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Abstract

Operator selection plays a crucial role in the efficiency of heuristic-based problem solving algo-

rithms, especially, when a pool of operators is used to let algorithms dynamically select operators

to produce new candidate solutions. A sequence of selected operators forms up throughout the

search which impacts the success of the algorithms. Successive operators in a bespoke sequence

can be complementary and therefore diversify the search while randomly selected operators are not

expected to behave in this way. State of art adaptive selection schemes have been proposed to

select the best next operator without considering the problem state in the process. In this study, a

reinforcement learning algorithm is proposed to embed in a standard artificial bee colony algorithm

for taking the problem state on board in operator selection process. The proposed approach implies

mapping the problem states to the best fitting operators in the pool so as to achieve higher diver-

sity and shape up an optimum operator sequence throughout the search process. The experimental

study successfully demonstrates that the proposed idea works towards higher efficiency. The state

of art approaches are outperformed with respect to the quality of solution in solving Set Union

Knapsack problem over 30 benchmarking instances.
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1. Introduction

Optimisation is an unavoidable discipline in engineering studies, which attracts high interest

for solving many real-world problems as an interdisciplinary field of engineering [1], mathematics

[2], economics [3], computer science [4], industrial production process [5] etc. Among a wide range

of optimisation techniques, metaheuristic-based optimisation approaches are developed as nature-

inspired problem solving algorithms and considered within the umbrella of artificial intelligence [6].

Studies related to metaheuristics and heuristic optimisation have been very popular and tend to

increase significantly in recent years.

One of the essences of metaheuristic approaches is to handle the dilemma of randomness and

the use of gained experience within the search conducted by the algorithms. That is known to be

exploration and exploitation dilemma that helps keep a balance between the use of randomness and

gained experience in order to solve the problems fruitfully and to achieve higher efficiency. However,

it is not trivial to sustain such a balance in between for all problem types, even if it is secured for

a particular problem type, due to the differences in the natures of the problems. This usually re-

quires user-defined procedures and problem-specific functional embeddings. One of the generalised

approaches to avoid problem-specific obstacles and difficulties is to use binary representations and

binary problem solving with various binary operators. Metaheuristic approaches impose the use of

single operators in generating new solutions while conducting searches. On the other hand, evo-

lutionary and swarm intelligence algorithms enforce multiple operators such as genetic operators

and local search routines. A wide range of studies demonstrated that recruiting multiple operators

offers a better payoff with respect to efficiency [7, 8]. Studies reveal that harmonic use of comple-

mentary operators helps improve the diversity of search, but, a well-customised switch scheme will

be required to achieve higher efficiency. For instance, evolutionary algorithms impose a sequence

of operators for this purpose while some other approaches such as variable neighborhood search

reinforce a systematic change between two operators to let the agents switch search neighborhood.

Another cluster of approaches can be named as adaptive methods with which the operators have

opted on merit-based [9, 10] while the merits gained through the number of successfully use.

Machine learning has started attracting so much attention in use across all industries with its

proven success in data modeling and predictive analytics. [11] overviews the use of machine learning

for empowering metaheuristics in a wider perspective and integrates it with metaheuristic and evo-

lutionary algorithms. It is known that reinforcement learning (RL) approaches are successfully used
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in online training to opt to take the best action depending on environmental circumstances [12].

However, implementing RL algorithms in generalised form requires structural credit assignment

and handling mechanisms which can be quite challenging. One of the ideas for generalising the

online experience gained by RL algorithms to be exploited in later times and stages is elaborated

and discussed in [13]. Their method implies combining a Q-Learning algorithm with clustering

algorithm for structural credit handling and draws attention with its the success and simplicity.

A recent work by [14] proposes the use of RL to adopt the best fitting mutation strategies in a

differential evolutionary algorithm which is typically used in design problems. It is clear that a

comprehensive study has not been seen yet on use of RL in building adaptive operator selection

schemes in order to furnish artificial bee colony (ABC) algorithms for solving binary problems. In

this paper, we aim to seek the utilisation of RL approaches in developing highly efficient adaptive

operator selection schemes to be embedded in evolutionary and swarm intelligence algorithms , par-

ticularly in ABC algorithms, for problem solving. Following successful use of merit-based adaptive

operator selection schemes in ABC algorithms for solving binary problems [9], we propose to use a

bespoke Q-Learning algorithm combined with a Hard C-Mean clustering algorithm [15] to construct

and refine an adaptive operator selection scheme to let ABC algorithm recruit multiple state-of-art

binary operators to solve set union knapsack problem (SUKP) [10].

The paper is organized as follows: Section 2 provides the background context and related litera-

ture while Section 3 introduces the proposed algorithm with details of RL-based adaptive operator

selection scheme. Section 4 elaborates the details of the experimental study to demonstrate the

success of the proposed method in comparison with the state-of-the-art problem solving approaches

for SUKP. Finally, in Section 5, the conclusion has been drawn and future work directions have

been provided.

2. Background and Related Works

The aim of this section is to brief the facilitating background of this study and to overview

the relevant works. ABC algorithm has been used as the metaheuristic and the swarm intelligence

algorithm embedded with the adaptive operator selection scheme developed with a customised

reinforcement learning.
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2.1. Artificial Bee Colony Algorithms

Swarm intelligence algorithms have been originally developed for either discrete or continuous

problems, and then implemented for the other types of problems; ant colony optimisation (ACO)

[16] is originally developed for combinatorial problems, e.g. traveling salesman problem while

particle swarm optimisation (PSO) [17] and artificial bee colony (ABC) algorithms are developed

for continuous problems [18]. In order to implement a search algorithm for a problem type that is

not originally developed for, additional conversion procedures are embedded into the algorithms,

which applies to ABC, too. Two approaches are mainly devised for implementing ABC to solve

combinatorial problems. The commonly used approach is to keep the continuous variables in use

with an operation to map the variable in use to a binary vector and vice versa [19]. ABC algorithm

has been commonly used across many industries to solve so many problems including combinatorial

and binary problems. Since this main aim of this research is to emphasise developing adaptive

operator selection using one of state-of-art machine learning approaches, further literature details

have not been considered for an update but a bespoke algorithm is introduced in Section-2.2. The

idea of this study has been built upon the recent works done with ABC in the form used in [9].

