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Abstract
We derive a blow-up dichotomy for positive solutions of fractional semilinear heat
equations on thewhole space. That is, within a certain class of convex source terms, we
establish a necessary and sufficient condition on the source for all positive solutions to
become unbounded in finite time. Moreover, we show that this condition is equivalent
to blow-up of all positive solutions of a closely-related scalar ordinary differential
equation.

Mathematics Subject Classification 35A01 · 35B44 · 35K58 · 35R11

1 Introduction

In this paper we investigate the local and global existence properties of positive solu-
tions of fractional semilinear heat equations of the form

ut = �αu + f (u), u(0) = φ ∈ L∞(Rn), (1.1)

where �α = − (−�)α/2 denotes the fractional Laplacian operator with 0 < α ≤ 2
and f satisfies the monotonicity condition
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(M) f : [0,∞) → [0,∞) is locally Lipschitz continuous, non-decreasing and
f (0) = 0.

We present a new dichotomy result for convex nonlinearities f satisfying the ODE
blow-up criterion

(B)
∫ ∞

1

1

f (u)
du < ∞,

together with an additional, technical assumption (S) (see Sect. 2). Specifically, for
this class of nonlinearities, we show that all positive solutions of (1.1) blow-up in
L∞(Rn) in finite time if and only if

∫
0+

f (u)

u2+α/n
du = ∞. (1.2)

Furthermore, we establish an equivalence between finite time blow-up of all positive
solutions of (1.1) and finite time blow-up of all positive solutions of the scalar, non-
autonomous ODE

x ′ = f (x) −
( n

αt

)
x, x(t0) = x0 > 0. (1.3)

To the best of our knowledge this kind of blow-up equivalence, between the PDE (1.1)
and a scalar ODE such as (1.3), has not been established before.

We will refer to the phenomenon of blow-up in finite time of all non-negative, non-
trivial solutions of (1.1) simply as the ‘blow-up property’. We will also identify the
phrase ‘non-negative, non-trivial solution’ synonymously with ‘positive solution’.

For the case of classical diffusion (α = 2) it has long been known that for f
convex and sufficiently large initial data φ, blow-up in (1.1) occurs; see [15, Theorem
17.1] for bounded domains and the whole space alike. The central question then was
whether diffusion could prevent blow-up for initial data sufficiently small. For general
continuous sources f , this problem is highly non-trivial and remains open. However,
under further restrictions on the form of the nonlinearity there has been significant
progress, for example when f is the power law nonlinearity f (u) = u p. In [3] a
threshold phenomenon was established, whereby the (Fujita) critical exponent, given
by pF = 1 + 2/n, separated two regimes: for 1 < p < pF (1.1) has the blow-up
property, whereas for p > pF it is possible to find small initial conditions φ evolving
into global-in-time solutions. Non-existence of positive global solutions in the delicate
critical case p = pF was later established in [6] for the case n ≤ 2 and subsequently
by [17] for all n ≥ 1. Thus was obtained the first blow-up dichotomy for (1.1): in
the special case f (u) = u p and α = 2, (1.1) has the blow-up property if and only if
1 < p ≤ pF . Some slight generalisations can also be found in [4,5].

In fact the result obtained in [17, Theorem] extended previous work on blow-up
in two important ways: firstly to convex sources terms f , and secondly to fractional
diffusion operators. Specifically, it was shown for convex f satisfying (M) and (B),
that if

lim
u→0

f (u)

u pα
> 0, where pα := 1 + α

n
, (1.4)
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then (1.1) has the blow-up property. In fact it is easy to see from the proofs in [17]
that (1.4) need only hold in the limit inferior sense. There are many other works which
consider the global and blow-up solution properties of nonlinear fractional diffusion
equations, all assuming either a power law nonlinearity or a convex one bounded below
by a power law near zero as in (1.4); see e.g., [2,7,8,12,14].

