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The M=2.9 supersonic turbulent flows over a tandem expansion-compression corner configuration with a sharp deflection 

angle of 25° at three Reynolds numbers Re𝛿= 20000, 40000 and 80000 were studied by using direct numerical simulation 

(DNS). The flow statistics were validated against available experimental measurements and other numerical predictions. The 

flow structures and turbulence statistics were detailed visualized and analysed for the Re𝛿= 40000 case, especially in the 

interaction region where flow separation and reattachment occurred. It was found that during the expansion process the 

boundary layer exhibited a characteristic two-layer structure also discovered in previous experimental studies, and the 

turbulence evolved differently within these two layers. In the outer layer the turbulence was consistently suppressed along the 

ramp to a large extent, while in the inner layer it was suppressed only in a small region around the expansion corner, and the 

near-wall quasi-streamwise vortices were well preserved. Flow patterns near the reattachment line have shown the existence 

of the Görtler-type vortices, which would largely amplify turbulence fluctuations in the near-wall region, thus promoting the 

regeneration of wall turbulence that in turn contributed to the redevelopment of a downstream turbulent boundary layer. The 

Reynolds number effects and the characteristics of coherent structures were also discussed. With the increase of the Reynolds 

number, the separation bubble size decreased, but the pattern and the characteristic size of wall streamlines near the 

reattachment line were preserved. 
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I. INTRODUCTION 

Shock-wave/turbulent boundary layer interactions (SWTBLI) are prevalent phenomena in high-speed flights. The 

resultant strong adverse pressure gradient (APG) caused by SWTBLI will induce large flow separation, high wall heat flux 

and strong pressure fluctuation, along with other complex physical phenomena
1-4

. Therefore, SWTBLI significantly affects 

the aerodynamic and thermodynamic loads of the flying vehicles and also the performance of their propulsion systems. 

Among various kinds of SWTBLI, the supersonic flow over a tandem expansion–compression corner has been tested in wind 

tunnels as a model representing a class of expansion-compression flows, such as fore-body, intake, combustion chamber and 

nozzle of high-speed flying vehicles. In an expansion–compression corner configuration shown in FIG. 1, the supersonic 

flow is accelerated and turned along with a convex streamline curvature through the expansion fan at the expansion corner 

(EC), then compressed by the shock-wave around the compression corner (CC)
2
. The boundary layer in the compression 

corner region can be either attached or separated, depending on the shock-wave strength. This kind of flow is essentially in a 

non-equilibrium state, due to the strong interactions among turbulence, expansion-wave and shock-wave. 

 
 

FIG. 1. A sketch of an expansion–compression corner configuration: ‘S’ – separation point; ‘R’ – reattachment point; ‘EC’ – expansion 

corner; ‘CC’ – compression corner, ‘’ – defection angle. 

Despite of the importance of the expansion–compression corner flow in high-speed vehicles, it has not been studied as 

much as supersonic compression corner flow or impinging shock-wave/boundary layer interactions
2-4

. Early researches 

mainly focused on the pressure gradient and the curvature effects of the expansion part of the configuration, including the 

increase of the boundary layer thickness, the reduction of turbulence intensity and heat transfer, the stabilization and the re-

laminarization of the boundary layer during the expansion process, etc.
5-16

 A comprehensive review of researches on the 

supersonic flow passing an isolated expansion corner was presented by Knight et al.
2
  

The suppression of turbulence during the expansion process
6,10,12- 17

 is a significant characteristic in expansion-

compression corner flows, and could cause the re-laminarization of the boundary layer when the flow undergoes a strong 

expansion process.
11,12,17

 The reason for the turbulence being suppressed could be related to the combined effects of the 

favourable pressure gradient (FPG), the convex curvature of streamlines and the bulk dilatation (see the review of Knight et 
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al.
2
). Early researches into the FPG and bulk dilatation effects were conducted for turbulent boundary layers with simple 

geometries, such as the suppression of Reynolds stresses and turbulence transport due to the FPG and bulk dilatation in a 

supersonic boundary layer studied by Morkovin
6
 and Lewis et al.

10
 The streamline curvature effect was also discussed in 

previous researches, most of them
18-20

 being focused on the boundary layer with constant curvature. The relation between the 

boundary layer parameters and the curvature was the primary interest of those studies.  

Sternberg
5
 proposed the first model for the boundary layer structure in the supersonic flow around a cone-cylinder 

configuration on the basis of experimental observations. According to this model, the initial turbulent boundary layer on the 

cone surface becomes laminar close to the wall immediately behind the junction of the cone with the cylinder. However, 

transition of this laminar boundary layer to turbulence happens again on the cylindrical surface at some distance downstream 

of the surface discontinuity. Consequently, a specific two-layer structure develops behind the expansion corner because the 

initial boundary layer from the cone remains and develops as a turbulent shear layer above the appeared near-wall laminar 

boundary layer. Based on the experimental observations in a specially designed curved channel, Gillis et al.
20

 also proposed a 

two-layer model for the boundary layer flow during the expansion and the recovery processes, which includes the near-wall 

active layer where turbulence is anisotropic and still in production, and the outer layer containing nearly isotropic ‘debris’ 

inherited from the upstream thick boundary layer. The two-layer model was adopted by Zakkay et al.
14

 to treat the boundary 

layer and surface heat transfer past a sharp expansion corner. 

The considered two-layer model was confirmed by later detailed experimental investigations, for example, by Dussauge 

and Gaviglio
12

 as well as by Goldfeld et al.
17

. According to these experiments, the partial re-laminarization of the boundary 

layer downstream of the expansion corner at a sufficient favourable pressure gradient is possible. The near-wall part of the 

boundary layer becomes laminar and is well described by the theoretical Blasius mean velocity profile.
17

 The thickness of this 

part of the boundary layer is significantly larger than the typical values of the laminar sub-layer (also called linear sub-layer) 

of the turbulent boundary layer. At the same time, the external part of the boundary layer does not have a clear logarithmic 

section, but there is a typical wake component of a turbulent velocity profile. The action of a strong FPG leads to a significant 

decrease in the levels of velocity fluctuations
12

 and mass-flow fluctuations
17

 immediately behind the expansion corner. The 

profile of the mass-flow fluctuation in the re-laminarization region corresponds to the two-layer boundary layer structure with 

two peaks. One of the peaks is at the boundary-layer edge and increases insignificantly downstream. The other peak is in the 

near-wall part of the boundary layer immediately behind the corner and rapidly increases downstream. A similar tendency of 

the increase of near-wall velocity fluctuation peaks was also observed.
12
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Zheltovodov et al.
21-24

 conducted systematic and comprehensive measurements on the expansion–compression corner 

flow problems in early 1990s and derived three basic characteristics of the flow regimes: (1) the attached flow at a small 

angle , (2) the appearance of a local separation zone in the CC region with a free separation point at a moderate angle , and 

(3) the formation of a large-scale separated flow with a fixed separation point at a large angle . The relationship between the 

characteristic length of flow separation and the incoming boundary layer thickness and Mach number was revealed by 

Zheltovodov and Schülein
22

 as well as by Zheltovodov et al.
24

 The appearance of Görtler-type vortices were also reported by 

Zheltovodov et al.
21

 with the help of the surface oil flow pattern visualization.  

Later, Borisov et al.
25

, Zheltovodov et al.
26

, Zheltovodov and Horstman
27

, as well as Horstman and Zheltovodov
28

 

conducted joint researches combining numerical simulations and experimental measurements. It was found that Reynolds-

Averaged Navier–Stokes (RANS) method, with different turbulence models, could give fairly good predictions of general 

flowfield features, except for the non-equilibrium region of the flow, where the separation and reattachment points were over-

predicted. Moreover, the prediction of the surface heat transfer coefficient was totally misleading (see the survey by 

Zheltovodov
3
). Therefore, the credibility of applying RANS-based approaches for in-depth researches of this type of high-

speed flows is quite limited, due to the incapability of turbulence models in predicting complex non-equilibrium turbulent 

flows. Hence, more accurate and high-fidelity numerical methods such as direct numerical simulation (DNS) and large-eddy 

simulation (LES) would be necessary to investigate this kind of flow phenomena. 

In DNS and/or LES, small-scale turbulence fluctuations can be either directly resolved or modelled up to the sub-grid 

scale (SGS) level. Therefore, they can provide detailed flow information and accurate predictions. Nowadays, DNS and LES 

are playing very important roles in turbulence simulations and its modelling
29

. The first LES of the expansion–compression 

corner flow was conducted by Knight et al.
30

 at Mach=2.88, 𝛽 = 25° and Re𝛿 = 20000. The flow conditions were similar to 

that of the experiments conducted by Zheletovodov et al.
21,23,24,31

, apart from a lower Reynolds number used due to the 

limitation of computing resources. Knight et al.
30

 adopted Monotone Integrated Large Eddy Simulation (MILES) method 

with the second-order Godunov scheme for the spatial discretization on an unstructured tetrahedral mesh. Their MILES 

results have shown general good agreement with the experimental measurements. Recently El-Askary
32

 conducted another 

LES with the same flow condition as that of Knight et al.
30

 Again, the MILES methodology was adopted together with the 

second-order upwind-biased scheme. These two previous LES studies were both conducted at a low Reynolds number of 

Re= 20000 with similar numbers of mesh cells. The LES of El-Askary
32

 has shown better predictions of velocity profiles, 

mean wall pressure and wall skin friction coefficients than those of Knight et al.
30

, probably due to the improved mesh 

quality.  
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In general, the SGS model used in the LES of a compressible flow containing shock-waves can be very misleading, due 

to the numerical dissipations arising from the shock-capturing scheme, which would make the effect of the SGS model 

dominated by the numerical scheme
33

. This was partly the reason for the two previous LES studies of Knight et al.
30

 and El-

Askary
32

, discarding the SGS model and taking the MILES methodology instead. With the development of computer power 

and computational technology, it is now possible to perform higher-order DNS for this flow problem on finer meshes to 

obtain more detailed and accurate results at low to moderate Reynolds numbers.  