2.2. Adaptive Operator Selection

Operator selection is one of the functionalities needed by search algorithms that use multiple

alternative operators. As explained before, the process follows rules for achieving higher efficiency

in search while it is not trivial to have a generic rule that works well with all types of problems. The

nature of the problems can affect the structure of the search space and hence enforce operators to

show different behaviours. It can be highly dynamic, non-stationary, or can be moderately dynamic

and stationary, etc. Therefore, many methods have been proposed in the literature for selecting

the right operator at a certain moment based on some strategies from a pool containing multiple

operators. It is called adaptive operator selection (AOS). This is a challenging problem because

the characteristics of the operators used and their joint effects are not known. In other words, an

operator that performs well at the beginning might act poorly over time or vice versa. Operator

selection involves a two-stage process; credit assignment and operator selection [20, 21]. The first

stage is for building the credibility of operators from their recent history of success while the second

stage is about selecting the right operator based on the credits gained. The characteristics of AOS

algorithms proposed in the literature vary in the way how each is utilised.
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Credit assignment is generally conducted using fitness value and ranks. The quality of an

operator can be determined in several ways. The simplest way is to utilize the latest fitness value

[22] or average fitness values within a time window that indicates improvements in solution quality

[23]. [24] proposes taking maximum improvement in fitness values obtained over the chosen time

window by operators. However, when the environments are not stationary, [25] proposes a weighted

average update. Using raw fitness improvements as the quality directly has a large impact on

robustness. In order to increase the robustness in credit assignments, the work by [26] utilizes a

normalization scheme. Another approach is to use the latter credit assignment method, namely

rank-based credit assignment [27, 24]. Meanwhile, a similar approach proposed by [28], so-called

Compass method, takes both the fitness improvement and population diversity into account. In

[24], sum of ranks and area under curve methods are utilized for aiming at robustness.

After updating the qualities of operators using credit assignments, the next step is to determine

the way to select operators. The most popular and promising algorithms are Probability Matching

(PM) [29], Adaptive Pursuit (AP) [30] as the probability-based method and multi-armed bandit-

based (MAB) methods [31, 26, 21]. While PM and AP make selection according to credit values,

multi-armed bandit-based methods like Upper Confidence Bound (UCB) additionally take number

of selections into account [32]. Credit values obtained over a certain range are also used in some

dynamic MAB versions besides using current credit values [31, 26]. Although these algorithms have

a similar logic while obtaining credits and producing selection criterion, the optimisation proce-

dure is usually handled with different method such as ant colony optimisation [33], evolutionary

algorithms [34, 20] and [21].

2.3. Reinforcement Learning

Reinforcement learning is a modern machine learning paradigm which implies gaining experience

on run-time and using it to learn the relationship between input and output sets. It is particularly

useful for modern robotic applications as well as softbot systems to let robotic and software agents

smartly interact with their living/operating environments; this enables them to take the environ-

mental events as stimuli to decide the best reaction to the environment, in response to what is

ongoing within the environment [35].

The main principle behind reinforcement learning is to let agents learn how to act optimally in

order to maximise the environmental reward generated in response to their actions. Let an agent
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be capable of taking a set of actions, A, to respond to ongoing activities within the environment,

E, where it lives in, and let the environment be represented with a set of states, S, with which the

status of the environmental instances/episodes are perceived. The agent decides to take an action

a ∈ A in response to the environmental state, s ∈ S. This causes a change within the environment

as the result of the action a taken and an indicator of the payoff of the change made, r ∈ R+,

is produced to reward the agent’s action. Each agent lives within the environment and aims to

maximise the rewards, r(s, a), gained per instance/episode, represented with the pair of (s, a), and

accumulates the rewards towards maximum gain. That is:

max R =

∞∑
t=0

rt(s, a) (1)

where t represents the time index, rt(s, a) is the payoff gained as a result of taking action a in

response to state s at time t.

RL has been successfully used in training the robotic and/or software agents, which are employed

in various purposes including games, in various forms from simpler cases to complex problems [36].

Recently, deep learning versions of RL have been developed and made available to handle and solve

complex, dynamic, online and real-time problems [36]. This success history has triggered its use in

operator selection as part of the heuristic optimisation briefed above. It would facilitate building

more conscious adaptive selection schemes to take inputs into account while selecting the operators

and crediting each aftermath of conducting each operation.

2.4. Set Union Knapsack Problem

This study has been conducted with solving set union knapsack problem (SUKP), which is one

of well-known non-polynomial (NP) hard combinatorial optimisation problems [37]. SUKP is a

special case of generic knapsack problem, which involves items to be optimally composed in subsets

so as to gain the maximum benefit. Given a set of n elements, U = {ui|i = 1, .., n} with a non-

negative weight set, W = {wi|i = 1, .., n} and a set of m items, S = {Uj |j = 1, ..,m} with a profit

set, P = {pj > 0|j = 1, ..,m}, a subset of A ⊆ S is sought to be found such that it maximises the

profit subject to that the sum of the weights of selected items not to exceed the capacity constraint,
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C. The formal structure of the problems is as follows:

max P (A) =
∑
j∈A

pj (2)

s.t. W (A) =
∑

i∈
⋃

j∈A Uj

wi ≤ C, A ⊆ S (3)

The problem is represented in real numbers and needs to be represented in binary form to enable

binary operators in search algorithms as in binary ABC [9]. Following the approach introduced by

[38], in order to do that a binary vector, B = {bj |j = 1, ..,m} ∈ {0, 1}, is defined to be used as the

decision variable, where bj = 1 if an item is selected, bj = 0, otherwise. The new model can be

reformulated as follows:

max f(B) =

m∑
j=1

bjpj (4)

s.t. W (AB) =
∑

i∈
⋃

j∈AB
Uj

wi ≤ C (5)

The main goal is to find the best binary vector, B, which provides the subset of items with the

maximum profit.

