set for the model. The data 

to be used in the description of entities and processes, could come from a variety of 
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methods and sources. Robinson et al. (2007) reports on an international workshop in which 

participants shared their experience of empirically grounding ABMs. Five methods of 

obtaining data for use in building a model at the micro level and validating the model at the 

macro level were identified: 

 Sample surveys 

 Participant observation 

 Field and laboratory experiments 

 Companion modelling 

 Remotely sensed spatial data 

Each approach has its own strengths and weaknesses; some produce quantitative data and 

others qualitative and both types of data are useful in the modelling process.  

The data used in the model developed for this study could come from either  primary data 

collection or existing, secondary, sources. The benefits of primary data collection are that the 

data can be collected specifically to meet the requirements of the theoretical constructs 

captured in the model, and be tailored to the needs of supplying the model inputs, the 

internal mechanisms in the model such as the parameters of any equations or probability 

distributions, the timing of events in the model and the needs of the validation task. The main 

disadvantages are the time, cost of collecting and processing, and the difficulty of obtaining 

the desired data (Hox and Boeije, 2005). The time and budget constraints of this research 

study led to the decision to search for a suitable already existing data set to use in the proof 

of concept model. 

6.2.1 Finding a secondary dataset 

The difficulties associated with secondary data include the task of identifying and locating 

suitable data sets and problems encountered in retrieving the data. Compromises may have 

to be made to the model design to allow for the actual items of data available and limited 
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knowledge of the quality of the data may be available, particularly in terms of how it was 

collected.  

The design specification for the data set was determined by the needs of the conceptual 

model.  The data needed to contain details of individual preferences on elements of a 

journey such as time and cost as well as details of the agents’ age, gender and mobility 

constraints, so the the search for a dataset was aimed at identifying surveys which contained 

a stated preference component. It was discovered that few stated preference surveys have 

been undertaken in the UK in recent years due to budget constraints with modellers using 

the standard values of time provided for appraisal purposes in the DfT WebTAG guidance 

and then adjusting mode constants and lambda values in the logit models during the 

calibration process. 

A few recent surveys were identified which included a mode choice stated preference 

exercise such as the data collected for the Sheffield tram extensions and the Leeds New 

Generation Transit system. Neither of these data sets were ideal though as they did not 

include car as one of the possible modes but concentrated only on the choice between 

public transport modes. An internet search was carried out for possible overseas data sets. 

However it was difficult to make contact with the owners of the data and when one possible 

data set was identified the owners wanted to make a considerable charge for use of the 

data. 

The DfT published a report in 2010 with the interim results of a quantitative survey on 

Climate Change and Transport Options. The report showed that the survey had contained a 

stated preference exercise for the journey to work that included the options of travelling by 

car, bus rail or cycling. It had also asked detailed questions about the respondent’s actual 

journeys and their attitudes towards different modes of travel. The report indicated that the 

study documentation and the individual but anonymised survey responses were available 

free of charge on the DfT website.  
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However the stated preference component of the survey was not available on the internet 

and, when contacted, the DfT discovered they did not have a copy of this part of the survey. 

The stated preference responses were held by the market research company that had 

undertaken the surveys for the DfT. I was given permission to contact the survey company 

and request a copy of the survey data. After tracing the relevant individuals at the survey 

company it was discovered that the files had been archived in binary format and the 

company no longer had a valid license for the software that had been used to capture the 

data. Due to staff redundancies they were also no longer aware of which software package 

had been used. 

The survey company restored the data from their archive and forwarded the files for use in 

this study. The next step was to undertake an internet search using the suffix in the file 

names to try and identify the software which had produced the binary files. A number of 

possible packages were identified. Where possible a demonstration version of the software 

was downloaded to investigate whether it could read the binary files, otherwise a request 

was sent to the relevant software help desk. In this way, the files were found to have been 

produced using Sawtooth software. This is a North American commercial software product 

used to design, administer and analysis surveys combining quantitative and stated 

preference elements.  

The company provided a complimentary academic license for their software. The binary data 

files were then re-analysed using the Sawtooth software and it was possible to reproduce 

the utilities originally calculated by the DfT’s survey company, TNS-BMRB, from the same 

data as reported in the interim report of December 2010. Further details of the surveys used 

to collect this data set are provided in Appendix A2. 

6.2.2 DfT dataset on climate change and transport options 

The section of the DfT survey used for this model came from the 626 respondents who 

completed the stated preference exercise regarding mode choice for a 5 mile journey to 
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work by either car, bus, rail or cycling. The age and gender profile of the respondents is 

shown in Table 6.1 below. All the respondents were of working age and in employment.  

Age  Male Female Total 

  Number % Number %   

16-20 14 4% 8 3% 22 

21-29 47 15% 51 16% 98 

30-39 84 27% 67 22% 151 

40-49 71 23% 83 27% 154 

50-59 62 20% 72 23% 134 

60-69 36 11% 27 9% 63 

Total 315 100% 311 100% 626 

 

TABLE 6.1 AGE AND GENDER PROFILE OF RESPONDENTS TO THE DFT COMMUTING SURVEY 

Most of the respondents (78%) live in urban areas as shown in Table 6.2 below. Less than 

12% of the people lived in a rural area. There was a car or van available in 88% of the 

households and 83% of respondents held a full car driving licence. 

Location Number % 

Urban - London 69 11.0 

Urban - Other 421 67.3 

Town and Fringe 62 9.9 

Village, Hamlet and Isolated Dwellings 74 11.8 

Total 626 100.0 
 

TABLE 6.2 HOME LOCATION OF RESPONDENTS 

The regular mode of travel to work for the  respondents asked is shown in Table 6.3 below. 

The most common mode is car used by 63%, followed by walk (10%), bus (8%), rail (5%) 

and cycling (4%) 

 

 

. 
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Mode Number % 

Car/van as driver 363 63.2 

Walk 59 10.3 

Bus 45 7.8 

Railway train 31 5.4 

Car/van as passenger 29 5.1 

Bicycle 25 4.4 

Motorbike/moped/scooter 11 1.9 

Tube/metro/light rail/tram 11 1.9 

Total 574 100 

 

TABLE 6.3 REGULAR MODE OF TRAVEL TO WORK 

6.2.3 Evidence for habits, triggers and constraints 

The DfT survey was analysed for all the 3,923 respondents to the main part of the survey in 

order to identify the main factors that influenced people’s choice of mode and the events that 

prompted them to change mode. The evidence for the role of habits in the DfT data came 

from answers to the question given to everyone who said they used the car at least once or 

twice a week, ‘When I have to choose how I will travel, choosing the car is something...’. The 

responses are shown in Table 6.4 below for all respondents, those respondents who were in 

employment and those respondents who participated in the choice modelling exercise on the 

regular journey to work.  
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Choosing to travel by car is  
something… 

 All respondents All employed All in choice 
exercise 

a) I do frequently Freq. Percent Freq. Percent Freq. Percent 

  
     

  
Yes 2,656 79.33 1,586 84.99 487 86.35 
No 683 20.40 276 14.79 76 13.48 
Don't know 9 0.27 4 0.21 1 0.18 
  

     
  

b) I do automatically Freq. Percent Freq. Percent Freq. Percent 
  

     
  

Yes 2,285 68.25 1,362 72.99 409 72.52 
No 1,054 31.48 498 26.69 154 27.30 
Don't know 9 0.27 6 0.32 1 0.18 
  

     
  

c) would require effort not to do Freq. Percent Freq. Percent Freq. Percent 
  

     
  

Yes 2,110 63.02 1,249 66.93 380 67.38 
No 1,203 35.93 601 32.21 180 31.91 
Don't know 35 1.05 16 0.86 4 0.71 
  

     
  

d) belongs to my (daily, weekly) routine Freq. Percent Freq. Percent Freq. Percent 
  

     
  

Yes 2,688 80.29 1,583 84.83 474 84.04 
No 652 19.47 278 14.90 89 15.78 
Don't know 8 0.24 5 0.27 1 0.18 
  

     
  

e) that's typically me Freq. Percent Freq. Percent Freq. Percent 
  

     
  

Yes 2,291 68.43 1,356 72.67 406 71.99 
No 1,019 30.44 491 26.00 153 27.13 
Don't know 38 1.14 19 1.02 5 0.89 
  

     
  

f) that I've been doing for a long time Freq. Percent Freq. Percent Freq. Percent 
  

     
  

Yes 2,721 81.27 1,576 84.46 476 84.40 
No 618 18.46 286 15.33 87 15.43 
Don't know 9 0.27 4 0.21 1 0.18 
  

     
  

Total 3,348 100.00 1,866 100.00 564 100.00 
 

TABLE 6.4 INFLUENCE OF HABIT IN CHOICE OF TRAVEL MODE 

Although regular use of a car does not necessarily mean that it is habitual, the responses 

shown above for people in employment indicates that for many using the car is something 

they do frequently (85%), automatically (73%) and belongs to their routine (85%). 

The evidence for the triggers which cause people to re-consider their travel options came 

from the answers to the question, asked of those respondents who had made regular 

journeys to work in the last six months and had changed the way they usually travelled to 

work, what factors had prompted that change. The responses are shown in Table 6.5 below. 
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Why did you change the way you travelled to 
work? Freq. Percent 

New method quicker / more convenient 38 24.02% 

New job or change in place of work 35 22.29% 

Moved house 25 16.16% 

New method cheaper / free 20 12.51% 

I bought a car 18 11.53% 

Change in season/ weather 10 6.46% 

Change in family circumstances (e.g. had a baby/got 
divorced/child left school/etc) 9 5.67% 

Health reasons 8 4.92% 

Change in parking arrangements 2 1.57% 

Public transport overcrowded, unreliable 2 1.38% 

New method more reliable 2 1.09% 

I wanted to reduce my CO2 emissions 2 1.07% 

I bought a bicycle 1 0.79% 

Other 9 6.01% 

   

Total reasons provided 181   

Total number respondents  157 100% 

 

TABLE 6.5 REASONS PROVIDED FOR CHANGING REGULAR MODE USED FOR COMMUTING 

Of the 157 respondents who reported that they had changed the mode they regularly used 

to travel to work, 22% said it was a result of changing their job or place of work and 16% 

said it was a result of moving house. These two events may have made other people 

reconsider their commute to work even if they then continued to use the same mode as 

previously and so would not have been included in these numbers. 24% of respondents said 

they had changed mode because the new mode was quicker or more convenient and 16% 

because the new mode was cheaper or free. This explains why they changed mode but may 

not have been what made them re-consider their current travel arrangements in the first 

place.  
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Based on the evidence from the DfT survey, which confirmed the findings of other studies 

(Verplanken et al, 1997, Van der Waerden, 2003 ) the triggers to re-consider their current 

mode incorporated in the model are changes to home or job locations. A visit from a 

personal travel adviser who provides information on the availability of public transport in their 

area is also included in the model as it is one of the policy measures which the model is 

intended to evaluate. 

Not all of the four modes included in the model, bus, car, rail and cycle, is a realistic option 

for each person. Each possible mode needs to be assessed against a set of personal 

constraints and if that mode is not a feasible option for that person, it is removed from the set 

of choices available. The constraints incorporated in the basic mode are either due to the 

characteristics of the individual i.e. they are personal constraints or are due to the 

characteristics of the transport system i.e. they are constraints arising from the general 

environment.  

Personal constraints cover aspects such as having mobility issues or other disabilities which 

prevent the use of a particular mode, being required to have a car available for use during 

the working day and needing to be able to carry work equipment and papers. General 

constraints cover issues such as the lack of a bus service within a reasonable distance of 

their house or destination or the lack of parking spaces near the workplace.  

Tables 6.6 and 6.7 cover disability issues that restrict the respondent’s ability to use a car, 

bus, cycle or walk for a journey. This shows that 6% of respondents had a disability or other 

health issue which meant that they could not use buses. For 16% of respondents cycling 

was difficult or impossible. 

 

 

 



126 
 

Do you have any disability or other long standing health that makes it difficult 
for you to do any of the following… 

[2923 respondents]     

  Freq. Percent 

go out on foot: Yes 357 9.10 

use local buses: Yes 236 6.02 

Get in or out of a car: Yes 185 4.72 

 

TABLE 6.6 HEALTH CONSTRAINTS ON TRAVELLING ON FOOT, BY BUS AND BY CAR 

 

Do you have any disability or other long standing health problem that makes it 

/would make it difficult or impossible for you to ride a bicycle   

[3923 respondents]     

  Freq. Percent 

Yes – impossible 382 9.73 

Yes – difficult 238 6.06 

No 3293 83.95 

Don't know 10 0.26 

 

TABLE 6.7 DIFFICULTIES IN RIDING A BICYCLE 

Respondents were asked why they used the car to get to work/school/ college (Table 6.8) 

and why they did not use public transport (Table 6.9) or cycling (Table 6.10) for their regular 

journey to work/school/college. 
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For car drivers or passenger to work/ school/ college     

What are the reasons for you usually going by car/van?     

[1331 respondents]     

I can travel when I want to travel Freq. Percent 

No 1060 79.65% 

Yes 271 20.35% 

  

 

  

It is quick / quickest way/ other ways take too long   

No 732 54.97% 

Yes 599 45.03% 

  

 

  

It is reliable / more reliable than other modes   

No 1167 87.70% 

Yes 164 12.30% 

  

 

  

It is cheap / cheapest way 
 

  

No 1192 89.53% 

Yes 139 10.47% 

  

 

  

It is convenient / most convenient   

No 744 55.89% 

Yes 587 44.11% 

  

 

  

it is comfortable / most comfortable   

No 1235 92.76% 

Yes 96 7.24% 

  

 

  

I cannot get there any other way   

No 1047 78.67% 

Yes 284 21.33% 

  

 
 

  

I enjoy driving   

No 1298 97.55% 

Yes 33 2.45% 

  

 

  

I have to take things (e.g. tools, laptop, luggage etc.) and cannot 
carry it all 

  

No 1150 86.40% 

Yes 181 13.60% 

      

I usually take my partner with me   

No 1319 99.08% 

Yes 12 0.92% 

  

 

  

I usually take my children with me   

No 1261 94.70% 

Yes 70 5.30% 
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I usually take someone else with me   

No 1302 97.80% 

Yes 29 2.20% 

  

 

  

I need my car for work   

No 1175 88.29% 

Yes 156 11.71% 

  

 

  

I use my car to make other trips while I’m out   

No 1265 95.01% 

Yes 66 4.99% 

  

 

  

It gives me flexibility   

No 1193 89.65% 

Yes 138 10.35% 

  

 

  

The weather   

No 1281 96.22% 

Yes 50 3.78% 

  

 

  

It is safer   

No 1313 98.66% 

Yes 18 1.34% 

  

 

  

Buses do not run at suitable times   

No 1,323 99.38% 

Yes 8 0.62% 

 

TABLE 6.8 REASONS FOR TRAVELLING TO WORK/SCHOOL/COLLEGE BY CAR 

The reasons for using a car were grouped into four categories: 

1. Modal characteristics 

 Can travel whenever I want 

 Convenient 

 Comfort 

 Enjoyment of driving 

 Flexibility 

 Protected from the weather 

 Safe 

2. Journey characteristics 

 Time 

 Reliability 

 Cost 
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3. Constraints 

 No other way to make the trip 

 Have things to carry 

 Need car for work 

 Buses not run at suitable times 

4. Other 

 Take partner 

 Take children 

 Take someone else 

 Make other trips while out 

 

Reviewing these reasons for using the car, the modal characteristics would be captured in 

the mode preference in the stated preference exercise. The journey characteristics would be 

captured in the description of the journey options, with the exception of reliability which was 

not considered in the DfT stated preference exercise. As more (over 12%) respondents 

stated that reliability was a reason for choosing car than cost (10%), then ideally it should 

have been included in the stated preference survey. It is more straightforward to include cost 

than reliability but other studies have included it, particularly for public transport trips, such 

as the Leeds New Generation Transit surveys. 

The ‘other’ reasons are not strictly constraints which require using the car as it may be 

possible for all the occupants of the car to make the trip using an alternative mode. The 

actual constraints identified were the lack of alternatives (21%), need to take things to work 

(14%), need car for work (12%) and buses not run at suitable times (1%).  In the basic 

model, the need to carry things and use the car for work are taken as constraints that mean 

the person has to use the car. 

The issue of the lack of alternatives to the car was incorporated by introducing a feedback 

loop, whereby if the number of bus passengers in a time period fell below that needed to run 

a commercial service, then the number of bus routes are reduced and all the people that 

might have used the service do not have the choice of a bus. In this way the model itself 
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produces the constraint of the lack of a bus service. When the model starts, everyone has 

the option of a bus service but the model itself introduces this constraint if the overall number 

of people choosing to use the bus is too low to maintain the service. The number of people 

who said that buses did not run at suitable times was low, less than 1%, so this was not 

included in the model.  

The constraints in Table 6.9 also highlight the reasons for not using bus, with the lack of a 

bus service being the main reason provided for not using the bus and so this constraint was 

added into the model. Time and cost are also provided as reasons for not using the bus. 

Again, the need to carry items was mentioned, 10%, but the need to use the car for work 

was not cited as often. 

Respondents who had a journey of less than 10 miles to work/ school/ college were asked 

why they did not cycle. The main reason provided was distance (30%) followed by safety 

fears (22%), the weather (17%), not owning a bicycle (17%) and the need to take things 

(14%). As the model is based on a fixed journey length of 5 miles, the constraint of distance 

was not included, neither was not owning a bicycle as this is a constraint that can be 

addressed. The constraint of the weather and having to carry things were included in the 

model. 
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What are the reasons why you don’t take the bus to get to work/ school/ college?   

[1030 respondents]     

  Freq. Percent 

Buses do not run when / where I want to travel 389 37.81% 

Generally not convenient by bus / easier or more convenient by car 257 24.93% 

Bus journey is too slow / infrequent 249 24.16% 

I would need to change my bus / no direct route 176 17.10% 

Buses are expensive / more expensive / do not offer good value for 117 11.31% 

money/ It’s cheaper by car 

 

  

Bus stop is not near to destination 107 10.42% 

I have to take things (e.g. tools, laptop, luggage etc) and cannot carry it 101 9.79% 

Buses are not reliable and punctual 88 8.54% 

Bus stop is not near home 62 6.07% 

Can never be sure what time the bus will arrive/how long it will take 62 6.04% 

Other reasons 57 5.53% 

Buses are uncomfortable / poor condition / not clean / overcrowded /too cold 
or hot 40 3.87% 

No particular reason 31 3.00% 

I don’t know what bus services are available 27 2.67% 

I do not feel safe on the bus / at bus stations 24 2.33% 

Buses are not accessible/easy to get on 19 1.83% 

Need to use car for work 18 1.71% 

Need car for school run/ lifts for family or friends 10 1.02% 

Don't know 9 0.89% 

 

TABLE 6.9 REASONS FOR NOT USING THE BUS FOR TRAVELLING TO WORK/ SCHOOL/ COLLEGE 
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What are the reasons why you don’t cycle to [work] or [school/college]?     

[724 respondents]     

  Freq. Percent 

It takes too long to cycle / too far away 218 30.04% 

Too much traffic / it’s too dangerous 156 21.59% 

Weather 125 17.31% 

Don’t own / have access to a bicycle 121 16.65% 

I have to take things (e.g. tools, laptop, luggage etc.) and cannot carry it 
all 98 13.60% 

Too old / Not fit enough to cycle 43 5.99% 

Too hilly round here 39 5.40% 

Not my style 36 5.02% 

No particular reason 34 4.76% 

Worried about crime/personal safety/being attacked 34 4.69% 

Can ride a bicycle but not confidently enough to ride to work 28 3.84% 

Other 26 3.59% 

Cycle lanes/paths are limited / poor quality/unsafe 24 3.34% 

Too dark 21 2.92% 

Have to take children with me 20 2.70% 

No showers 16 2.21% 

Nowhere to park a bicycle securely 11 1.54% 

Need to use car throughout day 10 1.31% 

Too lazy 9 1.24% 

Need car for work 8 1.04% 

Don't know 7 0.92% 

Can’t ride a bicycle 6 0.90% 

Worried about bike being stolen 6 0.89% 

Have to take other people with me 5 0.73% 

Not practical 5 0.64% 

Work at night - not like cycling at night 2 0.31% 

TABLE 6.10 REASONS FOR NOT CYCLING TO WORK/ SCHOOL/ COLLEGE 
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6.2.4 Residential mobility 

Two of the key events identified as a trigger for the re-assessment of a person’s commuting 

mode are a change in the regular place of residence (22%) and a change in job (16%), as 

shown in Table 6.5. Data was therefore sought on residential mobility and the length of job 

tenure in the UK for use in determining the frequency of the occurrence of these trigger 

events for inclusion in the model. 

The data used on residential mobility in the UK came from the British Household Panel 

survey which is a longitudinal panel study carried out annually in the UK from 1991 and now 

subsumed within the Understanding Society survey. The British Household Panel Survey 

follows the same representative sample of individuals in the UK over a period of years. It is a 

household-based survey and interviews every member of sampled households over 16 

years of age. The panel in the first wave in 1991 consisted of around 5,500 households and 

10,300 individuals drawn from 250 areas of Great Britain. Additional samples from Scotland 

and Wales (1,500 households each) were added in 1999 and a further 2,000 households 

were added from Northern Ireland in 2001.  

The data used in the model is the responses to the question on residential mobility answered 

in the surveys undertaken for waves b to r of the BHPS, 1992 – 2009. The variable MOVEST 

records whether the respondent has moved home in the past year. The original BHPS used 

a clustered stratified sample with an almost equal probability sampling design aimed at being 

representative of Great Britain in 1990 south of the Caledonian Canal. When additional 

respondents were added from Wales, Scotland, and Northern Ireland the sample units from 

the four countries then had unequal selection probabilities and a new weighting variable, 

XRWTUK1 was introduced to compensate for this. The weights also allow for non-response 

bias. The data from all waves from 1992 to 2009 was downloaded and analysed using 

STATA software. Table 6.11 gives the proportion of people, by age and gender, who 

changed their place of residence in the year preceding the interview. 
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Age Male Female   Age Male Female 

  % moved % moved     % moved % moved 

15 3.44 4.97 

 

43 7.02 4.75 

16 4.58 7.35 

 

44 5.50 5.72 

17 6.79 8.93 

 

45 6.84 5.16 

18 11.08 16.47 

 

46 4.29 4.22 

19 17.37 25.88 

 

47 6.31 4.73 

20 21.62 28.30 

 

48 4.21 5.10 

21 24.88 27.71 

 

49 4.90 4.92 

22 25.57 31.49 

 

50 3.79 4.52 

23 25.91 29.51 

 

51 5.41 4.86 

24 24.44 28.15 

 

52 4.24 4.20 

25 26.00 25.42 

 

53 5.09 4.14 

26 23.54 21.01 

 

54 4.68 2.33 

27 22.56 19.55 

 

55 4.84 5.06 

28 19.74 17.94 

 

56 4.07 4.49 

29 21.27 17.71 

 

57 2.92 2.80 

30 17.72 15.66 

 

58 4.43 4.78 

31 14.72 14.62 

 

59 4.04 4.04 

32 13.74 12.48 

 

60 3.20 3.09 

33 12.51 11.74 

 

61 3.59 2.53 

34 13.96 10.08 

 

62 4.18 4.09 

35 11.66 10.64 

 

63 3.68 2.78 

36 11.14 9.64 

 

64 3.24 3.40 

37 11.74 8.97 

 

65 3.50 3.72 

38 8.91 6.96 

 

66 2.49 2.96 

39 9.76 7.06 

 

67 2.61 2.57 

40 7.45 6.20 

 

68 3.86 2.14 

41 6.29 6.77 

 

69 2.35 2.89 

42 7.33 6.87   70 3.18 3.40 

 

TABLE 6.11 PROPORTION OF PEOPLE MOVING EACH YEAR, BY AGE AND GENDER 

This shows a difference in the levels of residential mobility by age and gender. Women up to 

the age of 25 women are more likely to move than men, and then men become more mobile 

than women. Older people are less mobile than younger people. After analysing the data the 

likelihood of moving house in a year was incorporated in the model with separate 

probabilities for a person depending on their age and gender. This means that the model 
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needs to know the initial age of each respondent (available from the DfT survey) and then 

track the age of each person over time as the model runs. 

6.2.5 Job tenure 

Data on job mobility in the UK labour market is available from the Organisation of Economic 

Co-operation and Development (OECD) for each year from 2002 to 2011. The OECD 

publishes annual figures on the length of job tenure derived from analysis of data collected 

by the UK Labour Force Survey. This cross-sectional survey was used in preference to the 

BHPS as it has a larger sample size, (over 41,000 respondents each quarter) which makes 

the results, especially when disaggregated by factors such as age and gender more robust 

than the BHPS. The data on the length of time a person has been in their current job is 

summarised by the age and gender of respondents for 2011 in Table 6.12 below. 

Age group 15 to 24 years 25 to 54 years 55 and over 

Time in 
current job Male Female Male Female Male Female 

< 6 months 359063 19.5% 310060 18.2% 629029 5.8% 505104 5.3% 75221 2.9% 49620 2.4% 

6 to <12 months 359590 19.5% 407391 23.9% 652799 6.0% 601097 6.3% 78694 3.0% 61501 3.0% 

1 to <3 years 501031 27.2% 481839 28.3% 1355544 12.6% 1301297 13.7% 191743 7.4% 141976 6.8% 

3 to <5 years 373863 20.3% 342458 20.1% 1705655 15.8% 1592344 16.8% 250912 9.6% 212699 10.2% 

5 to <10 years 245633 13.3% 162987 9.6% 2747814 25.5% 2610669 27.5% 521968 20.0% 410897 19.7% 

10 years and 
over 870 0.0% 749 0.0% 3703820 34.3% 2888332 30.4% 1487202 57.1% 1206642 57.9% 

 

TABLE 6.12 LENGTH OF JOB TENURE IN THE UK, 2011 

Source: (OECD from UK Labour Force Survey) 

Survival analysis was used to derive Kaplan-Meier survival functions from this data. These 

show the probability of an individual surviving longer than a specified time, e.g. three years 
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without experiencing the event of changing their job. The Kaplan-Meier functions from this 

data are shown in Figure 6.1 by age and Figure 6.2 by gender. A log-rank test for equality of 

survivor functions showed a substantial statistically significant difference in Kaplan-Meier 

survival estimates both by gender and age, where p<0.001. For the purpose of building a 

Mediator model, the expected length of job tenure for an individual is therefore based on a 

person’s age and gender. In more detailed Predictor models, the estimation of length of job 

tenure could be based on other significant variables such as occupation and whether the 

employment is in the public or private sector. 