Subsequently it was shown in [9], in the special case of classical diffusion (α = 2),
that condition (1.4) is not necessary in order for (1.1) to have the blow-up property;
this can be seen via the example in [9, Section 5] where a logarithmic-type correction
of the critical Fujita case is considered. In that work it was shown ([9, Theorem 4.1])
that (1.1) has the blow-up property if f is continuous on [0,∞), positive on (0,∞),
f (0) = 0, (B) and (1.2) hold and f satisfies a further technical condition (labelled
(B.3) in [9]). In particular, neither monotonicity nor convexity of f were required. On
the other hand, this blow-up result is restricted to the case α = 2 and their technical
condition (B.3) still imposes a certain logarithmic scaling bound near zero; see Sect. 4
later on for more details. Conversely, when (1.2) fails the authors in [9] go on to prove
a global-in-time existence result for small initial data, subject to stronger regularity
and monotonicity conditions on f .

An important aspect of this paper is that we demonstrate (via an explicit construc-
tion) that, for all α ∈ (0, 2], there exist monotone, convex f for which (1.1) has the
blow-up property, but for which the results in [17] and [9] do not apply.

The remainder of the paper is organised as follows. In Sect. 2 we prove that, for
a suitable class of sources f , (1.2) is sufficient for the ODE (1.3) to have the blow-
up property. In Sect. 3 we show for this class that if the ODE (1.3) possesses the
blow-up property then so too does (1.1). In Sect. 4 we present a construction which
demonstrates that our assumption (S) (stated below) is strictly weaker than (B.3) of
[9] in the case α = 2. We then establish in Sect. 5 the necessity of (1.2) for (1.1) to
have the blow-up property and conclude with some remarks in Sect. 6.

2 Blow-up of a related ODE

Here we consider the blow-up properties of the non-autonomous ODE

x ′ = f (x) −
( n

αt

)
x, x(t0) = x0 > 0, t0 > 0. (2.1)

Definition 2.1 Suppose f satisfies (M). We say that the ODE (2.1) has the blow-up
property if the solution of (2.1) blows-up in finite time for every x0 > 0 and t0 > 0.

We now introduce some further hypotheses:

(C) f is convex on (0,∞);
(S) there exist c0, μ0 > 0 and g : (μ0,∞) → (0,∞) such that

∫ ∞
μ0

1/g(s) ds < ∞
and

f (λμ) ≥ g(μ) f (λ) for all μ ≥ μ0 and λμ ∈ (0, c0).
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78 R. Laister, M. Sierżęga

Remark 2.1

(i) If f (u)/u p is non-decreasing near zero, on (0, c0) say, for some p > 1, then (S)
holds with g(μ) = μp. To see this, observe that for any choice ofμ0 ≥ 1 we have,
for μ ≥ μ0 and λμ ∈ (0, c0),

f (λμ)

(λμ)p
≥ f (λ)

λp
.

Hence f (λμ) ≥ μp f (λ) for all μ ≥ μ0 and λμ ∈ (0, c0).
The particular, homogeneous, Fujita-critical case where g(μ) = μp and p = pF
was considered in [9, (B.3)] on a strictly larger λ-μ region than appears in (S);
i.e., the condition imposed upon f in [9] is a more restrictive one than that in (S).
We mention also that a condition such as f (u)/u p being non-decreasing was used
in [1], although there the condition at infinity was relevant rather than near zero.

(ii) It is easy to verify that if 0 �= f ∈ C1 satisfies (M) and (C) and the condition

lim inf
u→0

u f ′(u)

f (u)
> 1, (2.2)

then there exists a p > 1 such that f (u)/u p is non-decreasing near zero. Conse-
quently f satisfies (S) by (i) above. Note that for 0 �= f ∈ C1 satisfying (M) and
(C), we always have u f ′(u)/ f (u) ≥ 1 for all u > 0.

Theorem 2.1 Suppose f satisfies (M), (C), (B) and (S). If

∫
0+

f (u)

u2+α/n
du = ∞, (2.3)

then the ODE (2.1) has the blow-up property.

Proof Suppose, for contradiction, that there exists a global solution x(t) of (2.1). By
ODE uniqueness it is clear that the solution of (2.1) is positive for all t ≥ t0. By
(M) and (2.3), f > 0 on (0,∞) and by (C), L(u) := f (u)/u is non-decreasing and
positive for u > 0.