2.5. Related Works

This study relates to adaptive operator selection, artificial bee colonies, reinforcement learning

and set union knapsack problem, while the main focus goes on development of building adaptive

operator selection schemes using reinforcement learning. This is why the most relevant works have

been chosen from the literature on adaptive operator selection and reinforcement learning while

there is hardly any study conducted exactly matches the scope of this study. Binary artificial

bee colony algorithms have been credited in Section 2.1 and while literature on adaptive operator

selection is briefed in Section 2.2. The state-of-art algorithms in solving set union problems have

been used for comparative analysis in Section 4.

Operator selection in an adaptive way has been studied since early 1990s particularly applied

to evolutionary algorithms in order to determine the rates of genetic operators to select each dy-

namically over time [22]. The significant progress seems to be achieved over last decade on which
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the operator selection schemes have been devised to help improve the efficiency of evolutionary

algorithms applied to multi objective optimisation problems [20, 39]. The approaches mentioned

in Section 2.2 have been extensively used in various forms to solve a number of problems. All of

these approaches emphasise on how to promote the most successful operators and to rank them on

success/merit basis, which enforces to pay more attention on how to credit/discredit the operators.

Although a considerable level of success has been achieved through these studies, the situational

information such as problem state has not been considered by any of state-of-the-art studies. None

of the adaptive approaches reported above have considered the problem state and/or the history of

previous acts while selecting an operator to produce new solutions.

Another group of studies have conducted research on how to best select the mutation operators to

use in differential evolution algorithms, where multiple genetic operators have been made available

to opt in action. Few studies propose to take the information collected from fitness landscapes into

account for operator selection. The authors of [40] use an exploratory fitness landscape approach

to device a prediction machine to let select the operators, while [7] uses fitness landscape and

performance measures in operators selection without any structured learning process, and [41]

propose to use fitness landscape analysis measures to train a dynamic regression model for online

learning to build operator selection scheme. On the other hand, a very recent study reported in

[14] imposes a reinforcement learning algorithm embedded in differential evolution algorithm is

similar to what [7] proposes in order to help select the best fitting mutation strategy subject to

given circumstances of parametric status. The study is attempted using a Q-Learning algorithm

based on Q-Table, which produces good results if the finite number of states is moderately low so

as to tabulate each against each action. Relatively larger state spaces cannot afford to work with

Q-Table-based learning approaches.

To the best knowledge of the authors, a comprehensive approach using reinforcement learning

(RL) to take the problem state, i.e. input data, on board in operator selection has not been

studied before for the purpose of developing adaptive operator selection schemes. Such an RL-

based approach is expected to help agents learn on the fly how to select the best fitting operator

for the given problem state while conducting a search for best solution. In the next sections of

this paper, a reinforcement learning approach has been explained with which the search algorithm

will gain situational knowledge through online training to get assisted in selecting the best fitting

operators. A Q-Learning algorithm has been merged with a clustering algorithm to help generalise
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the situational information as in [13] and learn to select the best operator subject to the situational

information including the problem state. To the best knowledge of the authors, this is the first study

considers such an approach to train the search agents online to select the best operator within an

artificial bee colony algorithm devised to solve set union knapsack problem represented in binary

form.

3. Operator selection with Reinforcement Learning

The operator selection schemes studied in the literature mainly devised on merit basis with which

the selection process relies on the gained reputation over success history. Another rising stream of

the studies bring forward the use of fitness landscape measures to set up basis for building efficient

selection schemes. As indicated in previous sections, the problem state does not play a major role

in the operator selection process while an efficient selection mechanism cannot avoid disregarding

the problem state from the selection process. It is well-known that reinforcement learning (RL)

emerges as a very promising online/active learning approach assisting immediate exploitation of

cumulatively gained experience within the purpose of use, which can be a decision making or a

prediction. The essence of RL is to evaluate an input set that represents the problems state and

take the best action in its capacity to date, accordingly, while the environment, which holds the

agents, let them be trained, and produces payoff signals upon any action taken by agents to pass

into the agents in order to let them consider for gaining experience and learning how to select

actions in response to the input set as the situational data.

This study aims to propose a more conscious selection process developed based on reinforcement

learning approach implemented into a distance-based clustering algorithm in which the distance in

between the input set and the fine-tuned cluster centers is estimated and made reference index

in operator selection. The idea of setting up a selection scheme based on clusters is discussed

and implemented in machine learning studies. Reinforcement learning is known to be very useful

in handling dynamically changing environment and for solving dynamic problems, particularly

for operating within unknown dynamic environments. One of earlier studies proposes embedding

reinforcement learning in a distance-based clustering algorithm, namely hard-c-means algorithm, to

train agents to select the best scheduling operator subject to dynamic production environments to

solve dynamic scheduling problems [13]. Inspiring of this study, a reinforced-clustering algorithm

is put together to optimise the cluster centers so that the problem states can be classified with
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optimised clusters, where each cluster will correspond to an operator. The algorithm will impose

selecting the cluster center, i.e. operator, closer to the input set in distance. This will facilitate a

selection scheme more conscious with problem state.