 

FIGURE 6.1 KAPLAN-MEIER SURVIVAL FUNCTIONS FOR JOB TENURE BY AGE GROUP 
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FIGURE 6.2 KAPLAN-MEIER SURVIVAL FUNCTIONS FOR JOB TENURE BY GENDER 

These survival functions were then transformed into failure probabilities, which give the 

probability that an individual will change job in the next six months, given their current age, 

gender and the length of time they have been continuously employed in the same job. These 

failure probabilities are given in Table 6.13 below. They are used in the model to predict 

when a person will change job, given the start date of that job. 

The data shows clearly that younger people change job more frequently than older people, 

with a 20 year old male having a 19.5% probability of leaving a job within 6 months of 

starting it, compared to 5.3% for a women aged between 25 and 54. 
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15 to 24 years 25 to 54 years 55 and over 

Time Periods Men Women Men Women Men Women 

Up to 6 months 0.195 0.182 0.058 0.053 0.029 0.024 

6 months to 1 year 0.391 0.421 0.119 0.117 0.059 0.053 

1 year to 3 years 0.166 0.176 0.061 0.064 0.033 0.031 

3 years to 5 years 0.144 0.151 0.067 0.070 0.038 0.038 

5 years to 10 years 0.100 0.100 0.066 0.079 0.043 0.042 

 

TABLE 6.13 PROBABILITY OF CHANGING JOB IN THE NEXT 6 MONTHS 

The job tenure data was also used in the pre-model data set up. A current length of time in 

present job was allocated to people based on their age and gender, using the distribution of 

job tenure by age and gender presented in Table 6.12 above. The allocation of the initial 

time to the first job change event could be set within the model run but as it involves a 

stochastic process, this would increase the variability between model runs. A design 

decision was made to minimise the number of stochastic processes undertaken within the 

model in order to assist in the comparison of model run results by making them as 

consistent as possible. Therefore the initial length of job tenure is set outside of the model 

initialisation process and is the same for a particular individual in all model runs. 

6.3 Preparing the data 

‘More often than not, the choice of an initial base data set will require a trade-off between 

population representation, data reliability and richness of variables available in the data’ 

(Cassells et al., 2006)  The DfT data set scores highly on data reliability and the richness of 

variables available in the data and moderately well on population representation. The 

complete stated preference survey for all journey purposes was representative of the UK 

population but only a subset of these respondents completed the journey to work section of 

the stated preference survey and this subset was not itself representative of all those in work 

in the UK.  
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Some values for the attributes and constraints are not available for every person in the 

dataset, mainly because not all respondents were asked every question. For example, 

people who drive more than 5 miles to work were not asked why they do not use a bicycle. 

There were also respondents who did not respond to questions. In these cases appropriate 

values were imputed so that in the model input data file all respondents had valid responses 

in every field.  

Three additional fields were created from the survey data. First, the age of the respondent 

was only recorded in the categories 16-20, 21-29, 30-39, 40-49, 50-59, 50-69 and 70 or over 

but the model requires an actual age in years, months and weeks for each person. A uniform 

distribution of respondents by age within each of these categories was assumed and 

respondents were then allocated an age drawn at random from the relevant age band.  

When a time related variable such as age is used in a dynamic model it is needed at the 

same precision as the time steps used in the model. As the model increments time on a 

weekly basis, the initial age was needed in terms of years and weeks. If all respondents 

were allocated the median age in the age band then when any event occurred that was 

triggered by age, such as acquiring a bus pass, then a large number of agents would 

experience this event at the same time. This would cause an artificial discontinuity in 

modelled outcomes. Ideally the survey would have asked respondents for their date of birth, 

but, as this was not the case, the data was smoothed by random allocation of a more precise 

age to each agent. 

Second, when respondents were asked how long they had lived in their current home, the 

answers were only recorded as either up to a year, up to 2 years, up to 5 years, up to 10 

years, up to 20 years or over 20 years. A uniform random distribution within each of these 

bands was used to allocate a more precise length of residence at the current address 

expressed in term of years and weeks since they last moved.  
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Third, respondents were only asked if they had started work or changed job in the last year 

but the model requires information on both the age of the respondent and the length of time 

they have been in their current job in order to select the appropriate probability that they 

change job in the current model time period. The OECD data on labour force job tenure 

provides a table for the UK in 2011, separately for males and females by five year age 

groups, of the number of people who had been in their current job for up to 6 months, 6 

months to a year, 1 to 3 years, 3 to 5 years, 5 to 10 years and over 10 years. Using this data 

a distribution of length of job tenure was created for each gender/age group. Then for each 

respondent a length of job tenure was drawn at random from the appropriate distribution and 

the number of years and weeks in their current employment assigned to each respondent. 

In the preparation of the initial dataset the agents were assigned to one of three destination 

zones. 25% were allocated to zone 1, 37.5% to zone 2 and 37.5% to zone 3. This allowed 

the model to include different parking charges in each of the destination zones and for a 

different proportion of people parking in each zone being liable to pay a parking charge. This 

was incorporated in the model to simulate the variation found in the real-world of the 

proportion of free and charged parking spaces available in non-residential places, car parks 

and on-street parking in different areas. 

This illustrates again that ideally the survey would be designed in tandem with the model 

design so that the data collected would fit the requirements of the model, including data that 

might be used for model validation. It is often the case though that a model is based on 

existing data sets, and not all the desired data is available and the imputation of missing 

data is required.  

All these imputed values were added into the input file of agents’ attributes that was used in 

all the scenario runs in order to ensure consistency between model runs. The alternative 

was to allocate precise ages, length of residence at their current address and time since they 

last moved job during the initialisation stage of each model run. This approach would 
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increase the variability in the model output as there would be a variation in the values 

assigned to individuals with missing data which would increase the variation in model output 

between runs, as the models would vary both in the values used for missing data and the 

occurrence of random events during the model runs. Ideally the input data would have come 

from a data set designed specifically for the model and the amount of missing data would be 

far smaller than in the data set used in this study. For this reason the decision was taken to 

fix the missing values so that the variation in the model runs came solely from the 

occurrence of random events during the model run. The resulting amount of variation 

between runs in the model used in this research is therefore closer to that which would be 

experienced in a real application with a bespoke data set.  

6.4 Overview, Design concepts and Details  

6.4.1 The ODD Protocol 

The Overview, Design concepts and Details (ODD) protocol (Grimm et al., 2006, revised 

2010) is a standardised and widely adopted format for documenting an agent based model. 

Its purpose is to make the reading and writing of agent based model descriptions more 

efficient. The protocol starts with the Overview section, which outlines the model’s purpose, 

its entities and provides an overview of the processes incorporated in the model. The Design 

concepts section, covers typical agent based modelling features such as emergence, 

learning and interaction. The Details section provides information on initialisation, input data 

and any sub models. The ODD protocol, by providing a common format for sharing details of 

the agents and processes in an agent based model, assists in spreading an understanding 

of the model. This is especially helpful when making a judgement on a model’s validation, 

particularly if the nature of the model is such that it is not amenable to validation by 

comparing numerical data. 

The structure of the implemented model in this research is described here using the ODD 

protocol. An overview of structure of the model is provided in Figure 6.3 below. 
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FIGURE 6.3 STRUCTURE OF THE MODEL 

6.4.2 Purpose 

The purpose of the model is to predict the scale of the impact on mode share and the lags in 

the achievement of change resulting from policies aimed at influencing the proportion of trips 

made to work by bus, car, train and cycle. The model shows how the existence of a PTP 

programme in an area can be observed in changes in mode share. 

6.4.3 Entities, state variables, and scales  

The model consists of agents and the environment in which they exist. Each agent in the 

model is a one-to-one match with one of the 626 respondents in the choice modelling 

section of the DfT dataset. The attributes of each agent are taken, wherever possible, from 

the answers they provided in the survey. Table 6.14 shows the variables used in the model.  

AGENTS JOURNEY OPTIONS 

EVENTS FEEDBACK 

MODE 
CHOICE 

Attributes:                  
age, gender, location, 
constraints, preferences 

State:          

deliberative, habitual 

Mode: bus, car, train, 
cycle, not travel 

Characteristics:          
time, cost, carbon 

Move house 

Move job 

PTP visit 

Number bus passenger in one time 

period affects number of buses run 

in next time period 
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Agent variables 

Variable Variable description Source 

of data 

Static /  

Dynamic 

Respondent User ID from choice modelling DfT Static 

Gender Gender of respondent DfT Static 

Age Age of respondent DfT Dynamic 

years_house Years lived in current home DfT Dynamic 

years_job Years in current job Assigned Dynamic 

disability_bus Has disability which prevents local bus use DfT Static 

disability_car Has disability which prevents local car use  DfT Static 

disability_cycle Has disability which prevents local cycle use DfT Static 

car_licence Holds full licence for car valid in England DfT Static 

need_car Needs car for work DfT Static 

bus_things Can’t use bus as has to take heavy items  DfT Static 

rail_things Can’t use train as has to take heavy items DfT Static 

cycle_things Can’t use bicycle as has to take heavy items DfT Static 

cycle_combined Can't ride a bicycle for a variety of reasons DfT Static 

Destination Destination zone Assigned Static 

    

MODE_BUS Bus mode constant DfT* Static 

MODE_CAR Car mode constant DfT* Static 

MODE_TRAIN Rail mode constant DfT* Static 

MODE_CYCLE Cycle mode constant DfT* Static 

COST_150 Part worth cost £1.50 DfT* Static 

COST_200 Part worth cost £2.00 DfT* Static 

COST_250 Part worth cost £2.50 DfT* Static 

COST_300 Part worth cost £3.00 DfT* Static 

CO2_1 Part worth carbon 1kg DfT* Static 

CO2_2 Part worth carbon 2kg DfT* Static 

CO2_3 Part worth carbon 3kg DfT* Static 

CO2_4 Part worth carbon 4kg DfT* Static 

TIME_15 Part worth journey time 15 minutes DfT* Static 

TIME_30 Part worth journey time 30 minutes DfT* Static 

TIME_45 Part worth journey time 45 minutes DfT* Static 

TIME_60 Part worth journey time 60 minutes DfT* Static 

TIME_75 Part worth journey time 75 minutes DfT* Static 

NONE Part worth - choose not to travel or use another mode DfT* Static 

CLASS Class identifier when using segments DfT* Static 

*estimated from DfT stated preference responses using Sawtooth software 
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Environment variables 

State Variable Units Static / Dynamic   

Mode for journey option 1  Static 

Time for journey option 1 Minutes Static 

Cost for journey option 1 Pence Dynamic 

Carbon emissions for journey option 1 Kilograms Static 

Mode for journey option 2  Static 

Time for journey option 2 Minutes static 

Cost for journey option 2 Pence dynamic 

Carbon emissions for journey option 2 Kilograms static 

Mode for journey option 3  static 

Time for journey option 3 Minutes static 

Cost for journey option 3 Pence dynamic 

Carbon emissions for journey option 3 Kilograms static 

Mode for journey option 4  static 

Time for journey option 4 Minutes static 

Cost for journey option 4 Pence dynamic 

Carbon emissions for journey option 4 Kilograms static 

Minimum age for bus pass Years, weeks static 

Proportion people pay to park in zones 1,2,3 six months 

in years 1 - 10 

 

% static 

Parking charge in destination zones 1,2,3 months in 

years 1 - 10 

 

Pence Static 

Change in fuel costs  % change Static 

Change in bus fares, years 1 - 10 

 

% change Static 

Change in rail fares, years 1 - 10 

 

% change Static 

Percentage agents receiving a ptp visit each year % Static 

Retirement age Years, weeks Static 

% house movers leave area % Static 

% job changers leave area % Static 

 

TABLE 6.14 MODEL VARIABLES 

Behavioural strategies  

All agents have the same behavioural strategy. When they are initialised they are in a 

deliberative state and choose their travel mode in the first modelled time period. They then 

switch to the habitual state and remain in that state until they receive a trigger event. A 

trigger event causes them switch back to a deliberative state. 
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When choosing a transport mode, they first reject modes which are not available to them 

due to constraints and then choose the mode which has the highest total utility level for 

them. Each agent has their own set of utilities for time, cost, carbon and mode constants. 

The model is run for 10 years. Each time period represents one week and the model is run 

for 520 time periods. It is assumed, in order to simplify the model and reduce run times, that 

the mode used by an agent is the same on each working day of a modelled week. 

6.4.4 Process overview and scheduling 

Process overview 

Each time period is modelled as a discrete step. 

The sub models are performed in this order: 

 update the environment (journey) characteristics 

 update the agent’s age, individual journey costs and constraints 

 check for a trigger event, which changes agent to a deliberative state 

 make mode choice decision if agent state is deliberative, otherwise the agent uses 

mode used in the previous time period. 

Scheduling 

The regular events in the model are: 

 changes in bus fares, rail fares, fuel costs and parking charges, which are applied 

every 6 months 

 the number of people with free parking is updated every 6 months. 
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The irregular events in the model are: 

 people may move in any time period. The probability of someone moving house 

depends on their age and gender. The model checks for a potential house move 

event occurring every 4 weeks starting with week 1, 

 people may move job in any time period. The probability of someone moving job 

depends on the number of months since they last changed job, their age and gender. 

The model checks for a potential job change event occurring every 4 weeks starting 

with week 2, 

 people may receive a personal travel visit at either their home or place of work in any 

time period. Receiving a visit is a random event, based on the number of visits being 

undertaken each year. The chances of receiving a visit in any one time period are 

independent of having received a visit on a previous occasion. The model checks for 

a potential personalized travel planning visit event occurring every 4 weeks starting 

with week 3, 

6.4.5 Initialization 

The initial settings for each agent are read in from an input file. The values are those given 

by the 626 respondents in the DfT survey. When the agents are initialised, they are all 

placed in a deliberative state. 

The initial state of the environment variables for the time, cost and CO2 emissions for the 

four journey options is provided by the user in an input file. 

6.4.6 Input data 

The model uses data from the DfT survey on climate change and transport choices to set the 

initial state of the agent variables.  
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The initial state of the environment variables for the journey options are set by the user and 

must be within the range of values used in the DfT choice modeling exercise. These are: 

 Cost 150 to 300 pence 

 Time 15 – 75 minutes 

 Carbon 1 – 4 kg 

The data on the rate at which people move house and change job is taken from the British 

Household Panel Survey and OECD job tenure data. 

The rates of change in fuel costs, bus fares, rail fares, the change in the number of free 

parking places in each destination zone and parking charge in each destination zone is read 

in from an input file prepared by the model user. 

The rate of personalised travel visits is provided by the user in the model set up data. 

The part worths or preference weightings held by each individual for the attributes of a 

journey option e.g, mode, time, cost and carbon were estimated from the results of the 

choice modeling exercise using Sawtooth software. The estimation of these values from the 

survey data was made using the hierarchical bayes option in the Sawtooth software. 

6.4.7 Submodels 

There are five sub-models. 

The first changes the global journey attributes. For each time period the attributes of the 

journey options are changed as required by regular events: 

 the car costs, bus fares and rail fares are changed every six months 

 the parking charges in each zone and the proportion of people in each zone who 

have to pay to park is changed every six months 
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The second updates the value of each agent’s variables. The attributes of each agent are 

updated in each time period; their age is raised, eligibility for a free bus pass assessed and 

their status regarding the availability of free parking updated. 

The third reviews each agent’s mode choice decision making state. The model checks 

whether the agent has received a trigger event in this time period. The trigger events are: 

 receive personal travel plan visit 

 move house 

 move job 

 receive a free bus pass. This is triggered if the agent reaches the minimum age to 

receive a concessionary bus pass 

If a trigger event has occurred the agent is switched to the ‘deliberative’ state from the 

‘habitual’ state. 

The fourth enacts the decision making. It updates the cost of each option for the individual 

agent taking into account the destination zone of the agent which affects the parking charge 

and the cost of bus travel which might be affected by the availability of a free bus pass. The 

total utility of each option is calculated using the agent’s own preferences. The agent rejects 

any modes which are not available to them due to constraints and then chooses between the 

remaining options or not travelling at all, the option which has the highest utility for them. 

The fifth model controls agent replication. When an agent reaches the age of 68 it leaves the 

model and is replaced by an agent with a random age between 17 and 60, with the same 

attributes and personal preferences as the agent they replace, but with zero years since they 

moved house or left their job. 
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6.5 Conclusion 

This chapter reported on the development of the agent based model of commuting mode 

choice developed for this study. This is an empirically grounded agent based model and the 

data for each agent comes from a DfT survey which reported the attributes of each 

respondent and their preference weightings for time, cost and carbon emissions when 

selecting a mode for a five mile commute to work. 

The model is based on Triandis’ theory of Interpersonal Behaviour which states that a 

person’s observed behaviour is influenced by their intention and their habits and depends 

upon the facilitating conditions. In each time period an agent’s choice is made on the basis 

of intention or habit. The actual modes available to a person are constrained by the 

facilitating conditions. These may be personal constraints, such as the lack of a car or 

mobility issues or external conditions, such as the lack of a bus service. The model is run for 

each week for ten years.  

The next chapter presents the results of the modelling work undertaken with this model. The 

aim of the modelling exercise was to investigate the potential of ABM for modelling smarter 

choices and this aim influenced the design of the model runs. The work was based on the 

approach of starting with a simple model and then adding further processes to illustrate the 

features of agent based modelling that are relevant to the modelling of ‘smarter choices’ 

measures.  
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7 Model results 

7.1 Introduction 

This chapter presents the results from using the agent based model of commuter mode 

choice described in the previous chapter. A variety of scenarios were run which varied by the 

assumed changes in the time and cost of the journey options over time and whether a 

programme of personalised travel planning was undertaken or not. Each scenario was run 

100 times to allow for analysis of the variability in results between model runs due to the 

operation of the stochastic processes within the model. These processes govern the timing 

and frequency of the main trigger events in the model. The trigger events are moving house, 

changing job, gaining a free bus pass and receiving a visit from a personal travel advisor.  

The aim of this research is to investigate the merits of agent based modelling as a  

technique to provide the information needed for an appraisal of the impact of a package of 

measures intended to reduce car use and promote ‘smarter choices’. This aim informed the 

choice of tests undertaken with the model. The tests concentrated on features of agent 

based modelling which could improve the accuracy of the model outputs required for use in 

the business case for the type of ‘smarter choices’ interventions which might be funded by 

the developer of a large development such as Alconbury Weald or a local authority. Typical 

example of such interventions designed to reduce car use are the subsidy of a bus service 

and the funding of a personalised travel planning campaign. 

The results from the model runs are presented here under themes which illustrate features 

of the modelling approach that demonstrate its suitability for this task. 

7.2 Modelling the trajectory over time of the number of people using 

each mode  

It is valuable for the appraisal of a transport intervention to know how the number of people 

using each mode will evolve over time. This will assist in the planning of sufficient capacity in 
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the transport network, such as ensuring that enough train carriages are provided to meet 

demand. Detailed passenger forecasts over time will improve the estimate of the revenue 

that will be received by public transport operators and the level of any subsidy required to 

ensure that a particular level of service is maintained. 

In a conventional four stage transport model there is an assumption that the transport 

system is in a state of equilibrium and the model is run for a particular point of time in the 

future with the intention of forecasting the state of each element of the transport system at 

the equilibrium point for that future date. Models are set up to run for one particular moment 

in time and separate model runs are required if results for other moments in time are 

required.   

Agent based modelling does not make any presumption about the existence or otherwise of 

a state of equilibrium in the transport network. The output that comes from the model of 

mode choice developed in this research provides a set of forecasts of the number of users of 

each mode over time rather than for a single moment in the future. It shows the trajectory 

towards the mode share forecast in the final modelled time period. This is illustrated by the 

output from scenario 1 which was run for every week for 10 years and produces a demand 

forecast for the transport system in each of these time periods as well as for the model year 

10 years away from the model’s base year. 

In scenario 1 every aspect in the model that might affect mode choice remains constant over 

time except for the changes in the cost of travel by each mode. The input values for this 

scenario are presented in Figure 7.1 below.  

The model is run with all 626 agents who each have the choice between four modes of 

travel: bus, car, train and cycle or the choice not to travel. Initially the bus journey costs 

£1.60, takes 35 minutes and has CO2 emissions of 1 kg. The car journey costs £1.00, takes 

20 minutes and has CO2 emissions of 3 kg. The train journey costs £2.40, takes 20 minutes 
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and has CO2 emissions of 1 kg. The cycle journey is free, has no CO2 emissions and takes 

60 minutes. 

The age at which agents become eligible for a free bus pass is 61 years and 48 weeks. 

Current government policy in England is for this age to rise over time but in this model the 

age is kept constant. 

Agents are replaced when they reach retirement age, which is set to 68 years. The 

replacement agent inherits all the current attributes of the agent they replace, with the 

exception of age, which is set at random between 17 and 60 years. When an agent moves 

house, 30% of the agents move out of the area and are replaced. When an agent changes 

job, 20% of the agents change to a job out of the area and are replaced.  

There are no personalised travel plan visits in scenario 1, so the triggers for people to re-

assess their travel behaviour are moving house, moving job, entering the area as a 

replacement for a person who has retired or left the area, and receiving a bus pass. 

In scenario 1 the percentage of drivers going to zone 1 who have to pay to park is 50%, in 

zone 2 it is 0% and in zone 3, 50%. The parking charge in zones 1 and 3 is 150 pence and 

parking is free in zone 2. The allocation of agents to a destination zone, the proportion of 

agents in each zone that pay to park and the parking charge in each zone remain the same 

in each time period. 
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SCENARIO 1                   

  
         

  

INITIAL JOURNEY DETAILS 
       

  

MODE Cost CO2 Time 

 
PTP % households visited a year 0%   

  (pence) (kg) (mins) 

 
% house movers leave area 

 
30%   

BUS 160 1 35 

 
% job changers leave area 

 
20%   

CAR 100 3 20 

     
Years Weeks 

TRAIN 240 1 20 

 
Minimum age for bus pass 

 
61 48 

CYCLE 0 0 60 

 
Minimum age for new agents 17 0 

  
    

Maximum age for new agents 60 0 

  
    

Retirement age 
  

68 0 

  
         

  

  Yr1 Q1 Yr1 Q3 Yr2 Q1 Yr2 Q3 Yr3 Q1 Yr3 Q3 Yr4 Q1 Yr4 Q3 Yr5 Q1 Yr5 Q3 

COST CHANGES 
        

  

BUS 1.0000 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 

CAR 1.0000 0.9909 0.9909 0.9941 0.9941 0.9919 0.9919 0.9925 0.9925 0.9923 

TRAIN 1.0000 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 

  
         

  

TIME CHANGES 
        

  

BUS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TRAIN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

  
         

  

% PAY TO PARK 
        

  

ZONE 1 50 50 50 50 50 50 50 50 50 50 

ZONE 2 0 0 0 0 0 0 0 0 0 0 

ZONE 3 50 50 50 50 50 50 50 50 50 50 

  
         

  

PARK CHARGE (pence) 
       

  

ZONE 1 150 150 150 150 150 150 150 150 150 150 

ZONE 2 0 0 0 0 0 0 0 0 0 0 

ZONE 3 150 150 150 150 150 150 150 150 150 150 

  
         

  

  
         

  

  Yr6 Q1 Yr6 Q3 Yr7 Q1 Yr7 Q3 Yr8 Q1 Yr8 Q2 Yr9 Q1 Yr9 Q3 Yr10 Q1 Yr10 Q3 

COST CHANGES 
        

  

BUS 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 

CAR 0.9923 0.9920 0.9920 0.9914 0.9914 0.9902 0.9902 0.9898 0.9898 0.9899 

TRAIN 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 

  
         

  

TIME CHANGES 
        

  

BUS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TRAIN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

  
         

  

% PAY TO PARK 
        

  

ZONE 1 50 50 50 50 50 50 50 50 50 50 

ZONE 2 0 0 0 0 0 0 0 0 0 0 

ZONE 3 50 50 50 50 50 50 50 50 50 50 

  
         

  

PARK CHARGE (pence) 
       

  

ZONE 1 150 150 150 150 150 150 150 150 150 150 

ZONE 2 0 0 0 0 0 0 0 0 0 0 

ZONE 3 150 150 150 150 150 150 150 150 150 150 

 

FIGURE 7.1 INPUT VALUES FOR SCENARIO 1  
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The journey time by each mode also remains constant over time in this scenario.  

All costs in the model runs are expressed in real terms. Bus fares are set to rise at 1.98% 

every six months which is equivalent to a 4% rise in bus fares each year. (Bus fares rose in 

Wales in real terms by 3.9% in 2013 and 4.9% in 2014 according to the DfT Transport 

Statistics table BUS0415). Car costs decline over time at the rate set out in WebTAG unit 

3.5.6 (DfT, January 2014). The rate of decline in car costs increases over time, that is car 

use becomes increasing cheaper over time in real terms. This is a result of the predicted 

increases in fuel efficiency in car engines outweighing the real increases in fuel cost, 

resulting in a net reduction in fuel costs of a car per kilometre driven. Train fares are 

assumed to rise at 1% per annum reflecting the current regulatory regime on rail fares which 

limits the overall rise in regulated fares to the retail price index plus 1%. This means that 

over time the cost of travelling by public transport rises, with the rise in bus fares being 

greater than train fares, while the cost of car travel in the model declines. The concessionary 

bus pass is included in this scenario so travelling by bus becomes free for everyone when 

they reach the qualifying age. The qualifying age used in this model run is 61 years and 48 

weeks which was the age for receiving the concessionary bus pass when the scenario was 

run. This means that some more elderly workers can commute for free by bus as the 

retirement age in the model is set at 68 which is higher than the qualifying age for the 

concessionary bus pass. 

All agents use the decision rule that they chose either the mode or the option not to travel 

that maximises their individual utility. At this stage in the development of the model the mode 

chosen is based 100% on their intentions and is not influenced by habit. In the remainder of 

this report a decision that is based on intentions is described as ‘deliberative’. The scenario 

is run weekly for 10 years, resulting in 520 weeks or modelled time periods. 

Table 7.1 below shows the number of users of each mode at the start of each year, 

assuming that no agent has any personal constraints that influence the mode they can use 



155 
 

and that every agent makes a conscious decision about the mode they will use in every time 

period i.e. they are always in a deliberative state. The full output provided from the model 

gives the number of people using each mode every week. This is used to plot mode shares 

over time, as presented In Figure 7.2 overleaf.  