Suppose first that x is bounded away from zero, i.e., there exists ε > 0 such that
x(t) ≥ ε for all t ≥ t0. By monotonicity of L , L(x(t)) ≥ L(ε) > 0 for all t ≥ t0.
Hence there exists t1 > t0 such that

1 −
( n

αt

) 1

L(x(t))
≥ 1 − n

αL(ε)t
≥ 1/2

for all t ≥ t1. For such t we have

x ′ = f (x)

(
1 −

( n

αt

) 1

L(x(t))

)
≥ f (x)/2,
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and so by (B) x blows up in finite time, a contradiction.
Now suppose that x does not remain bounded away from zero. We then claim that

x ′(t) ≤ 0 for all t ≥ t0. For suppose this is not the case, so that there exists t2 ≥ t0
such that x ′(t2) > 0. Since x is C1 and not bounded away from zero, there exists
t3 > t2 such that x ′(t) > 0 for all t ∈ [t2, t3) and x ′(t3) = 0. Clearly x(t2) < x(t3)
and so by the monotonicity of L we have

0 = x ′(t3)
x(t3)

= L(x(t3)) − n

αt3
> L(x(t2)) − n

αt2
= x ′(t2)

x(t2)
> 0,

which is clearly false. Hence x ′(t) ≤ 0 for all t ≥ t0 as claimed. It follows that x(t)
is non-increasing and x(t) → 0 as t → ∞.

Now set y(t) = tn/αx(t) so that y satisfies the ODE

y′ = yL
(
yt−n/α

)
, y(t0) = tn/α

0 x0 =: y0 > 0. (2.4)

By (2.4), y is clearly increasing and so

y(t) = exp

(∫ t

t0
L

(
y(s)s−n/α

)
ds

)
≥ exp

(∫ t

t0
L

(
y0s

−n/α
)
ds

)

= exp

(
αyα/n

0

n

∫ x0

y0t−n/α

f (u)

u2+α/n
du

)
→ ∞

as t → ∞, by (2.3). For τ > t0 sufficiently large we can ensure that y(t) ≥ μ0 and
t−n/α y(t) = x(t) ≤ c0 for all t ≥ τ . For such t it follows from (S) that

y′ = tn/α f
(
t−n/α y

) ≥ tn/α f
(
t−n/α

)
g(y)

and so

∫ y(t)

y(τ )

dy

g(y)
≥

∫ t

τ

L
(
s−n/α

)
ds = α

n

∫ τ−n/α

t−n/α

f (u)

u2+α/n
du.

Letting t → ∞ and using (2.3) we again obtain a contradiction, on recalling the
integrability of 1/g in (S). 	


3 Blow-up of the PDE

In this section we show that blow-up of the ODE (2.1) implies blow-up of the PDE
(1.1). We denote by {Sα(t)}t≥0 the fractional heat semigroup on Lq(Rn) (q ≥ 1)
generated by −�α on Rn with the explicit representation formula

[Sα(t)φ](x) =
∫
Rn

Kα(x − y, t)φ(y) dy, φ ∈ Lq(Rn), (3.1)
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where Kα is the (positive) fractional heat kernel. As is commonplace in the study of
semilinear problems, we may then study (1.1) via the variation of constants formula

u(t) = F (u;φ) := Sα(t)φ +
∫ t

0
Sα(t − s) f (u(s)) ds. (3.2)

It is well known that for any non-negative initial condition φ ∈ L∞(Rn) there is
a Tφ > 0 such that (1.1) has a unique non-negative solution u which is bounded on
R
n ×[0, T ] for any T ∈ (0, Tφ), such that if Tφ < ∞ then ‖u(t)‖∞ → ∞ as t → Tφ .

If Tφ = ∞ then we say that u is a global solution of (1.1).

Definition 3.1 Suppose f satisfies (M). We say that the PDE (1.1) has the blow-up
property if for every non-trivial, non-negative φ ∈ L∞(Rn) we have Tφ < ∞.

Theorem 3.1 Suppose that f satisfies (M) and (C). If the ODE (2.1) has the blow-up
property then the PDE (1.1) has the blow-up property.

Proof We proceed as in the proof of the main theorem in [17, Section 4]. We briefly
outline the initial steps of that proof for the reader’s convenience.

Suppose, for contradiction, that u is a non-negative, global solution of (1.1). Then
u satisfies the integral equation

u(x, t) =
∫
Rn

Kα(x−y, t)φ(y) dy+
∫ t

0

∫
Rn

Kα(x−y, t−s) f (u(y, s)) dyds. (3.3)

Clearly u > 0 for all t > 0 and so, by translating in time if necessary, we may assume
without loss of generality that φ > 0.