3.1. Operator Selection

Given a set of operators, O = {oi|i = 1, .., |O|}, and a binary vector of inputs, xt = {xt,j |t ∈

T, j = 1, .., |xt|}, where T is the time/iteration count, xt,i ∈ {0, 1}, xt ⊆ S and S represents

the complete problem state space. An operator oi ∈ O works as a function, f(xt), to produce

a neighbouring state, xt+1, that is evaluated with a measure, so called fitness, represented as

F (xt) : xt → R. The operators are attached with an indicator, Q = {Qi|i = 1, .., |O|}, to measure

the credit gained throughout the search process upon each successful production, which is usually

decided if F (xt+1) < F (xt) for minimisation cases, opposite otherwise. The operators are selected

subject to an ε policy in which an operator is selected randomly if the random number drawn is

lower than the threshold of ε, otherwise the operators selection scheme imposes its rule to identify

an operator.

it∗ =

ir if ε < rand

arg maxi∈|O|{Qi,t} otherwise

(6)

where rand is the random number, ir ∈ |O| randomly selected, and it∗ is to be taken as the index

for oi, i.e. selected operator. Once operator oi is selected and applied to xt, its credit level is

updated with Qi,t+1 = δQi,t + (1− δ)ri,t, where 0 ≤ δ ≤ 1 is a discount rate and ri,t is the reward

allocated to oi for its success level on xt state.

Rewarding is the way to allocate credit to a chosen operator upon its success. Each selected

operator is evaluated, once applied, with respect to the level of success; success or failure. A reward

value, ri,t, is decided/calculated and assigned to the selected operator, oi, in order to update its

credibility for the next runs. The reward can be determined/calculated based on either instant

results or on some calculated statistics such as the average or extreme value over a pre-set time

window. Each statistic is recalculated/updated after delivery of each operation over the last W

number of iterations, i.e. run of an operation. The success level per operation can be estimated

based on either the value of an objective function, i.e. a value in real number, or the success status,

i.e. success or failure. An objective function-driven reward calculation is adopted in this study as
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detailed in the next section.

An instant reward can be calculated with ri,t = F (xt+1)−F (xt) once oi applied to xt at time t,

where F (xt+1) is the calculated objective value of the resulted state, xt+1 once oi applied to xt and

F (xt) is the known objective value of the current solution, xt. It is known that reward calculation

with immediate results, i.e. instant case, can cause degeneration or disruption in the later stages

[26]. An idea to overcome these possible issues is to normalise the difference between F (xt+1) and

F (xt) with the factor of the rate between attained objective value and the global best value as

follows:

ri,t =
F (xt+1)

gbestt
(F (xt+1)− F (xt)) (7)

where gbestt is the global best fitness value known to the time t. As indicated before, an instant

reward may not be useful all the time, while average reward, r̄i,t or extreme reward, r̂i,t, are two

alternative options to be used, which can be calculated with the following equations, Eq 8 and Eq

9, respectively:

r̄i,t =
1

W

(t+W )∑
j=t

ri,j (8)

r̂i,t = max
j
{ri,j |j = t, .., (t+W )} (9)

In both of the cases, the time window in size ofW is considered to be a sliding window throughout

of learning and search process.

3.2. Q-Learning combined with clustering

Q-Learning algorithm is one of very commonly used and highly reputed reinforcement learning

algorithms, which uses a data quality indicator, Q(s, a), to measure the credit of applying action

a to state s. The algorithm works iteratively to accumulate experience gained on the fly and

immediately use it. The underlying logic conforms to Markovian Decision Processes (MDP) in

which a decision is made as to the result of the previous decision. Q-Learning lets agents online

learn how to optimally act by selecting the best action a ∈ A given the environmental state s ∈ S.

Once action a is taken for state s, a new state, s′ ∈ S is generated, then the environment produces
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a payoff value, r ∈ R in response to a new state to reinforce the agent on the result of its action.

Q(s, a) = Q(s, a) + α
(
r + γmax

a
Q(s′, a)−Q(s, a)

)
(10)

where α is the learning rate and γ is the discount rate, which is applied to the expected maximum

Q value of the next step. This process is repeated as long as the operation is alive. Further details

can be found in [42] and [35].

Q-Learning algorithm works based on immediate feedback gathered online for exact situations,

which need to be generalised for use in a wider scope, however, the algorithm as is does not

provide such a structure for this purpose. Q Table is the most and earlier used data structure

proposed to sustain learned experience [35]. However, Q Table is not sufficiently scalable with

respect to problem size. Functional approximation approaches including artificial neural networks

[12] and deep learning have been implemented to generalise the experience to efficiently cover unseen

situations.

Clustering algorithms have been considered to generalise situational experience integrating Q-

Learning algorithm into the clustering procedure. Hard-C-Means algorithm is one of distance-based

unsupervised clustering algorithm, a kind of k-means algorithm versioned to be a base for fuzzy-

C-Means algorithm used in fuzzy rule generation[43]. It has been merged with Q-Learning and

converted to reinforcement learning algorithm as proposed in [13], where it is reported that the

core idea has been successfully implemented for dynamic production scheduling problems. How-

ever, it was originally implemented with a simple binary reinforcement mechanism to feed the al-

gorithm while this study extends the approach with implementing a statistics-based reinforcement

mechanism as mentioned in Section 3.1.

Hard C-Means algorithm originally works as an unsupervised learning algorithm, similar to K-

Means, but, it is intervened to align with Q-Learning so as to serve as a reinforcement learning

algorithm. In order to do that the number of cluster centers are fixed to a certain number and

the membership to each center is fine-tuned through online learning. Let C = {ci|i = 1, .., |O|}

be a set of clusters, where each is defined as ci = {ci,j |i = 1, .., |O|, j = 1, .., |xt|} to represent an

operation, oi, with |xt|. The data structure for cluster centers, ci ∈ C ∀i ∈ O, is inserted into

Q-Learning algorithm to let the quality indicator and the cluster centers work side-by-side and

feed each other once required. All clusters, ci ∈ C ∀i ∈ |O|, are initialised to a 0 vector, and
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then updated based on credits/rewards gained by each operator, oi. The centers of the clusters

are updated upon each successful selection of the corresponding operators, while they are selected

randomly when the clusters have overlapping centers. The centers are updated per dimension with

ci,j ←
(
ci,j + xt,j

)
/t, where i is the index for corresponding operator, j is the dimension index for

input data, i.e. jth element of input vector, and t is the iteration count.