Time 
period Week Bus Car Train Cycle Not travel 

beg year 1 1 46 7.3% 410 65.5% 112 17.9% 52 8.3% 6 1.0% 

beg year 2 53 53 8.5% 409 65.3% 108 17.3% 50 8.0% 6 1.0% 

beg year 3 105 55 8.8% 409 65.3% 105 16.8% 51 8.1% 6 1.0% 

beg year 4 157 59 9.4% 412 65.8% 98 15.7% 51 8.1% 6 1.0% 

beg year 5 209 60 9.6% 410 65.5% 97 15.5% 53 8.5% 6 1.0% 

beg year 6 261 60 9.6% 416 66.5% 91 14.5% 53 8.5% 6 1.0% 

beg year 7 313 62 9.9% 417 66.6% 88 14.1% 53 8.5% 6 1.0% 

beg year 8 365 63 10.1% 416 66.5% 87 13.9% 53 8.5% 7 1.1% 

beg year 9 417 68 10.9% 414 66.1% 84 13.4% 53 8.5% 7 1.1% 

beg year 10 469 68 10.9% 414 66.1% 84 13.4% 53 8.5% 7 1.1% 
end year 
10 520 65 10.4% 415 66.3% 86 13.7% 53 8.5% 7 1.1% 

 

TABLE 7.1 SCENARIO 1: NUMBER OF PEOPLE USING EACH MODE, UNCONSTRAINED CHOICE, ALWAYS 

DELIBERATIVE 
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FIGURE 7.2 SCENARIO 1: NUMBER OF PEOPLE USING EACH MODE, UNCONSTRAINED CHOICE, ALWAYS 

DELIBERATIVE 

The information gained from seeing the trajectory of mode share over time can be especially 

important if there is a significant change in journey time or costs for a mode at a particular 

point in time, for example after introducing a new charge for on-street parking or raising 

existing parking charges.  

Such a situation was tested in Scenario 2, which has exactly the same inputs as scenario 1, 

except for a parking charge policy that periodically increases the proportion of people paying 

to park and the parking charge. At the beginning of year 3, the proportion of people paying to 

park increases from 50% to 75% in zones 1 and 3 and from 0% to 50% in zone 2. The 

parking charge in zone 2 is £1. At the beginning of year 6 everyone in zones 1, 2 and 3 has 

to pay to park. The parking charge rises to £3 in zones 1 and 3 and £1.50 in zone 2. At the 

beginning of year 8 the parking charge in zone 2 rises to £3  

The inputs used for scenario 2 are shown in Figure 7.3 below. 
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SCENARIO 2                   

  
         

  

INITIAL JOURNEY DETAILS 
       

  

MODE Cost Time CO2 

 
PTP % households visited a year 0%   

  (pence) (mins) (kg) 

 
% house movers leave area 

 
30%   

BUS 160 35 1 

 
% job changers leave area 

 
20%   

CAR 100 20 3 

     
Years Weeks 

TRAIN 240 20 1 

 
Minimum age for bus pass 

 
61 48 

CYCLE 0 60 0 

 
Minimum age for new agents 17 0 

  
    

Maximum age for new agents 60 0 

  
    

Retirement age 
  

68 0 

  
         

  

  Yr1 Q1 Yr1 Q3 Yr2 Q1 Yr2 Q3 Yr3 Q1 Yr3 Q3 Yr4 Q1 Yr4 Q3 Yr5 Q1 Yr5 Q3 

COST CHANGES 
        

  

BUS 1.0000 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 

CAR 1.0000 0.9909 0.9909 0.9941 0.9941 0.9919 0.9919 0.9925 0.9925 0.9923 

TRAIN 1.0000 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 

  
         

  

TIME CHANGES 
        

  

BUS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TRAIN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

  
         

  

% PAY TO PARK 
        

  

ZONE 1 50 50 50 50 75 75 75 75 75 75 

ZONE 2 0 0 0 0 50 50 50 50 50 50 

ZONE 3 50 50 50 50 75 75 75 75 75 75 

  
         

  

PARK CHARGE (pence) 
       

  

ZONE 1 150 150 150 150 150 150 150 150 150 150 

ZONE 2 0 0 0 0 100 100 100 100 100 100 

ZONE 3 150 150 150 150 150 150 150 150 150 150 

  
         

  

  
         

  

  Yr6 Q1 Yr6 Q3 Yr7 Q1 Yr7 Q3 Yr8 Q1 Yr8 Q2 Yr9 Q1 Yr9 Q3 Yr10 Q1 Yr10 Q3 

COST CHANGES 
        

  

BUS 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 

CAR 0.9923 0.9920 0.9920 0.9914 0.9914 0.9902 0.9902 0.9898 0.9898 0.9899 

TRAIN 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 

  
         

  

TIME CHANGES 
        

  

BUS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TRAIN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

  
         

  

% PAY TO PARK 
        

  

ZONE 1 100 100 100 100 100 100 100 100 100 100 

ZONE 2 100 100 100 100 100 100 100 100 100 100 

ZONE 3 100 100 100 100 100 100 100 100 100 100 

  
         

  

PARK CHARGE (pence) 
       

  

ZONE 1 300 300 300 300 300 300 300 300 300 300 

ZONE 2 150 150 150 150 300 300 300 300 300 300 

ZONE 3 300 300 300 300 300 300 300 300 300 300 
 

FIGURE 7.3 INPUT VALUES FOR SCENARIO 2 
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The number of users of each mode at the start and end of each year are shown in Table 7.2 

below. There is a step change in the cost of car journeys at the beginning of years 3, 6 and 8 

which is reflected in the sudden changes in the number of people using the car when these 

changes in costs occur. At the beginning of year 3 the number of car users falls by 36 people 

from 408 to 372, a 9% decrease. 32 of these people switch to train and the number of train 

users rises from 108 to 140 which is a 30% increase. The number of bus users increases by 

3 from 53 to 56, a 6% increase. 

The increase in parking costs at the beginning of years 6 and 8 also causes a sudden 

change in car usage which is in contrast to the steady change in numbers using each mode 

seen in scenario 1, when the relative cost of travel by each mode changed steadily over 

time. Figure 7.4 shows the number of users of each mode in each week for scenario 2. The 

sudden changes in mode shares at the beginning of years 3, 6 and 8 can be clearly seen. 

Time period Bus Car Train Cycle Not travel 

beg year 1 1 44 7.0% 411 65.7% 113 18.1% 52 8.3% 6 1.0% 

end year 1 52 52 8.3% 408 65.2% 109 17.4% 51 8.1% 6 1.0% 

beg year 2 53 51 8.1% 409 65.3% 110 17.6% 50 8.0% 6 1.0% 

end year 2 104 53 8.5% 408 65.2% 108 17.3% 51 8.1% 6 1.0% 

beg year 3 105 56 8.9% 372 59.4% 140 22.4% 53 8.5% 5 0.8% 

end year 3 156 58 9.3% 377 60.2% 132 21.1% 54 8.6% 5 0.8% 

beg year 4 157 58 9.3% 379 60.5% 130 20.8% 54 8.6% 5 0.8% 

end year 4 208 62 9.9% 377 60.2% 128 20.4% 54 8.6% 5 0.8% 

beg year 5 209 61 9.7% 378 60.4% 128 20.4% 54 8.6% 5 0.8% 

end year 5 260 63 10.1% 378 60.4% 126 20.1% 54 8.6% 5 0.8% 

beg year 6 261 79 12.6% 282 45.0% 200 31.9% 60 9.6% 5 0.8% 

end year 6 312 82 13.1% 284 45.4% 195 31.2% 60 9.6% 5 0.8% 

beg year 7 313 79 12.6% 286 45.7% 196 31.3% 60 9.6% 5 0.8% 

end year 7 364 81 12.9% 286 45.7% 194 31.0% 60 9.6% 5 0.8% 

beg year 8 365 82 13.1% 255 40.7% 222 35.5% 61 9.7% 6 1.0% 

end year 8 416 88 14.1% 254 40.6% 217 34.7% 61 9.7% 6 1.0% 

beg year 9 417 86 13.7% 260 41.5% 213 34.0% 61 9.7% 6 1.0% 

end year 9 468 91 14.5% 260 41.5% 208 33.2% 61 9.7% 6 1.0% 

beg year 10 469 91 14.5% 261 41.7% 207 33.1% 61 9.7% 6 1.0% 

end year 10 520 91 14.5% 261 41.7% 207 33.1% 61 9.7% 6 1.0% 

 

TABLE 7.2 SCENARIO 2: NUMBER OF PEOPLE USING EACH MODE, UNCONSTRAINED CHOICE, ALWAYS 

DELIBERATIVE 
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FIGURE 7.4 SCENARIO 2: NUMBER OF PEOPLE USING EACH MODE 

Knowing the trajectory of the number of users over time for each mode is particularly 

important for the transport business case when there are sudden changes in journey times 

and costs for particular modes over the appraisal period. In the UK, the costs and benefits of 

an intervention are customarily appraised over 60 years in accordance with the DfT 

guidance in WebTAG, although for some schemes a shorter time period is used. The 

transport model is usually run for the year of scheme opening and then for one or 

occasionally two future years, with demand assumed constant thereafter for the remaining 

years in the appraisal period. The change in the number of users in each of the intervening 

years is taken as a straight line between the modelled points.  

Figure 7.5 below shows the modelled number of train users if the model is run every week 

(regular reporting as in an agent based model) and if the model is run only at opening and 

after 6 years (occasional modelling).  
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FIGURE 7.5 TRAJECTORY OF NUMBER OF RAIL PASSENGER 

The red line shows the number of rail users when the model is run for every week up to ten 

years. The green line shows the number of rail users if the model is only run at the beginning 

of year 1 and at the end of year 6, with demand assumed constant thereafter. At certain 

points in time, for example at the beginning of year 6 the discrepancy between the two 

numbers is considerable, with the regular modelling showing rail passengers numbers at 200 

passengers and the occasional model estimates being 57% lower as the opening year 

estimate of 113 is still being used. This discrepancy arises because the selected point in 

time for the occasional modelling (the end of year 6) misses the moment when the car park 

charges rose considerably causing a switch of users from car to rail.  

In the appraisal of transport schemes, a straight line is drawn between modelled time points 

and interpolated results are used for each year in the appraisal (shown as a dashed line in 

Figure 7.5 above). This reduces, but does not remove, the discrepancy between the actual 

and modelled number of users of each mode in the non-modelled years. With the agent 

based model the timing of change points can be identified and more accurate estimates of 

the number of users in each year can be used in the business case.  
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When the benefit cost ratio of schemes is calculated using the DfT’s TUBA software, the 

benefits are calculated separately for each year and then added together, so the 

underestimation of passenger numbers each year will lead to a miscalculation of the actual 

benefits. In TUBA the discounted value of the benefits is calculated using a discount rate of 

3.5% for the first thirty years and 3.0% for the next thirty years. This means that differences 

in passenger forecasts in the early years will have a larger impact on the correct calculation 

of the total discounted value of benefits than differences in future years.  

It is possible to run a conventional model many times but each model run often takes a 

considerable length of time, so the model is only run for a selected number of forecast years. 

In standard four stage transport models each of these forecast years is modelled separately 

and in each case the forecast year is modelled with reference to the base year. This means 

that when for instance the base year is 2014 and the model is run for 2029 and 2036, the 

results for 2036 are not dependent in any way on the results for 2029. In some 

implementations of the four stage model, for example in the Cambridge Strategic Regional 

Model, the model is run every five years and the first forecast year becomes the base year 

for the second forecast year. Agent based modelling, because of its dynamic nature, carries 

this further, with much shorter time periods, and the modelling of each time period is affected 

by the state of the model in the previous time period.   

The convention in the UK is to run the transport model for opening year and fifteen years 

after opening year but these may not be the best choice of model years in order to produce 

the best estimates of passenger numbers in each year in the appraisal period. An agent 

based model runs the model for every time step and so reports the results for multiple model 

years. 

An agent based model could be run to inform the selection of the model years to run in a full 

conventional model. Such an agent based model could use simplified assumptions on the 

time and cost of travel between zones and the expected changes in time and cost of travel 
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by mode over time. Analysis of the trajectories of trip numbers by mode produced by the 

agent based model, especially having regard to the timing of external events such as 

changes in parking charges, could be used to inform the selection of the number of model 

years and which model years to run in the full conventional model.  

 

7.3 Reporting at an individual level assists in understanding the causes 

of output trends reported at the aggregate level 

In the results for scenario 1 (trend changes in mode costs) the model outputs show a steady 

increase in bus users over time as presented in Figure 7.6 below. The rise in the number of 

bus users seems counter-intuitive, as bus costs are rising steadily at a higher rate than train 

fares and car costs are generally declining. This means that over time bus travel becomes 

more expensive relative to both rail and car travel and so the expectation would be that the 

number of bus users would decline. 

 

FIGURE 7.6 NUMBER OF BUS PASSENGERS 

A possible explanation is that the concessionary bus pass, which makes bus travel free for 

elderly passengers, introduces a counter-acting mechanism into the model with the 
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availability of free travel encouraging those holding a concessionary bus pass to use the bus 

when they would not have done so if they had had to pay the fare. As the population in the 

model ages during the model run, an increasing number of people fall into the group of 

people who have a concessionary bus pass but are still working and therefore included in 

this model of commuting trips. 

As the model operates at the individual level it is possible to record results at this most 

disaggregate level and investigate whether the effect of the ageing of the working population 

is having an impact on the number of bus users. The model was run for scenario 1, 

recording the mode chosen by people with and without the availability of concessionary bus 

passes. The number of bus users over time is shown in Figure 7.7 below. 

 

FIGURE 7.7 NUMBER OF BUS USERS OVER TIME WITH AND WITHOUT CONCESSIONARY BUS PASSES AVAILABLE 

FOR ELDERLY PASSENGERS 

This shows that without the availability of concessionary bus passes for the elderly the 

number of bus users does go down over time as expected, from 44 bus users initially to 34 

bus users after 10 years, a fall of 23%. With bus passes for the elderly the number of bus 

users rises from 44 initially to 63 after 10 years, a rise of 43%. 
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The difference in the number of bus users with and without concessionary fares is 29 

people. Investigating the details for these passengers shows that they are the holders of a 

concessionary bus pass and the mode that they would have used if they didn’t have a 

concessionary bus pass is shown in Table 7.3 below. 17 of them (59%) would have used a 

car instead, 9 (31%) would have used rail and 3 (10%) would have cycled.  

Car Rail Cycle Total 

17 9 3 29 

59% 31% 10% 100% 
 

TABLE 7.3 ALTERNATIVE MODE PASSENGERS WOULD HAVE USED IF THEY HAD NOT POSSESSED A 

CONCESSIONARY BUS PASS 

The impact of the concessionary bus fares policy in terms of the percentage change in users 

of each mode at the end of year 10 is shown in Table 7.4 below. The availability of 

concessionary bus passes results in a 46% increase in the number of people using the bus 

to get to work, a 4% decline in the number of commuters driving, a 10% decline in the 

number using rail and a 6% decline in the number cycling. Although the greatest absolute 

switch is from bus to car, 17 passengers, this has a smaller proportionate effect on the 

highway network (4%) as there were already 434 people driving if there were no bus passes. 

The effect is more noticeable on the rail network with the availability of the concessionary 

bus pass reducing rail patronage by 10%. The model also shows an impact on active travel 

with 3 people switching from cycling to the bus, a 6% reduction, if they become eligible for a 

concessionary bus pass. 
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  Bus Car Rail Cycle 
Not 

travel 

Without bus 
passes 34 434 95 56 7 

With bus passes 63 417 86 53 7 
 
Change 29 -17 -9 -3 0 

% change 46% -4% -10% -6% 0% 
 

TABLE 7.4 IMPACT OF CONCESSIONARY BUS FARES ON MODE SHARES 

The numbers of car and rail passengers for the model runs with and without the availability 

of concessionary bus fares are shown in Figures 7.8 and 7.9 respectively. The number of car 

and rail users is always lower when bus concessionary fares are available. This is because 

the working population is ageing in the model and the percentage of the workforce holding a 

concessionary bus pass rises from an initial 8% to 16% in the middle of year 10 as shown in 

Figure 7.10 below. The slight variations in the percentage of people holding a concessionary 

bus pass between time periods is due to the relatively small number of people in the model. 

This means that there are some clusters of people of similar ages in the model which leads 

to some variation in the number of people reaching the qualification age for a bus pass in 

each time period.  
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FIGURE 7.8 NUMBER OF CAR USERS OVER TIME WITH AND WITHOUT CONCESSIONARY BUS PASSES FOR 

ELDERLY PASSENGERS 

 

FIGURE 7.9 NUMBER OF RAIL USERS OVER TIME WITH AND WITHOUT CONCESSIONARY BUS PASSES FOR 

ELDERLY PASSENGERS 

395

400

405

410

415

420

425

430

435

440

1 53 105 157 209 261 313 365 417 469 521

n
u

m
b

e
r 

o
f 

c
a
r 

u
s
e
rs

 

time period 

with concessionary
bus fares

no concessionary
bus fares

0

20

40

60

80

100

120

1 53 105 157 209 261 313 365 417 469 521

n
u

m
b

e
r 

o
f 

ra
il
 p

a
s
s
e
n

g
e
rs

 

time period 

with concessionary
bus fares

no concessionary
bus fares



167 
 

 

FIGURE 7.10 PERCENTAGE OF COMMUTERS HOLDING A CONCESSIONARY BUS PASS 

These results came from a model where there were few people eligible for bus passes, as 

most commuters are below the age of eligibility for bus passes. Agent based modelling could 

be applied to trips for all journey purposes in an area to test the wider impacts on the 

transport system of a change in the qualifying age for concessionary bus passes as the 

population ages or a reduction in the size of the discount it provides from say 100% to 50% 

as has been discussed in some policy circles.  

This ability to interrogate the model results at an individual level, for example by having a 

record of the characteristics and attributes of each person, such as their age, in the model at 

each model time period, enables the modeller to carry out detailed investigations of the 

model results. In this case the results support the conclusion that the rise in bus usage over 

time is a result of the availability of concessionary bus passes for the elderly and an increase 

in the number of people working for longer and so having a bus pass available for use for 

their commuting trip.  
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7.4 Modelling at the individual level allows more accurate handling of 

personal and external constraints 

With an agent based modelling approach the model is able to handle detailed information 

about each person and their circumstances. In traditional transport models the data is held in 

matrices and trips are usually classified into different matrices according to their current 

mode, journey purpose, time of day and sometimes income. These divisions are based on 

the factors that are believed to affect people’s preference weighting for time and cost, with all 

people whose trips are held in the same matrix having the same weighting for time and cost. 

The only common explicit treatment of constraints in the matrices comes through the division 

of people into car available and car not available matrices. Other constraints, such as the 

lack of a nearby bus service are dealt with indirectly in the model in as far as a long walk 

time to the nearest bus service results in a high journey time and hence a high generalised 

journey cost for that option. When a logit model is used for mode choice, a small proportion 

of trips are still allocated to this mode and transport modellers sometimes take this into 

account in the modelling process by then over-riding the allocation of trips to that mode by 

the logit model by setting the number of trips to zero. 

In an agent based mode choice model information can be held on the individual 

circumstances of each person which makes it possible to apply information on personal 

constraints during the mode choice modelling. The model can have a more accurate 

assessment of the actual choice set available to each person and exclude those modes 

which are not feasible, (for example because there is no public transport service available in 

that particular area at that time of day), or because of the personal circumstances of the 

individual, (for example they may have mobility issues which means they cannot walk to a 

public transport stop).  

In the survey which provided the dataset for the model used in this research, respondents 

were asked about some of their personal constraints which could affect their travel choices. 
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This information is held within the model as part of each agent’s characteristics and used to 

personalise the choice set available to each person. Table 7.5 below shows the personal 

constraints covered in the survey and how they affected the choice set for individuals in the 

model. The most significant personal constraints were the lack of a car and the lack of a 

driving licence. In this model these constraints are assumed to remain constant over time but 

it would be possible, given sufficient data, to add additional functionality into the model that 

would change a person’s individual constraints over time.  

Constraint Impact on choice set  Number of people 

No car in the household Car removed from choice set 76 12% 

Do not have a car licence Car removed from choice set 105 17% 

Cannot use bus as need to carry things Bus removed from choice set 31 5% 

Cannot use train as need to carry things Train removed from choice set 22 4% 

Cannot use cycle as need to carry things Cycle removed from choice set 26 4% 

Cannot ride a bicycle Cycle removed from choice set 25 4% 

Will not cycle because of the weather Cycle removed from choice set 33 5% 

Need to use car for work All non-car modes removed from 
choice set 10 2% 

 

TABLE 7.5 PERSONAL CONSTRAINTS APPLIED TO CHOICE SETS 

In the dataset the greatest personal constraint was the lack of a driving licence which 

affected 17% of people. This was a greater constraint than the measure customarily used in 

transport models, car availability, as only 12% of people lived in a household with no car. 

The number of people who said they needed to use their car for work was 2%. Only a small 

percentage of people (4%) couldn’t use a bus, train or cycle as they needed to carry things. 

4% of people could not cycle and 5% would not cycle because of the weather so more 

people had the cycle option removed from their choice set than had the bus or train removed 

because of personal constraints. 

The model was run with the application of personal constraints for scenario 1, which has a 

trend only change in costs for each mode over time. Table 7.6 below shows the number of 

users of each mode for scenario 1 without applying any personal constraints and with the 
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application of constraints. Table 7.7 shows the mode shares with and without personal 

constraints. 

Time period Week Bus Car Train Cycle Not travel 

    unc* con** unc Con unc Con unc con unc con 

beg year 1 1 44 47 411 349 113 177 52 42 6 11 

beg year 2 53 52 56 408 347 109 170 51 42 6 11 

beg year 3 105 51 55 409 348 110 171 50 41 6 11 

beg year 4 157 53 58 408 347 108 168 51 42 6 11 

beg year 5 209 53 58 409 348 107 167 51 42 6 11 

beg year 6 261 56 60 411 351 101 161 52 43 6 11 

beg year 7 313 56 60 413 352 99 160 52 43 6 11 

beg year 8 365 59 62 410 350 98 159 53 44 6 11 

beg year 9 417 59 62 410 350 98 159 53 44 6 11 

beg year 10 469 61 66 409 349 97 156 53 44 6 11 

end year 10 520 60 65 415 354 92 152 53 44 6 11 
*  unconstrained  ** constrained 

TABLE 7.6 SCENARIO 1: NUMBER OF PEOPLE USING EACH MODE WITH AND WITHOUT PERSONAL CONSTRAINTS 

 

Time period Week Bus Car Train Cycle Not travel 

    unc* con** unc Con unc con unc con unc con 

beg year 1 1 7.0% 7.5% 65.7% 55.8% 18.1% 28.3% 8.3% 6.7% 1.0% 1.8% 

beg year 2 53 8.3% 8.9% 65.2% 55.4% 17.4% 27.2% 8.1% 6.7% 1.0% 1.8% 

beg year 3 105 8.1% 8.8% 65.3% 55.6% 17.6% 27.3% 8.0% 6.5% 1.0% 1.8% 

beg year 4 157 8.5% 9.3% 65.2% 55.4% 17.3% 26.8% 8.1% 6.7% 1.0% 1.8% 

beg year 5 209 8.5% 9.3% 65.3% 55.6% 17.1% 26.7% 8.1% 6.7% 1.0% 1.8% 

beg year 6 261 8.9% 9.6% 65.7% 56.1% 16.1% 25.7% 8.3% 6.9% 1.0% 1.8% 

beg year 7 313 8.9% 9.6% 66.0% 56.2% 15.8% 25.6% 8.3% 6.9% 1.0% 1.8% 

beg year 8 365 9.4% 9.9% 65.5% 55.9% 15.7% 25.4% 8.5% 7.0% 1.0% 1.8% 

beg year 9 417 9.4% 9.9% 65.5% 55.9% 15.7% 25.4% 8.5% 7.0% 1.0% 1.8% 

beg year 10 469 9.7% 10.5% 65.3% 55.8% 15.5% 24.9% 8.5% 7.0% 1.0% 1.8% 

end year 10 520 9.6% 10.4% 66.3% 56.5% 14.7% 24.3% 8.5% 7.0% 1.0% 1.8% 
*   unconstrained    ** constrained 

TABLE 7.7 SCENARIO 1: PERCENTAGE OF PEOPLE USING EACH MODE WITH AND WITHOUT PERSONAL 

CONSTRAINTS 

The biggest impact from the application of constraints is on the number of people using car, 

which at the beginning reduces the number of car users from 411 to 349, a reduction of 

15%. At the end of the modelled time period it reduces the number of car users from 415 to 

354, also a reduction of 15%. This highlights the importance of considering the possession 
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of a car licence and car availability in the modelling of mode choice. Models often rely on 

census data which only identifies which households have a car available rather than the 

personal level of car availability. Details on the personal level of car availability and whether 

an individual has a car licence could be obtained from household surveys where 

respondents are asked to complete a travel diary and answer personal questions but this 

information is not always requested.  

The high number of people without a car licence and/or personal access to a car suggests 

that this should be included in mode choice modelling as it has a significant impact on mode 

choice decisions, and imposes a more severe constraint on car usage than the level of 

household car availability. As the level of car licence acquisition in the UK is falling the 

inclusion of this constraint in modelling will become even more important.  

Some people are also constrained in their choice of mode, not for reasons that are personal 

to them but because of external constraints, for example because there isn’t a public 

transport service in their area. An agent based model allows for the context or environment 

of each individual to be considered and for example, public transport can be excluded from 

their choice set if it is not available within a certain distance of a person’s house. Some 

agent based modelling software packages, such as AnyLogic, allow for the integration of 

these models with Geographical Information Systems which can for example, make accurate 

measurements of the distance to bus services. The AnyLogic software update in 2014 

brought many common GIS functions into the software. 

 

7.5 Modelling reflects interactions between agents and the environment  

An aspect of agent based modelling which distinguishes it from microsimulation is the 

interaction between agents and the environment in which they exist. This feature means that 

the model can include feedback between the agents and their world. This is illustrated in a 

model run in which the available bus service is considered to be part of the environment. 
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Every six months the bus operator reviews the financial performance of the bus network and 

if the minimum number of bus passengers required for them to continue running each bus 

service is not met, then a bus is withdrawn.  

The reduction in the number of buses operated may mean that the frequency on a bus route 

is reduced. This increases the waiting time for passengers, which effectively increases the 

time of making a journey by bus relative to other modes, leading to some people switching 

away from bus to other modes. Alternatively the removal of the bus may mean that an entire 

bus service is withdrawn and the people served by that bus route may no longer have a bus 

service within a reasonable walking distance of their house.  

An agent based model can record spatial data for each agent and this can be used to 

assess which agents are affected by the reduction in frequency or removal of a bus service. 

In this study the feedback between the level of provision of bus services in the study area 

and the availability of the option of a bus for a particular agent is incorporated in the model 

by specifying: 

 the number of bus services at the start of the model run 

 the minimum average number of users required for all the bus services to be retained 

 the number of agents who no longer have access to a bus service if a bus is 

withdrawn. 