In this paper, we are going to present a series of DNS studies of supersonic Mach 2.9 flows over an expansion–

compression corner of a 25° deflection angle. Three Reynolds numbers considered are Re𝛿 = 20000, 40000 and 80000, in 

which the case of Re= 20000 corresponds to the flow conditions of the two previous LES studies.
30,32

 The cases of Re= 

40000 and 80000 are chosen to approach the flow conditions of the experiments of Zheltovodov et al.
21-24,31

, which have been 

presented in a generalized view by Knight et al.
2,30

. The DNS results will be validated by comparing with experimental 

measurements and other available numerical simulation data. The detailed turbulence structures and flow statistics will be 

analysed, and the Reynolds number effect will be discussed accordingly. 

II. COMPUTATIONAL SETUP 

A. Governing equations 

The three-dimensional unsteady compressible Navier-Stokes (N-S) equations in a general, time-invariant, curvilinear 

coordinate system are solved numerically in the frame of the high-order finite difference method. The N-S equations are non-

dimensionalized with the reference length 𝐿0, and velocity 𝑢0, temperature 𝑇0, density 𝜌0, and dynamic viscosity 𝜇0 of the 

incoming free stream flow. The resulting dimensionless parameters are Reynolds number 𝑅𝑒 =  𝜌0𝑢0𝐿0/𝜇0  and Mach 

number 𝑀 = 𝑢0/√𝛾𝑅𝑇0. A constant Prandtl number Pr = 𝜇 𝐶𝑝 𝑘⁄ = 0.72 is used, where 𝐶𝑝 = 𝛾𝑅/(𝛾 − 1) is the specific 

heat capacity of gas at a constant pressure and k is the thermal conductivity. Parameters 𝑅 and 𝛾 are the specific gas constant 

and the specific heat capacity ratio, which are set to 𝑅 = 287.1 𝐽/(𝐾𝑔 ∙ 𝐾)  and 𝛾 = 1.4 , respectively This set of N-S 

equations can be written in a strong conservation form as  

𝜕(𝐽𝑸)

𝜕𝑡
+

𝜕(𝑬̂−𝑬̂𝑣)

𝜕𝜉
+

𝜕(𝑭̂−𝑬̂𝑣)

𝜕𝜂
+

𝜕(𝑮̂−𝑮̂𝑣)

𝜕𝜁
= 0,                              (1) 

where the coordinate transformation between the physical domain (𝑥, 𝑦, 𝑧) and the computational domain (𝜉, 𝜂, 𝜁), can be 

described by the following equations: 

𝑥 = 𝑥(𝜉, 𝜂, 𝜁), 𝑦 = 𝑦(𝜉, 𝜂, 𝜁), 𝑧 = 𝑧(𝜉, 𝜂, 𝜁).                      (2) 
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In Eq. (1), 𝐽 = |𝜕(𝑥, 𝑦, 𝑧) 𝜕(𝜉, 𝜂, 𝜁)⁄ | is the Jacobian of the coordinate transformation and 𝑸 = [𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝐸]𝑻 is the 

solution vector. The primary variables are the density 𝜌, the velocity component 𝑢, 𝑣, 𝑤, and the total energy 𝐸. The static 

temperature 𝑇 and the pressure 𝑃 are related to the density 𝜌 via the equation of state of the ideal gas law 𝑃 = 𝜌𝑇 (𝛾𝑀2)⁄ . 

The convection and diffusion terms in (1) are respectively defined as  

𝑬̂ =

[
 
 
 
 
 

𝜌𝑈̂

𝜌𝑢𝑈̂ + 𝜉𝑥𝑃

𝜌𝑣𝑈̂ + 𝜉𝑦𝑃

𝜌𝑤𝑈̂ + 𝜉𝑧𝑃

(𝐸 + 𝑃)𝑈̂ ]
 
 
 
 
 

, 𝑭̂ =

[
 
 
 
 
 

𝜌𝑉̂

𝜌𝑢𝑉̂ + 𝜂̂𝑥𝑃

𝜌𝑣𝑉̂ + 𝜂̂𝑦𝑃

𝜌𝑤𝑉̂ + 𝜂̂𝑧𝑃

(𝐸 + 𝑃)𝑉̂ ]
 
 
 
 
 

, 𝑮̂ =

[
 
 
 
 
 

𝜌𝑊̂

𝜌𝑢𝑊̂ + 𝜁𝑥𝑃

𝜌𝑣𝑊̂ + 𝜁𝑦𝑃

𝜌𝑤𝑊̂ + 𝜁𝑧𝑃

(𝐸 + 𝑃)𝑊̂ ]
 
 
 
 
 

,                     (3) 

and 

𝑬̂𝒗 =

[
 
 
 
 
 

0
𝜉𝑥𝑖𝜏𝑖1

𝜉𝑥𝑖𝜏𝑖2

𝜉𝑥𝑖𝜏𝑖3

𝜉𝑥𝑖𝑏𝑖 ]
 
 
 
 
 

, 𝑭̂𝒗 =

[
 
 
 
 

0
𝜂̂𝑥𝑖𝜏𝑖1

𝜂̂𝑥𝑖𝜏𝑖2

𝜂̂𝑥𝑖𝜏𝑖3

𝜂̂𝑥𝑖𝑏𝑖 ]
 
 
 
 

, 𝑮̂𝒗 =

[
 
 
 
 
 

0
𝜁𝑥𝑖𝜏𝑖1

𝜁𝑥𝑖𝜏𝑖2

𝜁𝑥𝑖𝜏𝑖3

𝜁𝑥𝑖𝑏𝑖 ]
 
 
 
 
 

.                                           (4) 

Here, 𝜉𝑥 = 𝐽 𝜕𝜉 𝜕𝑥⁄ . The standard Einstein summation notation is used and notations 𝑥𝑖, 𝑢𝑖  and 𝜉𝑖, 𝑖 = 1,2,3 are adopted 

to represent (𝑥, 𝑦, 𝑧), (𝑢, 𝑣, 𝑤) and (𝜉, 𝜂, 𝜁), respectively, and the contravariant velocity components and the total energy are 

written as  

𝑈̂ = 𝜉𝑥𝑖𝑢𝑖 , 𝑉̂ = 𝜂̂𝑥𝑖𝑢𝑖 , 𝑊̂ = 𝜁𝑥𝑖𝑢𝑖,                                                                 (5) 

and  

𝐸 =
1

2
(𝜌𝑢𝑖𝑢𝑖) +

𝜌𝑇

𝛾(𝛾−1)𝑀2.                                                                           (6) 

The stress tensor and the heat flux vector are expressed as  

𝜏𝑖𝑗 =
𝜇

Re
(

𝜕𝑢𝑖

𝜕𝜉𝑘

𝜕𝜉𝑘

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝜉𝑘

𝜕𝜉𝑘

𝜕𝑥𝑖
−

2

3
𝛿𝑖𝑗

𝜕𝑢𝑙

𝜕𝜉𝑘

𝜕𝜉𝑘

𝜕𝑥𝑙
),                                                      (7) 

and  

𝑏𝑖 = 𝑢𝑗𝜏𝑖𝑗 +
𝜇

PrRe(𝛾−1)𝑀2

𝜕𝑇

𝜕𝜉𝑘

𝜕𝜉𝑘

𝜕𝑥𝑖
.                                                                     (8) 

The dynamic viscosity coefficient 𝜇 is calculated via the Sutherland law: 

𝜇 = 𝑇1.5 𝑇𝑆 𝑇0⁄ +1

𝑇+𝑇𝑆 𝑇0⁄
,                                                                                          (10) 

where 𝑇0 = 104.4𝐾 and 𝑇𝑆 = 110.4𝐾 according to the experiment condition
31

. 

B. Numerical scheme 

To properly resolve small-scale turbulence structures in the compressible turbulence with shock-waves, the convection 

terms of the N-S equations are solved by using the newly developed seventh-order low-dissipative monotonicity-preserving 
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(MP7-LD) scheme
34

, which is optimized from the original MP scheme of Suresh and Huynh
35 

by reducing both the linear 

dissipation and the nonlinear error. This scheme has been successfully used in DNS of shock-wave/isotropic turbulence 

interaction
34

 and impinging shock-wave/flat-plate boundary layer interaction
36

 and it was proved that the MP7-LD scheme 

has the same ability as the original MP scheme in capturing shock waves and with a better performance in resolving small-

scale turbulent fluctuations
34,36

. 