A typical iteration of the combined algorithm works as follows: (i) the learning agent perceives

a state of xt at iteration t, (ii) selects an operator, oi, using Eq. 6, applies to xt and produces

xt+1, (iii) the environment responds to the change in the state with the action taken, oi, with a

reward of r, where an extreme reward approach (Eq 9) through a sliding window, W is used for

this purpose (iv) the center for cluster ci is updated with ci,j =
(
ci,j +xt,j

)
/t if the reward is larger

than 0, r > 0, no change is applied otherwise, (v) the quality indicator, Q(xt, oi) is updated with

the following equation:

Q(xt, oi) = Q(xt, oi) + α
(
r + γE(Q(xt+1, oi))−Q(xt, oi)

)
(11)

where α and γ are learning and discount rates as in Eq. 10, while E(Q(xt+1, oi)) = ‖xt+1 − ci‖, as

the expected value for quality indicator of state xt+1 and action oi, which is defined to be a distance

measure in between the state xt+1 and cluster center ci. The expected value E(.) is commonly

defined to be max(.) as in Eq 10. However, it can be redefined to adapt to circumstances of the

domain and the implementation. In this study, E(.) is defined to be based on minimum Euclidean

distance between a problem state, i.e. an input vector, and the cluster centers as mentioned above.

The procedure of this learning process is sketched in pseudo-code provided in Algorithm 1.

3.3. ABC algorithm embedded with combined Q-Learning (RLABC)

Q-Learning merged with hard C-means clustering algorithm has been developed to serve as an

adaptive operator selection scheme learning on-fly. It lets the operator selection engine self-build

up on-fly in which it gains experience through exploration and uses the collected data to assist in

learning how to react to the environmental circumstances. Figure 1 illustrates the logic behind

how the system works and the components interact towards achieving a built-up operator selection

scheme working adaptively. The system is architected of three main interacting components; selec-

tion engine, evaluator, and learner. The selection engine (i) collects input data from the solution

pool, i.e. bee swarm, (ii) passes relevant information to the evaluator and receives advice for the

13



Algorithm 1 General overview of Q-Learning algorithm merged with clusters

1: Operator Selection
2: if there are non-rewarded operators then
3: Choose oi randomly
4: else
5: Calculate probabilities of operators using Eq. 6
6: Choose oi using Roulette-Wheel selection
7: end if
8: Operator Evaluation
9: Execute oi and get r

10: if r > 0 then
11: Update ci of applied oi
12: Add r to operator oi
13: end if
14: Credit Assignment
15: Get total rewards for current iteration
16: Update Q using Eq. 11

best operator from the operator pool, (iii) chooses the operator (a single operator each time) and

produces new solutions, and then forwards all relevant information to the learner, while evaluator

proposes the best operator based on the most up-to-date credit levels using Eq. 6. Meanwhile,

learner runs one iteration of the learning algorithm, i.e. Q-Learning combined with clustering, to

update the credit level of chosen operator and the centroid details of the corresponding cluster using

Eq. 11, then feeds evaluator with the most up-to-date credit and centroid values.

The adaptive operator selector (AOS), composed of the three components sketched in Figure 1

and explained above, has been embedded in a standard artificial bee colony (ABC) algorithm,

labeled with RLABC henceforth, to solve SUKP problems as indicated before. The pseudo-code

of RLABC is illustrated in Algorithm 2. Once AOS and ABC parameters including all algorithmic

details are initialised, the employed bees take a position to start conducting the search, as the

first phase, in which an operator from the operator pool is selected using selection scheme and a

neighbouring bee per active bee to pair with is identified using the roulette-wheel approach. The

selected operator takes the problem states from the active bee and its neighbour to produce a new

solution candidate. If the fitness of the freshly produced solution is better than the solution held by

the active bee, then the old solution held is replaced with the new one, and the operator is rewarded

accordingly. If the produced solution is worse, then, it is discarded and the count indicating the

successive failure record of the active bee is counted up by 1.
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Figure 1: The mechanics of building adaptive operator selector with reinforcement learning

The next phase of ABC is to run the onlooker bees in which the bees are activated based on

the probabilities calculated with the bias of fitness values. All relevant actions including operator

selection, fitness and reward calculations are repeated. Once a bee is found not contributing more

than a certain number of trails, it is moved/deleted out of the swarm/population and a newborn

bee with fresh randomly generated solution is added to the swarm. At the final stage of an iteration

of ABC, (i) the rewards are allocated to each of recruited operators so as to consider an updated

version in the next iteration, (ii) the global best solution produced by the swarm is tested and

updated, and (iii) the stopping criteria is checked if it is the time to stop, otherwise moves to the

next generation.

4. Experimental Results

4.1. RLABC implementation

ABC algorithm has been implemented to solve SUKP problems using multiple binary operators

selected with an adaptive selection scheme built with Q-Learning algorithm as explained before. A

typical solution, i.e. a problem state xt ∈ S, is represented with a binary vector, xt = {xt,j |xt,j ∈

{0, 1}, t ∈ T, j = 1, .., |xt|}, where t ∈ T is the time/iteration count, |xt| is the solution size,
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Algorithm 2 Reinforcement Learning Based Artificial Bee Colony

1: Initialization of ABC and AOS
2: while Termination criteria is not met do
3: Employed Bee Phase
4: for each bee in colony do
5: Select operator (oi)
6: Produce and evaluate candidate solution
7: Operator Evaluation using Algorithm 1
8: if Candidate is better than current bee then
9: Replace current bee with candidate