At the end of each time period the number of bus users is counted. If the average number of 

bus users per service is less than the minimum required, one service is removed. The 

number of agents who no longer have access to a bus is calculated and starting with the 

agent with the lowest ID number, that number of agents are set as having no bus available 

due to this environmental or external constraint. In the mode choice modelling, both personal 

and environmental constraints are taken into consideration when determining which modes 

are available in each agent’s choice set. 
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The impact of this feedback between the environment and agents is illustrated in the results 

for Scenario 3. The input data for this scenario is given in Figure 7.11 below. There is: 

 a trend change in bus, rail and car costs without any sudden change in car parking 

costs as in scenario 1 

 the initial cost of travel by bus, car and rail is as set in scenario 1 (£1.60, £1.00 and 

£2.40 respectively) 

 the initial bus time is set to 20 minutes which is the same time as for car and rail 

journeys. This results in a higher number of bus users than in scenario 1, where the 

bus time was 35 minutes 

 there are concessionary bus fares 

The feedback between the number of bus users and the number of bus services was 

modelled by setting the initial number of buses to 18, the average minimum number of users 

required for the bus service to remain the same was set at 10 and the number of agents who 

lost their bus service if a bus was withdrawn was set to 25. 

Figure 7.11 below shows the forecast number of bus passengers with and without the 

feedback between the number of bus passengers (agents) and the number of bus services 

run (environment). It shows that with bus, car and rail all having the same initial journey time 

of 20 minutes, and the costs and trend changes in costs as in scenario 1, the number of bus 

users over time declines slightly even if the number of bus services remains constant. 

If though, there is a feedback loop between the number of bus passengers and the number 

of bus services provided, once the falling number of bus passengers triggers the removal of 

a bus service, a ‘vicious’ circle of decline in bus use occurs. In the middle of year 4 the 

number of bus passengers falls below 180, which as there are 18 buses running, means that 

the average number of passengers per bus is less than 10 and the bus operator withdraws 

one service. As a consequence 25 people no longer have the bus option available to them 

for their journey to work. Some of these people would have used the bus if there had been 
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one, so the number of bus users falls further. Combined with the general decline in the level 

of bus use amongst those who still do have a bus available, as a result of the relative 

increase in bus fares compared to car costs and rail fares, the overall number of bus users 

continues to decline and triggers the removal of another bus service. This then in turn 

accelerates the decline in the number of bus users. 
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SCENARIO 3                   

  
         

  

INITIAL JOURNEY DETAILS 
       

  

MODE Cost CO2 Time 

 
PTP % households visited a year 0%   

  (pence) (kg) (mins) 

 
% house movers leave area 

 
30%   

BUS 160 1 20 

 
% job changers leave area 

 
20%   

CAR 100 3 20 

     
Years Weeks 

TRAIN 240 1 20 

 
Minimum age for bus pass 

 
61 48 

CYCLE 0 0 60 

 
Minimum age for new agents 17 0 

  
    

Maximum age for new agents 60 0 

  
    

Retirement age 
  

68 0 

  
         

  

  Yr1 Q1 Yr1 Q3 Yr2 Q1 Yr2 Q3 Yr3 Q1 Yr3 Q3 Yr4 Q1 Yr4 Q3 Yr5 Q1 Yr5 Q3 

COST CHANGES 
        

  

BUS 1.0000 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 

CAR 1.0000 0.9909 0.9909 0.9941 0.9941 0.9919 0.9919 0.9925 0.9925 0.9923 

TRAIN 1.0000 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 

  
         

  

TIME CHANGES 
        

  

BUS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TRAIN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

  
         

  

% PAY TO PARK 
        

  

ZONE 1 50 50 50 50 50 50 50 50 50 50 

ZONE 2 0 0 0 0 0 0 0 0 0 0 

ZONE 3 50 50 50 50 50 50 50 50 50 50 

  
         

  

PARK CHARGE (pence) 
       

  

ZONE 1 150 150 150 150 150 150 150 150 150 150 

ZONE 2 0 0 0 0 0 0 0 0 0 0 

ZONE 3 150 150 150 150 150 150 150 150 150 150 

  
         

  

  
         

  

  Yr6 Q1 Yr6 Q3 Yr7 Q1 Yr7 Q3 Yr8 Q1 Yr8 Q2 Yr9 Q1 Yr9 Q3 Yr10 Q1 Yr10 Q3 

COST CHANGES 
        

  

BUS 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 1.0198 

CAR 0.9923 0.9920 0.9920 0.9914 0.9914 0.9902 0.9902 0.9898 0.9898 0.9899 

TRAIN 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 

  
         

  

TIME CHANGES 
        

  

BUS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TRAIN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

  
         

  

% PAY TO PARK 
        

  

ZONE 1 50 50 50 50 50 50 50 50 50 50 

ZONE 2 0 0 0 0 0 0 0 0 0 0 

ZONE 3 50 50 50 50 50 50 50 50 50 50 

  
         

  

PARK CHARGE (pence) 
       

  

ZONE 1 150 150 150 150 150 150 150 150 150 150 

ZONE 2 0 0 0 0 0 0 0 0 0 0 

ZONE 3 150 150 150 150 150 150 150 150 150 150 

 

FIGURE 7.11 INPUT VALUES FOR SCENARIO 3 
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The number of bus passengers, with and without this feedback of the bus operator 

withdrawing a bus service when the average number of bus passengers falls below his 

financial viable number of passengers, is shown in Table 7.8 below. This table also shows 

the number of buses that are running. 

. 

FIGURE 7.12 NUMBER OF BUS PASSENGERS WITH AND WITHOUT THE NUMBER OF BUS SERVICES RUNNING 

BEING DEPENDENT UPON THE NUMBER OF BUS PASSENGERS, WITH CONCESSIONARY FARES 
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Time period Without feedback With feedback 

    Passengers Buses Passengers Buses 

beg year 1 1 181 18 181 18 

end year 1 52 193 18 193 18 

beg year 2 53 189 18 189 18 

end year 2 104 187 18 187 18 

beg year 3 105 182 18 182 18 

end year 3 156 180 18 180 18 

beg year 4 157 176 18 176 18 

end year 4 208 176 18 160 16 

beg year 5 209 177 18 143 16 

end year 5 260 177 18 129 14 

beg year 6 261 171 18 118 14 

end year 6 312 179 18 115 12 

beg year 7 313 176 18 105 12 

end year 7 364 172 18 95 10 

beg year 8 365 168 18 90 10 

end year 8 416 165 18 82 8 

beg year 9 417 164 18 77 8 

end year 9 468 169 18 76 7 

beg year 10 469 164 18 74 7 

end year 10 520 163 18 75 7 

 

TABLE 7.8 NUMBER OF BUS PASSENGERS, WITH AND WITHOUT FEEDBACK, WITH CONCESSIONARY FARES 

Without the presence of concessionary fares the decline in bus numbers is even more 

severe. Figure 7.13 and Table 7.9 below show the number of bus passengers, with and 

without feedback, when there are no concessionary fares. 
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FIGURE 7.13 NUMBER OF BUS PASSENGERS WITH AND WITHOUT FEEDBACK, WITHOUT CONCESSIONARY FARES 

Time period Without feedback With feedback 

    Passengers Buses Passengers Buses 

beg year 1 1 181 18 181 18 

end year 1 52 180 18 180 18 

beg year 2 53 177 18 177 18 

end year 2 104 173 18 158 16 

beg year 3 105 168 18 135 16 

end year 3 156 162 18 113 14 

beg year 4 157 157 18 103 14 

end year 4 208 154 18 92 12 

beg year 5 209 156 18 87 12 

end year 5 260 155 18 80 10 

beg year 6 261 148 18 73 10 

end year 6 312 149 18 67 8 

beg year 7 313 146 18 62 8 

end year 7 364 141 18 55 6 

beg year 8 365 138 18 47 6 

end year 8 416 130 18 40 4 

beg year 9 417 129 18 29 4 

end year 9 468 128 18 24 2 

beg year 10 469 123 18 22 2 

end year 10 520 118 18 21 2 

 

TABLE 7.9 NUMBER OF BUS PASSENGERS, WITH AND WITHOUT FEEDBACK, WITHOUT CONCESSIONARY FARES 
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The difference that the presence of concessionary fares makes in slowing down the decline 

in the number of bus passengers and the number of bus services run is shown in Figure 

7.14. This shows the number of bus passengers when there is feedback between the 

number of bus passengers and the number of bus services, with and without the availability 

of concessionary fares. 

 

FIGURE 7.14 NUMBER OF BUS PASSENGERS, WITH FEEDBACK, WITH AND WITHOUT CONCESSIONARY FARES 

The model also shows the impact of the decline in the number of bus services on the 

number of people using other modes. Tables 7.10 and 7.11 show the total number of people 

using each mode, with and without concessionary fares. 

In the early years, more of the people who would have used the bus if it were available 

switch to rail rather than car. For example at the end of year 2 the number of bus 

passengers falls by 23, from 158 to 135. Three (13%) of these people switch to car, 18 

(78%) to train and 2 (9%) to cycling. In later years though, when rail has become relatively 

even more expensive than car than it was in earlier years, a greater proportion of the people 

who would otherwise have used bus switch to car rather than rail. For example at the end of 

year 7, of the 8 people who leave bus, 3 (37.5%) switch to car, 3 (37.5%) switch to rail, 1 

(12.5%) switches to cycling and 1 (12.5%) person chooses not to travel.   
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Time period Bus Car Train Cycle Not travel 

beg year 1 1 181 28.9% 317 50.6% 81 12.9% 36 5.8% 11 1.8% 

end year 1 52 180 28.8% 320 51.1% 78 12.5% 37 5.9% 11 1.8% 

beg year 2 53 177 28.3% 323 51.6% 79 12.6% 36 5.8% 11 1.8% 

end year 2 104 158 25.2% 325 51.9% 91 14.5% 38 6.1% 14 2.2% 

beg year 3 105 135 21.6% 328 52.4% 109 17.4% 40 6.4% 14 2.2% 

end year 3 156 113 18.1% 332 53.0% 126 20.1% 41 6.5% 14 2.2% 

beg year 4 157 103 16.5% 338 54.0% 130 20.8% 41 6.5% 14 2.2% 

end year 4 208 92 14.7% 340 54.3% 137 21.9% 43 6.9% 14 2.2% 

beg year 5 209 87 13.9% 342 54.6% 140 22.4% 43 6.9% 14 2.2% 

end year 5 260 80 12.8% 343 54.8% 144 23.0% 43 6.9% 16 2.6% 

beg year 6 261 73 11.7% 345 55.1% 149 23.8% 43 6.9% 16 2.6% 

end year 6 312 67 10.7% 350 55.9% 150 24.0% 43 6.9% 16 2.6% 

beg year 7 313 62 9.9% 354 56.5% 151 24.1% 43 6.9% 16 2.6% 

end year 7 364 55 8.8% 355 56.7% 156 24.9% 44 7.0% 16 2.6% 

beg year 8 365 47 7.5% 358 57.2% 159 25.4% 45 7.2% 17 2.7% 

end year 8 416 40 6.4% 359 57.3% 165 26.4% 45 7.2% 17 2.7% 

beg year 9 417 29 4.6% 363 58.0% 172 27.5% 45 7.2% 17 2.7% 

end year 9 468 24 3.8% 366 58.5% 174 27.8% 45 7.2% 17 2.7% 

beg year 10 469 22 3.5% 367 58.6% 175 28.0% 45 7.2% 17 2.7% 

end year 10 520 21 3.4% 367 58.6% 176 28.1% 45 7.2% 17 2.7% 
 

TABLE 7.10 NUMBER OF USERS BY MODE, WITH FEEDBACK AND NO CONCESSIONARY FARES 

Time period Bus Car Train Cycle Not travel 

beg year 1 1 181 28.9% 317 50.6% 81 12.9% 36 5.8% 11 1.8% 

end year 1 52 193 30.8% 309 49.4% 77 12.3% 36 5.8% 11 1.8% 

beg year 2 53 189 30.2% 313 50.0% 78 12.5% 35 5.6% 11 1.8% 

end year 2 104 187 29.9% 313 50.0% 79 12.6% 36 5.8% 11 1.8% 

beg year 3 105 182 29.1% 316 50.5% 81 12.9% 36 5.8% 11 1.8% 

end year 3 156 180 28.8% 317 50.6% 81 12.9% 37 5.9% 11 1.8% 

beg year 4 157 176 28.1% 321 51.3% 81 12.9% 37 5.9% 11 1.8% 

end year 4 208 160 25.6% 320 51.1% 93 14.9% 39 6.2% 14 2.2% 

beg year 5 209 143 22.8% 319 51.0% 109 17.4% 41 6.5% 14 2.2% 

end year 5 260 129 20.6% 319 51.0% 124 19.8% 40 6.4% 14 2.2% 

beg year 6 261 118 18.8% 323 51.6% 131 20.9% 40 6.4% 14 2.2% 

end year 6 312 115 18.4% 322 51.4% 135 21.6% 40 6.4% 14 2.2% 

beg year 7 313 105 16.8% 328 52.4% 139 22.2% 40 6.4% 14 2.2% 

end year 7 364 95 15.2% 331 52.9% 144 23.0% 40 6.4% 16 2.6% 

beg year 8 365 90 14.4% 331 52.9% 147 23.5% 41 6.5% 17 2.7% 

end year 8 416 82 13.1% 334 53.4% 152 24.3% 41 6.5% 17 2.7% 

beg year 9 417 77 12.3% 339 54.2% 151 24.1% 42 6.7% 17 2.7% 

end year 9 468 76 12.1% 337 53.8% 152 24.3% 44 7.0% 17 2.7% 

beg year 10 469 74 11.8% 338 54.0% 153 24.4% 44 7.0% 17 2.7% 

end year 10 520 75 12.0% 338 54.0% 153 24.4% 43 6.9% 17 2.7% 

TABLE 7.11 NUMBER OF USERS BY MODE, WITH FEEDBACK AND CONCESSIONARY FARES 
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7.6 Modelling at the individual level allows the inclusion of habitual 

behaviour 

A feature of agent based modelling is that the history of each agent can be recorded and is 

available to inform future decisions on mode choice. The agent based model of commuting 

trips developed in this research is used to consider the impact of habitual behaviour on the 

number of people using each mode. In Triandis’ Theory of Interpersonal Behaviour (1977) 

intention and habit are separate pathways leading, after the impact of facilitating conditions, 

to the final behaviour undertaken. As experience of a behaviour is acquired, the influence of 

habit increases, and that of intention declines. For a behaviour such as commuting, which is 

a regular activity performed frequently, the current behaviour becomes routine and is 

undertaken automatically (Darnton, 2008).  

Placing this theory in the language of Critical Realism, the observed travel mode is in the 

domain of the empirical. It is the result of two named underlying mechanisms, intention and 

habits, which can be re-inforcing or counter-acting, and the context of their commuting mode 

decisions, through which facilitating conditions affect the choice of mode.  These 

mechanisms exist in the real world, are activated by events in the actual world and the 

resulting mode choice observed in the empirical world.   

The basic ABM in this study was extended to include habitual behaviour. The model 

assumes that commuters do not re-assess their travel mode in every time period, but rather, 

by default display habitual behaviour, using the same mode as in the previous time period, 

unless an event occurs which causes them to re-consider their mode choice. The events in 

this model which trigger a re-appraisal of their mode choice are moving house, changing job 

and acquiring a concessionary bus pass.  

Consideration was given to the inclusion of thresholds in the model, for example assigning to 

each agent a tolerance level for the size of fare increase or increase in journey time they 

would accept. When these levels exceed the threshold for each agent this would act as a 
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trigger event to prompt the reconsideration of the mode they used for commuting. The 

design decision was taken to exclude threshold trigger events due to the lack of available 

evidence on the levels that should be set for each agent.  

When a commuter is triggered in the model to re-consider their travel mode they calculate 

the time, cost and carbon impact of each of the four alternative modes, car, bus, train and 

cycle and the option of not travelling at all. They then choose the mode which gives them the 

greatest utility, given their personal weightings or preferences for time, cost, carbon impacts 

and the general characteristics of each mode. It is quite possible that the mode that gives 

them the maximum utility once they re-evaluate their options will be the same mode that they 

are currently using. Only if an alternative mode has a higher utility than the mode they are 

currently using will they change mode. 

The impact of this assumption of habitual behaviour on the number of people using each 

mode is seen in Tables 7.12 below. These results are based on the availability of 

concessionary bus passes and with personal constraints on mode choice. In Table 7.12 the 

results are shown for the inclusion of habitual behaviour in scenario 1, which has trend 

changes in costs by mode.  

The number of train users, when there is habitual behaviour, is slightly higher than when 

there is an intentional, deliberative mode choice decision made by everyone in every time 

period (called deliberative behaviour in this report). This is because users continue to travel 

by rail even though the cost of commuting by car is becoming relatively cheaper, until a 

trigger event causes them to re-consider their mode choice. The forecast number of rail 

users with and without habitual behaviour for scenario 1 is shown in Figure 7.15 below. 
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Time period Bus Car Train Cycle Not travel 

    delib habit Delib habit delib habit delib habit delib habit 

beg year 1 1 47.0 47.00 349 349.00 177 177.00 42 42.00 11 11.00 

end year 1 52 56.0 49.67 347 348.96 170 174.37 42 42.00 11 11.00 

beg year 2 53 55.0 49.71 348 348.93 171 174.36 41 42.00 11 11.00 

end year 2 104 58.0 53.61 347 347.09 168 172.41 42 41.89 11 11.00 

beg year 3 105 58.0 53.67 348 347.12 167 172.31 42 41.90 11 11.00 

end year 3 156 60.0 60.49 351 345.35 161 167.20 43 41.96 11 11.00 

beg year 4 157 60.0 60.48 352 345.41 160 167.14 43 41.97 11 11.00 

end year 4 208 62.0 62.54 350 344.75 159 165.39 44 42.32 11 11.00 

beg year 5 209 62.0 62.62 350 344.76 159 165.27 44 42.35 11 11.00 

end year 5 260 66.0 66.23 349 345.66 156 161.42 44 41.69 11 11.00 

beg year 6 261 65.0 66.18 354 345.80 152 161.28 44 41.74 11 11.00 

end year 6 312 67.0 68.63 354 346.52 150 157.73 44 42.12 11 11.00 

beg year 7 313 66.0 68.55 354 346.65 151 157.65 44 42.15 11 11.00 

end year 7 364 68.0 68.66 354 347.97 149 155.91 44 42.46 11 11.00 

beg year 8 365 66.0 68.63 354 348.08 150 155.83 44 42.46 12 11.00 

end year 8 416 70.0 72.32 353 347.49 147 151.79 44 43.25 12 11.15 

beg year 9 417 69.0 72.25 355 347.59 146 151.76 44 43.25 12 11.15 

end year 9 468 71.0 74.09 355 348.02 144 148.55 44 43.34 12 12.00 

beg year 10 469 71.0 74.10 356 348.07 143 148.49 44 43.34 12 12.00 

end year 10 520 70.0 72.37 356 350.44 144 147.77 44 43.42 12 12.00 
 

TABLE 7.12 NUMBER OF USERS BY MODE, HABITUAL AND ALWAYS DELIBERATIVE CHOICES FOR SCENARIO 1 

Conversely the number of car users is lower with habitual behaviour as people remain on 

public transport rather then switch to cars as the cost of motoring falls. This is illustrated in 

Figure 7.16 below. There are fewer car users when habitual behaviour is included in the 

model because people do not respond immediately to the declining cost of driving relative to 

using public transport. The impact of the reduced cost of driving does not affect their mode 

choice until they receive a trigger event and reconsider the mode they use whereas with 

always deliberative behaviour the impact of the reduction in car costs is reflected 

immediately in the number of people using car. 
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FIGURE 7.15 NUMBER OF RAIL PASSENGERS WITH DELIBERATIVE AND HABITUAL MODE CHOICE 

 

FIGURE 7.16 NUMBER OF CAR USERS WITH DELIBERATIVE AND HABITUAL MODE CHOICE 

When there are discontinuities in the trend rate of change of the cost of using modes, the 

differences between the estimates of the number of users of each mode become much more 

pronounced when habitual behaviour is introduced into the model. This is illustrated in Table 

7.13 below and in Figures 7.17 to 7.19 for rail, car and bus users which show the results for 

the inclusion of habitual behaviour for scenario 2, which has periodic increases in parking 

costs. 
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These differences can be large and significant as can be seen from the results for scenario 

2, which has periodic increases in car park charges and in the proportion of people paying to 

park.  For example, at the beginning of year 6 when parking charges are increased, the 

always deliberative model has 245 car users but with habitual behaviour there are still 345 

users (a difference of 35%). A few months later the difference is still apparent but not so high 

(27%) as car users experience trigger events and some of them decide to switch from car to 

other modes.  

Time period Bus Car Train Cycle Not travel 

    delib habit delib habit delib habit Delib habit delib habit 

beg year 1 1 47.0 47.00 349 349.00 177 177.00 42 42.00 11 11.00 

end year 1 52 56.0 49.52 347 348.96 170 174.52 42 42.00 11 11.00 

beg year 2 53 55.0 49.57 348 348.89 171 174.54 41 42.00 11 11.00 

end year 2 104 58.0 53.36 347 347.20 168 172.56 42 41.88 11 11.00 

beg year 3 105 62.0 53.53 319 346.78 191 172.77 44 41.92 10 11.00 

end year 3 156 63.0 60.67 325 339.82 183 172.41 45 42.29 10 10.81 

beg year 4 157 63.0 60.71 326 339.64 182 172.54 45 42.30 10 10.81 

end year 4 208 66.0 63.98 325 334.45 180 174.02 45 42.84 10 10.71 

beg year 5 209 65.0 64.01 326 334.32 180 174.10 45 42.86 10 10.71 

end year 5 260 68.0 67.52 326 332.02 177 172.95 45 42.91 10 10.60 

beg year 6 261 84.0 67.75 245 331.15 239 173.54 48 42.97 10 10.59 

end year 6 312 86.0 74.60 246 312.46 236 184.51 48 43.90 10 10.53 

beg year 7 313 83.0 74.73 247 311.70 238 185.10 48 43.95 10 10.52 

end year 7 364 86.0 77.66 247 297.87 235 195.32 48 44.66 10 10.49 

beg year 8 365 84.0 78.42 225 295.63 257 196.78 49 44.68 11 10.49 

end year 8 416 88.0 84.35 225 280.48 253 204.65 49 45.94 11 10.58 

beg year 9 417 87.0 84.35 230 279.92 249 205.18 49 45.96 11 10.59 

end year 9 468 90.0 88.59 230 267.53 246 212.76 49 46.43 11 10.69 

beg year 10 469 90.0 88.54 231 267.19 245 213.13 49 46.45 11 10.69 

end year 10 520 90.0 89.57 231 259.74 245 219.06 49 46.88 11 10.75 

 

TABLE 7.13 NUMBER OF USERS BY MODE, HABITUAL AND ALWAYS DELIBERATIVE CHOICES FOR SCENARIO 2 
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FIGURE 7.17 NUMBER OF BUS USERS WITH DELIBERATIVE AND HABITUAL MODE CHOICE FOR SCENARIO 2 

 

 

FIGURE 7.18 NUMBER OF CAR USERS WITH DELIBERATIVE AND HABITUAL MODE CHOICE FOR SCENARIO 2 
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FIGURE 7.19 NUMBER OF RAIL USERS WITH DELIBERATIVE AND HABITUAL MODE CHOICE FOR SCENARIO 2 

 

7.7 Modelling shows lags in response to changes in cost 

The incorporation of habitual behaviour in the mode choice modelling allows for the 

emergence of information about the strength of lags in the response of overall mode share to 

changes in the relative cost of travel by each mode. This is illustrated in Figure 7.18 above 

for car users, where after the first increase in car costs at the end of year one the switch 

away from car use is more gradual with a habitual mode choice model than with a 

deliberative model. By the end of year 5 the numbers are similar as most people have 

experienced a trigger event and re-assessed their mode choice. However the large increase 

in car costs due to the increase in car park charges at the end of year 6 again causes a 

difference in the number of car users depending on whether a habitual or deliberative mode 

choice model is assumed. Over time, the number of car users rises with the habitual model, 

but the model shows a lag in response to the change in parking costs. 

The modelling of the lag in responses makes it possible to estimate both the short and long 

term cost elasticities implied by the model results. Hanly, Dargay and Goodwin (2002) 

reviewed published estimates of price elasticities in the demand for road travel and found 
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consistent evidence that there is a difference in short and long term elasticities and ‘that 

studies using methods which allow explicit estimation of short run and long run elasticities 

separately, nearly always find that the long run effect is substantially higher than the short 

run effect’. This is the same effect as shown here; the long run impact of the change in car 

costs is greater than the short term effect. 

The comparison of the elasticities produced by the model with those estimated from 

longitudinal studies provides a means of validating this agent based model by testing 

whether the patterns produced by the model replicate those observed in the real world. The 

model incorporating habitual behaviour was run to test the impact on bus patronage over 

time from a change in bus fares.  

Dargay and Hanly (1999) estimated bus fare elasticities from observed data using a dynamic 

econometric approach to estimate elasticities over time. Figure 7.20 below shows how the 

change in the number of bus passengers following a change in bus fares varies over time. 

Dargay and Hanly (1999) estimated the short run elasticity at -0.4 and the long run elasticity 

at -0.9. The short term was around two years after the fares increase, with a 10% increase in 

bus fares leading to a 4% decrease in patronage. The long term was around seven years 

after the fares change, with the 10% increase in bus fares leading to a 9% decrease in 

patronage. 

Balcombe et al. (2004) provided a short run elasticity of demand with respect to bus fares for 

fare paying passengers of -0.42 based on 33 UK studies, a medium term elasticity of 

between -0.5 and -0.6 based on 2 studies and a long term elasticity of -1.01 from 3 studies. 