Using the integral formulation (3.3), positivity of the solution and standard prop-
erties of Kα , one can then show that there exist constants c > 0, τ0 > 0 and t0 > 0
such that u(x, t0) ≥ cKα(x, τ0) for all x ∈ R

n (see [17, p. 48]). It follows that

u(x, t + t0) =
∫
Rn

Kα (x − y, t) u(y, t0) dy

+
∫ t

0

∫
Rn

Kα(x − y, t − s) f (u(y, s + t0)) dyds

≥ c Kα(x, t + τ0) +
∫ t

0

∫
Rn

Kα(x − y, t − s) f (u(y, s + t0)) dyds.

Setting v(x, t) = u(x, t + t0) yields

v(x, t) = c Kα(x, t + τ0) +
∫ t

t0

∫
Rn

Kα(x − y, t − s) f (v(y, s)) dyds. (3.4)

Clearly v(t) ∈ L∞(Rn) for all t > 0 since u is assumed to be in L∞(Rn) for all t > 0.
Now set

z(t) =
∫
Rn

Kα (x, t) v(x, t) dx .
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Evidently z(t) is positive and finite for all t > 0. Multiplying (3.4) by Kα(x, t),
integrating over Rn and using the semigroup property of Kα , gives

z(t) = k(2t + τ0)
−n/α +

∫ t

t0

∫
Rn

Kα(y, 2t − s) f (v(y, s)) dyds.

where k = k(n, α, c) is a positive constant. Now using the scaling property

Kα(x, t) = t−n/αKα(t−1/αx, 1)

of Kα (see e.g., [17, p. 46–47]) and the fact that Kα(x, t) is decreasing in |x |, we have
for s ≤ t ,

Kα(y, 2t − s) = (2t − s)−n/α Kα

(
(2t − s)−1/α y, 1

)

≥ (2t − s)−n/α Kα

(
s−1/α y, 1

)

=
(
2t − s

s

)−n/α

Kα (y, s)

≥ 2−n/α (t/s)−n/α Kα (y, s) .

Hence, by Jensen’s inequality,

z(t) ≥ k(2t + τ0)
−n/α + 2−n/α

∫ t

t0
(t/s)−n/α

∫
Rn

Kα (y, s) f (v(y, s)) dyds

≥ k(2t + τ0)
−n/α + 2−n/α

∫ t

t0
(t/s)−n/α f (z(s)) ds

≥ κt−n/α + κ

∫ t

t0
(t/s)−n/α f (z(s)) ds (3.5)

for all t ≥ t1, κ < 2−n/α min{1, k} and t1 > t0 sufficiently large. Here we point out
that (3.5) is a departure from the form used in [17, Equation (4.4)] and is the reason
for our introduction and analysis of the auxiliary ODE (2.1).

It now follows from (3.5) that for t > t1, z is a supersolution of the ODE

w′ = κ f (w) −
( n

αt

)
w.

By rescaling time (t �→ κt) we see that z(t) ≥ x(κt), where x is the solution of the
ODE

x ′ = f (x) −
( n

αt

)
x, x(κt1) = z(t1) > 0.

By assumption x (and hence z) blows up in finite time, yielding the required contra-
diction to our earlier statement that z(t) is finite for all t > 0. 	
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By Theorems 2.1 and 3.1 we obtain the following blow-up result for (1.1).

Corollary 3.2 Suppose f satisfies (M), (C), (B) and (S). If

∫
0+

f (u)

u2+α/n
du = ∞,

then the PDE (1.1) has the blow-up property.

4 A distinguishing example

In this section we present an example of a function f which satisfies the hypotheses
of Corollary 3.2, but not those of [9, Theorem 4.1] (for α = 2) nor [17, Theorem].
Firstly, the f we construct below has the property

lim inf
u→0

f (u)

u pα
= 0, (4.1)

so that the requirement (1.4) (labelled (F.2) in [17]) does not hold.
In [9, Theorem4.1] the authors use a similar butmore restrictive version of (S) (there

denoted by assumption (B3)) to establish blow-up of the PDE (1.1) when α = 2. The
authors assume that there exists c0 ∈ (0, 1] such that

f (λμ) ≥ c0μ
pF f (λ) for all 0 < λ ≤ μ, λ ∈ (0, c0) and λμ ∈ (0, c0). (4.2)