10: else
11: Increment trial number of current bee
12: end if
13: end for
14: Onlooker Bee Phase
15: Calculate selection probability of each bee (P )
16: for i← 1 to n do
17: Choose current bee according to P
18: Select operator (oi)
19: Produce and evaluate candidate solution
20: Operator Evaluation using Algorithm 1
21: if Candidate is better than current bee then
22: Replace current bee with candidate
23: else
24: Increment trial number of current bee
25: end if
26: end for
27: Scout Bee Phase
28: if trial number of any bee has exceeds the limit then
29: Replace the first scout bee with random valid solution
30: end if
31: Update credits of operators
32: Memorize the best solution
33: end while
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which is scaled with the benchmark problem size. As the algorithm is implemented for SUKP

benchmarks, the solution size is set to the total number of items to select the best subset among,

which is |xt| = m. Suppose that we are given 10 items, m = 10, each includes 5 different elements,

then, x2 = {0, 1, 0, 1, 1, 1, 0, 0, 1, 1} would be a typical solution, say at time 2, t = 2. Each swarm

of bees will be a collection of such solutions to be used for search. Meanwhile, new solutions

will be generated with operators, which are selected from a pool of operator. The action space,

A, consists of the set of operators, A = O. The operators make up the pool to select, oi ∈ O,

are taken from the state-of-art binary operators collected from literature. The set of operators is

formed of O = {binABC, ibinABC, disABC} taken from [44], [45] and [46] as explained in [9] and

[10]. The algorithm solves 2 problems inherently; (i) it seeks for the best set of items to place in

a knapsack, while (ii) it also looks for the set of best operator to be paired with each solution,

< xt, oi >. In the end, the best solution for the problem, x∗T and the best sequence of pairs,

S = {< xt, oi > |xt ∈ S, oi = arg maxi∈|O|{Qi,t}, t ∈ T, i ∈ |O|} are expected to be gained.

SUKP problem is a capacity constrained problem that requires feasibility check once applied

operators. Solutions generated with the operators can end up infeasible, which need to be either

enforced to be eliminated/discredited with penalty functions, or can be repaired for feasibility with

some functions. Repairment functions gained more attraction in the state-of-the-art literature for

knapsack problems; a greedy approach, so called S-GROA, has been proposed by [47] as part of

solving SUKP problems.

The algorithm imposes a greedy approach in which the items with higher values are prioritised

to keep within the knapsack when the capacity is exceeded and similarly the items with higher

values from outside are forced to select when the knapsack is filled. The main logic behind S-

GROA approach is to find an infeasible solution first and to create a zero vector next. The items

included in infeasible solution are ranked with respect to the total density of the items rated with

the benefit value of the items, pi∑
i∈Ui

(wj/dj) , where pj is the benefit of item i, wj and dj are the

weight and the frequency of element j. Then, the blank items are moved in the blank solution until

it fills to the capacity.

4.2. Test Problems

This study has been conducted to demonstrate the gain/benefit of using reinforcement learning

in developing adaptive operator selection schemes, which are embedded within a standard ABC
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Table 1: The SUKP instances

Set1 Set2 Set3
ID m n w y ID m n w y ID m n w y
PI 1 1 100 85 0.10 0.75 PI 2 1 100 100 0.10 0.75 PI 3 1 85 100 0.10 0.75
PI 1 2 100 85 0.15 0.85 PI 2 2 100 100 0.15 0.85 PI 3 2 85 100 0.15 0.85
PI 1 3 200 185 0.10 0.75 PI 2 3 200 200 0.10 0.75 PI 3 3 185 200 0.10 0.75
PI 1 4 200 185 0.15 0.85 PI 2 4 200 200 0.15 0.85 PI 3 4 185 200 0.15 0.85
PI 1 5 300 285 0.10 0.75 PI 2 5 300 300 0.10 0.75 PI 3 5 285 300 0.10 0.75
PI 1 6 300 285 0.15 0.85 PI 2 6 300 300 0.15 0.85 PI 3 6 285 300 0.15 0.85
PI 1 7 400 385 0.10 0.75 PI 2 7 400 400 0.10 0.75 PI 3 7 385 400 0.10 0.75
PI 1 8 400 385 0.15 0.85 PI 2 8 400 400 0.15 0.85 PI 3 8 385 400 0.15 0.85
PI 1 9 500 485 0.10 0.75 PI 2 9 500 500 0.10 0.75 PI 3 9 485 500 0.10 0.75
PI 1 10 500 485 0.15 0.85 PI 2 10 500 500 0.15 0.85 PI 3 10 485 500 0.15 0.85

algorithm equipped with a number of binary operators to solve SUKP problems. SUKP is a special

case of generic knapsack problems that are proven to be one of the known NP-hard combinatorial

problems. The problem has been modeled as a binary problem as seen in Section 2.4. The test

problems chosen in this study are collected from recently published literature.

He et al. [47] have introduced 30 benchmarking problem instances of SUKP as tabulated

in Table 1 with all configuration details, where 3 different configurations presented varying with

comparative status of m and n; (i) m > n, (ii) m < n, and (iii) m = n), while w ∈ {0.10, 0.15}

and y ∈ {0.75, 0.85} representing the density of elements and the rate between the capacities and

the sum of weights of elements, respectively. As seen, each set of problem instances includes 10

instances varying with m,n,w and y values. More details can be found in [47, 48].

4.3. Parameter Tuning

The parametric setting is one of the major steps to conduct in experimental studies, which has

also a significant impact upon the success of problem-solving approaches. Therefore, the first step

of experimental studies is usually conducting a comprehensive parameter tuning. The parametric

study has been conducted in 2 phases in this study; the first phase is to identify the parametric

settings applicable to all operator selection schemes used in this study including the proposed

approach, the second is to single out the best performing adaptive selection scheme among the

state-of-the-art approaches so as to compare with the proposed approach throughout the entire

experimentation.