They acknowledged that their long term elasticity was a higher value than other studies and 

considered this might be caused by the use of different methodologies for estimating the 

fares elasticity.  
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FIGURE 7.20 SHORT AND LONG TERM BUS FARE ELASTICITIES 

Source: Dargay and Hanly, 1999 

Scenario 4 was run to test the responsiveness of the number of bus passengers to a change 

in bus fares. The input values used in this scenario are shown in Figure 7.21 below. The 

initial times and costs of travel by bus, car, train and cycle are the same as for Scenario 1, 

but all journey times and costs are kept constant over time except for bus cost where there is 

a 10% increase in bus fares at the beginning of year 2. The model was run without any 

concessionary bus passes.  
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SCENARIO 4                   

  
         

  

INITIAL JOURNEY DETAILS 
       

  

MODE Cost Time CO2 

 
PTP % households visited a year 0%   

  (pence) (mins) (kg) 

 
% house movers leave area 

 
30%   

BUS 160 35 1 

 
% job changers leave area 

 
20%   

CAR 100 20 3 

     
Years Weeks 

TRAIN 240 20 1 

 
Minimum age for bus pass 

 
101 0 

CYCLE 0 60 0 

 
Minimum age for new agents 17 0 

  
    

Maximum age for new agents 60 0 

  
    

Retirement age 
  

68 0 

  
         

  

  Yr1 Q1 Yr1 Q3 Yr2 Q1 Yr2 Q3 Yr3 Q1 Yr3 Q3 Yr4 Q1 Yr4 Q3 Yr5 Q1 Yr5 Q3 

COST CHANGES 
        

  

BUS 1.0000 1.0000 1.1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TRAIN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

  
         

  

TIME CHANGES 
        

  

BUS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TRAIN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

  
         

  

% PAY TO PARK 
        

  

ZONE 1 50 50 50 50 50 50 50 50 50 50 

ZONE 2 0 0 0 0 0 0 0 0 0 0 

ZONE 3 50 50 50 50 50 50 50 50 50 50 

  
         

  

PARK CHARGE (pence) 
       

  

ZONE 1 150 150 150 150 150 150 150 150 150 150 

ZONE 2 0 0 0 0 0 0 0 0 0 0 

ZONE 3 150 150 150 150 150 150 150 150 150 150 

  
         

  

  
         

  

  Yr6 Q1 Yr6 Q3 Yr7 Q1 Yr7 Q3 Yr8 Q1 Yr8 Q2 Yr9 Q1 Yr9 Q3 Yr10 Q1 Yr10 Q3 

COST CHANGES 
        

  

BUS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TRAIN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

  
         

  

TIME CHANGES 
        

  

BUS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TRAIN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

  
         

  

% PAY TO PARK 
        

  

ZONE 1 50 50 50 50 50 50 50 50 50 50 

ZONE 2 0 0 0 0 0 0 0 0 0 0 

ZONE 3 50 50 50 50 50 50 50 50 50 50 

  
         

  

PARK CHARGE (pence) 
       

  

ZONE 1 150 150 150 150 150 150 150 150 150 150 

ZONE 2 0 0 0 0 0 0 0 0 0 0 

ZONE 3 150 150 150 150 150 150 150 150 150 150 
 

FIGURE 7.21 INPUT VALUES, SCENARIO 4 
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The number of bus passengers at each time period, with and without personal constraints on 

travel choices, is shown in Table 7.11 below.  

Time period Unconstrained Constrained 

  Habit Delib Habit Delib 

beg year 1 1 44.00 44.00 47.00 47.00 

end year 1 52 44.00 44.00 47.00 47.00 

beg year 2 53 43.96 39.00 46.96 42.00 

end year 2 104 42.95 39.00 45.95 42.00 

beg year 3 105 42.91 39.00 45.91 42.00 

end year 3 156 42.17 39.00 45.17 42.00 

beg year 4 157 42.15 39.00 45.15 42.00 

end year 4 208 41.55 39.00 44.55 42.00 

beg year 5 209 41.54 39.00 44.54 42.00 

end year 5 260 41.00 39.00 44.00 42.00 

beg year 6 261 40.96 39.00 43.96 42.00 

end year 6 312 40.55 39.00 43.55 42.00 

beg year 7 313 40.54 39.00 43.54 42.00 

end year 7 364 40.31 39.00 43.31 42.00 

beg year 8 365 40.28 39.00 43.28 42.00 

end year 8 416 39.70 39.00 42.70 42.00 

beg year 9 417 39.70 39.00 42.70 42.00 

end year 9 468 39.51 39.00 42.51 42.00 

beg year 10 469 39.51 39.00 42.51 42.00 

end year 10 520 39.41 39.00 42.41 42.00 

 

TABLE 7.14 NUMBER OF BUS USERS AFTER A 10% INCREASE IN BUS FARES 

When the model is run in deliberative mode, the reaction to the 10% increase in bus fares, at 

the beginning of year 2 is instantaneous as shown in table 14 above. For unconstrained 

demand, the number of bus passengers falls from 44 to 39 passengers (11%) and for 

constrained demand the number of passengers falls from 47 to 42 (11%), implying an 

elasticity of -1.1%. This elasticity value is a long term elasticity but as the model implements 

the full effect of the fares increase immediately it is also the short term elasticity which 

means that in deliberative mode the model over-estimates the size of the response to a fares 

increase in the short term.  

When the model incorporates habitual behaviour, the number of bus passengers falls more 

gradually. The implied fares elasticities are shown in Table 7.15 below. After one year the 
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fares elasticity is -0.26 and -0.24 for unconstrained and constrained demand respectively, 

after two years the fares elasticity is -0.45 and -0.42, after seven years it is -0.98 and -0.91 

and finally after eight years is -1.00 and -0.94 .   

  Unconstrained Constrained 

Years Passengers Elasticity Passengers Elasticity 

1 42.85 -0.26 45.85 -0.24 

2 42.02 -0.45 45.02 -0.42 

3 41.45 -0.58 44.45 -0.54 

4 41.02 -0.68 44.02 -0.63 

5 40.49 -0.80 43.49 -0.75 

6 40.97 -0.86 43.97 -0.81 

7 40.49 -0.98 43.49 -0.91 

8 40.20 -1.00 43.20 -0.94 

 

TABLE 7.15 IMPLIED FARE ELASTICITIES OVER TIME, WITH AND WITHOUT PERSONAL CONSTRAINTS, WITH 

HABITUAL BEHAVIOUR 

The number of bus passengers over time for the model run with personal constraints and 

habitual behaviour is shown in Figure 7.22 below. 

 

FIGURE 7.22 NUMBER OF FULL FARE PAYING BUS PASSENGERS OVER TIME WITH PERSONAL CONSTRAINTS 

The shape of the curve in Figure 7.22 shows a close similarity to the curve of the bus fare 

elasticity over time shown in Figure 7.20.  
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In the graph above there is a kink at time period 370 where there is a small but sudden drop 

in the number of bus users. In a model of individuals records can be kept on the 

circumstances of each person in each time period and the decisions they make. An 

examination of these records shows that there is a cluster of individuals who reach 

retirement age in time period 370. The age distribution of people in the model at the start of 

the model period is shown in Figure 7.23 below. This shows a small cluster of people who 

are 62 when the model starts. When they reach the model’s retirement age of 68 they are 

replaced with younger agents; this replacement is treated as a trigger event and these 

individuals assess their own travel mode rather than use the mode used by the agent they 

have replaced. The replacement agents are in effect placed into the deliberative decision 

mode in that time period. 

 

 

FIGURE 7.23 AGE DISTRIBUTION OF AGENTS IN THE MODEL AT THE START OF THE MODELLING PERIOD 
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numbers was caused by a cluster of older people in the DfT dataset receiving a bus pass in 

the same year. With a larger number of individuals used in a model there is likely to be a 

more uniform distribution of ages amongst the agents.  The investigation of the kink in the 

curve seen in Figure 7.23  illustrates that modelling individuals makes it is possible to 

interrogate the model at a very detailed level to seek an understanding of phenomena 

observed at the aggregate level; in this case the slightly larger than expected drop in the 

number of bus passengers in a particular year.  

 

FIGURE 7.24 NUMBER OF FULL FARE PAYING BUS PASSENGERS OVER TIME WITH RANDOM AGES 

 

7.8 Modelling shows variability in the predicted outcomes 

The inclusion of trigger events, the timing of which are affected by stochastic processes in 

the model, means that the outputs from the model will vary between model runs even for the 

same initial input values. Running the model a multitude of times provides understanding 

into the degree of possible variability in the forecasts. This is of particular relevance for a 

business case as it provides an indication of the likely variability in the final benefit to cost 

ratio calculated for a scheme and the amount of subsidy that might be required or profits 

made.  
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The monitoring and evaluation of schemes is often dependent upon the comparison of 

before and after counts. It is sometimes erroneously assumed that, as a conventional 

deterministic four stage model run to convergence provides a single forecast of the number 

of users of each mode, that this single forecast figure can be compared to observed counts 

after implementation of the scheme.  However when carrying out the comparison of ‘after’ 

modelled flows with observed counts, practitioners should be  aware of the variability in the 

observed counts; WebTAG guidance for traffic counts for example recommends that at least 

two weeks of data is collected. There is less awareness of the variability around the 

modelled flows and the model used in this research shows that, even for the same inputs, 

model outputs can vary. 

This model highlights that the context of a scheme is important and that other factors, other 

than the intervention being assessed may affect the modelled flows. For example, in this 

model the impact of the change in parking costs (the intervention) varies depending on the 

rate at which people move out of the area when they move house or change job. 

The model also illustrates that the degree of response varies over time. This should 

influence when the evaluation takes place. If it takes place too early after the intervention it 

may not pick up the full extent of the changes that will occur as a consequence of that 

change. The later the evaluation occurs though, increases the chances of other aspects of 

the transport system changing, so that the impact of the particular intervention of interest has 

been affected by these other factors that have changed as well. 

The scenarios tested in this research were each run 100 times, with exactly the same inputs. 

When the mode choice is deliberative the results are the same for each run. This is because 

the timing of trigger events is irrelevant; they only influence the forecasts in the habitual 

model where the occurrence of a trigger event, (the timing of which is affected by stochastic 

processes in the model), causes a re-assessment of the mode chosen by the agent.  
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The graphs below in Figures 7.25 to 7.29 show the spread of the forecasts of the number of 

bus, car, rail and cycle users for Scenario 1 (trend only changes in bus, car and rail costs) 

from 100 model runs. The green line shows the number of users for that mode when the 

model is run with always deliberative mode choice behaviour. The red line shows the mean 

of the forecast number of users of that mode from 100 runs of the model incorporating 

habitual behaviour. The dark blue area shows the boundary of the forecast number of users 

for that mode for the 100 model runs and indicates the degree of variability. The graphs 

show that the variability in the forecast number of users tends to increase over time. 

The range of the forecast number of users of each mode from the 100 model runs are shown 

in Table 7.16 below. The table shows the mean, minimum and maximum number of users of 

each mode in the first time period and then after every two years. The table also gives the 

standard deviation of the forecast number of users of each model in the 100 model runs 

which confirms that the variation between the runs tends to increase over time. 

 

FIGURE 7.25 VARIABILITY IN THE NUMBER OF BUS USERS, DELIBERATIVE AND HABITUAL BEHAVIOUR, SCENARIO 
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FIGURE 7.26 NUMBER OF BUS USERS WITH AND WITHOUT PTP, SCENARIO 2, HABITUAL BEHAVIOUR 

 

Figure 7.27 Variability in the number of rail users, deliberative and habitual behaviour, 

scenario 1 
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    Unconstrained   Constrained 

Mode 
Time 
period 

  Mean Std. Dev. Min Max   Mean Std. Dev. Min Max 

Bus 1 
 

44.00 0.00 44 44 
 

47.00 0.00 47 47 

Bus 104 
 

49.45 1.39 46 53 
 

53.61 1.36 50 56 

Bus 208 

 

59.28 1.68 55 63 

 

62.54 1.65 58 66 

Bus 312 
 

61.97 1.65 58 66 
 

68.63 1.69 65 74 

Bus 416 
 

67.40 1.56 63 71 
 

72.32 1.70 68 75 

Bus 520 
 

66.79 1.65 61 72 
 

72.37 1.68 69 76 

  
          

  

Car 1 

 

411.00 0.00 411 411 

 

349.00 0.00 349 349 

Car 104 
 

408.60 1.18 406 411 
 

347.09 1.01 345 349 

Car 208 
 

405.11 1.93 400 410 
 

344.75 1.79 341 350 

Car 312 

 

408.54 1.96 404 412 

 

346.52 1.84 342 351 

Car 416 
 

407.02 1.85 401 412 
 

347.49 1.78 343 352 

Car 520 
 

409.07 2.12 404 416 
 

350.44 1.70 347 355 

  

          

  

Train 1 

 

113.00 0.00 113 113 

 

177.00 0.00 177 177 

Train 104 

 

110.30 1.06 107 113 

 

172.41 1.29 169 176 

Train 208 
 

104.29 1.95 100 108 
 

165.39 2.08 160 170 

Train 312 
 

98.37 2.30 93 103 
 

157.73 2.30 151 162 

Train 416 
 

93.18 2.07 89 99 
 

151.79 2.17 147 157 

Train 520 

 

90.72 2.20 85 95 

 

147.77 2.37 142 152 

  

          

  

Cycle 1 
 

52.00 0.00 52 52 
 

42.00 0.00 42 42 

Cycle 104 
 

51.65 0.67 50 53 
 

41.89 0.57 41 43 

Cycle 208 

 

51.32 0.93 50 54 

 

42.32 0.93 41 45 

Cycle 312 
 

51.12 1.04 49 53 
 

42.12 1.04 40 44 

Cycle 416 
 

52.25 0.88 50 54 
 

43.25 0.88 41 45 

Cycle 520   52.42 0.89 50 54   43.42 0.89 41 45 

 

TABLE 7.16 STANDARD DEVIATION OF MODELLED NUMBER OF USERS OF EACH MODE, SCENARIO 1 

When the model is run with step changes in costs as in Scenario 2, then there is a greater 

variation in the forecast number of users of each mode between the model runs. This is 

shown in Table 7.17 below which shows the standard deviation of modelled number of users 

of each mode for scenario 2. For example, for car users after ten years, the standard 

deviation for scenario 1 with personal constraints is 1.70 but for scenario 2 it is 3.98. The 

greatest variation in results between model runs is for the number of car users after 8 years 

in scenario 2 without personal constraints.  
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      Unconstrained   Constrained 

Mode 
Time 
period 

  Mean Std. Dev. Min Max   Mean 
Std. 

Dev. 
Min Max 

Bus 1   44.00 0.00 44 44   47.00 0.00 47.00 47.00 

Bus 104 
 

49.20 1.29 46 52 
 

53.36 1.31 50.00 58.00 

Bus 208 

 

60.18 1.90 54 64 

 

63.98 1.92 58.00 68.00 

Bus 312 
 

69.53 2.48 63 75 
 

74.60 2.29 70.00 80.00 

Bus 416 
 

81.89 2.39 77 87 
 

84.35 2.24 79.00 89.00 

Bus 520 
 

88.80 2.43 83 95 
 

89.57 2.06 84.00 93.00 

  
          

  

Car 1 

 

411.00 0.00 411 411 

 

349.00 0.00 349.00 349.00 

Car 104 
 

408.96 1.33 406 412 
 

347.20 0.97 344.00 350.00 

Car 208 
 

392.04 3.35 383 400 
 

334.45 2.95 327.00 342.00 

Car 312 

 

365.28 5.32 352 383 

 

312.46 4.46 301.00 326.00 

Car 416 
 

323.70 6.09 306 339 
 

280.48 5.05 270.00 294.00 

Car 520 
 

297.50 5.11 286 313 
 

259.74 3.98 251.00 271.00 

  

          

  

Train 1 

 

113.00 0.00 113 113 

 

177.00 0.00 177.00 177.00 

Train 104 

 

110.30 1.09 107 113 

 

172.56 1.35 168.00 176.00 

Train 208 
 

116.23 3.19 108 125 
 

174.02 2.97 167.00 183.00 

Train 312 
 

131.97 5.10 118 144 
 

184.51 4.32 173.00 194.00 

Train 416 
 

158.17 5.67 144 174 
 

204.65 4.77 191.00 215.00 

Train 520 

 

175.53 5.10 160 188 

 

219.06 4.26 206.00 229.00 

  

          

  

Cycle 1 
 

52.00 0.00 52 52 
 

42.00 0.00 42.00 42.00 

Cycle 104 
 

51.54 0.74 50 53 
 

41.88 0.52 41.00 43.00 

Cycle 208 

 

51.84 1.06 50 54 

 

42.84 1.06 41.00 45.00 

Cycle 312 
 

53.69 1.22 50 56 
 

43.90 1.11 41.00 47.00 

Cycle 416 
 

56.66 1.61 53 60 
 

45.94 1.20 43.00 49.00 

Cycle 520   58.42 1.41 55 61   46.88 1.24 44.00 49.00 

 

TABLE 7.17 STANDARD DEVIATION OF MODELLED NUMBER OF USERS OF EACH MODE, SCENARIO 2 

The range in the forecast number of users of bus, car and rail in scenario 2 are shown in 

Figures 7.28 to 7.30 below. 
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FIGURE 7.28 VARIABILITY IN NUMBER OF BUS USERS, DELIBERATIVE AND HABITUAL BEHAVIOUR, SCENARIO 2 

 

FIGURE 7.29VARIABILITY IN NUMBER OF CAR USERS, DELIBERATIVE AND HABITUAL BEHAVIOUR, SCENARIO 2 
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FIGURE 7.30 VARIABILITY IN NUMBER OF RAIL USERS, DELIBERATIVE AND HABITUAL BEHAVIOUR, SCENARIO 2 
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automatic traffic counters and it could be possible to collect data on the daily variation in 

public transport usage from ticket sales data and ticket gates. 

 

FIGURE 7.31 FREQUENCY DISTRIBUTION OF FORECAST NUMBER OF BUS USERS, SCENARIO 2 
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FIGURE 7.32 FREQUENCY DISTRIBUTION OF FORECAST NUMBER OF CAR USERS, SCENARIO 2 

 

FIGURE 7.33 FREQUENCY DISTRIBUTION OF FORECAST NUMBER OF RAIL USERS, SCENARIO 2 
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7.9 Modelling at the individual level allows for testing a wider range of 

policies 

The effect of a personalised travel planning campaign can be included in the model by 

assuming that a personalised travel planning (PTP) visit acts as a trigger event. Taking 

Scenario 2 as the base case, PTP is modelled by assuming that each year 50% of 

households have a PTP visit and that as a result of the visit they became fully aware of the 

time and cost of each of the travel options available to them. Table 7.18 below shows the 

number of users of each mode in each time period, with and without the PTP programme. 

In the early years, without any sudden changes in parking charges there is only a small 

difference between the number of users of each mode with and without the PTP visits. This 

is because the model assumes that at the start of the model time period everyone has made 

their initial mode choice decision based on knowledge of the time and cost of their journey 

options. With a gradual change in costs, there is not a marked difference between people’s 

habitual choice and their optimal choice, as in many cases the small change in costs means 

that a person’s habitual choice is still their optimal choice, whether they have re-assessed it 

or not recently. 

Once there is a sudden change in costs, in this model through an increase in parking costs, 

then the divergence between the mode used if the users exhibit habitual behaviour and if 

they re-consider their mode choice becomes much greater. A PTP visit makes them aware 

of these changes and causes them to re-consider their mode choice earlier than they would 

have done otherwise. In this case, because they become aware of the increased cost of 

driving compared to using public transport, they switch to public transport earlier than they 

would have done without the PTP visit.  
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Time period Bus Car Train Cycle None 

    No PTP PTP 
No 
PTP 

PTP 
No 
PTP 

PTP No PTP PTP No PTP PTP 

beg year 1 1 47.0 47.0 349.0 349.0 177.0 177.0 42.0 42.0 11.0 11.0 

end year 1 52 49.5 50.8 349.0 349.0 174.5 173.2 42.0 42.0 11.0 11.0 

beg year 2 53 49.6 50.8 348.9 349.0 174.5 173.2 42.0 42.0 11.0 11.0 

end year 2 104 53.4 55.5 347.2 347.1 172.6 170.7 41.9 41.7 11.0 11.0 

beg year 3 105 53.5 55.6 346.8 346.8 172.8 171.0 41.9 41.7 11.0 11.0 

end year 3 156 60.7 62.9 339.8 332.6 172.4 176.9 42.3 43.1 10.8 10.5 

beg year 4 157 60.7 62.8 339.6 332.6 172.5 176.9 42.3 43.1 10.8 10.5 

end year 4 208 64.0 65.8 334.5 327.6 174.0 178.3 42.8 44.1 10.7 10.2 

beg year 5 209 64.0 65.8 334.3 327.6 174.1 178.4 42.9 44.1 10.7 10.2 

end year 5 260 67.5 68.6 332.0 326.7 173.0 176.5 42.9 44.1 10.6 10.1 

beg year 6 261 67.8 68.8 331.2 325.8 173.5 177.1 43.0 44.1 10.6 10.1 

end year 6 312 74.6 80.1 312.5 282.3 184.5 207.7 43.9 45.9 10.5 10.0 

beg year 7 313 74.7 80.1 311.7 281.9 185.1 208.1 44.0 45.9 10.5 10.0 

end year 7 364 77.7 83.4 297.9 263.0 195.3 222.7 44.7 46.9 10.5 10.0 

beg year 8 365 78.4 83.8 295.6 261.9 196.8 223.4 44.7 46.9 10.5 10.0 

end year 8 416 84.4 87.8 280.5 242.8 204.7 236.8 45.9 48.2 10.6 10.5 

beg year 9 417 84.4 87.7 279.9 242.7 205.2 237.0 46.0 48.2 10.6 10.5 

end year 9 468 88.6 91.1 267.5 236.0 212.8 239.6 46.4 48.6 10.7 10.8 

beg year 10 469 88.5 91.1 267.2 236.0 213.1 239.6 46.5 48.6 10.7 10.8 

end year 10 520 89.6 90.5 259.7 233.5 219.1 242.4 46.9 48.7 10.8 10.9 
 

TABLE 7.18 NUMBER OF AGENTS BY MODE WITH AND WITHOUT PERSONALISED TRAVEL PLANNING 

The number of people using public transport is higher when there is a PTP programme than 

without, particularly after there has been a recent rise in car costs. This is also shown in 

Figures 7.34 to 7.36 below, which show the difference in the number of people using bus, 

car, train and cycling, with and without the PTP programme. The model was run 100 times 

and the mean values from these model runs are shown. 
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FIGURE 7.34 NUMBER OF BUS USERS WITH AND WITHOUT PTP, SCENARIO 2, HABITUAL BEHAVIOUR 

 

 

FIGURE 7.35 NUMBER OF CAR USERS WITH AND WITHOUT PTP, SCENARIO 2, HABITUAL BEHAVIOUR 
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FIGURE 7.36 NUMBER OF RAIL USERS WITH AND WITHOUT PTP, SCENARIO 2, HABITUAL BEHAVIOUR 

 

FIGURE 7.37 NUMBER OF CYCLISTS WITH AND WITHOUT PTP, SCENARIO 2, HABITUAL BEHAVIOUR 

The impact of the PTP visits is to bring the number of users of each model closer to the 

number there would be, if everyone chose their mode of travel in every time period i.e. 

always in deliberative mode. This is illustrated in Figures 7.38 to 7.41 below which show the 

forecast number of people travelling by bus, car, train and cycling with habitual behaviour 

and no PTP, habitual behaviour and PTP and always deliberative behaviour. For bus users, 
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of bus users with and without PTP visits becomes smaller over time. As the change in car 

costs returns to trend, after the step change in car costs, then more people are already using 

the most optimal mode for them when they have a PTP visit and so do not change mode as 

a consequence of the visit. This suggests that a PTP programme will be more effective in 

changing people’s mode if it happens shortly after a step change in transport costs for a 

mode, either an increase in car costs or an improvement in the public transport options. 

  

 

FIGURE 7.38 NUMBER OF BUS USERS IN SCENARIO 2 
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FIGURE 7.39 NUMBER OF CAR USERS IN SCENARIO 2 

 

 

FIGURE 7.40 NUMBER OF RAIL USERS IN SCENARIO 2 
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FIGURE 7.41 NUMBER OF CYCLISTS IN SCENARIO 2 

It is not always the case that a PTP programme will result in an increase in public transport 

use. For example if bus costs are rising, a PTP visit may cause people to re-consider their 

mode choice and switch to car once they realise that it has become relatively cheaper to bus 

than it was previously.  In scenario 1, the model was run with habitual behaviour and a PTP 

programme that visited 50% of houses in every year. Initially the number of bus users rises 

with the PTP programme but as bus fares continue to rise and car costs begin to decline, the 

number of bus users becomes lower with the PTP programme in place as people realise the 

emerging cost difference between bus and car use. The number of rail users is always lower 

with a PTP programme, again because of the greater rise in rail fares than car costs. 
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FIGURE 7.42 NUMBER OF BUS USERS IN SCENARIO 1, WITH AND WITHOUT PTP 

 

 

 

FIGURE 7.43 NUMBER OF CAR USERS IN SCENARIO 1, WITH AND WITHOUT PTP 
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FIGURE 7.44 NUMBER OF RAIL USERS IN SCENARIO 1, WITH AND WITHOUT PTP 

7.10 Conclusion 

This chapter has presented the results from a variety of runs with an agent based model of 

commuter mode choice. The personal characteristics and constraints for the 626 agents in 

the model came from a survey conducted for the DfT. This survey also contained a stated 

preference section which provided details of the personal preferences held by each person 

for four basic characteristics of a journey: mode, time, cost and carbon emissions. These 

preferences were used in a maximum utility model of mode choice for each agent. 

The model was run for 10 years and 100 replications were run for each scenario. The model 
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in services which removes the option of using a bus for some people and/or results in longer 

wait times which in turn leads to a further reduction in bus numbers. 
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The model also shows the importance of personal constraints in mode choice and that the 

inclusion of more precise choice sets for agents in the model affects the overall forecasts of 

users of each mode. The lack of a driving licence is a key constraint on mode choice which 

may be a result of not wishing to drive but also may also be the result of lacking the money 

to afford driving lessons and insurance. This points to the possibility of using policies that 

affect the number of people experiencing personal constraints on travel choices as well as 

policies that change the time and cost of travel if the intention is to affect the number of 

users of each travel mode. 

The use of an agent based modelling approach allows the mode choice model to potentially 

reflect a wider range of policy mechanisms that can currently be modelled using the four 

stage models used in the UK such as the role of personalised travel planning campaigns that 

make people more fully aware of the characteristics of their travel options.   

In an agent based model, the decisions of each person can be affected by the decisions 

they have made in the past and their personal histories. This allows for the introduction of 

habitual behaviour in the model with people only re-considering their mode when they 

experience a trigger event. The inclusion of habitual behaviour results in a model that 

produces lags in the change in the number of users of a mode following a change in journey 

costs. The output elasticity of demand with respect to bus fares in the model was similar to 

that observed in the real world, and far more realistic than the instantaneous response 

produced by conventional four stage models. 

This chapter documented the use of a proof-of-concept agent based model for commuting 

mode choice and showed that this modelling technique has potential to capture a wide range 

of transport measures, such as changing parking costs and public transport fares, 

subsidising fares for particular groups of people and the provision of information about travel 

options.  
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The challenge for using this model for a particular geographically defined study area is 

considered in the next chapter. The chapter also discusses methodological issues that would 

be encountered when scaling up the model to include all the agents in a particular area.  
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8 Extending the proof-of-concept model to a specific area 

8.1 Introduction 

This chapter considers a range of methodological issues that will arise when applying this 

general agent based model for mode choice to a particular study area. It considers the 

challenges that will be faced in obtaining data on the attributes and preferences for each 

agent in the model. Data on attributes for the agents can be achieved by using population 

synthesis techniques. Appropriate segmentation is offered as a means to achieve the 

preference data for individuals by using the preferences of the group for each person. Latent 

class analysis is examined as a method of grouping agents with similar preference and so 

reducing aggregation bias in the model results. 