The diffusion terms of N-S equations are solved with the sixth-order compact scheme
37

. The primitive velocity 

components 𝑢𝑖 and temperature variable T are differentiated firstly to formulate the stress tensor and the heat flux vector at 

each node point. The diffusion terms are then computed with another application of the sixth-order compact scheme
38

. This 

method is more efficient than direct calculation of the second-order derivatives
39

, although the latter method can be 

numerically more stable. After all the spatial terms are solved, the third-order TVD Runge–Kutta method
40

 is used for the 

time integration. The geometry matrix of the grid transformation is also calculated with the sixth-order compact central 

scheme in the conservation form
41

 to preserve the accuracy of the solution. 

C. Boundary condition 

In DNS/LES of turbulent boundary layers, the generation of the inlet turbulence fluctuations is an important issue and 

some efforts have been made in the past. In the present research, the digital filter method proposed by Touber and 

Sandham
42,43

 is used to generate synthetic inflow turbulence. This method is very competitive compared with the widely used 

rescale-reintroduce method
44,45

 in terms of the domain requirement for the transition region
46

 and thus has the benefit of 

avoiding any further constraints such as numerical periodicity.  

After the random inflow fluctuations are generated by using the digital filter method with prescribed Reynolds stress 

components fitted from the incompressible DNS data of Wu and Moin
47

, they are super-imposed onto mean velocity and 

temperature profiles of the turbulent boundary layer and the supersonic inflow condition is then used to prescribe the flow 

variables at the inlet plane, except for the subsonic portion of the boundary layer, where the pressure is extrapolated from the 

inner grid points.  

At the far-field and the outlet plane, the generalized non-reflecting boundary condition is used to calculate flow 

variables
48,49

. Along the bottom wall, the isothermal non-slip condition with the fixed wall temperature 𝑇𝑊 = 2.51𝑇0 is used 

at the wall. The periodic condition is used in the spanwise direction. 

D. Computational domain and flow conditions 

The computational domain is sketched in FIG. 2, normalized with the nominal boundary layer thickness 𝛿𝑟𝑒𝑓  at the 

reference plane x = 0 (not the inlet plane) and the expansion corner is placed 4𝛿𝑟𝑒𝑓 downstream of the reference plane. In 
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order to be consistent with the experiments of Zheltovodov et al.
21, 24, 31

 as well as the LES of Knight et al.
30

 and El-Askary
32

, 

the deflection angle of the backward-facing ramp is set to be 𝛽 = 25°, and the vertical distance between the two horizontal 

flat plates is ℎ = 3𝛿𝑟𝑒𝑓. The detailed information about the domain sizes and meshes of three case studies is given in TABLE 

I. Unless otherwise stated,  𝛿𝑟𝑒𝑓 is used as the reference length scale hereafter. Case 1 has a slightly finer mesh resolution 

than that of the Case 2 and Case 3, and they all satisfy the DNS spatial resolution requirement recommended by Sagaut
50

 for 

the wall-bounded turbulent flows.  

 
 

FIG. 2. The sketch of the Computation domain of Case 1. 

 
TABLE I. Domain size and mesh parameters.  

 𝑅𝑒𝛿𝑟𝑒𝑓
 x0 xmax ymax Zmax Nx×Ny×Nz (∆𝑥𝑚𝑎𝑥

+ , ∆𝑥𝑚𝑖𝑛
+ ) (∆𝑦1

+, ∆𝑦𝑒
+) ∆𝑧+ 

Case 1 19983.8 -16.9 33.2 6 6 1420×120×256 (6.7, 1.3) (0.68, 7.3) 4.3 

Case 2 40934.2 -13.6 33.4 6 5 2020×120×300 (8.1, 1.6) (0.52, 15.8) 5.7 

Case 3 80051.0 -11.9 23.7 6 3 2620×200×400 (9.3, 1.9) (0.72, 17.2) 7.5 

* x0 denotes the location of the inlet plane. xmax, ymax, zmax stand for the locations of the outlet plane, far-field plane and 

spanwise size. Nx×Ny×Nz indicates the number of mesh points in each direction.  ∆𝑥𝑚𝑎𝑥
+  and ∆𝑥𝑚𝑖𝑛

+  stand for the maximum 

and minimum mesh spaces in the x direction. ∆𝑦1
+ and  ∆𝑦𝑒

+ means the mesh space in the y direction at the first point away 

from wall and the edge of the boundary layer for the reference location. 

By referencing the numerical experiments of Touber and Sandham
42

 and Morgan et al.
46

, the distance between the inlet 

plane and the reference plane x0 is sufficient long for the synthetic fluctuations being evolved to be a fully-developed 

turbulence in the present studies. The spanwise domain is also wide enough to contain several large-scale flow structures 

such as the Görtler vortices
21,51

. To eliminate the possible reflection of numerical disturbances from the boundaries, two 

sponge layers each with 15 and 20 layers of stretched meshes and a low-order Laplacian filter proposed by Gloerfelt and 

Lafon
52

 are incorporated near the far field and the outlet planes, respectively. 
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The present DNS mesh (as shown in FIG. 3) has straight and perpendicular lines in all three directions, except for corner 

regions, where the mesh lines are gradually curved towards the normal of the ramp surface in order to achieve the balance 

between the grid orthogonality and the grid smoothness. The mesh is uniformly distributed in the spanwise (z) direction and 

hyperbolically stretched in the wall-normal direction to increase the resolution in the near wall region with the formula: 

𝑦(𝜂) = y𝑚𝑎𝑥 [1 + 𝑎 ∙ 𝑡𝑎𝑛ℎ (𝑏 ∙
𝜂−𝜂𝑚𝑎𝑥

𝜂𝑚𝑎𝑥
)], 𝜂 = 0,1,2, … , 𝜂𝑚𝑎𝑥,  𝑏 = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(1 𝑎⁄ ), with the parameter 𝑎 controlling the first 

point away from the wall. In the x direction, the mesh is smoothly adjusted to enhance the resolution in the SWTBLI region, 

where small-scale turbulence could be existent. The parameters of the adopted meshes are listed in TABLE I.  

 
FIG. 3. A sketch of the Case 1 mesh. The mesh is plotted every 4 points in both x and y directions for the convenience of visualization. 

The non-dimensional time steps 
∆𝑡

𝛿𝑟𝑒𝑓 𝑢0⁄
 for Case 1, Case 2 and Case 3 are 0.0032, 0.0019 and 0.0014 respectively. The 

statistics are acquired by averaging the flow field every 50 time steps after the flow reaches statistically converged results and 

a total of 12550, 26200 and 13400 instantaneous flow field samples are collected for Case 1, Case 2 and Case 3, respectively. 

The flow is expected to be fully developed at the reference plane x=0, at which the boundary layer parameters are listed in 

TABLE II.  

TABLE II. Summary of boundary layer parameters at the reference plane.  

 M 𝛿 𝛿∗ 𝜃 𝑅𝑒𝛿  𝑅𝑒𝛿∗ 𝑅𝑒𝜃 Cf 

Case 1 2.9 1.0 0.45 0.077 19983.8 8950.8 1531.8 0.00224 

Case 2 2.9 1.0 0.42 0.076 40934.2 17203.8 3090.4 0.00186 

Case 3 2.9 1.0 0.43 0.076 80051.0 34567.2 6140.7 0.00138 

The time histories of instantaneous pressure 𝑃 and the evolutions of the first to third-order statistics i.e. 𝑃̅, 𝑝′2̅̅ ̅̅  and 𝑝′3̅̅ ̅̅   of 

the two representative points (point A locates in the log-layer of the upstream undisturbed boundary layer and point B locates 

in the centre of the separation bubble) of Case1 are plotted in FIG. 4. For Case 1, the simulation reaches the statistically 

stationary state at about 𝑡 = 230, after which statistics are collected every 50 steps. The evolution of statistics is similar with 

those in the LES of the corner separation by Gao et al.
 53

. For both points, the mean and second-order statistics have 

converged to steady states before the end of the simulation at t=2740, although the third-order statistic still presents a light 
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oscillation at the end of the simulation. The convergence properties of Case 2 and Case 3 are similar with that of Case 1; 

therefore the steady states have been reached at least for the first and second-order statistics. 
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FIG. 4. Statistical convergence at two representative points A and B. (a): Point A; (b): Point B. 