The first phase has been carried out for all related parameters required including γ, used to

normalise the distances measure as part of learning-based operator selection scheme, experimenting

with one of commonly used problem instance by the state-of-the-art studies, PI 2 6. The best

parametric level has been sought for the type of reward whether to be extreme (r̂i,t) or average
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Table 2: Parameter tuning for proposed approach

γ=0.1 γ=0.3 γ=0.5 γ=0.9
Reward W ε α Best Mean Best Mean Best Mean Best Mean

Avg (r̄i,t)

5

0.1
0.1 10788 10647.2 10860 10674.57 11169 10678.57 10933 10674.17
0.5 11410 10686.93 10848 10630.77 11161 10681.03 10933 10691.17
0.9 11233 10736.3 10945 10692.77 11113 10725.13 11064 10665.43

0.2
0.1 11237 10683.33 10968 10653.93 11179 10683.9 11064 10693.6
0.5 10859 10677.33 10793 10658.87 11054 10697.63 11057 10677.27
0.9 11187 10689.3 11159 10680.8 11093 10695.33 10851 10672.37

25

0.1
0.1 11093 10679.77 11007 10688.33 10867 10665.13 10889 10675.27
0.5 11043 10699.73 11067 10628.93 10953 10671.73 11064 10707.37
0.9 10793 10658.63 11138 10710.03 10968 10669.3 11043 10736.97

0.2
0.1 10782 10650.9 10847 10643.33 10889 10663.5 11064 10678.13
0.5 11113 10694.83 10918 10640.7 10959 10693.73 10923 10645.57
0.9 11007 10703.23 11081 10685.67 10788 10660.7 11251 10683.63

Ext (r̂i,t)

5

0.1
0.1 11261 10689.73 10808 10662.3 11282 10682.4 11093 10730.3
0.5 11108 10703.03 10937 10685.33 11064 10703 11077 10695.33
0.9 11064 10695.93 10782 10668.47 10835 10700.03 10804 10658.1

0.2
0.1 10945 10687.27 11113 10700.27 11132 10682.97 11039 10668.8
0.5 10857 10647.3 11410 10701.93 11151 10685.7 11233 10714.77
0.9 11205 10681.53 11007 10682.93 11113 10710.93 11077 10699.3

25

0.1
0.1 10951 10712.93 11425 10716.57 11005 10684.87 11113 10684.57
0.5 11178 10726.13 10788 10676.67 11344 10682.37 11410 10740.37
0.9 10860 10661.37 11344 10770.5 10860 10682.27 10925 10648.7

0.2
0.1 10968 10688.63 11113 10723.33 10914 10660.87 10831 10642.53
0.5 10808 10663.6 11178 10702.57 10980 10665.43 10925 10694.57
0.9 11196 10697.87 11237 10684.33 10793 10629.03 11425 10694.13

(r̄i,t), the best size of time window, W , in iterations, the minimum likelihood of an operator to be

selected, ε, and α as the adaptation coefficient. This preliminary study for fine-tuned parameters

has been conducted over 30 repetitions and summarised with best and mean statistics in Table 2.

The best parametric setting is concluded that γ is 0.3, W is 25 iterations, reward is extreme (r̂i,t),

ε is 0.1 and α is 0.5. This parametric setting has been used across the whole study reported in this

article.

The second phase of the parametric study has been conducted to identify the best adaptive

approach among the renown alternatives; probability matching (PM), adaptive pursuit (AP) and

upper confidence bound (UCB). The purpose of this phase is to identify the best-performing adap-

tive selection scheme to compare with the proposed approach by this study. The results of this

phase are tabulated in Table 3, where PM is concluded as the best performing scheme among the

three approaches, where the performance of each approach is indicated with Best and Mean statis-

tics. PM clearly performs better with respect to Mean measure, hence, it has been chosen as the

best performing adaptive approach to use for comparisons purposes.

The next step in experimentation is to run the binary ABC algorithm embedded with an adaptive

operator selection scheme for all 3 sets of SUKP benchmark instances introduced in Table 1. The

results of PM, proposed approach, labeled as RLABC, and random selection scheme, labeled as
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Random, have been summarised in Table 4 with Best, Mean and St.Dev. statistics; each is calculated

over 100 repetitions. Random has been chosen to clearly indicate that the adaptive operator

selection schemes make a significant difference. The results suggest that RLABC outperforms PM

in most of the instances while Random produces the worst results as expected.

In order to ascertain if the differences are statistically sound, Friedman test has been conducted

for the results tabulated in Table 4 and test results are presented in Table 5, where the averaged

ranks calculated for all three selection schemes presented with respect to Best and Mean measures

are indicated against the three sets of problem instances (i.e. Set1, Set2, and Set3). Meanwhile, the

corresponding p-values of the columns are added to the bottom line of the table, which proves the

significance of the difference in the performances. The averaged ranks provided in Table 4 suggest

that RLABC, as the best performer, holds all lowest rank values across the columns with respect

to Mean, while all Best values except of Set1 appear the lowest by RLABC, where PM remains

the first runner up. The ranks of Random are the highest. It is important to make clear that the

higher the rank the lower the performance in this statistical test-based evaluations. Meanwhile,

it is observed that the ranks remain very close to one another with respect to Best measure and

the corresponding p-values are calculated over the threshold value of 0.05 for 95% confidence level,

which means the differences are not significant in terms of Best measure. On the other hand,

the ranks with respect to Mean measure are clearly different as their p-values are far below the

threshold, 0.05. This is due to fact that all algorithms hit the best known or optimum solutions

time-to-time, but, not as many as RLABC does.

RLABC has been investigated with respect to the efficiency of the operators and the journey of

their reward hunts throughout the search process reward. As explained above, the main idea is to

let the algorithm chose the best fitting operator to the circumstances of the problem state. While

seeking for the optimum solution, the algorithm tries to build the best sequence of operators paired

with the solutions, e.g., < xt, oi >. After each operation is applied, the reward for that operator is

calculated and allocated accordingly. The profile of the reward hunting per operator has plotted in

Figure 2, where the most reward is accumulated by ibinABC and then by disABC while binABC

remains as the worst, in this respect. That is very much in line with the capabilities of the operators.