In order to apply this model to a specific area, information will be required on the 

characteristics of the agents and the environment in which they exist, as shown in Figure 8.1 

below.  

AGENTS       ENVIRONMENT 

 

 

 

 

 

 

FIGURE 8.1 DATA REQUIREMENTS FOR THE AGENT BASED MODEL OF COMMUTER MODE CHOICE 
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Personal constraints e.g. 
no car licence, need car 
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weighting on time and 
cost  

Transport System 

Road network 
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Public transport services 

Concessionary fares 

Walk / cycle network 
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8.2 Data on the environment 

Many of the required details of the transport network can be readily attained from digital data 

sources. In the UK the Ordnance Survey publishes very detailed information on the road 

network. If road junctions are being modelled, the geometry of road junctions can be 

measured from mapping and junction layouts viewed from aerial photography. The timing 

settings of traffic signals can be obtained from the appropriate local authority or from site 

visits. Public transport timetables are available digitally and regularly updated. Commercial 

transport modelling software packages can be used to take the demand for travel as output 

from the agent based model, assign it onto the transport networks and then calculate travel 

times by mode which can be fed back into the mode choice agent based model. For highway 

times, the number, origin and destination of other trips on the network will be required, so 

either the transport assignment model can be pre-loaded with these trips and / or the agent 

based model be expanded to cover trips for all journey purposes. For example, all person 

trips may be modelled using an agent based model with the goods vehicle matrices 

produced independently and combined with the agent base model outputs before trip 

assignment. 

The addition of any feedback loops in the agent based model brings with it a requirement for 

data on these feedbacks. For example, a feedback loop which has the commercial decisions 

of the bus operators affecting the number of bus services being run needs information on the 

strength and timing of this feedback. The decision making behaviour of the bus companies 

could be estimated from observations of their past behaviour or by interviews with bus 

operators and experienced analysts of the bus industry.   

The focus of this chapter is on a consideration of the issues involved in constructing a 

complete set of agents for a particular area, with details of their personal attributes and 

constraints such as age and gender, location of home and work, personal mobility issues 

and proximity to the public transport network and their personal preferences, as reflected in 

their weightings for time and cost and their mode preference.  
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8.3 Data on agent attributes and constraints 

Microsimulation models have always been very demanding in the amount and quality of data 

they require, as they need information on the characteristics of each agent and their 

transition probabilities, i.e. the probability for each person that one or more of their 

characteristics will change in the next model time period. Agent based models initially had 

less modest data requirements as they were built to test theories, often using an artificial 

data set of agents, to examine the emerging output at the top level from the operation of a 

simple set of behavioural rules at the lower level. In recent years, more agent based models 

have been designed as ‘empirically grounded’ models (Rounsevell et al., 2012) and the need 

for much more specific data on each agent has grown. 

The experience of the microsimulation community is useful in providing methodologies to 

meet the data needs of agent based models.  They recognise the importance of high quality 

data for a model, the difficulties in obtaining the breadth and depth of data required for such 

models and the frequent necessity of using multiple data sets to construct the input dataset 

required. ‘A model cannot exist without data, and the quality of the initial dataset in a 

dynamic microsimulation model is critical to the overall strength and sophistication of the 

model. Dynamic microsimulation is extremely demanding in terms of data requirements, and 

it is not conceivable that any one data set will contain all the information required for the 

base population (Scott et al., 2003).  

It is rare that, after designing a model, a single dataset can be found that already contains all 

the required information on agent characteristics or that can be collected within a project’s 

budget. As noted in Section 6.3 above, available data sets are likely to vary in the degree of 

detail they contain about the population, the breadth of variables recorded and the reliability 

of the data. (Cassells et al., 2006). The model may be redesigned to fit the dataset available 

or a synthetic dataset created with the required variables based on those present in a 

number of available datasets. 
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The need to create an appropriate input dataset is particularly acute in models with a spatial 

dimension as detailed information on agents’ characteristics is seldom available alongside 

detailed spatial information, in order to preserve the anonymity of the individuals in the data 

set. A common approach to this problem in microsimulation modelling is to start with the 

largest available cross-sectional representative population of acceptable quality and to 

supplement this with data from other sources (Collins et al., 2006). There is a wealth of 

literature in the field of spatial microsimulation, which covers static and dynamic 

microsimulation models with a spatial dimension, on techniques for creating the initial 

dataset of agent characteristics required for these models. Rossiter et al. (2009) observe 

that ‘in geography, most of the effort in microsimulation models had been in constructing 

good quality geographically disaggregated population microdata’.  

SimCrime and SimBritain are typical examples of spatial microsimulation models. SimCrime 

(Kongmuang, 2006) is a static spatial microsimulation model of crime in Leeds. Its data set 

comes from merging information from the census with data from the British Crime Survey. 

The census provides consistent data across the whole of the study area by output area 

(around 150 households). The British Crime Survey contains detailed information on the 

victims of crime, including demographic and socio-economic characteristics of crime victims, 

details of the crime and its precise location. The two datasets were used together to produce 

a synthetic data set of individuals which fitted data from both donor data sets i.e. a dataset of 

individuals from which cross-tabulations could be built which matched the cross tabulated 

results from both of the donor data sets.  

SimBritain (Ballas et al., 2007) is a dynamic spatial microsimulation model of the population 

of Britain used to predict the geographical and socio-economic impact of policies such as the 

introduction of the minimum wage and winter fuel payments. The model base year was 1991 

and the dataset for the model was created by merging data from the 1991 census with 

longitudinal data from the British Household Panel Survey (BHPS) and trend data derived 

from the 1971, 1981 and 1991 census. The 1991 census was used to create an initial 
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population for the model with variables for age, gender, household composition, social class, 

car ownership, housing type and employment status. The trend data from the census and 

BHPS longitudinal information was used to forecast how the number of individuals in each of 

these categories would change over time. This produced the synthetic populations in each of 

the model’s forecast years which were used when forecasting the impact of policy options 

with the model.  

In the transport modelling world, the task of producing a dataset for individuals by merging 

data sources has been tackled by the developers of activity based models where  the 

process is known as ‘population synthesis’. The task is to build a dataset that contains the 

socio-economic, demographic and geographical details of individuals in order to then 

estimate the daily activity plans of each person. An activity plan is an outline of their activities 

for the day described in terms of Hagerstrand’s time - space prisms. Peter Vovsha, an 

experienced practitioner in the USA, states that ‘synthetic populations are essential to 

simulating individual activity-travel patterns’ (Vovsha, 2012). From the activity plan built for 

each person, the time, start and finish point of each trip undertaken in the course of 

executing this activity plan is constructed and fed into the transport model.  

8.4 Methods for producing a population dataset 

The two main methods for producing full datasets of the attributes for each person for use in 

microsimulation models are Combinatorial Optimisation and Synthethic Reconstruction using 

Iterative Proportional Fitting (Ryan, 2007).  

In both approaches two datasets are used. The first dataset is often described as being 

‘short but wide’. It contains detailed information but is only available for a few agents in the 

study area. Examples of this type of dataset include the Sample of Anonymised Records 

available from the UK Census or data obtained from specifically commissioned surveys such 

as household travel diaries. The second dataset contains information on every person but 

only for a limited set of variables. This is a ‘long but narrow’ dataset which often comes from 
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general census data. In both techniques at least one attribute, such as age, needs to be 

common to both datasets.  

8.4.1 Combinatorial Optimisation 

In the Combinatorial Optimisation (CO) approach, the study area is divided into a set of 

mutually exclusive zones that completely cover the modelled area. A synthetic population is 

created separately for each zone in the study area, by randomly selecting people from the 

short and wide dataset until the required number of people (known from the long but narrow 

dataset) have been selected. It is likely that some people will be selected from the short but 

wide dataset multiple times. The distribution in the synthetic dataset of any or several 

common attributes with the first dataset in each zone, is compared with the actual 

distribution of these attributes in the first dataset, for example the number of people by age 

bands in the synthetic dataset for each zone is compared with the observed number of 

people in each age band from the census data. The fit between the synthetic and observed 

distribution is measured by the RSSZm statistic, Relative Sum of Squared Z-scores (Huang 

and Williamson, 2001). The RSSZm equals zero when the two distributions are an exact 

match. 

After comparing the synthetic and observed distribution, one of the individuals is removed 

from the synthetic dataset and replaced by another randomly selected individual.  If the fit 

statistic is improved with the replacement of this individual, this person is kept. Otherwise the 

replacement is rejected and an alternative replacement selected. This procedure is repeated 

until the match between the two distributions on the selected comparator attributes meets a 

pre-defined threshold set by the user. 

The CO approach produces an output dataset that consists of ‘whole’ agents as required for 

microsimulation. This is the long and wide dataset of ‘whole’ agents also required for an 

agent based model. 
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8.4.2 Synthetic Reconstruction 

Synthetic Reconstruction using Iterative Proportional Fitting (IPF) is the most commonly 

used method in activity based models, for example by Beckman (1996) for models built 

using TRANSIMS, by Frick and Axhausen (2004) for MATSIM models and Arentze et al. 

(2007) in the Dutch ALBATROSS model.  

The IPF technique is similar to the Furness technique widely used in transport planning to 

update a base year trip matrix to a future year using estimates of the row and column totals 

for the future year. The starting point is the short and wide dataset. The number of people in 

this dataset in each zone, for a certain characteristic (e.g. age band), is compared to the 

target number taken from the long but narrow dataset and a factor calculated that is applied 

to each person in the short/wide dataset. Then the number of people in the short/wide 

dataset for a second required attribute (e.g. car ownership) after applying the factor to match 

the first attribute, (e.g. age), is compared to the target number in the long/narrow dataset. A 

new factor is calculated and applied to each person in the short/wide dataset. 

This means that the age band totals in the short/wide dataset no longer match the age band 

totals in the long/narrow dataset, so for each zone the observed and target totals for this 

attribute are divided again to produce a new factor that is then applied to the short/wide 

dataset. This then means that the car ownership totals differ between the short/wide and the 

long/narrow datasets so another factor is calculated and applied in order to match these 

again. This procedure is carried out in turn for all the attributes which are being used to 

match the short/wide with the long/narrow dataset. Sufficient iterations are carried out until 

the match between the target totals for each attribute in the long/narrow dataset match those 

in the short/wide dataset within a tolerance level selected by the user.  

The output of the process is the short/wide dataset with a weighting attached to each record 

so that tabulations from the short/wide dataset using this weighting factor closely match the 

tabulations from the long/narrow dataset for the shared attributes. The benefits of the IPF 
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technique include the speed of computation, its simplicity and guarantee of convergence 

(Pritchard and Miller, 2012) but it produces non-integer weights which results in some 

complete and some fractional individuals when the dataset is converted into persons for use 

in an agent based model. Techniques such as Truncate, Replicate, Sample (Lovelace, 2013) 

address this issue and convert a dataset produced using IPF into a dataset of whole people 

for use in an agent based model. 

8.5 Data on agent preferences 

The model of commuter mode choice developed in this study assumes that each person 

makes their mode choice decision individually, that when they make a choice they are able 

to trade-off their preferences for time, cost and carbon emissions, and that they always act 

rationally choosing the mode which gives them the maximum utility. The model requires that 

each individual has a stable set of known preferences. For the proof-of-concept model used 

in this study, which modelled a world consisting of the 626 people interviewed in the DfT 

study, the information on individual preferences was available. However, if the model were to 

be applied to a wider area it is unlikely that data on each person’s preferences would be 

available. 

There are a number of practical difficulties with collecting data on each person’s 

preferences. First, there is the expense of carrying out a stated preference survey to deduce 

a person’s preferences. These surveys are expensive and budget constraints limit the 

number of surveys that can be carried out. Second, it is extremely unlikely that all the people 

in an area will agree to participate in the survey or be available when the survey is 

conducted so there will be some people who should be in the model but for whom no 

preference data is available. Third, if the model is used to forecast a scenario in the future, it 

is not known which people will be living there in the future. Some of the current residents will 

remain but it is not known who will move into the area and who will leave. Finally, there are 

methodological concerns with deducing preferences for a person from the limited number of 

questions that can be presented to a single person in a stated preference survey. 
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Respondent fatigue when completing surveys means that often only up to around 10 or 12 

choice sets are presented to a respondent, but even with three variables and only 2 or 3 

levels for each variable it is not possible to capture sufficient combinations to ensure that the 

survey elicits the preferences correctly. In addition, the respondent may not pay full attention 

to some of the choice sets, particularly if the survey is lengthened to include more questions. 

This has led to the common practice of dividing the total set of questions needed to produce 

an orthogonal design amongst a series of complementary surveys. Each respondent is given 

one of the sub-set of survey questions and the responses are combined together to produce 

a single set of weightings for a ‘representative’ person.   

8.6 Segmentation 

Common practice, built into the design of the software used for conventional transport 

models such as Saturn, Visum and Cube Voyager, is for travellers to be segmented into 

groups as discussed previously in section 3.2.4, with the trip origins and destinations of 

members of each group stored in a single matrix. The segregation of people used in 

transport models is based on: 

 journey purpose, often employer’s business, commuting and other 

 car available, not available 

 time of day  

 income (particularly in models designed to test toll road and road pricing proposals) 

The segmentation is designed in advance of an examination of the data and is built into the 

design of the model as trips are grouped into separate matrices, one for each segment. A 

segmentation based on observed characteristics such as those listed above may not be the 

most successful at dividing people into groups with shared preferences nor completely 

accurate in grouping people so that they share the same costs and constraints. 

By using an agent based modelling approach, the unit of analysis is at the most dis-

aggregate level possible, the individual. As information is recorded throughout the modelling 
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process at the level of the individual they can be aggregated into the groupings most 

appropriate for each particular modelling task being undertaken. For example, people could 

be segmented into one set of groups for trip generation modelling, another set for modelling 

mode choice decisions and yet another for route assignment. As long as the agent attributes 

has the relevant fields needed to keep track of the segment to which the individual belongs 

for each of the modelling processes, the same individual can be assigned to the most 

appropriate group for each of the modelling processes. 

There are numerous methodologies that can be employed to set up a segmentation system. 

Schreiber and Pekarik (2014) distinguish between groupings based on constructed 

composites which are derived directly from the original variables (e.g. journey purpose, 

socioeconomic status) and latent constructs which are derived indirectly. Latent constructs 

point to underlying characteristics (e.g. preference for time saving) which is not directly 

measured but can be identified through mathematical modelling. For the purposes of this 

model the ideal method for grouping respondents is to use groups which share the same 

preferences for time/cost/carbon emissions and then to examine the observable 

characteristics of these people so as to construct a way of allocating agents in the model into 

the relevant preference group. Latent class analysis is a methodology ideally suited to the 

task of segmenting agents by their preferences. 

8.7 Latent class analysis 

8.7.1 Latent class analysis and mode choice preferences 

The feasibility of using latent class analysis to identify groups for use in an agent based 

mode choice model was investigated using a dataset provided by South Yorkshire 

Passenger Transport Executive. The data comes from a survey designed to inform decision 

making over the provision of improved public transport between Sheffield and Rotherham. 

The options under consideration were to improve the current bus service, extend the tram to 

cover the whole route or to construct a bus rapid transit (brt) route. A bus rapid transit 
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system has bus lanes for a high proportion of its route, bus priority at junctions and modern 

high quality vehicles.  

The survey was conducted in December 2007. A mixture of people who currently use car, 

bus, rail or tram within the Sheffield to Rotherham corridor and are not exempt from paying 

their own fare on public transport fare were interviewed. Respondents were recruited on rail 

services between Sheffield and Rotherham, at key bus stops between Sheffield and 

Rotherham, on Supertram services between Sheffield and Meadowhall  (which lies between 

Sheffield and Rotherham) and at car parks in Sheffield and Rotherham city centres. The 

survey was a paper exercise and respondents were asked to complete the survey and post it 

back. The number of completed surveys is shown in Table 8.1 below.   

 

Current 
mode  

Area  
Number of 
responses 

Bus  On Sheffield – Rotherham - Meadowhall corridor  136 

Tram  On Sheffield – Meadowhall routes  92 

Rail  
On services between Sheffield, Meadowhall and 
Rotherham  

90 

Car  
Users of central car parks in Sheffield and 
Rotherham, travelling from within the proposed brt / 
tram corridor  

71 

 

TABLE 8.1 NUMBER OF COMPLETED SURVEYS BY CURRENT MODE OF TRAVEL  

The survey consisted of four parts. The first part asked respondents about their current 

journey between Sheffield and Rotherham. The second section presented a set of scenarios 

for alternative journey options for travel by bus, bus rapid transit or tram and asked the 

respondent their preferred choice. The third section asked attitude questions towards public 
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transport. The final section asked about the respondent’s attributes such as age, gender 

income and employment status.   

The second section, where respondents were asked to choose between alternative options 

for making a trip between Sheffield and Rotherham contained a set of nine exercises. Each 

time the respondent was asked to make a choice between three options. Each option was 

described with a picture of the vehicle, the journey time, the cost of the journey and 

frequency of service. An example from the survey is shown in Figure 8.2 below.  

The bus vehicle to the left was described to the respondent as being diesel powered with 

uneven ride and acceleration. The bus rapid transit vehicle, in the centre, was described as 

being diesel powered with a smooth ride and acceleration. The tram, on the right, was 

described as being electrically powered and having very smooth ride and acceleration.   

The design of the survey had 27 choice sets in order to ensure orthogonality (Kocur et al., 

1982). In order to keep the length of each survey to within a respondent’s expected attention 

span, the scenarios were divided into three sets. This produced three different versions of 

the survey each containing 9 exercises. The survey was completed by 369 fare paying 

passengers. 

 

FIGURE 8.2 A TYPICAL SET OF ALTERNATIVES PRESENTED IN THE STATED PREFERENCE SURVEY 
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Latent class analysis was carried out using Latent Gold software to investigate if it was 

possible to discern distinct groupings amongst these respondents based on the relative 

value they placed on the type of public transport, journey time, cost, and frequency of 

service. The latent class analysis was run to examine the groupings achieved for up to six 

classes. The BIC statistic, which indicates how well a model with a particular number of 

groups describes the natural number of segments among the respondents, was used to 

judge which number of classes produced the best match with the data.  Collins et al. (2010) 

recommend that the number of classes selected for the final model is based on a low BIC 

value, the nature of the clusters produced and an assessment of whether they create a 

useful typology of the situation to be modelled. Based on both the BIC statistic and a review 

of the differences between the segments in each of the models, the four class model was 

selected. The number of respondents allocated to each class is given in Table 8.2 below. 

 

 

 

TABLE 8.2 NUMBER OF RESPONDENTS IN EACH CLASS 

The relative importance accorded by members of each class to each of the journey attributes 

for the 4 class model, is shown in Table 8.3 and Figure 8.3 below. Members of class 1 (34% 

of respondents) are primarily concerned with the frequency of public transport services and 

much less concerned with the actual journey time or type of public transport mode. As tram 

services carry more people per vehicle but run less frequently, these people are likely to 

prefer bus or bus rapid transit services as these would run with higher frequency than the 

tram.  

The members of class 2 (26%) gave most importance to fare and less to journey time and 

frequency. Members of both classes 3 (23%) and 4 (16%) had public transport type as their 

  Class1 Class2 Class3 Class4 

Percentage 34% 26% 23% 16% 

Frequency 127 97 86 59 
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most important attribute. For members of class 3, although public transport type was the 

most important attribute, fare was almost as important. But for members of class 4, the ‘tram 

lovers’, the mode was significantly more important in their decision making than journey 

time, frequency or fare.     

Journey 

characteristic  Class1 Class2 Class3 Class4 

FARE 0.2808 0.4797 0.3237 0.0558 

FREQUENCY 0.5269 0.1301 0.0777 0.0109 

TIME 0.1594 0.0913 0.2248 0.2459 

TYPE 0.0329 0.2989 0.3737 0.6873 

 

TABLE 8.3 RELATIVE IMPORTANCE OF ATTRIBUTES BY CLASS  

 

FIGURE 8.3 RELATIVE IMPORTANCE OF ATTRIBUTES BY CLASS 

Further information on the public transport type valued by each of the four classes is 

revealed by considering the actual vehicle type which was valued highest by the members of 

each class. These values are given in Table 8.4 below. Respondents in Class 3, for whom 

fare as well as public transport type is important, strongly favour bus rapid transit or tram 
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over the bus. Class 4, who are overwhelmingly concerned with public transport type, strongly 

favour the tram. 

Vehicle 
type Class 1 Class 2 Class 3 Class 4 

Class size 34% 26% 23% 16% 

Bus 0.323 0.254 0.045 0.024 

BRT 0.350 0.743 0.528 0.076 

Tram 0.327 0.003 0.427 0.900 

Total 1.000 1.000 1.000 1.000 

 

TABLE 8.4 RELATIVE PREFERENCES AMONG PUBLIC TRANSPORT TYPES BY CLASS 

8.7.2 Placing agents into classes  

As well as uncovering distinct classes amongst respondents, latent class analysis can be 

used to predict the probability of a person belonging in a particular class. Table 8.5 below 

shows the probability of respondents belonging to a particular class, together with the socio-

economic data collected about each respondent. For example respondent 1002, given the 

choices they made in the survey, has a 99% probability of belonging to class 2. The next 

respondent, 1056, has a 1% probability of belonging in class 1, a 89% probability of 

belonging in class 2 and a 11% probability of belonging in class 4. The final column of Table 

8.5 shows the most likely class membership forthe respondent.   

 

TABLE 8.5 ALLOCATION OF INDIVIDUALS TO A CLASS 

The information on the socio-economic characteristics of each respondent and their most 

likely class membership can also be used to assess, using CHAID analysis, which items of 
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information about a person, such as their income or education, will provide a good indicator 

of their class membership. This enables class membership to be assigned to people not 

interviewed in the survey but for whom this information is available, possibly from census 

data.  

8.7.3 Determining the characteristics used to allocate people to classes 

The analysis of the Sheffield data showed that the only statistically significant socio- 

economic indicators of a respondent’s class membership were current mode used at the 

time of the survey, income and age. The non-significant indicators were employment status, 

gender and journey purpose. The strongest indicator of class membership was the current 

mode used, with 29% of current car and rail users belonging to class 4 (tram lovers).  Only 

5% of current bus users belonged to class 4. A higher income was an indicator of 

membership of the ‘tram lovers’ class.  

8.7.4 Latent class analysis with the DfT Climate Change dataset 

Having demonstrated the feasibility of using latent class analysis to generate segments with 

distinctive behavioural preferences using the Sheffield dataset, the technique was used with 

the DfT dataset described in chapter 6 to segment the agents into distinct groups of people 

who shared similar preferences. The latent class analysis was conducted using Sawtooth 

software as the survey data had been collected using this software package and it was held 

in the software’s proprietary binary file format. The results are presented below for the five 

class segmentation. The weightings for each class, re-scaled for comparability, are 

presented in Table 8.6 below. The factor with the strongest influence on mode choice is 

highlighted in yellow.  
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  Class 1 Class 2 Class 3 Class 4 Class 5 

Number of 
respondents 

 
14.80% 6.50% 33.00% 32.70% 13.10% 

  
     

  

Mode Bus -81.17 117.28 20.85 -18.28 -38.42 

  Car 213.31 -103.56 67.65 18.76 -24.07 

  Train -57.47 74.17 38.33 -10.56 -52.40 

  Cycle -74.66 -87.89 -126.83 10.08 114.90 

Cost £1.50 -2.72 24.21 16.09 24.51 29.01 

  £2.00 5.85 -19.08 8.03 7.83 19.56 

  £2.50 5.84 16.74 -8.45 -10.32 -17.25 

  £3.00 -8.98 -21.87 -15.67 -22.02 -31.33 

CO2 1 kg 8.98 15.25 11.18 13.75 18.36 

  2 kg -1.58 4.04 1.21 5.21 9.69 

  3 kg 9.76 -23.97 -4.87 -0.44 -14.15 

  4 kg -17.16 4.68 -7.52 -18.52 -13.90 

Time 15 min 36.46 42.24 80.41 146.55 63.87 

  30 min 16.54 25.37 32.45 74.16 43.07 

  45 min -20.66 1.19 0.05 -6.83 16.68 

  60 min -5.05 -17.17 -38.26 -76.27 -47.64 

  75 min -27.30 -51.62 -74.65 -137.61 -75.98 
 

TABLE 8.6 FIVE CLASS GROUPING OF RESPONDENTS TO DFT SURVEY 

Class 1 (14.8%) are Car Lovers. The factor with the strongest influence over their choice of 

mode is the actual mode itself with a strong preference for car (+213). Their least preferred 

mode is bus. The second factor affecting their mode choice is time with cost and carbon 

emissions as the least important influencing factors. 

Class 2 (6.5%) are Public Transport Fans, with a strong preference for bus and train and a 

dislike of car and cycle. Their next strongest consideration was journey time which was more 

important than either cost or carbon. This group took the level of carbon emissions into 

greater consideration than any of the other groups. 

Class 3 (33.0%) are Time Savers. Their strongest consideration is for a quick journey time. 

They are moderately in favour of car but show a strong dis-like of cycling. Cost and carbon 

emissions are not important factors in their choice of mode. 
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Class 4 (32.7%) are Extreme Time Savers. Their choice of mode is dominated by the 

journey time and the mode itself is of little importance to them. 

Class 5 (13.10%) are Cyclists. Their preferred mode is cycling and this exerts a strong 

influence on their choice of mode. However time is also an important consideration in their 

mode choice decision. 

8.7.5 Using the maximum utility rule with segments 

The agent based model presented in chapter 7 used the rule that each agent choses the 

mode that gives them the highest or maximum utility. If the preferences of each individual 

agent are not known, due to the practical and financial constraints of collecting this data for 

each person in the study area, the agents could be modelled using the set of preferences 

common to their segment or latent class. A model run was carried out to investigate the 

impact on model results of using the maximum utility rule with segment rather than 

individual preferences. 

The model was run for Scenario 2 which has periodic increases in car parking charges, 

without the availability of bus passes or constraints on modes available to each person, and 

in the first instance, without habitual behaviour. The input values for this scenario were 

provided in chapter 7 in Figure 7.3. The model recorded the mode choice decision of each 

agent using their own preference set and the preference set of their latent class.  

The number of people predicted to use bus, train and car is shown in Figures 8.4 to 8.7 

below.  
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FIGURE 8.4  NUMBER OF BUS USERS WITH SEGMENTATION 

When the agents each have their own set of preferences, the biggest change in the number 

of bus users occurs at the start of year 5, rising from 40 to 53. Until the increase in car park 

charge and the number of people having to pay to park, which occurs at the start of year 5, 

the number of bus users had ranged between 40 and 43. After the increase in parking costs 

causes the number of bus users to rise at the start of year 5, the number of bus users 

generally falls as bus fares continue to rise. 