Hence the rôle of g in (S) is played there by the power law nonlinearity g(μ) = μpF

(recall Remark 2.1). In fact the homogeneity of this power law function is crucial in
the proof of [9, Theorem 2.1] (see also [9, Theorem 3.5]) on which [9, Theorem 4.1]
relies. Indeed, the iterative blow-up procedure used in the proof of [9, Theorem 2.1]
utilizes in an essential way certain scaling identities relating the exponential function
in the Gaussian heat kernel K2 and the power law. Furthermore, (S) is not required
to hold for arbitrarily small μ which is an essential requirement in the proof of [9,
Theorem 2.1]. On the other hand we impose the stronger convexity assumption in (C),
absent in [9].

Now observe, upon taking λ = μ, that any f satisfying (4.2) necessarily satisfies

lim inf
λ→0

f (λ2)

λpF f (λ)
> 0. (4.3)

(Note that this in turn imposes upon f a kind of logarithmic scaling bound, as emerges
in the proof of [9, Lemma 3.6]). The f we construct below will satisfy the hypotheses
of Corollary 3.2 (for any α ∈ (0, 2]), but not (4.3) (for α = 2).

Let α ∈ (0, 2].
Step 1. Define the monotonically decreasing sequences

σi := e−i2 , ui := e−ei
2

, i ∈ N. (4.4)
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A blow-up dichotomy for semilinear fractional… 83

Let Ii denote the interval Ii = [ui+1, ui ) and define

f̃ (u) = σi u
pα , u ∈ Ii , i ∈ N

with f̃ (0) = 0. Notice that f̃ (u) = u pα / ln(1/ui ) on Ii , so that f̃ models a logarithmic
correction to the critical power law case on a sequence of vanishingly small intervals
near zero, to be compared with the example of [9, Section 5]. It is clear that f̃ is
non-decreasing on [0, δ] (where δ > 0 can be chosen as small as desired later on) with
discontinuities at u = ui .

Step 2. We now modify f̃ to create a function f satisfying (M), (C) and (B).
Fix p and θ > 1 such that

1 < p < pα,
pα

pα − 1
< θ <

p

p − 1
(4.5)

and set vi = θui+1. It is easily verified that θui+1 < ui for all i sufficiently large, and
so for all such i

ui+1 < vi < ui .

Now set Ji = [ui+1, vi ) and Mi = [vi , ui ) (so that Ii is the disjoint union of Ji and
Mi ) and define

f (u) =
{
biu − ai , u ∈ Ji ,
σi u pα , u ∈ Mi

for i large, with f (0) = 0. Note that f (vi ) = σiv
pα

i so that (4.1) holds.
We now choose ai and bi to ensure that f is continuous, i.e. such that the

line y = biu − ai passes through the points (ui+1, σi+1u
pα

i+1) and (vi , σiv
pα

i ) =
(θui+1, σiθ

pαu pα

i+1). This yields

bi = u pα−1
i+1 (θ pασi − σi+1)

θ − 1
> 0, ai = u pα

i+1(θ
pασi − θσi+1)

θ − 1
> 0. (4.6)

By construction f is also increasing and Lipschitz on [0, δ]. In order that f be convex
on [0, δ] we require that

pασi+1u
pα−1
i+1 ≤ bi ≤ pασiv

pα−1
i ,

(by comparing the gradient of f at the endpoints of the intervals), or equivalently

θ pα−1(θ − pα(θ − 1)) ≤ σi+1

σi
≤ θ pα

1 + pα(θ pα − 1)
. (4.7)

By (4.5), and since σi+1/σi → 0 as i → ∞, (4.7) holds for all i sufficiently large.
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84 R. Laister, M. Sierżęga

Thus, f is increasing, convex and Lipschitz on [0, δ]. It is clear that the domain of
f can then be extended to [0,∞) while still preserving monotonicity, convexity and
Lipschitz continuity and also such that (B) holds.

Step 3. Next we show that f satisfies the remaining hypotheses of Corollary 3.2.
By Remark 2.1(i) it suffices to show that

(i) f (u)/u p is non-decreasing on (0, δ), and

(ii)
∫
0+

f (u)

u2+α/n
du = ∞.

For (i) let F(u) := f (u)/u p. This continuous, piecewise differentiable function is
given explicitly by

F(u) =
{
biu1−p − aiu−p, u ∈ Ji ,
σi u pα−p, u ∈ Mi .