III. RESULTS AND DISCUSSIONS 

A. Validation and general properties of the flow field 

To validate the present DNS results, we firstly compared the velocity profile at x = 2 in FIG. 5 (a), where the boundary 

layer is in the equilibrium state with the available experimental measurements of Zheltovodov et al.
31

 at the same Mach 

number and the Reynolds number of 𝑅𝑒𝛿 = 80000. It shows that an overall good agreement between DNS results and the 

measurement has been achieved. The van Driest transformed non-dimensional mean velocity in wall unit 𝑢𝑣𝑑
+  is also plotted 

in FIG. 5 (b), together with the law of wall and the measurements of incompressible boundary layers of Murlis et al.
54

 and 

Erm and Joubert
55

. The mean flow variables are calculated via Favré averaging, defined as 〈𝑓〉 = 𝜌𝑓̅̅̅̅ 𝜌̅⁄ , in which 𝑓 is a 

general variable and 𝑓 ̅stands for the mean value. The fluctuations are then defined as 𝑓′′ = 𝑓 − 〈𝑓〉 and 𝑓′ = 𝑓 − 𝑓̅. It can 

be seen from FIG. 5 (b) that the van Driest transformed velocity profile in the linear sub-layer and the log-layer perfectly 

matches the incompressible law of the wall with the standard von Kármán constant. With the increase of the Reynolds 

number, the log layer extends and the wake-layer becomes higher. The overall agreement between the present DNS and the 

incompressible flow measurements is satisfactory in the sub-layer and the log-layer, and the discrepancy in the wake-layer 

could be attributed to the Reynolds number effects. In FIG. 5 (c), the velocity profile in the non-equilibrium recovery zone of 
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Case 3 is compared with the measurement data of Zheltovodov et al.
31

, in which the flow conditions are the same with the 

present case. Again, the present DNS prediction and the experimental measurement match well with each other. 
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FIG. 5. Mean velocity profile at x=2 (a, b) and x=19 (c). (a) and (c) are plotted in the outer scaling and (b) is plotted in inner scaling. The 

experimental data in (a) and (c) are measured at 9mm and 30mm upstream and downstream of EC respectively with the reference length of 

δ𝑟𝑒𝑓 = 2𝑚𝑚. 

The density scaled non-dimensional root mean square (RMS) of velocity fluctuation intensities 
1

𝑢𝜏
√

𝜌̅

𝜌𝑤̅̅ ̅̅
〈𝑢𝑖

′′𝑢𝑖
′′〉 at x=2 are 

plotted in FIG. 6, together with the published data of the incompressible experimental measurements of Purtell et al.
56

 and 

Erm and Joubert
55

, the incompressible DNS of Spalart
57

 and Wu and Moin
47

, and the compressible DNS of Mach=1.3 

turbulent boundary layer of Pirozzoli et al.
58

.  

It can be seen that the present DNS results are in good agreement with experimental measurements and other DNS 

predictions in both the near wall region (see FIG. 6 (a) and the outer part of the boundary layer (see FIG. 6 (b) ), when the 

inner and the outer scales are used respectively. 
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FIG. 6. RMS velocity fluctuation intensities at x=2 in inner scaling (a) and outer scaling (b). 

The mean pressure field super-imposed with streamlines is shown in FIG. 7. It can be seen that an expansion fan is 

formed from the expansion corner and a -shock-wave system is formed around the compression corner downstream. The 

front leg of the -shock-wave system impinges at about the middle of the ramp surface and the rear leg impinges close to the 

compression corner. In the near-wall region, the shock-wave has been smeared and looks as a series of compression-waves. 

The APG generated by the strong shock-wave causes flow separation that is occurred around the compression corner and the 

comparison of the three cases in FIG. 7 indicates the shrinkage of the separation bubble with increasing Reynolds number. 

(a)  (b)  

(c)  

FIG. 7. The mean pressure field and streamlines of Case 1 (a), Case 2 (b) and Case 3 (c). The spots A and B in (a) mark the two monitored 

points. 

 
The comparison of the mean wall pressure distributions from three present DNS as well as previous LES results

30,32
 and 

the experimental data
31

 generalized by Knight et al.
30

 are shown in FIG. 8 (a). It can be seen that, the pressure is reduced 

sharply at EC position due to the expansion, then reduced slowly towards the middle of the ramp, i.e. at the foot of the front 

shock-wave, where the wall pressure begins to rise. A pressure-plateau can be identified in the region of 8 < 𝑥 < 11 

corresponding to the location of the separation bubble. After interaction with the rear shock-wave, the pressure is largely 

increased. With the increase of the Reynolds number, the level of the pressure-plateau is slightly reduced and the pressure 
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after the rear shock-wave increases more rapidly, which agrees with the trend of the experimental data. Overall, the wall 

pressure distributions of the present cases agree very well with the experiments data and previous LES results. 

From the mean wall pressure gradient 𝑑𝑃𝑊 ⁄ 𝑑𝑥 distributions shown in FIG. 8 (b), we can see the two positive peaks for 

each case, which correspond to the locations of the front and the rear legs of the -shock-wave respectively. With the 

increase of the Reynolds number, the first peak moves slightly downstream and the second peak moves slightly upstream 

indicating the decrease of the angle between these two legs of the -shock-wave system due to the shrink of the separation 

bubble. The magnitude of the second peak also increases with the increase of the Reynolds number, due to the reduction of 

the viscous effect. The mean wall pressure gradient profiles present some oscillation after CC, especially for Case 3, because 

the convergence of pressure statistics has a strict requirement on the number of samples. 
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FIG. 8. Mean wall pressure distribution (a) and wall pressure gradient distribution (b). The pressure gradient is normalized with 𝑃0 𝛿𝑟𝑒𝑓⁄ . 

The wall pressure fluctuation intensity 𝑝′𝑝′̅̅ ̅̅ ̅  distributions are present in FIG. 9. It can be seen that, 𝑝′𝑝′̅̅ ̅̅ ̅  is firstly 

suppressed sharply while passing through EC and then the decrease of 𝑝′𝑝′̅̅ ̅̅ ̅ slows down. After interacting with the front leg 

of the -shock-wave, the wall pressure fluctuation begins to rise. Downstream of CC, the dramatic amplification of 𝑝′𝑝′̅̅ ̅̅ ̅ can 

be observed and the peak of 𝑝′𝑝′̅̅ ̅̅ ̅ can be found downstream of CC. Along the ramp wall, the profiles of 𝑝′𝑝′̅̅ ̅̅ ̅ of the three 

cases collapse well, after CC the Reynolds number effect is clearly presented. With the increase of the Reynolds number, the 

peak of 𝑝′𝑝′̅̅ ̅̅ ̅ reaches a greater value and moves closer to the corner, which is similar with the trend of the wall pressure 

gradient seen in FIG. 8 (b). This indicates the strong influence of SWTBLI on the wall pressure fluctuation strength, and with 

the increase of the Reynolds number, the shock-wave will penetrate deeper into the boundary layer and therefore induces 

larger wall pressure gradient and wall pressure fluctuations. A slight oscillation of  𝑝′𝑝′̅̅ ̅̅ ̅ upstream EC can be observed due to 

the difficulty in converging high-order pressure statistics. 
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FIG. 9. Wall pressure fluctuation intensity 𝑝′𝑝′̅̅ ̅̅ ̅ normalized with its value at the reference plane. 

The instantaneous numerical density schlieren applying 0.8𝑒−10(|𝛻𝜌|−|𝛻𝜌|𝑚𝑖𝑛) (|𝛻𝜌|𝑚𝑎𝑥−|𝛻𝜌|𝑚𝑖𝑛)⁄ 59,60
 of three flow cases are 

shown in FIG. 10. The experimental schlieren of Zheltovodov et al.
21

 at Re= 190000 is also given for qualitative comparison. 

The -shock-wave system can be seen clearly from the DNS schlieren. It can be seen that the DNS and the experiment 

produce similar flow patterns, and also we can observe the weakening of the turbulence fluctuations with the increase of their 

coherent structures during the expansion process.  

 (a)  (b)  

(c)    (d)  

FIG. 10. The instantaneous density schlieren of (a) Case 1, (b) Case 2, (c) Case3 and (d) the experimental observation of Zheltovodov et 

al.14 at Re = 190000. 

 

The mean skin friction distributions 𝐶𝑓 are plotted in FIG. 11, in which 𝐶𝑓 is calculated via the formula:  

𝐶𝑓 =
〈𝜏𝑖𝑗〉|𝑊

𝑛𝑗𝑚𝑖

1

2
𝜌0𝑢0

2
,                                                                                          (11) 
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where 〈𝜏𝑖𝑗〉|𝑊 is the mean viscous stress tensor at the wall surface, 𝑛𝑗 and 𝑚𝑖 are the vector units normal and parallel to the 

wall surface respectively.  
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FIG. 11. Comparison of mean skin friction distributions. 

The skin friction line has shown a strong spike at EC location, which is caused by the sudden change of the surface 

geometry. After the spike, the skin friction gradually decreases and at about the middle of the ramp, the skin friction exhibits 

a clear plateau region with negative values, which indicates the existence of the separation region with reverse flows. The 

level of plateau predicted by present DNS agrees very well with other published data at different Reynolds numbers, 

indicating insensitivity of flow Reynolds number in this region. The separation point also agrees with the first positive peak 

of the wall pressure gradient around x=7.5, see FIG. 8 (b), which is the location of the foot of the front shock-wave. With the 

increase of the Reynolds number, the separation point indicated with 𝐶𝑓 = 0 , moves slightly towards CC location. 

Downstream of CC, the skin friction further decreases with the increase of the adverse pressure gradient and reaches the 

minimum value as often observed in most shock-wave induced flow separation scenarios. After that, 𝐶𝑓 begins to increase 

and the reattachment point can be also identified by 𝐶𝑓 = 0. Further downstream, the increase of 𝐶𝑓 slows down, which 

indicates the recovery of the turbulent boundary layer towards another equilibrium state.  