In contrast, when the common preference function is used for each agent in a latent class or 

segment, the number of bus users is steady until the start of year 4 and then drops suddenly 

to zero, as a whole group of agents switch away from bus. They then all return in year 7. The 

sudden swings in the number of people using each mode and the difference between the 

forecast number of users of each mode when using individual or segment preference 

functions, is also seen in Figures 8.5 to 8.7 for car, train and cycle. With the use of 

segments, at the end of year 10, the number of bus and car users is lower while the number 

of rail users and cyclists is higher than when using individual preference functions. 
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FIGURE 8.5 NUMBER OF CAR USERS WITH SEGMENTATION 

 

FIGURE 8.6 NUMBER OF RAIL USERS WITH SEGMENTATION 
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FIGURE 8.7 NUMBER OF CYCLE USERS WITH SEGMENTATION 

These results show that with the use of shared preferences for each group of agents rather 

than individual preferences, the number of users of each mode varies considerably when 

there is a change in the relative costs of modes of sufficient magnitude to change which 

mode has the highest utility. This then causes a whole block of agents to switch at the same 

time. 

The introduction of habitual behaviour and constraints on mode choices reduces the impact 

in each time period of using segment rather than individual preferences as not all agents will 

make a mode choice decision at the same time and so not all agents in the same segment 

would change in the same time period. Figures 8.8 to 8.11 below show the number of users 

of each mode for the same model run but with habitual behaviour and constrained choice 

sets. 
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FIGURE 8.8 NUMBER OF BUS USERS WITH HABITUAL BEHAVIOUR AND CONSTRAINED CHOICE SET 

 

FIGURE 8.9 NUMBER OF CAR USERS WITH HABITUAL BEHAVIOUR AND CONSTRAINED CHOICE SET 
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FIGURE 8.10 NUMBER OF RAIL USERS WITH HABITUAL BEHAVIOUR AND CONSTRAINED CHOICE SET 

 

 

FIGURE 8.11 NUMBER OF CYCLISTS WITH HABITUAL BEHAVIOUR AND CONSTRAINED CHOICE SET 

The introduction of habitual behaviour has moderated the sudden swings in the number of 

people using each mode with choices based on the maximum utility rule but there is still a 

sometimes substantial and varying difference between the forecast number of users of each 

mode depending on whether an agent uses their own individual preference function or that 

of their group. 
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This suggests that the maximum utility rule may not be appropriate to use when the agents 

are placed into segments. A possible alternative approach was explored, in which a logit 

model (a linear-in-parameters random utility model) was used to determine the probability of 

an agent choosing a particular mode based on the utilities of each of the options. For each 

agent, whenever they make a mode choice decision, a random number is drawn and 

compared to the calculated probabilities of their using each of the alternative modes in order 

to assign the agent to one particular mode. 

Figures 8.12 to 8.15 show the number of users of each mode with individual preferences 

following the maximum utility rule (IND MAX UTIL) and with segment preferences using the 

logit model (SEG LOGIT). The results are taken from the same model run, with habitual 

behaviour and constrained choice, so that the events such as moving house and changing 

job, occur at the same time for each individual.  

 

FIGURE 8.12 NUMBER OF BUS USERS, INDIVIDUAL PREFERENCES WITH MAXIMUM UTILITY RULE AND SEGMENT 

PREFERENCES USING A LOGIT MODEL 
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FIGURE 8.13 NUMBER OF CAR USERS, INDIVIDUAL PREFERENCES, WITH MAXIMUM UTILITY RULE AND SEGMENT 

PREFERENCES USING A LOGIT MODEL 

 

FIGURE 8.14 NUMBER OF RAIL USERS, INDIVIDUAL PREFERENCES, WITH MAXIMUM UTILITY RULE AND SEGMENT 

PREFERENCES USING A LOGIT MODEL 
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FIGURE 8.15 NUMBER OF CYCLISTS, INDIVIDUAL PREFERENCES, WITH MAXIMUM UTILITY RULE AND SEGMENT 

PREFERENCES USING A LOGIT MODEL 

Using the logit model with the shared preferences for each segment removed the 

discontinuity in the number of bus users but gave a consistently higher estimate of the 

number of bus users. For car, the use of the logit model resulted in a trend in the number of 

car users that closely reflected that obtained from using individual preferences, but 

consistently underestimated the number of car users (Figure 8.13) against the benchmark of 

the number of users predicted using individual preferences and the maximum utility rule. For 

train users (Figure 8.14) the use of the logit model meant that the forecast number of train 

users was similar using segments as for individual modelling in the early years and then it 

underestimated the number of rail users. For cycling (Figure 8.15) the use of the logit model 

for the segments over estimated the number of cyclists but showed the same trend in usage 

as the individual maximum utility rule.  

Using the logit model for mode choice when using shared preferences is preferable to using 

the maximum utility rule as it removes the sudden changes in the results but it will require 

the use of multiple model runs to produce stable results because of the use of a random 

number for comparison with the mode probabilities to assign a person to a mode.   
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8.7.6 Aggregation and the representative agent  

The transparency of the agent based modelling approach highlights the issue that affects, 

but is seldom recognised in reviews of the standard four stage model, that modelling each 

individual will produce different overall results than if groups are modelled. This topic is 

discussed in the field of economics when considering the links between microeconomic 

theory, which studies individual economic entities, and macroeconomics, which looks at the 

behaviour of the market as a whole.  

In neo-classical economics the link between the behaviour of individuals and the behaviour 

of consumers as a whole is achieved by aggregating the individual demand curves to a 

single aggregated market demand curve. However Gorman (1953) showed that the forecast 

of change in the quantity of a good demanded as price changes, taken from the aggregate 

demand curve, is only the same as the forecast change in demand for a similar price change 

predicted by using each of the individuals’ demand curves under very restrictive conditions. 

This is because a person’s preferences, as captured in their demand curve, show the 

relationship between the quantity of a good consumed and its price, if everything else is 

kept constant, including the income of that person. 

Gorman (1953) showed that the conditions under which the results from using the 

aggregated demand curve match the results from using individual demand curves are that 

the preferences of every individual person must remain constant as their income changes 

and that the income distribution of the people represented by the aggregate demand curve 

remains constant.  

The aggregate demand curve is the summation of all the individual demand curves, at a 

particular point in time and given the income of each of those individuals at that time. If an 

individual suffers a significant drop in income, following for example the loss of their job, this 

change in income is likely to cause the individuals’ preference function (or the relative 

weights applied to a unit change in time or cost of a journey) to change as they become 



242 
 

more sensitive to the same increase in the cost of travel as their income falls. The shape of 

their individual demand curve has changed as a result of their change in income and the 

shape of the aggregate demand curve, calculated using their original individual demand 

curve, is no longer an accurate representation of the current aggregate demand curve. 

Economists responded to Gorman’s work by switching from the use of the aggregate 

demand curve to the use of the demand curve of a representative agent. Demand forecasts 

are based on the preference function of a single ‘representative’ agent. This does not 

however remove the problem. Alan Kirman (1992)  explained that ‘this reduction of the 

behaviour of a group of heterogeneous agents even if they are all themselves utility 

maximizers, is not simply an analytical convenience as often explained, but is both 

unjustified and leads to conclusions which are usually misleading and often wrong’.  He 

showed that the use of the representative agent can not only produce a different forecast of 

the absolute size of change but can forecast the change in the wrong direction compared to 

forecasts based on using each individual’s demand curve.  

Chakrabarty and Schmalenbach (2002) illustrate this using data from the UK Family 

Expenditure Survey for the time period 1974 -1993 to test the impact of forecasting demand 

using a representative agent rather than aggregating the result of modelling individual’s 

demand for five commodity groups: food; fuel and light, services, clothing and footwear, and 

non-durable goods. They tested the impact of changes in income level over time by 

forecasting the demand for certain goods each year using first a mean income for the 

representative agent each year, and then using each of the actual individual incomes which 

together produced the mean income level used. They found that the ‘representative agent’ 

with the mean income was a reasonable approximation in the case of food, fuel and light, 

clothing and footwear in this particular data set, but it produced statistically significant 

different results in the case of services and non-durable goods. They also found that 

changes in the income distribution over time affected the forecasts of demand when using 

the representative agent for services and non-durable goods.   
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The strongest effect was on services, which was the category with the highest income 

elasticity (where demand is most sensitive to changes in income). Their work shows that 

income effects can affect the accuracy of forecasts produced using a single representative 

demand curve for all people rather than individual demand curves. The varying income 

elasticities of different modes of transport means that this is an issue for transport forecasts. 

The level of discrepancy in the estimate of total demand between using an aggregate rather 

than individual demand curves is likely to vary by mode. 

8.7.7 Applying a logit model using aggregate and individual preference functions 

The difference in forecast results from using either individual preferences, shared 

preferences for members of each of the five latent classes or from the standard division of 

travellers into those with and without a car available for the trip was tested using the model 

software prepared in this project. Additional code was added to the agent based model to 

run a standard logit mode choice model to calculate the proportion of people using each 

mode, with people allocated to two segments (car available and car non available) and using 

individual preferences. The logit model was run for each of 520 time periods. The times and 

cost of travel are those used in scenario 2. 

It should be noted that in this model the incomes of each person remained constant as far as 

exogenous changes in income are concerned. The only change in income is the effective 

change caused by changes in the cost of travel. In the real world the influences of the 

change in income and income distribution would be expected to accentuate the differences 

found here in the forecast of the number of users of each mode from using a single 

preference function rather than individual preference functions. 

The results of the model run for each mode are shown in Figures 8.16 to 8.19 below. The 

red line in Figure 8.16 shows the number of people who use the bus to commute, obtained 

by multiplying the proportion of people using each mode from the logit model by the total 

number of travellers, when individual preference functions are used, (IND). The green line 
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shows the number of people who use bus when commuters are segmented into five latent 

classes (SEG) and the blue line when commuters are segmented by car available and not 

available, as is common practice in four stage transport models, (ALL).  

 

FIGURE 8.16 NUMBER OF BUS USERS FROM A LOGIT MODEL OF MODE CHOICE SHOWING THE IMPACT OF 

SEGMENTATION  

 

FIGURE 8.17 NUMBER OF CAR USERS FROM A LOGIT MODEL OF MODE CHOICE SHOWING THE IMPACT OF 

SEGMENTATION 
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FIGURE 8.18 NUMBER OF RAIL USERS FROM A LOGIT MODEL OF MODE CHOICE SHOWING THE IMPACT OF 

SEGMENTATION  

 

 

FIGURE 8.19 NUMBER OF CYCLISTS FROM A LOGIT MODEL OF MODE CHOICE SHOWING THE IMPACT OF 

SEGMENTATION 

For the forecasts of the number of bus users, the logit model gives the highest forecast 

passenger numbers if the population is only split between car available and car non 

available people and the lowest forecast when individual preferences are used. The situation 

is reversed for car, with car available / non available giving the lowest forecasts of car use 
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and the use of individual preferences giving the highest forecasts. It is a common criticism of 

multi-model models that they over-estimate bus use and under-estimate car use and this 

work suggests that the very coarse segmentation used in four stage models and the use of a 

single preference function for each of those segments can have a material impact on the 

forecasts. This has implications for the quality of the business cases built from these 

forecasts and the advice provided to decision makers. When dealing with modes with a low 

number of users, such as is often the case with bus and cycling, the variation in numbers 

produced by the model as a result of the amount of segmentation used in the model will be 

of particular concern as a small difference in absolute terms is a large difference in 

percentage terms. 

8.8 Conclusion 

Modelling mode choice at the individual level makes greater demands on the data required 

to build the model, as details are needed on the attributes of each person in the model and 

their preference function. Techniques have been developed to build a population, with 

information on each of their personal characteristics, for use in microsimulation models that 

can be applied in the development of agents in agent based models.  

Establishing the preference function for each agent poses another challenge. Applying a 

standard logit mode choice model to the 626 respondents in the DfT dataset, showed that 

there is considerable variation in forecast mode shares when using individual preference 

functions rather than a shared preference function derived from the same data. Practical 

difficulties in both the cost and feasibility of collecting sufficient information to derive 

individual preferences means that some segmentation is required whichever modelling 

methodology is adopted. The potential size of the variance in mode forecasts as a result of 

the use of shared rather than individual preference shows that attention should be paid to 

the number of segments used and the allocation of individuals to those segments. 
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An agent based modelling approach to transport modelling, with software designed to store 

data at an individual level rather than in a spatially aggregated form in matrices, facilitates 

the creation and handling of more segments than is possible in current conventional 

transport modelling software packages.  The error introduced into forecasts by the use of a 

shared preference function can be reduced by increasing the number of segments used and 

by using groupings based on the similarities in the individuals’ preference functions. 

Segmentation using latent class analysis, which makes use of both observed and 

unobserved information, is recommended as a technique to achieve more consistent 

groupings of people by their preferences rather than the current practice of grouping people 

by observed characteristics alone such as the time of travel and journey purpose.   
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9 Conclusion 

9.1 Motivation for this research 

The four stage framework for transport models (trip generation, distribution, mode choice 

and assignment) was first developed in the 1950s for the purpose of planning new highways. 

By the 1970s and 80s the primary purpose for some transport models switched to the 

planning of public transport schemes, such as the extension of the Jubilee underground line 

in London. The replacement of diversion curves with the random utility logit model in the 

mode choice stage enabled the original four stage model framework to better meet this new 

requirement.  

Recently the purpose of transport modelling has changed again with some models, 

particularly for mature cities in developed countries, being built to assess packages of 

transport implementations. These often include public transport changes and ‘smarter 

choices measures’ and only sometimes changes to the highway network. This has brought 

to transport modellers the need to again develop ways to improve the ability of their models 

to accommodate this new task. 

This challenge provided the motivation for this research, which concentrated on the 

modelling of commuter trips, but the issues covered and the findings of this research are 

applicable to the modelling of mode choice for all journey purposes.  

9.2 First research question 

The research project was based around three related research questions. The first of these 

was ‘What has been the experience of transport modellers extending their current four stage 

models to include the impact of ‘smarter choices’ programmes on the mode used for 

commuting trips?’ 

This question was addressed by a review of the documentation of state of the art four stage 

models developed in the UK and interviews with the builders of those models to investigate 
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whether practitioners had found satisfactory methods to include ‘smarter choices’ into their 

existing model frameworks. This work showed that practitioners had failed to fully integrate 

‘smarter choices’ within the current four stage framework. They had been unable to 

implement a methodological improvement to their current modelling framework that could 

handle these measures, and instead applied an adjustment to the matrices coming out of the 

mode choice process in the last iteration of the models, before the final assignment of trips 

to the transport networks. 

These interviews showed that part of the difficulty of modelling ‘smarter choices’ in the 

current framework arose from the feature that the measures were often targeted at particular 

groups of travellers and/or specific geographical areas. This makes them hard to incorporate 

in the software packages used to implement four stage models as these still incorporate the 

design principle of grouping trips into matrices. The use of matrices had been developed as 

a way of storing information on a large number of trips within the small storage capacity of 

the microcomputers of the 1970s. These matrices could be readily accessed and 

manipulated using the array functions in Fortran, a procedural high level programming 

language widely used at that time for technical and scientific computing.  

The use of matrices means that trips are aggregated geographically into zones. Many walk 

and cycling trips are lost from the model altogether as they start and finish within the same 

zone. The use of a common set of times and costs for trips between each origin and 

destination zone pair ignores deviations arising from the actual location of the trip end within 

those zones. These deviations are of increased importance for short distance trips, which 

are often the trips targeted by ‘smarter choices’ as they can potentially use walk and cycling 

for the entire trip. Accurate information on walk access times to public transport is also 

essential for assessing whether public transport is a realistic alternative to the car for 

commuters.  
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Using a matrix structure for modelling also creates difficulties when ‘smarter choices’ 

measures are implemented in only some parts of the study area.  For example Birmingham, 

like many other cities, intended to implement personalise travel planning combined with 

public transport improvements along particular corridors into the city centre. This is 

particularly difficult to handle within a matrix based structure that applies the same utility 

weightings and scaling parameter to all trips within the same matrix. In order to be able to 

vary these parameters geographically the matrices would have to be subdivided into 

matrices of trips that would use the corridor and those that would not; this would increase the 

number of matrices and it is difficult at the periphery of the corridors to know which trips to 

place in which matrix as the routing of trips could be affected by the measures introduced. 

The current four stage modelling software also struggles in terms of performance and ease 

of file management when the number of matrices increases. This limits the amount of 

segmentation it is possible to implement in these models. In the UK, the DfT’s software 

programme TUBA which is used for the economic evaluation of transport schemes had to be 

re-written to handle the increased number of matrices used in the TIF models once they 

expanded the usual time of day, vehicle class and journey purpose segmentation to include 

income segmentation by low, medium and high income bands. Further segmentation, for 

example by demographic or other personal characteristics, was considered too impractical to 

implement. This means measures that affect particular groups (e.g. employees at certain 

companies with travel to work plans) could not be incorporated. The modellers particularly 

struggled to model car park policies at employment sites, yet these are known to have a 

significant impact on the mode choices of commuters. 

Apart from the matrix structure of the current software used for four stage modelling, the 

standard utility functions used in logit models have also created issues for the modellers. 

Once the scaling parameter and mode constant had been calibrated, the logit models when 

used in forecasting mode were only sensitive to changes in the time and cost of travel by a 

mode. However some of the ‘smarter choices’ measures, such as providing information, 
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marketing campaigns and the provision of safer cycle routes, were expected to change 

mode choice but do not act directly on the time or cost of travel by alternative modes and 

therefore their impacts could not be represented. 

The experience of transport modellers when extending their current four stage models to 

include the impact of ‘smarter choices’ measures on the mode chosen for commuting trips 

was that it proved to be far more difficult than they anticipated. They failed to be able to 

directly model many ‘smarter choices’ initiatives and resorted to coarsely adjusting the final 

output matrices from the model using the findings of the Sustainable Travel Towns Studies 

(Sloman et al., 2010) to guide the size and direction of these adjustments. 

9.3 Second research question 

This led on to further investigation in this research as to whether alternative modelling 

approaches would be better suited to the task of incorporating ‘smarter choices’ into multi-

modal transport models. The second research question asked was ‘What modelling 

approaches could be used to model the impact of ‘smarter choices’ programmes on the 

mode chosen for commuting trips?’ 

Modelling approaches used in other disciplines were investigated to consider whether they 

could usefully be transferred into the transport field to tackle the modelling of mode choice. 

The review primarily looked at models used in the fields of marketing, health and 

environmental studies as these are concerned with choices and behaviour, be they made by 

humans or animals. Systems dynamics looks at the area to be modelled as a whole system, 

and is useful for examining the breadth and extent of re-inforcing and counter-acting first, 

second and even third order impacts of changes in either the transport system or its wider 

context. It is not so well suited to ‘smarter choices’ measures which often need a fine grain of 

spatial positioning to identify potentially affected travellers and the ability to distinguish 

between the circumstances and behaviour of many individuals or small groups of people. 
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An alternative modelling approach is to build a model from the bottom up, starting with each 

individual human or animal. Microsimulation and agent based modelling are dis-aggregate 

modelling techniques which hold considerable promise as potential approaches for mode 

choice modelling. The software developed to implement these types of models is well suited 

to handling detailed information on a very large number of individuals and tracking them 

through the modelling process. Microsimulation models simulate the development of the 

target system over time using a set of transition probabilities that govern the timing of a 

change in each object, and a set of rules which determine what change occurs. 

Microsimulation models can have a very fine spatial resolution for each agent and can 

handle a multitude of changes, coming from the potential transitions and possible states 

included in the model.  

The transport modelling community already uses the microsimulation approach in dynamic 

traffic assignment software and activity based models. By modelling at the individual level 

over the course of a day these models can ensure consistency between a person’s activity 

and transport decisions throughout the day. They can use more accurate spatial data for 

each person and better replicate the actual choice set of travel modes facing each person.   

Agent based modelling shares these advantages and has the added benefit of being able to 

incorporate more behavioural realism into the modelling of choices. It provides software 

platforms and a modelling approach that breaks away from the constraints imposed by 

current four stage transport modelling software from its requirement to group people into a 

limited number of groups held in matrices and with the influences on the mode choice 

coming only from the those variables which are inputs into the utility functions used in logit 

models.  

For these reasons agent based modelling was selected as a modelling approach for use in a 

practical exercise aimed at investigating the potential of this method for bringing ‘smarter 

choices’ into multi-model transport models. 
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9.4 Third research question 

The third research question posed was ‘What are the strengths and limitations of using an 

agent-based approach for modelling the impact of a ‘smarter choices’ programme on the 

mode chosen for commuting trips?’  

Agent based modelling was selected as the methodology to be used for a more in-depth 

investigation into its potential for modelling ‘smarter choices’. The ability of agent based 

models and the software that implements them to hold and track data at the individual level 

means that the precise geographical location of individuals can be used which gives the 

opportunity to reduce errors caused by geographical aggregation bias. Aggregation bias can 

also be reduced by modelling the actual time and cost of travel faced by each individual 

rather than those of the group into which they have been placed.  

This research has shown that a further source of aggregation bias is present in transport 

models when people are grouped together into large segments and group weightings on the 

time and cost of travel are used when modelling the travel choices of each person rather 

than their individual preferences. The agent based modelling approach enables the use of 

individual preferences, if these are known, or the segmentation of people into groups on the 

basis of the similarity of their preference functions rather than, quite possibly, unrelated but 

observable features such as journey purpose. This research has shown that this source of 

aggregation bias can have a non-trivial impact on model results. (Section 8.7.7). The 

modelling community needs to be more aware of this weakness in the current standard 

implementation of logit based models for mode choice.   

9.4.1 Strengths of agent based modelling 

The experience of building an agent based model informed the following assessment of the 

strengths and limitations of this modelling approach for the task of incorporating smarter 

choices into multi-modal modelling. The key strengths of ABM are the ability to hold and use 

data on the attributes and circumstances of each individual which provides the opportunity to 
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model measures that apply only to certain individuals, to customise the actual choice set 

facing each person and to have a more accurate description of the time, cost and other 

features of each of the mode options in their choice set. 

The ability to handle individual preferences, or a shared preference set for a large number of 

groups of people, provides a way of minimising the aggregation bias introduced by using 

group rather than individual preferences. By holding details of each individual separately 

they can be re-grouped in ways that are most appropriate for each stage in the modelling 

process, for example, they may be combined together in a different way for mode choice and 

then for route assignment. 

The recording of the choices made by each individual assists in the analysis of the social 

and distributional impacts of a transport intervention as it provides detailed information on 

which people are affected by a proposed intervention and how. 

The software can record the history of each agent; this means that the modelling approach 

can incorporate more aspects into the mode choice decision than conventional four stage 

models. It can for instance, record the actual journey times and costs experienced by agents 

on previous journeys and use this to influence their decisions in the present. As shown in 

this research, it can also be used to incorporate habitual behaviour in the model. (Section 

7.6). 

The ability to incorporate feedback loops within the model enables the modeller to increase 

the richness of the modelled system with built-in feedback between the environment and the 

agents. (Section 7.5). 

 The flexibility of agent based modelling means that the four stages of conventional 

modelling do not have to be applied in the same order for all agents. There is a debate in 

variable demand transport modelling as to whether destination choice should come before or 

after mode choice. The default order recommended by the DfT in WebTAG Unit M2, that 

destination choice is made before mode choice, is different from the order commonly used in 
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Europe. With agent based modelling a mixed approach could be used, with for instance 

destination choice preceding mode choice for work trips but mode choice preceding 

destination choice for leisure trips.  

Agent based modelling offers the potential to enrich our models with greater behavioural 

realism and the option to replace the logit model with alternative methods for modelling how 

a person will choose their travel mode. The challenge lies in determining alternative theories 

for how these decisions are made and collecting the data required to implement them, but 

agent based modelling does provide a way of modelling many of these alternatives and 

provides a versatile platform for the future development of transport models. 

The fine level of detail that can be handled in an agent based model makes it capable of 

modelling more ‘smarter choices’ measures than current four stage models even without 

further advances in the development of more behaviourally realistic choice models. Table 

9.1 below is based on a summary table from the WSP report for the DfT into modelling 

smarter choices with four stage models. An additional column has been added to show how 

an agent based modelling approach enables the modelling of many of the ’smarter choices’ 

measures they considered.  

Many of these, such as running bus services for a company’s workers, subsidized fares and 

restricted car parking can be handled by the greater level of detail that is possible in agent 

based models on the precise origin and destination of commuting trips and the attributes of 

workers. Agent based modelling offers greater potential to model these measures than can 

be achieved by microsimulation alone as it offers a way of modelling the networks that 

connect people. This could, for example, be used to develop models for car sharing and 

responses to marketing campaigns in the workplace that may be targeted to building a 

critical mass of people cycling to work.  
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Possible component measures 
within an initiative 

Is there a general need 
to enhance operational 
models? 

Relevant ABM characteristic 

New conventional bus 
or rail services linking to 
site/area 

Effects can be represented 
only if the model zones 
are detailed enough 

 

More accurate representation 
of walk times to new bus 
service  

‘Work buses’ between site and 
town centre that can be used by 
any traveller 

Effects can be represented 
only if the model zones 
are detailed enough to 
identify the site 

 

More accurate representation 
of walk times to new bus 
service 

Dedicated ‘work buses’ between 
site and town centre 

Effects can be represented 
only if the site and the 
workers from the site can 
be identified in demand 
modelling 

Can restrict bus services to 
particular eligible users 

Subsidised fares; Interest-free 
season ticket loans 

Not for reflecting the 
effective reduction in 
commuting fares 

 

More accurate representation 
of fare costs for each users 

Special deals to reduce the cost of 
bus and rail commuting 

Not for reflecting the 
effective reduction in 
commuting fares 

 

Can change costs for a short 
period of time 

Parking ‘cash out’ (payment on 
days of not driving) 

 

No Can reflect this benefit only for 
those receiving it 

Car parking restricted to 
essential users 

Most models would not be 
able to segment between 
essential and non-essential 
users, and would need to 
approximate the effects 

Individual recording of agent 
characteristics e.g. permission 
to park at certain locations 

Parking charges Most models do not 
represent parking well and 
would require enhancement 

More accurate representation 
of a person’s actual parking 
charge 

Car sharing 
Scheme 

Yes Can track people working in 
some office and at similar 
times 

Preferential car 
parking for 
sharers 

Yes Individual recording of agent 
characteristics e.g. permission 
to park at certain locations 

Demand activated bus 
services (variable routes, bus-
taxis) 

Yes Individual recording of waiting 
time for public transport 
service 

Giving all staff 
public transport 
information 

Additional work required to 
quantify implicit mode 
specific constants in the 
case of incremental 
demand models 

Recorded when each 
individual is aware of their 
travel options 

Offering 
personalised 
journey plans to 
staff 

Additional work required to 
quantify implicit mode 
specific constants in the 
case of incremental 
demand models 

Recorded when each 
individual is aware of their 
travel options 

Secure cycle 
Parking 

Additional work required to 
quantify implicit mode 
specific constants in the 
case of incremental 
demand models 

Records who has access to 
secure cycle parking 
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TABLE 9.1 ‘SMARTER CHOICES’ MEASURES AIMED AT REDUCING CAR TRIPS TO WORKPLACES 

Source: adapted from WSP, 2010 

9.4.2 Limitations of agent based modelling 

Even with using agent based modelling methods and software some challenges will remain 

when modelling ‘smarter choices’. Adopting a new modelling approach does not overcome 

the problems that arise for any modelling methodology resulting from a lack of knowledge 

and understanding of the processes involved in the real world system being modelled. The 

WSP report acknowledges that for some measures, such as cash payments to reward those 

not driving to work and flexible working hours there is a lack of data as to how people 

respond to these policies. Such data is needed to develop and validate the modelling of 

these measures.   