Clearly F is non-decreasing on Mi for all i . On Ji = [ui+1, vi ) we have that

F ′(u) = u−p−1(pai − (p − 1)biu).

Hence F ′ ≥ 0 on Ji if and only if

pai ≥ (p − 1)bivi . (4.8)

Now, recalling (4.6), we have

pai
(p − 1)bivi

= p(θ pασi − θσi+1)

θ(p − 1)(θ pασi − σi+1)

= p(θ pα − θσi+1/σi )

θ(p − 1)(θ pα − σi+1/σi )
→ p

θ(p − 1)

as i → ∞. Hence, by (4.5), (4.8) holds for all i sufficiently large. Thus F is non-
decreasing on (0, δ).

For (ii),

∫ δ

0

f (u)

u2+α/n
du ≥

∞∑
i=1

∫
Mi

f (u)

u2+α/n
du =

∞∑
i=1

∫ ui

vi

σi

u
du

=
∞∑
i=1

σi log(ui/vi ) =
∞∑
i=1

σi log (ui/(θui+1))

=
∞∑
i=1

(e2i+1 − 1) − log θ

∞∑
i=1

e−i2

= ∞,

recalling (4.4).
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A blow-up dichotomy for semilinear fractional… 85

Step 4. Finally we show that f fails to satisfy assumption [9, (B3)] when α = 2. In
fact we establish a more general result: for any α ∈ (0, 2], we find a sequence λi → 0
such that

lim
i→∞

f (λ2i )

λ
pα

i f (λi )
= 0.

Consequently (4.3) fails in the special case α = 2.
To achieve this we show that there is a sequence λi ∈ Mi = [vi , ui ) such that

λ2i ∈ Mi+1. It will then follow that

lim
i→∞

f (λ2i )

λ
pα

i f (λi )
= lim

i→∞
σi+1(λ

2
i )

pα

λ
pα

i (σiλ
pα

i )
= lim

i→∞
σi+1

σi
= 0,

recalling that σi = e−i2 .
Fix 1/2 < q < 1 and let λi = v

q
i . Clearly λi > vi since vi < 1 and q < 1. It

is also easily verified that λi = θquqi+1 < ui for i sufficiently large, recalling (4.4).
Hence λi ∈ Mi for such i . Next,

λ2i = v
2q
i = θ2qu2qi+1 < ui+1

for i sufficiently large, since 2q > 1. Also, λ2i = v
2q
i > u2qi+1 and vi+1 = θui+2.

Hence in order to show that λ2i > vi+1, it suffices to show that u2qi+1 > θui+2. This is
readily verified for large i , recalling (4.4). It follows that λ2i ∈ Mi+1, as required.

Remark 4.1 Consider the caseα = 2.By taking g(μ) = μpF , any function f satisfying
(4.2) necessarily satisfies our condition (S). Hence any convex function f satisfying the
hypotheses of [9, Theorem 4.1] also satisfies those of Corollary 3.2. Our distinguishing
example therefore shows that, within the class of convex source terms, Corollary 3.2
is strictly stronger than [9, Theorem 4.1].

Remark 4.2 It is reasonable to speculate whether the analogous condition to (4.2), with
the power lawμpF replaced byμpα , might provide the basis for similar results to those
in [9] for the fractional diffusion case 0 < α < 2. However, the f constructed above
satisfies

lim inf
λ→0

f (λ2)

λpα f (λ)
= 0

for any α ∈ (0, 2]. Consequently, the f constructed above pre-empts any improve-
ments that might possibly be obtained in this way, at least within the class of convex
source terms.
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5 Global existence

In this sectionwe consider the issue of global continuation of locally bounded solutions
of (1.1). We set QT = R

n × (0, T ) and write ‖ · ‖q for the norm in Lq(Rn).

Definition 5.1 Let T > 0. We say that a non-negative, measurable, finite almost
everywhere function w : QT → R is an integral supersolution of (1.1) on QT if
w satisfies F (w;φ) ≤ w almost everywhere in QT , withF as in (3.2).