Based on the skin friction distributions, it can be confirmed that, with the increase of Reynolds number, there is reduction 

of the flow separation size, forward movement of the reattachment point, and faster recovery of the skin friction downstream 

of the reattachment. In general, the predicted skin frictions of present DNS are in good agreements with the experimental data 

of Zheltovodov et al.
21

 as well as previous LES results
30,32

. Comparing all the simulation results, it can be seen that the 

discrepancies are mainly presented in the region downstream of the compression corner location, where the flow is in the 

strong non-equilibrium state due to SWTBLI. The difference of the separation bubble size and the reattachment point could 
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be primarily due to the Reynolds number effect. As there is limited experimental data available in this region, it is not 

possible to assess which simulation produces better prediction of the skin friction.  

The Stanton number 𝑆𝑡 is plotted in FIG. 12, in which 𝑆𝑡 is defined as 

𝑆𝑡 = 𝜇𝑊
𝜕〈𝑇〉

𝜕𝑦
|
𝑊

1

𝜌0𝑢0(𝑇𝑡−𝑇𝑊)𝑃𝑟𝑅𝑒
,                                                                    (12) 

where 𝑇𝑡 = 𝑇0 (1 +
1

2
(𝛾 − 1)𝑀2) is the total temperature. The Stanton number is reduced to negative values during the 

expansion process and then increased to positive values at the foot of the front shock-wave. The peak of the Stanton number 

can be found immediately downstream of the reattachment point, which indicates the turbulence generated in SWTBLI may 

have great contributions to the wall heat flux. Upstream of the compression corner, a near plateau region can be identified 

and its value seems also independent of the Reynolds number. For the higher Re case, the increase of 𝑆𝑡 after the CC location 

is faster, but for lower Re case it produces larger values of 𝑆𝑡 for the peak and its downstream region, which is consistent 

with the evolution of the skin friction coefficient. Further downstream, the Stanton number also recovers towards the 

equilibrium state and with the higher Reynolds number the recovery process is faster. Comparing to that of the skin friction, 

the recovery of Stanton number takes a longer distance, which means the re-establishment of the thermal equilibrium state 

may happen further downstream after the flow reattachment. 
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FIG. 12. The distributions of the Stanton number. 

 
B. Separation property 

As reported by Zheltovodov et al.
21

 as well as Roshko and Thomke
61

, the appearance of the so-called Görtler vortices is 

an important characteristic of the expansion-compression corner flow. Görtler vortices and its generation mechanism were 

discovered in the laminar boundary layer by Görtler
62

 in 1955 and observed in conditions of its reattachment in pioneering 

experimental investigations by Ginoux.
63

 Görtler vortices arise from the instability of a boundary layer with sufficiently 

concave streamwise curvature, where the interaction between centrifugal force, pressure gradient, and viscosity destabilizes 
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the boundary layer and the streamwise vortices, termed “Görtler vortices” will then arise as a consequence.
64

 Although 

Görtler vortices were first found in the laminar flow, the same mechanism also excites in turbulent flows.
65,66

 In SWTBLI 

flows with concave streamwise curvatures, such as compression flows, the large-scale three-dimensional structures were 

reported in previous experimental observations
21,51,63,67-69

 and numerical simulations
51,59,70

.  

To gain further insight into the generation of Görtler vortices, three-dimensional flow separation property is investigated. 

The time averaged skin friction coefficient contours and surface streamlines for Case 2 are plotted in FIG. 13. Firstly, the 

mean skin friction presents a two-dimensional characteristic with straight parallel wall limiting streamlines upstream of the 

separation region. However downstream of CC the three-dimensional characteristics can be observed, especially in the region 

near the reattachment line, where a total of five pairs of node and saddle-point combinations can be identified. Downstream 

of the reattachment line, five convergence lines can be seen. Similar flow topology which is considered as the appearance of 

Görtler type vortices is also observed in two-dimensional compression corner flow experiments by using surface 

visualization technology
21

 and numerical simulations by using DNS
59

 and LES
51

. 

  

FIG. 13. Time averaged skin friction coefficient and wall limiting streamlines for Case 2. 

The predicted mean surface streamlines in the 3-D region of the three cases are demonstrated in FIG. 14 (a–c). 

Downstream of the separation line, several periodic longitudinal convergence and divergence lines located along the plate 

width can be identified. Such periodic lines have been also observed in experiments.
21,31

 

The topologies of the surface streamlines of the predicted three cases are almost identical (see FIG. 14(a-c)) and the 

spanwise distances B between the neighboring convergence lines are all at a scale of 𝛿𝑟𝑒𝑓, which are independent of the 

Reynolds number and smaller than that in the compression corner flow LES of Loginov et al.
51

, as well as other researchers 

(see the review of Edwards
70

) who reported a scale of 𝐵 ≈ 2𝛿𝑟𝑒𝑓. The discrepancy between the scales of the large-scale 

vortex structures along the spanwise width can be attributed to the different properties of the boundary layer in the vicinity of 
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the separation line in such different conditions. For the present expansion-compression corner case, the boundary layer has 

been strongly disturbed by the expansion fan upstream the separation bubble. 

(a)  (b)               

(c)  
FIG. 14. Time averaged skin friction coefficient and wall limiting streamlines around the reattachment line for (a) Case 1, (b) Case 2, and 

(c) Case 3. 

 

The time averaged Stanton number of Case 2 is shown in FIG. 15, in which we can see the elevated mean Stanton number 

around the reattachment line. Also, the distance between neighbouring high St regions is about 𝛿𝑟𝑒𝑓, which indicates the same 

mechanism of the influence of the large-scale Görtler vortices on the wall heat flux distribution as well as on the skin friction 

distribution. 

 
FIG. 15. Time averaged Stanton number contour for Case 2. 

 
C. Mean profiles 
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The evolutions of velocity and temperature profiles are analysed in this section. Only results from Case 2 will be 

presented hereafter unless otherwise stated. The mean velocity profiles 〈𝑢𝑆〉 extracted from predefined 13 sample lines shown 

in FIG. 16 are presented in FIG. 17, in which d denotes the perpendicular distance to the wall surface, 〈𝑢𝑆〉 is the mean 

velocity perpendicular to sample lines, and 𝑥𝑊 is the x-coordinate of the foot of the sample line. 

 
FIG. 16. Sampling lines in the x-y plane. 
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FIG. 17. The development of the mean velocity profiles. Each profile is shifted 1 unit along the horizontal axis against its upstream profile. 

It is found that from EC to the middle of the ramp (i.e. xw=7) the inner velocity is reduced with the thickening of the inner 

low-speed layer, probably due to the trend towards relaminarization and the outer part of the boundary layer being 

accelerated during the expansion process. At 𝑥𝑊 = 8, the negative value of 〈𝑢𝑆〉 can be observed, indicating the appearance 

of the reverse flow. The height of the separation bubble increases and reaches the maximum at CC. After the reattachment, 

the boundary layer redevelops and finally recovers close to an equilibrium state near the exit of the computational domain, 

where the velocity profile is similar to that of the upstream undisturbed boundary layer.  

The velocity profiles in local wall units 𝑢𝑣𝑑
+  upstream and downstream of the separation bubble are plotted in FIG. 18 (a) 

and (b) respectively. As we can see from FIG. 18 (a) that from 𝑥𝑊 = 2 to 𝑥𝑊 = 𝑥𝐸𝐶 , the velocity profile shifts downward 

dramatically, which is caused by the great increase of the local friction velocity 𝑢𝜏 due to the spike of the skin friction at EC 

as demonstrated in FIG. 11. At 𝑥𝑊 = 5 and 𝑥𝑊 = 6, the near-wall part of the velocity profile matches well with the linear 
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law of the sub-layer 𝑢𝑣𝑑
+ = 𝑦+, but somehow the log-law does not exist anymore. Instead, the velocity develops into a wake-

like profile immediately above the linear sub-layer, which is in agreement with the experimental observations in expansion 

corner flows.
12,13,17

 This kind of change of the velocity profile can be explained by the suppression of turbulence structures 

that are responsible for the momentum transport in the log-layer during the interaction with the expansion wave. This 

observation is also in agreement with the two-layer model proposed by Gillis et al.
20

, in which the anisotropic and productive 

turbulence evolves into isotropic ‘debris’ in the outer layer. Downstream of 𝑥𝑊 = 6, the pressure gradient changes from 

negative values to positive value. As result, the upward shift of the log-like layer is observed in this section and the velocity 

profile starts to be similar with the velocity profile in the transitional zone
47,71

. At the edge of the separation bubble at 𝑥𝑊 = 7, 

due to the skin friction being close to 0, the whole velocity moves upwards. 
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FIG. 18. The mean velocity profiles 𝑢𝑣𝑑
+ ~𝑦+ normalized with the local wall unit. (a): upstream of the separation point, (b) downstream of 

the reattachment point. Each profile is shifted 10 units along the vertical axis against its upstream profile. 

 

From FIG. 18 (b) we can see the process of the recovery of the boundary layer towards the equilibrium state. Near the 

reattachment point (xw=12), the velocity profile is similar with that at the separation point, since the skin friction at both 

points is close to zero. As the recovery of the boundary layer, the near-wall linear layer is firstly established and the log-layer 

is gradually recovered towards the standard law of wall. At xw=23, the velocity profile is close to the undisturbed profile at 

xw=2, but still not fully recovered to the equilibrium state. 