Running ABMs can be time consuming, especially if a model contains many agents and 

stochastic events. It can take a considerable amount of time to model each time step and so 

to cover the overall time period desired by the modeller. These models can also be 

demanding in terms of the computer processing power they require in order to deal with a 

large number of agents.  

Changing/shower 
facilities at work 

Additional work required to 
quantify implicit mode 
specific constants in the 
case of Incremental 
demand models 

Records who has access to 
these facilities 

Business cycle mileage 
Allowance 

Yes, if the scale of effects is 
found to be significant 

Individual recording business 
cycle mileage allowance 

Services on site to reduce need to 
travel (cafeteria, convenience 
shop, cash dispenser) 

Most models would not be 
able to identify convenience 
shopping from other 
personal trips, and would 
need to approximate the 
effects 

Can’t model trip generation at 
the individual level 

Encouraging Teleworking Yes Individual recording of whether 
a person permission can work 
at home 

Flexible working hours / 
compressed working hours to e.g. 
a 4-day week, or commuting 
during inter-peak or off-peak 
periods 

Yes Individual recording of a 
person’s ability to vary working 
hours 
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An ABM will often require the collection of more data than would be required of an aggregate 

model. This is because data is needed for each of the agents. An ABM is also likely to need 

data on a wider set of agent attributes. For example in a standard transport model 

segmentation is usually only by time of day, journey purpose and occasionally income group. 

An ABM can handle a much more detailed segmentation which, if included, could require 

additional data such as gender, age, employment status and number of dependent children. 

There is also the problem that the data required for the ABM may not have already been 

collected as historic data collection exercises have been built around the needs of the logit 

models embedded in traditional four stage transport models or activity based models. 

The ability of ABMs to model bounded rationality and any number of alternative ways of 

replicating human decision making, leads to the criticism that human cognitive processes are 

still unknown and the subject of academic debate, and modellers cannot be sure therefore 

that they have correctly replicated them in the agent based model. In addition, the 

interactions in the model between agents and between agents and their environment may 

not be a true representation of reality and the model results misleading. In defence, current 

models are already based on theories of human decision making such as rational choice 

behaviour which have been shown by behavioural economists to be flawed, and ABM does 

provide a framework in which the influence of relaxing some of these standard economic 

assumptions on model results can be explored. 

A task facing the ABM community is the development of standard procedures for the 

verification, calibration and validation of the models. The ODD protocol used in Chapter 6 is 

an attempt to provide standards for the approach to, and level of detail expected, when 

documenting an ABM.  Verifying the correct coding of a model is often handicapped by the 

use of proprietary software where the code covering some of the processes is hidden from 

inspection by others. These software packages make it easier to build ABMs but at the 

expense of full knowledge of the code that is implementing the model.  
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There are currently no formal standards for model validation as exist for four stage transport 

models in the UK. The potential of ABMs to offer multiple outcomes is both a help and a 

hindrance in this respect. It is more realistic to show a range of outcomes, as provided by an 

ABM, but it requires more observed data to validate the model results. Further work is 

required on developing approaches to the verification and validation of ABMs. Carley (1996) 

presents eight validation methods that can be applied to ABMs and may assist in addressing 

this issue:  

 Pattern validity: the pattern of results from the model match the pattern of the real 

data, judged by using statistical tests, matching by eye or ordinal pattern analysis 

(Thorngate, 2013) 

 Point validity:  when changing one variable at a time, the mean of the output matches 

the mean of the target observed data 

 Distributional validity: the distributional characteristics of the model output match 

those of the observed data, e.g. have similar means, standard deviations and shape. 

 Value validity: the specific results obtained from the model match the target data on a 

point by point basis. 

 Face validity: when the model is running it looks like reality and that the values of the 

agent attributes and any parameter values used look reasonable.  

 Parameter validity: the parameters used in the model match real data, collected for 

example by surveys and experiments  

 Process validity: the processes described in the model match the processes 

observed in the real world 

 Theoretical validity: the underlying theoretical constructs in the model provide better 

results than a simple linear model 

It should also be noted that difficulties in the verification, calibration and validation of models 

are not unique to ABMs. This is also a challenge for four stage models, particularly when 

they include variable demand processes, which change the overall number of trips as well 
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their mode, destination and sometimes time of travel. The standard validation reports 

required by the DfT concentrate on the model’s ability to replicate current conditions and 

comparisons of current traffic or passenger model flows with counts, and modelled journey 

times with observed journey times. Validation tests on a model’s ability to forecast change 

are restricted to testing the realism of the aggregate level of the demand change in the 

model as a result of changes in car fuel cost, car journey times and public transport fares. 

(DfT WebTAG Unit M2). 

The analysis of results from an ABM also poses a challenge due to the volume of results 

generated. Many ABM models include stochastic events and responses; so each model run 

will produce a different set of results. Many runs are therefore needed in order to determine 

the stability of the outputs, the range of the outputs and the average values. A criticism of 

ABM in practice is that practitioners do not perform sufficient runs or do not present the 

evidence to show that sufficient runs have been carried out. In addition, the complex 

situations which are often the subject of ABM may show a dependence on the initial 

conditions i.e. the final outcome is a result not just of the process of the model but of the 

initial state of the agents. This adds a further requirement that multiple model runs are 

carried out from a range of initial states to show if the model results are stable over a variety 

of starting conditions.  

9.5 Contribution to knowledge 

This research has contributed in a number of ways to the current knowledge of suitable 

methods for modelling ‘smarter choices’. The four stage transport modelling framework will 

always have limitations in its ability to handle ‘smarter choices’ measures because it 

operates at the level of matrices. Although continued enhancements to the logit model are 

welcome, they will not provide a way for this modelling framework to model many ‘smarter 

choices’ measures. This will require models with a higher degree of behavioural realism, 

operating at the level of the individual, and able to handle the very specific details of each 

person’s constraints and travel costs. (Section 7.4). 
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With many ‘smarter choices’ measures the policy maker is often deliberating on measures 

which will affect a small number of people, for example the number of people on a new bus 

service or the number of people who transfer to cycling. This increases the importance of 

using modelling methods which can produce good forecasts of changes in small numbers. 

Many of these interventions are short lived, so estimates of the change in these numbers 

over time are important for the production of accurate estimates of the value for money they 

will deliver.  

This study has shown that the agent based modelling approach provides an extremely useful 

method for working at the level of the person and can be used to build mode choice models 

which contain more realistic portrayals of the processes affecting travel decisions, such as 

the impact of habits. The simple model developed in this study is a contribution to knowledge 

as it shows that it is possible to introduce habitual behaviour into the modelling of mode 

choice. (Section 7.6). The introduction of habits into the mode choice modelling produces a 

model that forecasts the change in the elasticity of demand over time as a model output and 

shows that it is possible to model the lag in responses to a change in the transport system. 

This research shows that agent based modelling allows the building of models which can 

challenge the standard assumptions of neo-classical economics and bring the findings of 

behavioural economists and psychologists into transport planning. This research, for 

example, used the features of agent based modelling to build a model of mode choice that 

implements Triandis’ Theory of Interpersonal Behaviour. The greater realism of the 

patronage forecasts that such a model can produce, together with model results at far more 

points in time should, in turn, improve the quality of the business and financial cases 

produced for a range of ‘smarter choices’ measures, such as the time-limited funding of new 

bus services by developers. 
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The proof of concept model shows that with agent based modelling it is possible to code 

feedbacks directly into the model. (Section 7.5). This is important, as there is a tendency for 

mode choice models to over-estimate public transport patronage as it includes routes and 

services which will not actually be available as they are not going to be financially viable.   

This study has highlighted that aggregation bias occurs in demand forecasts, not only when 

average rather than specific costs are used for people (Bowman et al., 2006) but when 

common rather than specific preference functions are used. (Section 8.7.6). The model has 

shown that the variation in demand forecasts when using personal preference functions 

compared to functions for the typical segmentation employed in transport models can be 

non-trivial. It has shown that a segmentation based on latent classes can reduce the level of 

aggregation bias in a model as it groups together people with similar preference functions. 

This also points to the need to model transport at the individual level, so that a greater match 

can be achieved between each person’s modelled and actual preferences, in order to reduce 

the impact of aggregation bias on the model results.   

9.6 Future work 

Agent based modelling offers the immediate possibility of contributing to the improvement of 

the ability of transport models to model the impacts of many ‘smarter choices’ measures. 

The model in this project was written using python, the scripting language used in several 

commonly used four stage model software packages such as VISUM and EMME/4. This 

offers a way in which the benefits of ABM can be used to incrementally extend current 

models by storing the data on travellers at an individual level and aggregating it when 

required into an appropriate segmentation system for each stage in the model. Further work 

arising from this study is the writing of new routines within these current four stage modelling 

programmes to implement a change in the way data is stored and to enable the use of 

alternative agent based models for mode choice alongside the other modules available 

within these software packages. 
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The increased use of agent based models will require the collection of more and different 

data. Population synthesis techniques can be used to supplement current methods to build a 

database of all the travellers in an area and their characteristics. The use of more spatially 

accurate information on each traveller brings with it a requirement for more specific data on 

the journey options facing each traveller, covering their personal constraints and travel costs. 

Techniques need to be developed to build these more detailed datasets and to match the 

characteristics of agents with appropriate preference functions. The availability of new big 

data sources, such as mobile phone data which can track the movements and mode choices 

of the same individual over several weeks, may assist in this task. 

The inclusion of more behavioural aspects into transport models requires an understanding 

of the processes at work in the real world and ways of coding these processes into models. 

For example, this research has shown how coding habitual behaviour into the model can 

replicate the response to a change in bus fares observed over time with aggregate 

patronage data. More research is required into the trigger events which cause people to re-

evaluate their mode choice. In particular, the model could be extended to include the impact 

of the experience of delays experienced on recent past journeys on current choices or a rise 

in fares or parking charges above a personally tolerated threshold. 

Agent based models introduce the possibility of modelling the impact of the choices made by 

other people known to the agent on their own travel choice. For example it may be that a 

person’s willingness to cycle to work may be affected by the opinions and experience of 

people known to that agent. Research into the impact of social networks and social norms 

on personal decisions is now relevant to transport modelling as, with the use of ABM, the 

findings could be used to inform ways of incorporating these considerations into transport 

models. 

Further work is recommended on the impact of aggregation bias on the results from 

transport modelling work and the contribution of alternative segmentation techniques, such 
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as latent classes, in minimising the errors introduced by this often overlooked issue. The 

reduction of the error introduced into demand forecasts by the way the model is designed 

and operates is important, particularly for public transport schemes where the assessment of 

the financial viability of a service is very sensitive to the forecast number of passengers. 

Alongside the development of models using agent based techniques and more behaviourally 

realistic models, further work is required on ways to document, verify, calibrate and validate 

the models. These efforts would be assisted by further work on methods for analysing the 

large quantity of outputs generated by these models and visualising this material so as to 

assist both the modellers who develop and use the tools and the stakeholders with whom 

the results need to be communicated. 

9.7 Conclusions 

The four stage model has been used in transport modelling for over sixty years. Its 

endurance is due to the fact that it provides a way to tackle four questions which are central 

to the transport system: 

 How many trips will be made? (generation) 

 Where will they go? (destination) 

 How will they be made? (mode choice) 

 Which route will they use? (assignment) 

It has provided a way to consider the major changes to the supply side of the transport 

system such as the construction of new roads and public transport schemes. Now though 

these models are required to answer other questions, such as how will people respond to 

changes in the conditions on the transport network, will they change when they travel and 

where they travel to, and how can policy makers influence people’s travel choices? These 

questions have been tackled by others by extending the four stage model to include, for 

example, time of day choice and providing feedback loops between the modelling stages so 

that the output of each stage can influence the preceding stages. The ability of modellers to 
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further extend the four stage framework to meet the ever more sophisticated and detailed 

questions asked of transport models is restricted by: 

 the design of current software products, as they are based on a matrix system to 

store travel data; 

 the logit models used for mode, destination and time of day choices and the 

elasticities used for trip frequency responses are based on observed mathematical 

relationships rather than the underlying behavioural processes; and 

 the lack of capability to model the detail of the circumstances of individuals and the 

external and personal constraints on their transport choices. 

This research has shown that the agent based modelling approach can increase the ability 

of transport models to predict the potential impacts of ‘smarter choices’ measures. By 

building models with the individual as the key model unit, it becomes possible to build 

models that can take well-established tools developed within the four stage modelling 

framework and extend these to take advantage of the additional detail, processes and 

relationships that can be captured in agent based models as a means of bringing ‘smarter 

choices’ into multi-modal models.  
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Appendices 

Appendix 1: Modelling workplace travel plan initiatives 

This appendix presents and extends a table produced by WSP (2008) which considers how 

standard four stage transport models can be extended to include workplace travel plan 

initiatives. The table considers four groups of measures: 

 
Group 1: Measures that are already represented by existing models 
 
Group 2: Measures that are already represented or approximated by best practice models 
only 
 
Group 3: Effects can be modelled specially using existing techniques, if supported by robust 
employee surveys 
 
Group 4: Individual effects not well understood to support transport modelling.  
 
 
 
Each measure is considered with regard to current modelling guidance from the DfT, known 

as WebTAG, and whether more data is needed to understand the scale and nature of the 

response to be modelled. The final column has been added here to illustrate how agent 

based modelling may address the issues raised for the modelling of each measure.
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Group .Possible component 
Measures within an 
initiative 

Expected demand 
Responses 

Can use standard 
Modelling methods 
covered by 
WebTAG? 

Is there a general 
need 
to enhance 
operational 
models? 

Is there a need for 
further empirical 
evidence? 

Relevant ABM 
characteristic 

 
1 

New conventional bus 
or rail services linking to 
site/area 

Increase in 
bus/rail 
mode share 

Yes Effects can be 
represented 
only if the model zones 
are detailed enough 

 

Not essential Individual recording of 
agent characteristics 
e.g. location relative to 
transport services 

 
1 

‘Work buses’ between 
site and town centre that 
can be used by any 
traveller 

Increase in 
bus mode 
share 

Broadly yes Effects can be 
represented 
only if the model zones 
are detailed enough to 
identify the site 

 

Not essential Individual recording of 
agent characteristics 
e.g. location relative to 
transport services 

 
1 

Dedicated ‘work buses’ 
between 
site and town centre 

Increase in 
bus mode 
share 

Broadly yes Effects can be 
represented 
only if the site and the 
workers from the site 
can 
be identified in demand 
modelling 

Not essential Individual recording of 
agent characteristics 
e.g. location relative to 
transport services 

 
1 

Subsidised fares; 
Interest-free season 
ticket loans 

Increase in PT mode share Broadly yes - Can 
reflect the effective 
reduction in  
commuting fares 

Not for reflecting the 
effective reduction in 
commuting fares 

 

Yes Individual recording of 
agent characteristics 
e.g. fare paid for 
transport services 

 
1 

Special deals to reduce 
the cost of bus and rail 
commuting 

Temporary deals have 
probably no extra effects 
over and above PT 
information  provision 

Yes, as part of 
commuting fares 

Not for reflecting the 
effective reduction in 
commuting fares 

 

Not essential Individual recording of 
agent characteristics 
e.g. fare paid for 
transport services. 
Can change costs for 
a short period of time. 

 
1 

Parking ‘cash out’ 
(payment on 
days of not driving) 

 

Reduction in 
car mode 
share 

As reduction in non-
car travel costs 

No Not essential Individual recording of 
agent characteristics 
e.g. fare paid for 
transport services 

 Car parking restricted to Reduction in As restraint in Most models would not Yes Individual recording of 
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2 essential users car mode 
share 

capacity, although 
this assumes that 
parking is well 
represented in 
demand modelling 

be able to segment 
between essential and 
non-essential users, 
and would need to 
approximate the effects 

agent characteristics 
e.g. permission to park 
at certain locations 

 
2 

Parking charges Reduction in 
car mode 
share 

No – the general 
principles of demand 
modelling applies 
but there is no 
comprehensive 
advice on parking 

Most models do not 
represent parking well 
and would require 
enhancement 

Not essential Individual recording of 
agent characteristics 
e.g. fare paid for 
transport services 

 
3 

Car sharing 
scheme 

Increase in car occupancy 
And reduction of single 
occupancy car trips – likely 
to have higher take-up 
rates within a large pool of 
workers who have nearly 
identical arrival and 
departure times 

Not covered as a 
matter of course 

Yes Yes Individual recording of 
agent characteristics 
e.g. location of home 
and work place, 
proximity to others with 
similar details, 
networks modelled 

 
3 

Preferential car 
parking for 
sharers 

Increase of car sharing 
probably – although the 
potential scale of the effect 
is not known 

No Yes Yes Individual recording of 
agent characteristics 
e.g. permission to park 
at certain locations 

 
4 

Demand activated bus 
services (variable 
routes, bus-taxis) 

Increase in bus mode share No Yes Yes Individual recording of 
agent characteristics, 
e.g. waiting time for pt 
service 

 
4 

Giving all staff 
public transport 
information 

Increase in PT mode share, 
if associated with improved 
services/facilities 

Bluntly as part of the 
mode specific 
constant 

Additional work 
required to quantify 
implicit mode specific 
constants in the case of 
incremental demand 
models 

Yes Networks, history of 
agent, recorded 
whether each 
individual is aware of 
their travel options 

 
4 

Offering 
personalised 
journey plans to 
staff 

Possible increases in PT 
walk and cycle share, if 
associated with improved 
services/facilities 

Bluntly as part of the 
mode specific 
constant 

Additional work 
required to quantify 
implicit mode specific 
constants in the case of 
incremental demand 
models 

Yes Networks, history of 
agent, recorded 
whether each 
individual is aware of 
their travel options 

 Secure cycle More cycle mode share, Bluntly as part of the Additional work Yes Individual recording of 
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4 parking although minimal effects if 
implemented in isolation 

mode specific 
constant (if cycle is 
identified as a 
separate mode) 

required to quantify 
implicit mode specific 
constants in the case of 
incremental demand 
models 

agent characteristics 
e.g. access to secure 
cycle parking 

 
4 

Changing/shower 
facilities at work 

More cycle mode share, 
although minimal effects if 
implemented in isolation 

Bluntly as part of the 
mode specific 
constant (if cycle is 
identified as a 
separate mode) 

Additional work 
required to quantify 
implicit mode specific 
constants in the case of 
Incremental demand 
models 

Yes Individual recording of 
agent characteristics 
e.g. access to showers 

 
4 

Business cycle 
mileage 
allowance 

More cycle 
mode share, although 
limited by daily activity 
patterns 

Limited - as a 
reduction in cycling 
cost, although no 
empirical model is 
known to indicate 
the trade-off 
between cycle 
mileage costs and 
travel 
time/convenience 

Yes, if the scale of 
effects is found to be 
significant 

Yes Individual recording of 
agent circumstances 
e.g. business cycle 
mileage allowance 

 
4 

Services on site 
to reduce need to 
travel (cafeteria, 
convenience 
shop, cash 
dispenser) 

Reduction of some 
convenience shopping trips 
from the site 

Yes, if distribution 
modelling cover 
these trips 

Most models would not 
be able to identify 
convenience shopping 
from other personal 
trips, and would need to 
approximate the effects 

Yes Individual recording of 
agent characteristics 
e.g. location relative to 
services 

 
4 

Encouraging 
Teleworking 

Reduction in commuting 
trips in the short term and 
possible longer term 
changes in residential 
location and daily activity 
patterns; increase in other 
trips during the day 

Not completely: Yes 
for reductions in 
commuting trips, if 
the model can 
identify staff 
categories that can 
telework; 
No for forecasting 
take-up rates, 
frequencies and 
saturation levels of 
telecommute, home 
location changes, 
and associated 

Yes Yes - The 
effects of 
teleworking on 
commuting patterns 
are believed to be 
significant but there 
is a need for 
substantial further 
research to 
ascertain the nature 
and scale of effects 

Individual recording of 
agent characteristics 
e.g. permission and 
ability to tele-work 
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increases in other 
trips. 

 
4 

Flexible working hours / 
compressed working 
hours to e.g. a 4-day 
week, or commuting 
during inter-peak or off-
peak periods 

Reduction in peak time 
travel 

Not completely: 
Yes for reductions in 
commuting trips, if 
the model can 
identify staff 
categories that can 
flexiwork. 
No for associated 
changes in daily 
activity patterns 

Yes Yes Individual recording of 
agent characteristics 
eg ability to vary 
working hours 
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Appendix 2: DfT Climate Change and Transport Choices Dataset  

The main dataset used in this research project was collected for a study commissioned by 

the UK Department of Transport (DfT) to ‘identify and quantify groups or segments within the 

population that differ in terms of the factors relevant to reducing CO2 emissions from 

personal transport use’. The motivation for the study was the belief that a better 

understanding of the segments within the adult population in England would assist the DfT 

and others ‘to develop more targeted and effective sustainable behaviour initiatives’. The 

segmentation analysis produced by the study team was made available for use by local 

authorities bidding for large projects and small projects (Tranche 2) to the DfT’s Local 

Sustainable Transport Fund.  

The study was undertaken as a response to the findings of a series of reviews 

commissioned by the DfT to understand if and how individual’s awareness of and attitude 

towards climate change affected their travel behaviour. A study of the evidence on public 

attitudes to climate change and travel (Anable et al., 2006) had noted that the UK population 

was not homogeneous in respect of its attitudes and desire to reduce carbon emissions from 

personal travel and that attempts by central government to influence travel choices would be 

more effective if, rather than a ‘one size fits all’ campaign the marketing was more targeted 

at distinct segments. 

They noted that demographic characteristics alone were insufficient to define these targets 

and that a segmentation exercise should also take into attitudes towards climate change, 

motivations for and barriers against changing travel behaviour and how other relevant 

psychological factors also vary between people.  

A subsequent qualitative study for the DfT (King et al., 2009) explored in more depth public 

attitudes to climate change and transport, considering their motivations for and barriers 

against changing personal travel behaviour. They reported that although increasing a 

person’s awareness of climate change appeared to increase their willingness to change their 
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own travel behaviour this was not translated into an actual change in their behaviour. The 

findings of the evidence review (2006) and the qualitative research (2009) were used to 

inform the design of the DfT Climate Change and Transport Choices segmentation study 

(2010, 2011) which produced the dataset used in the agent based model of commuter mode 

choice. 

Quantitative survey 

The DfT segmentation study consisted of two parts; a quantitative survey was used to collect 

the data for use in the construction of a segmentation model for the UK population and a 

qualitative survey was held to better understand the attitudes, behaviours and characteristics 

of each of the segments. The quantitative survey consisted of over 3900 face to face 

interviews carried out between November 2009 and June 2010, except for between 5 March 

and 21 May 2010 when contact with the public was suspended due to the general election 

held on 6 May 2010. The survey was designed to explore the respondents’ attitudes and 

actual behaviour regarding travel and climate change. It concentrated on their current trips 

by car to work, school or college, business travel and regular and smaller food shopping trips 

as the evidence reviews indicated that these types of trips offered the most potential for 

reducing carbon use in transport through changes such as trip reducing the number of trips 

made, switching to the use of modes which had lower carbon emissions or purchasing cars 

which produced less emissions. 

The questionnaire consisted of four sections. The first section started with questions to 

record the respondents current travel behaviour and their attitudes towards different modes 

of transport. The second section of the survey was a choice modelling exercise designed to 

uncover which of a set of factors (mode, time taken, cost and CO2 emissions) most affected 

a respondents’ mode choice, the relative value placed on each of these factors and level of 

inherent like or dislike of each mode. In the choice modelling section a respondent was 

shown three options for a specific journey. Each option gave the mode, journey time, cost 
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and CO2 emissions for that option. The respondent picked their most favoured option or 

could choose not to travel at all. Each respondent was always asked about the same journey 

but the characteristics of each of the available options varied every time. In all each 

respondents was asked carry out this task for 10 sets of options.  

The third section asked about the respondent’s attitudes towards climate change issues. The 

questions were asked in this order to reduce the tendency of people to answer in a more 

environmentally favourable way if the issue of climate change had recently been raised with 

them. In order to reduce the risk of social desirability bias i.e. respondents producing the 

answer they think would be received favourably by the interviewer and others, more 

sensitive questions were answered directly by the respondent onto a computer privately. The 

final section asked about key demographic factors and other factors which might be used to 

classify respondents in the segmentation model and to calculate survey weights. A 

segmentation model was built using the results of sections 1, 2 and 4 of the quantitative 

survey in autumn 2010. 

Qualitative survey 

The qualitative research was then undertaken in November and December 2010. It 

consisted of 14 focus groups, the members of each group belonged to the same segment, 

as identified in the segmentation model. The aim of the focus groups was ‘to test the 

segmentation and further understand the barriers and motivations towards using various 

modes of transport or sustainable travel behaviours’. The results of the focus groups have 

not been reported separately but were used together with the results of the quantitative 

survey in the writing of the final report on the segmentation model (DfT July 2011) which 

describes the demographic, behavioural and attitudinal factors of each of the segments in 

turn.  
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Choice modelling data 

The survey questions and the responses are available on the DfT Website for sections one, 

three and four of the quantitative sections. The choice modelling exercise and responses are 

not publicly available. This section of the survey was carried out using proprietary market 

research survey produced by Sawtooth. The interim report on the quantitative surveys 

(2010) contains a chapter on the choice modelling. As a check on the data files, the files 

retrieved from the project archive were re-analysed using the Sawtooth software and the 

results matched with those reported in the interim report. The re-run results were found to be 

perfect replications of those recorded in the interim report. 

The choice modelling results for each person were used to calculate the value they placed 

on each element of a journey option i.e. the mode, time, cost and CO2 emissions. The value, 

or utility, placed on these elements for each individual was then merged into the data set that 

contained their responses to the other three sections of the quantitative survey. 

 