We recall the following well-known smoothing estimate for the fractional heat
semigroup for 1 ≤ q ≤ r ≤ ∞ and φ ∈ Lq(Rn) (see e.g., [13, Lemma 3.1]):

‖Sα(t)φ‖r ≤ Ct
− n

α

(
1
q − 1

r

)
‖φ‖q , t > 0, (5.1)

where C = C(n, α, q, r).
For f satisfying (M) we define the non-decreasing function � : (0,∞) → [0,∞)

by

�(u) = sup
0<s≤u

f (s)

s
. (5.2)

Theorem 5.1 Suppose φ ∈ L1(Rn)∩ L∞(Rn), φ ≥ 0 and f satisfies (M). Let u(t;φ)

denote the unique, non-negative solution of (1.1) with maximal interval of existence
[0, Tφ). If ∫

0+
u−pα �(u) du < ∞, (5.3)

then there exists ρ > 0 such that for all φ satisfying ‖φ‖1 + ‖φ‖∞ ≤ ρ we have
Tφ = ∞ and

0 ≤ u(t;φ) ≤ 2Sα(t)φ (5.4)

for all t ≥ 0. Consequently ‖u(t;φ)‖∞ ≤ 2Ct−n/α‖φ‖1 for all t > 0, where C =
C(n, α, 1,∞).

Proof We will show that for suitably small ρ > 0, w := 2Sα(t)φ is an integral
supersolution of (1.1) for all t ≥ 0. Via the monotone iteration scheme un+1 =
F (un;φ)we then obtain a decreasing sequence of functions un such that 0 ≤ un ≤ w

and converging to a solution ũ(t;φ) of (1.1). See, for example, [10,16] for the case
α = 2 and [11] for the fractional case for general results of this kind. By standard
uniqueness results we may then deduce that ũ(t;φ) = u(t;φ) and 0 ≤ u(t;φ) ≤ w,
yielding (5.4). The L∞-bound for u then follows by L1-L∞ smoothing.
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First setC1 = C(n, α,∞,∞) and choose ρ such that ρC1 ≤ 1. Then choose τ > 0
such that 2�(2)τ < 1. By (5.1) we have ‖Sα(t)φ‖∞ ≤ C1‖φ‖∞ ≤ C1ρ ≤ 1 for all
t > 0. In particular, for all t ∈ (0, τ ] we have

F (w;φ) − w = Sα(t)φ +
∫ t

0
Sα(t − s) f (w(s)) ds − w

≤ Sα(t)φ +
∫ t

0
Sα(t − s) [�(w(s))w(s)] ds − w

=
∫ t

0
Sα(t − s) [� (2Sα(s)φ) 2Sα(s)φ] ds − Sα(t)φ

≤
∫ t

0
Sα(t − s) [� (‖2Sα(s)φ‖∞) 2Sα(s)φ] ds − Sα(t)φ

≤
∫ t

0
Sα(t − s) [2�(2)Sα(s)φ] ds − Sα(t)φ

= 2�(2)
∫ t

0
Sα(t)φ ds − Sα(t)φ

≤ (2�(2)τ − 1) Sα(t)φ

≤ 0.

For t > τ weproceed as above, utilizing the L1-L∞ smoothing estimate ‖Sα(t)φ‖∞ ≤
C2t−n/α‖φ‖1 ≤ C2ρt−n/α , where C2 := C(n, α, 1,∞). Whence,

F (w;φ) − w = Sα(t)φ +
∫ τ

0
Sα(t − s) f (w(s)) ds +

∫ t

τ

Sα(t − s) f (w(s)) ds − w

≤ (2�(2)τ − 1) Sα(t)φ +
∫ t

τ

Sα(t − s) [�(w(s))w(s)] ds

≤ (2�(2)τ − 1) Sα(t)φ +
∫ t

τ

Sα(t − s) [� (2Sα(s)φ) 2Sα(s)φ] ds

≤ (2�(2)τ − 1) Sα(t)φ +
∫ t

τ

Sα(t − s) [� (‖2Sα(s)φ‖∞) 2Sα(s)φ] ds

≤ (2�(2)τ − 1) Sα(t)φ +
∫ t

τ

Sα(t − s)
[
�(2C2ρs

−n/α)2Sα(s)φ
]
ds

= (2�(2)τ − 1) Sα(t)φ + 2Sα(t)φ
∫ t

τ

�(2C2ρs
−n/α) ds

=
(
2�(2)τ − 1 + (α/n)2pα (C2ρ)α/n

∫ 2C2ρτ−n/α

2C2ρt−n/α

x−pα �(x) dx

)
Sα(t)φ

≤
(
2�(2)τ − 1 + (α/n)2pα (C2ρ)α/n

∫ 2C2ρτ−n/α

0
x−pα �(x) dx

)
Sα(t)φ

≤ 0

for ρ sufficiently small (and independently of t), by (5.3). 	
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We are now in a position to state our main result.