The mean temperature profiles at these sample lines are shown in FIG. 19. At 𝑥𝑊 = 𝑥𝐸𝐶 , we can see the temperature in 

the near-wall region is reduced sharply. Further downstream, the temperature in the outer part of the thermal boundary layer 

is consistently reduced during the expansion process; however, the thermal layer inside the separation bubble begins to 

thicken. Furthermore, the temperature in the separation bubble has shown near adiabatic characteristics with small gradients 

in the near-wall region. The reason for this could be attributed to the lack of thermal transport due to the closed streamlines in 

the separation bubble and the wall heat flux causes the increase of the thickness of the thermal layer, which means the 
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accumulation of interior energy of the fluid in the separation zone. Therefore, we can see the Stanton number in this region is 

close to zero in FIG. 12. Downstream of the separation bubble, the convection and the turbulence transport would release the 

reserved interior energy in the separation zone towards the wall. Consequently, the Stanton number begins to increase 

dramatically downstream of the reattachment point and reaches a maximum value near 𝑥𝑊 = 12. Further downstream, the 

temperature profile recoveries towards the shape similar to that of the incoming boundary layer. 
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FIG. 19. The development of the mean temperature profiles. The black symbols on the profile denote the edge of the separation bubble, 

which is the outmost closed streamline. Each profile is shifted 1 unit along the horizontal axis against its upstream profile. 

 
D. Reynolds stresses 

The fields of the normal Reynolds stress components and the turbulence kinetic energy (defined as = 0.5〈𝑢𝑗
′′𝑢𝑗

′′〉 ) are 

shown in FIG. 20. During the expansion process, all components of Reynolds stresses are suppressed. Downstream of CC, 

however, they are all greatly amplified due to the interaction with the shock-wave. The maximum turbulence kinetic energy 

can be found near the reattachment point and its peak is placed in the middle of the boundary layer rather than that in the near 

wall region, which means the fluctuations are dominated by the turbulence in the mixing layer generated during SWTBLI, as 

reported in other SWTBLI flows.
72,73

 Further downstream, the turbulence in the outer region of the boundary layer keep 

damping while 〈𝑢′′𝑢′′〉  and 〈𝑤′′𝑤′′〉  begin to grow in the near-wall region, which indicates the regeneration of wall 

turbulence during the recovery of the boundary layer. 
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(a) (b)               

(c)  (d)  

FIG. 20. Components of Reynolds normal stresses. (a): 〈𝑢′′𝑢′′〉, (b): 〈𝑣′′𝑣′′〉, (c): 〈𝑤′′𝑤′′〉, (d): K. All variables are normalized with the 

square of friction velocity 𝑢𝜏
2 at the reference place. Two streamlines are shown in (d) with black solid lines. 

 

It is worth noting that the turbulence stresses in the ramp region present different modes of evolution in the inner layer 

and the outer layer regions, especially for 〈𝑢′′𝑢′′〉. Therefore a two-layer structure of turbulence can be identified in the ramp 

region, which is consistent with the experimental observation of Gillis et al.
20

 in the convexly curved boundary layer.  

In the outer layer, the turbulence fluctuations are constantly suppressed along the ramp. On the other side, in the near-wall 

inner layer, the Reynolds stresses are reduced significantly only in a small region near EC, and then they begin to increase 

after the EC location. Therefore, the differences between the inner and the outer layers become more and more 

distinguishable during the evolution along the ramp region.  

To further investigate this property, the evolution of Reynolds stresses along two streamlines is analysed. One streamline 

is in the near-wall region (S1: traced from the coordinate: (x=0, y=0.03)) and the other one is located in the middle of the 

boundary layer (S2: traced from the coordinate: (x=0, y=0.35)), as plotted in FIG. 20 (d). The evolutions of the normal 

components of the Reynolds stresses and turbulence kinetic energy along the two streamlines are plotted in FIG. 21. Along 

the streamline S1, 〈𝑢′′𝑢′′〉 and 〈𝑤′′𝑤′′〉 have shown significant reductions within a shorter distance passing through EC, 

whilst 〈𝑣′′𝑣′′〉 has only a negligible oscillation around EC position. Downstream of EC, all components of the Reynolds 

stress increase along the streamline. The rate of increase is then largely amplified after the interaction with the front shock-

wave at 𝑥 ≈ 7, and the rate of increase is further amplified after the interaction with the rear shock-wave at CC location. The 

peak of the normal Reynolds stresses can be found near the reattachment point. 

In contrast, along the streamline S2, all components are gradually reduced downstream EC, until the streamline entering 

the mixing layer formed during SWTBLI, and then the increase of all components of Reynolds stresses can be seen. 

Therefore, it is clear that the turbulence in the inner layer and the outer layer has undergone a completely different evolution 
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process, which implies the different turbulence suppression and re-development mechanisms in the inner and the outer layers 

along the ramp wall surface. 
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FIG. 21. Evolution of (a): 〈𝑢′′𝑢′′〉, (b): 〈𝑣′′𝑣′′〉, (c): 〈𝑤′′𝑤′′〉, and (d): K, along the streamlines S1 and S2. All variables are normalized 

with their values at the reference plane. 

 

The contours of the Reynolds shear stress 〈𝑢′′𝑣′′〉 and its evolution along two streamlines S1 and S2 are shown in FIG. 22 

and FIG. 23, respectively, from which a similar trend of the different evolution processes in the inner and the outer layers to 

the normal Reynolds stresses can be seen. In FIG. 23 (b), the cross correlation of the Reynolds shear stress 𝑅(𝑢′′, 𝑣′′) =

〈𝑢′′𝑣′′〉 √〈𝑢′′𝑢′′〉〈𝑣′′𝑣′′〉⁄  is plotted to study the property of turbulence structures. As pointed by Kim et al.
74

 in wall 

turbulence that 𝑅(𝑢′′, 𝑣′′) represents the existence of certain organized turbulent motions. According to FIG. 23 (b), we can 

see 𝑅(𝑢′′, 𝑣′′) along S1 and S2 evolve in very different ways. Along the streamline S1, 𝑅(𝑢′′, 𝑣′′) is increased more than two 

times its upstream value, which means the coherence or anisotropy of turbulent motions is obviously strengthened. On the 

contrary, 𝑅(𝑢′′, 𝑣′′) is reduced to almost zero along the streamline S2, indicating that the turbulence is almost isotropic. In 
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the two-layer model of Gillis et al.
20

, the similar characteristic of the structural parameters in the inner and the outer layers 

was reported. 

 
FIG. 22. Reynolds shear stresses normalized with 𝑢𝜏

2 at the reference place.  
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FIG. 23. Evolutions of the Reynolds shear stress (a) and its cross correlation (b) along the streamlines S1 and S2. All variables are 

normalized with their values at the reference plane. 

 

The peak values of the Reynolds stresses and turbulence kinetic energy and their distances to the wall along the 

streamwise x-direction are extracted and shown in FIG. 24. We can see the great amplification of the peak values of all 

components due to the interaction with the shock-wave. 

The peaks of all components of Reynolds stresses are located in the inner layer upstream of EC, and the peak of 〈𝑢′′𝑢′′〉 is 

the closest to the wall, which is a typical characteristic of the wall turbulence. In the ramp region, the peaks of all components 

grow around the edge of the separation bubble. After the CC location, different components of Reynolds stresses present 

different evolution processes. The peak of 〈𝑤′′𝑤′′〉 moves to the near wall region, and then almost immediately after the 

reattachment point, it gradually re-develops outwards. This implies the existence of certain turbulence structures downstream 

of CC, which contributes greatly to 〈𝑤′′𝑤′′〉 in the near-wall region. One type of the turbulence structures could be the 

Görtler vortices according to the previous analysis. Downstream of CC, the peak of 〈𝑢′′𝑢′′〉 firstly occur around 𝑑Peak = 0.3, 

where the core of the mixing layer is located. Similar to that of 〈𝑤′′𝑤′′〉, the peak of 〈𝑢′′𝑢′′〉 also shifts to the near-wall 
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region and stays there further downstream, which means the attached wall turbulence is regenerated in the near-wall region. 

The process of the regeneration of wall turbulence is within a shorter distance than that in the interaction of an oblique shock-

wave impinging onto a flat plate boundary layer
60

, which could be again attributed to the strong flow fluctuations induced by 

the Görtler vortices. The peaks of 〈𝑣′′𝑣′′〉 and 〈𝑢′′𝑣′′〉 are located in the outer part of the boundary layer, and move further 

away from the wall, indicating that they are dominated by the free shear of the mixing layer. Downstream of CC, the peak of 

turbulence kinetic energy 𝐾 is firstly dominated by 〈𝑣′′𝑣′′〉 in the core of the mixing layer, and then with the development of 

the regenerated wall turbulence, the peak of 𝐾 returns to the near-wall region where the peak of 〈𝑢′′𝑢′′〉 locates.  
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FIG. 24. Distributions of the peak values (a) and their distances (b) to the wall surface. The peak values are normalized with their values at 

the reference location. 

 

The Reynolds stresses profiles along the 13 pre-defined sample lines are further studied. To better describe the Reynolds 

stresses above the slant ramp surface, the Reynolds stresses are decomposed according to the directions parallel and normal 

to the surface of the ramp respectively, which is expressed as 

〈𝑢𝑠
′′𝑢𝑠

′′〉 = 〈(𝑢⃗ ′′ ⋅ 𝑛𝑠⃗⃗⃗⃗ )(𝑢⃗ ′′ ⋅ 𝑛𝑠⃗⃗⃗⃗ )〉

〈𝑢𝑛
′′𝑢𝑛

′′〉 = 〈(𝑢⃗ ′′ ⋅ 𝑛𝑛⃗⃗ ⃗⃗ )(𝑢⃗ ′′ ⋅ 𝑛𝑛⃗⃗ ⃗⃗ )〉

〈𝑢𝑠
′′𝑢𝑛

′′〉 = 〈(𝑢⃗ ′′ ⋅ 𝑛𝑛⃗⃗ ⃗⃗ )(𝑢⃗ ′′ ⋅ 𝑛𝑠⃗⃗⃗⃗ )〉

,                                                                    (13) 

in which 𝑢⃗ ′′ is the fluctuation velocity vector, 𝑛𝑠⃗⃗⃗⃗  and 𝑛𝑛⃗⃗ ⃗⃗  are the unit vector parallel and normal to the surface of the wall, 

respectively.  

FIG. 25 shows the normal and the shear components of the Reynolds stress profiles along sample lines. From FIG. 25 (a), 

the suppression of 〈𝑢𝑠
′′𝑢𝑠

′′〉 in the outer layer and its growth in the inner layer can be seen from 𝑥𝑊 = 2 to the CC location, 

due to the two-layer structure of the flow along the ramp. The near-wall peaks are exhibited in the 〈𝑢𝑠
′′𝑢𝑠

′′〉 profiles, and the 

position of the peak gradually moves away from the ramp surface, which can be attributed to the increase of the height of the 

separation bubble. The peak reaches the highest position at CC. At 𝑥𝑊 = 12 where the flow is reattached, a double-peak 
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structure of the 〈𝑢𝑠
′′𝑢𝑠

′′〉 profile develops, in which the outer peak is from the upstream turbulence and enhanced due the 

SWTBLI effect and the inner peak is the newly generated near-wall turbulence due to the flow reattachment. Further 

downstream, the outer peak decreases due to the decay of the mixing layer generated during SWTBLI and the near-wall peak 

keeps growing within the process of the recovery of the boundary layer. 

It is interesting to note that there are two types of two-layer structures appearing in the expansion-compression flow. The 

first one develops during the expansion process consisting of an outer layer with decaying almost isotropic turbulence and an 

inner layer with anisotropic productive turbulence, as discussed in detail above. The second one develops after the flow 

reattachment, in which the fluctuations in the outer layer are dominated by the free-shear turbulence in the mixing layer due 

to SWTBLI and the inner layer is the newly regenerated wall turbulence. Furthermore, the turbulence in the inner layer of the 

first type of the two-layer structures also interacts with the mixing layer in the second and has a great contribution to the 

strong fluctuations in the mixing layer. Therefore, the following scenario can be described based on the analysis above,  

1. The equilibrium boundary layer passes through EC and interacts with the expansion fan. During this process, the 

turbulence in the outer layer is consistently supressed by the expansion wave and evolves towards isotropic 

turbulence, but the turbulence in the near-wall inner layer preserves the coherence of the wall turbulence and gets 

amplified along the edge of the separation bubble. Therefore, the first two-layer structure develops.  

2. The disturbed boundary layer interacts with the shock-wave. During this process, the turbulence in the outer layer is 

very weak, therefore nothing important happens. The turbulence in the inner layer gets even stronger during the 

interaction with the shock-wave and contributes greatly to the turbulence fluctuations in the mixing layer generated 

during SWTBLI.  

3. After the flow reattachment, the interaction of highly fluctuant flow with the wall will cause the regeneration of wall 

turbulence and the wall turbulence gets stronger during the recovery process. Meanwhile, the mixing layer diffuses 

and decays gradually. Therefore, another two-layer structure is formed, in which the outer layer is the decaying 

mixing layer and the inner layer is the newly generated wall turbulence.  



27 

 

(a)

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60 70 80 90 100 110 120 130

<us''>

d

x
W

=
2
3

x
W

=
2

0

x
W

=
1
5

x
W

=
1

2

x
W

=
1
1

x
W

=
x

C
C

x
W

=
9

x
W

=
8

x
W

=
7

x
W

=
6

x
W

=
5

x
W

=
x

E
C

x
W

=
2

  

(b)

0.0

0.5

1.0

1.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5

<un''un''>

d

x
W

=
2
3

x
W

=
2
0

x
W

=
1
5

x
W

=
1
2

x
W

=
1
1

x
W

=
x

C
C

x
W

=
9

x
W

=
8

x
W

=
7

x
W

=
6

x
W

=
5

x
W

=
x

E
C

x
W

=
2

  

(c)

0.0

0.5

1.0

1.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5

<w''w''>

d

x
W

=
2
3

x
W

=
2
0

x
W

=
1
5

x
W

=
1
2

x
W

=
1
1

x
W

=
x

C
C

x
W

=
9

x
W

=
8

x
W

=
7

x
W

=
6

x
W

=
5

x
W

=
x

E
C

x
W

=
2

 

(d)

0.0

0.5

1.0

1.5

-5 0 5 10 15 20 25 30 35 40 45 50 55 60

<us''un''>

d

x
W

=
2
3

x
W

=
2
0

x
W

=
1
5

x
W

=
1
2

x
W

=
1
1

x
W

=
x

C
C

x
W

=
9

x
W

=
8

x
W

=
7

x
W

=
6

x
W

=
5

x
W

=
x

E
C

x
W

=
2

  

FIG. 25. Profiles of(a): 〈𝑢𝑠
′′𝑢𝑠

′′〉, (b): 〈𝑢𝑛
′′𝑢𝑛

′′〉, (c): 〈𝑤′′𝑤′′〉 and (d): 〈𝑢𝑠
′′𝑢𝑛

′′〉 along the sample lines. The black symbols on the profile denote 

the edge of the separation bubble. Each profile is shifted 10, 2.5, 2.5 and 5 units along the horizontal axis in (a), (b), (c) and (d) against its 

upstream profile respectively. 
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From profiles of 〈𝑢𝑛
′′𝑢𝑛

′′〉, 〈𝑤′′𝑤′′〉 and 〈𝑢𝑠
′′𝑢𝑛

′′〉, we can also identify the development of peaks attaching the edge of the 

separation bubble. Inside the separation bubble, the values of Reynolds stresses are relatively low, due to ‘quiet’ fluid 

motions inside the separation region. 

Beside the two two-layer structures described above, it is interesting to note that, 〈𝑤′′𝑤′′〉 develops a local peak inside of 

the separation bubble at 𝑥𝑊 = 9 (also can be found in FIG. 24 (b)). Therefore, there is a two-peak structure for 〈𝑤′′𝑤′′〉 

upstream of the flow reattachment, in which the outer peak attaches to the edge of the separation bubble, just like the peak of 

〈𝑢′′𝑢′′〉 at the same location, the other peak is in the near-wall region, which grows faster than the outer peak. At 𝑥𝑊 = 11 

these two peaks have similar values, while at 𝑥𝑊 = 12, the near-wall peak becomes almost twice that of the outer peak. To 

study this double-peak phenomenon, the traces of local peaks of both 〈𝑢′′𝑢′′〉 and 〈𝑤′′𝑤′′〉 are plotted in FIG. 26, from which 

we can see that both 〈𝑢′′𝑢′′〉  and 〈𝑤′′𝑤′′〉  present double-peak structures, but their origins are rather different, which 

indicates different mechanisms for these two components. For 〈𝑢′′𝑢′′〉 , the double-peak happens downstream of the 

reattachment point, which is described above in detail and also reported previously in downstream region of an impinging 

shock-wave/flat plate boundary layer interactions
59,75

. The inner peak of the double-peak structures of 〈𝑤′′𝑤′′〉 is firstly 

observed inside of the separation bubble, and it is quite weak compared to the outer peak. With the flow development, the 

inner peak develops very fast and it gets a greater strength than the outer peak near the reattachment point (FIG. 25 (c)). 

Downstream of the reattachment point, the inner and the outer peaks merge together in the near-wall region. The double-peak 

structure of 〈𝑤′′𝑤′′〉 is connected with a 3D large-scale structure in the separation bubble, which is a kind of steady vortex 

structure, since the flow inside the separation bubble is less fluctuant. This 3D structure should be the Görtler-type vortex, 

and its rotation in the streamwise direction has great contributions to the spanwise velocity fluctuations. Downstream, the two 

peaks of 〈𝑤′′𝑤′′〉 have merged into one near-wall peak, and the traces of peaks of 〈𝑤′′𝑤′′〉  and 〈𝑢′′𝑢′′〉  collapse after 

𝑥𝑊 = 12, which indicates the regeneration of the wall turbulence is promoted by the 3D large-scale structures. 