Theorem 5.2 (Blow-up Dichotomy) If f satisfies (M), (C), (B) and (S), then the
following are equivalent:

(a) the PDE (1.1) has the blow-up property;
(b) the ODE (2.1) has the blow-up property;

(c)
∫
0+

f (u)

u2+α/n
du = ∞.

Proof By the contrapositive ofTheorem5.1, (a) implies (c) (noting that �(u) = f (u)/u
for f convex). By Theorem 2.1, (c) implies (b). By Theorem 3.1, (b) implies (a). 	

Example 5.1 In the special case of the homogeneous power law nonlinearity f (u) =
u p with p > 1, Theorem 5.2 shows that (1.1) has the blow-up property if and only if
1 < p ≤ pα , as is well known [3,4,6,17].

Example 5.2 For β > 0 take

f (u) =
{
u pα (log(1/u))−β , u ∈ (0, c0),
f̂ (u), u ≥ c0,

with f (0) = 0 and f̂ and c0 > 0 to be specified. For sufficiently small c0 > 0, f
can be shown to be convex (via a tedious calculation) and f (u)/u p is non-decreasing
on (0, c0) for any p ∈ (1, pα]. By Remark 2.1 (i) it follows that f satisfies (S).
Clearly f̂ can then be chosen such that (M), (B) and (C) hold. Computation of the
integral in Theorem 5.2 (c) then shows that (1.1) has the blow-up property if and only
if 0 < β ≤ 1. See the example in [9, Section 5] for the special case α = 2.

Remark 5.1 Under the assumptions of Theorem 5.2 we could rewrite the equivalences
as follows:

(a) there exist positive, global solutions of the PDE (1.1);
(b) there exist positive, global solutions of the ODE (2.1);

(c)
∫
0+

f (u)

u2+α/n
du < ∞.

6 Concluding remarks

Wehave established a newblow-up dichotomy for positive solutions of fractional semi-
linear heat equations, extending those of [3,6,9,17]. In particular, for a class of convex
nonlinearities we have established an equivalence between the PDE (1.1) and the ODE
(2.1) with respect to the blow-up property. Furthermore we have determined neces-
sary and sufficient conditions on the nonlinearity f , in the form of a non-integrability
condition near zero, for this blow-up property to hold.

When viewed in their integral form, there is an obvious formal similarity between
the PDE and an auxiliary ODE: the PDE (1.1) can be cast as

u(t) = Sα(t)φ +
∫ t

0
Sα(t − s) f (u(s)) ds,
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while the ODE (2.1) can be written as

x(t) = (t/t0)
−n/αx(t0) +

∫ t

t0
(t/s)−n/α f (x(s)) ds.

The similarity arises when considering the decay rate of the operator norm of Sα(t) :
L1(Rn) → L∞(Rn), which is given (via the smoothing estimate (5.1)) by

‖Sα(t)‖L1→L∞ ≤ Ct−n/α.

It is intriguing that this formal similaritymanifests itself as an equivalence with respect
to the blow-up property.

It would be interesting to knowwhether the technical hypothesis (S) can be removed
in Theorem 2.1 and consequently in Theorem 5.2. This would yield a sharper and
perhaps more natural result. However, recalling Remark 2.1 (i), we suspect that the
stronger (but more easily verified) assumption that f (u)/u p be non-decreasing near
zero for some p > 1, will prove more useful in applications. Similarly we would like
to better understand the rôle of the convexity assumption on f . It is this convexity that
permits us to show, via Jensen’s inequality, that blow-up of the ODE implies blow-up
of the PDE. It remains open whether our blow-up equivalence result can be obtained
without the convexity assumption and without assuming (S).

Finally, we mention that the analysis of fractional semilinear parabolic equations
such as (1.1) is intimately related to the study of symmetric α-stable processes in
probability theory. It seems reasonable to hope that our work might have parallels in
that domain and provide new insights for such processes.
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