To obtain further insights into the amplification of the Reynolds shear stress, which is strongly related to the momentum 

transport inside the boundary layer, the cross correlation 𝑅(𝑢𝑠
′′, 𝑢𝑛

′′)= −〈𝑢𝑠
′′𝑢𝑛

′′〉 √〈𝑢𝑠
′′𝑢𝑠

′′〉〈𝑢𝑛
′′𝑢𝑛

′′〉⁄  is calculated and shown in 

FIG. 27. In the upstream boundary layer at 𝑥𝑊 = 2, 𝑅(𝑢𝑠
′′, 𝑢𝑛

′′) exhibits a near-wall peak of 𝑅(𝑢𝑠
′′, 𝑢𝑛

′′) = 0.46, which is 

attributed to certain organized motions in the wall region
74

, as mentioned above. At EC, 𝑅(𝑢𝑠
′′, 𝑢𝑛

′′) is largely reduced and the 

peak of the correlation becomes very weak. After EC, a new peak is formed, and it keeps shifting away from the surface of 

the ramp in the downstream region. By marking these peak locations on the instantaneous density schlieren shown in FIG. 28, 

we can see that these peaks are correlated to organized turbulence motions along the ramp surface. These turbulence motions, 

which originate from the upstream undisturbed boundary layer, occur at the edge of the separation bubble around the 
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compression corner region. Their strength is weakened with the increase of their scales, although their coherence pattern is 

still preserved.  

(a)  

(b)  

FIG. 26. Distributions of (a): 〈𝑢′′𝑢′′〉 and (b): 〈𝑤′′𝑤′′〉 in the CC region. The black thick lines denote the local peaks of the Reynolds 

stresses and the white thin lines denote the mean streamlines. 
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FIG. 27. The profiles of the cross correlation along the sample lines. The symbols on the profile denote the peak locations. Each profile is 

shifted 2 units along the horizontal axis against its upstream profile. 
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FIG. 28. The distribution of the peak of 𝑅(𝑢𝑠

′′𝑢𝑛
′′) in the instantaneous schlieren. The peak locations are marked with open circles. 

 
After interaction with the shock-wave, the schlieren picture shows a greater density gradient, which indicates the 

amplification of turbulence motions and the decrease of their scales. Downstream of the interaction region, the peaks are 

located in the middle of the boundary layer, which is attributed to the large-scale turbulence structures in the mixing layer.  

E. Instantaneous turbulence structures 

The instantaneous turbulent flow field from Case 2 has been analysed to investigate the turbulence structures. Firstly, the 

streamwise velocity fluctuation 𝑢𝑠
′′ along two planes containing streamlines S1 and S2 respectively are shown in FIG. 29. For 

the S1 plane, which locates in the near-wall region, we can see the classic streamwise elongated streaks occur in the upstream 

undisturbed boundary layer region and the distance between two neighbouring low-speed streaks is about ∆𝑧+ = 100. 

Downstream of EC, the strength of velocity fluctuations is weakened. However, the streaky structures are still preserved and 

their scale is largely increased. From the second half of the ramp, we can see large-scale streaks with a spanwise length scale 

of about 𝛿𝑟𝑒𝑓 and a streamwise length scale of about 5𝛿𝑟𝑒𝑓. Downstream of CC, the large-scale streaks still dominate the 

near-wall turbulence but they become unstable and break down to small-scale structures at about 𝑥 = 15 . Further 

downstream, the classic streaky structures as seen in the upstream undisturbed boundary layer are re-formed, which promotes 

the near-wall turbulence recovery towards the equilibrium state. 

In contrast, the streamwise velocity fluctuation along the S2 plane presents weak and less organized structures in the 

upstream undisturbed boundary layer and these fluctuations are consistently suppressed over the ramp region until the flow 

reattachment point. After x=15, where the streamline enters the mixing layer region, we can see some large-scale low-speed 

spots, which are from the turbulence coherent structures in the mixing layer. 
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 (a)  

(b)  

FIG. 29. Streamwise velocity fluctuation along the streamlines S1 (a) and S2 (b). 

The turbulence coherent structures are further visualized with the 𝜆𝑐𝑖 criterion, which was proposed by Zhou et al.
76

 as the 

representation of the swirling strength. The iso-surface of 𝜆𝑐𝑖  coloured with the instantaneous x-vorticity 𝜔𝑥 =
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
 is 

shown in FIG. 30. The coherent structures in the undisturbed boundary layer present classic streamwise elongated hairpin 

vortices. In the ramp region, we can rarely see any coherent structures, indicating the suppression of turbulence during the 

expansion process. Near the reattachment line in FIG. 30 (c), some large-scale coherent structures in the boundary layer can 

be identified. In the recovery region, detached structures from the mixing layer are observed. These detached large-scale 

structures in the outer part of the boundary layer keeps decaying along with the recovery of the boundary layer, while the 

hairpin structures in the near wall region are gradually regenerated during the recovery process. 
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(a)  

(b)  (c)  
FIG. 30. Turbulence coherent structures visualized with the iso-surface of 𝜆𝑐𝑖 equalling to 0.8% of its global maximum and coloured with 

the x-vorticity. The expansion-wave and shock-wave are visualized by using the iso-surface of 𝑃 = 0.6𝑃0.The structures in the 

undistributed boundary layer and downstream of CC region are zoomed in (b) and (c) respectively. 

 
The enhanced visualization of turbulence coherent structures in the ramp region is shown by using the iso-surface of 

𝜆𝑐𝑖 = 0.16%𝜆𝑐𝑖,𝑚𝑎𝑥 in FIG. 31, in which the evolution of the first type of the two-layer structures along the ramp can be 

identified. The coherent structures from the outer part of the undisturbed boundary layer are gradually damped out with the 

disappearance of their coherence during the expansion process. In the inner layer however, the quasi-streamwise structures 

are preserved all the way along the ramp. Therefore, downstream of the separation line, the large-scale quasi-streamwise 

vortices can be seen very clearly. These structures have exhibited a larger scale in both spanwise and streamwise directions 

compared to the streamwise vortices in the undisturbed boundary layer and they contribute to the large-scale streamwise 

elongated velocity streaks in the near-wall region of the ramp, as shown in FIG. 29 (a).  
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(a)  (b)  

FIG. 31. Turbulence coherent structures in the ramp region visualized by 𝜆𝑐𝑖 = 0.16%𝜆𝑐𝑖,𝑚𝑎𝑥. (b) is the view from the z direction. The 

dash line in (b) marks the board between the inner and outer layers. 

 

The iso-surface of the strength of the vorticity magnitude 𝜔𝑀 = √𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2, is used to visualize turbulence vortex 

structures in FIG. 32. The large-scale streamwise tube-shape structures are clearly seen in the shear-layer around the 

separation region. These structures have a spanwise length scale of 𝛿𝑟𝑒𝑓  and a streamwise length scale of 5𝛿𝑟𝑒𝑓 , which 

provide other visual evidence of the existence of the large-scale Görtler vortices. After the flow reattachment, we can see the 

arch-shape structures in the mixing layer. 

 
FIG. 32. Turbulence coherent structures visualized with the iso-surface of 𝜔𝑀 equalling to 1.5% of its global maximum and coloured with 

the x-velocity. 

 

IV. CONCLUSIONS 

     The Mach=2.9 supersonic turbulent flow over an expansion-compression corner with a 25° incline angle at Re= 

20000, 40000 and 80000 were studied using DNS. The results were well validated by comparing the wall properties, velocity 

profiles and turbulence intensities with published experimental measurements and other simulation data. Firstly, the statistics 

of wall properties (i.e. mean pressure distribution, pressure gradient, pressure fluctuation, skin friction, Stanton number and 
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wall limiting streamlines) of the three cases were studied and the Reynolds number effects were also discussed. Detailed 

turbulence structures and flow statistics of the case Re=40000 were then analysed.  

It was found that with the increase of Reynolds number, the reattachment line moves upstream and the size of the 

separation bubble decreases. Despite that the skin friction and the heat flux increases are steeper after the flow reattachment 

for a higher Reynolds number case, the result of a lower Reynolds number case exhibits higher skin friction and peak wall 

heat flux in the recovery region.  

In the ramp region, the turbulence motions and structures are first largely suppressed passing through the expansion-

waves emitted from the expansion corner, and then amplified due to the interaction with the shock-wave formed at the 

compression corner region. During the expansion process, a two-layer turbulence structure is observed, in which the 

turbulence motions in the outer layer are suppressed over the entire ramp. In the inner layer, however, the turbulence motions 

are suppressed only in a small region around the expansion corners and then enhanced in the rest of the ramp. Therefore, a 

thin layer with a high level of turbulence fluctuations attaching to the edge of the separation bubble can be observed. Inside 

this thin layer, the quasi-streamwise vortices of the wall turbulence is well preserved. Downstream of the flow reattachment, 

another two-layer structure of turbulence, consisting of an outer decaying mixing layer and an inner regenerated wall 

turbulence, which is widely observed in SWTBLI flows, can also be identified in the present flow case. 

The existence of large-scale Görtler-type vortices is visualized by the 3D wall streamlines around the reattachment line, 

where a typical saddle-node combination with a characteristic spanwise size of 𝛿𝑟𝑒𝑓 can be seen. The Görtler vortices are 

responsible for the rapid increase of skin friction and high level of wall heat flux near the reattachment line. According to the 

analysis, the connection between the origin of the Görtler vortices and the well preserved large-scale streamwise vortices in 

the inner layer can be established, although the detailed relation between two requires further investigations, which is outside 

the scope of this study.  
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