It is known that ibinABC dominates binABC since it is an extension of binABC and inherits all

capabilities while disABC remains competent and complementary to both. Therefore, the ibinABC

hunts the majority of the rewards, while disABC competes with that and binABC remains much
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Table 3: Comparison on parameter tuning phase

Parameters AP PM UCB RLABC
R W ε α Best Mean Best Mean Best Mean Best Mean

Avg (r̄i,t)

5

0.1
0.1 10998 10658.63 11113 10719.8 10948 10650.2 10860 10674.57
0.5 11012 10676.30 10961 10692.13 10892 10686.57 10848 10630.77
0.9 10735 10638.30 11023 10693.8 11054 10693.07 10945 10692.77

0.2
0.1 11039 10670.40 10889 10700.8 11410 10697.23 10968 10653.93
0.5 11113 10667.50 11000 10697.07 11081 10712.23 10793 10658.87
0.9 10793 10651.83 11425 10713.0 11057 10697.7 11159 10680.8

25

0.1
0.1 11178 10709.37 11093 10679.13 10793 10667.37 11007 10688.33
0.5 11106 10704.50 11081 10670.27 11113 10657.9 11067 10628.93
0.9 11025 10672.17 11051 10652.43 11106 10663.37 11138 10710.03

0.2
0.1 11093 10662.50 11305 10687.93 10889 10677.67 10847 10643.33
0.5 11082 10682.70 10851 10667.5 11025 10692.53 10918 10640.7
0.9 11425 10708.63 11139 10700.73 10804 10669.37 11081 10685.67

Ext (r̂i,t)

5

0.1
0.1 11007 10657.13 11222 10704.13 11039 10684.9 10808 10662.3
0.5 11046 10683.53 11064 10724.37 11113 10689.3 10937 10685.33
0.9 10949 10690.63 11178 10692.93 10835 10666.57 10782 10668.47

0.2
0.1 11093 10722.43 11093 10684.7 11093 10656.2 11113 10700.27
0.5 11081 10691.70 11139 10666.73 10931 10660.97 11410 10701.93
0.9 10949 10634.17 11057 10671.23 10953 10657.57 11007 10682.93

25

0.1
0.1 11078 10683.90 11132 10691.23 11251 10693.33 11425 10716.57
0.5 11425 10691.93 11251 10697.4 11113 10708.83 10788 10676.67
0.9 10990 10707.43 11410 10723.53 10953 10688.03 11344 10770.5

0.2
0.1 10968 10681.27 10860 10654.13 11093 10715.7 11113 10723.33
0.5 11093 10695.57 10990 10700.33 11178 10724.33 11178 10702.57
0.9 10966 10662.50 11037 10704.23 11132 10713.1 11237 10684.33

weaker.

4.4. Comparative Discussions

The proposed approach, RLABC, has been compared with the state-of-art methods, which

recently appeared in the literature. Comparative results have been plotted in Figure 3, 4 and

5, where the plots for each algorithm is presented in a color code. Also, they are presented in

Table A.7, A.8 and A.9, where the solutions by the state-of-the-art methods and the proposed

approach are tabulated separately for benchmarking sets of instances, Set1, Set2 and Set3. The

results have been demonstrated with respect to Best, Mean and St. Dev measures standing for

the maximum objective value found, the mean and standard deviations values calculated over 30

repetitions, respectively.

The state-of-the-art methods chosen for comparisons are variants of evolutionary algorithms

and variants of swarm intelligence algorithms including genetic algorithms (GA) [37], differential

evolution (binDE) [49], artificial bee colony algorithms, (BABC, ABCBin) [19, 50] and particle

swarm optimisation (GPSO) [48]. All comparative results have been taken from [47, 48], while all

ABC algorithmic parameters have been kept the same as the parametric values reported in [47]

to keep the comparisons fair. Also, the parameters for operators chosen to take part of RLABC
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Table 4: The comparison of results for operator selections on the SUKP instances

RLABC PM Random
Benchmarks Best Mean St.Dev Best Mean St.Dev Best Mean St.Dev
PI 1 1 13283 13066.6 55.6908 13251 13056.3 43.8665 13167 13046.7 22.3411
PI 1 2 12274 12143.8 74.6502 12274 12137 60.2143 12274 12091.4 81.9539
PI 1 3 13502 13275.5 105.159 13405 13266.9 110.006 13405 13178.6 125.441
PI 1 4 14215 13660.9 259.819 14215 13640.4 223.115 14215 13488.4 251.618
PI 1 5 11319 10678.2 191.816 11411 10703 162.833 11086 10609.1 160.568
PI 1 6 12245 11742.1 298.458 12245 11711.1 292.62 12245 11518.4 349.268
PI 1 7 11294 10757.6 219.13 11244 10733.1 228.858 11244 10563.7 239.852
PI 1 8 10267 10070.9 127.911 10328 10071.6 120.141 10175 9983.42 173.584
PI 1 9 11495 11229.9 146.957 11546 11195.3 142.392 11584 11111.2 160.866
PI 1 10 9707 9325.42 161.332 10194 9361.02 181.602 10022 9264.62 198.5
PI 2 1 14044 13936 82.6673 14044 13920.2 90.6535 14044 13892 95.6615
PI 2 2 13508 13419.8 104.02 13508 13434 66.3042 13508 13381.8 103.871
PI 2 3 12374 11941.4 226.143 12350 11890.8 211.051 12350 11721.2 232.911
PI 2 4 12063 11688.7 171.281 12317 11691.9 187.367 11975 11523.2 219.258
PI 2 5 12677 12575 136.064 12713 12583.8 126.988 12644 12499.5 162.942
PI 2 6 11425 10683.3 136.514 11093 10688.4 118.312 11178 10635.7 133.911
PI 2 7 11249 10910.8 151.625 11310 10861.1 139.574 11282 10789.3 160.374
PI 2 8 10500 9881.76 242.734 10725 9880.29 283.202 10355 9754.36 227.384
PI 2 9 10902 10669.6 71.0826 10885 10637.9 82.2207 10902 10597.9 122.507
PI 2 10 10194 9857.12 224.868 10176 9819 160.244 10176 9682.7 183.942
PI 3 1 12045 11650.4 191.287 12020 11590.3 170.981 12020 11504.8 176.992
PI 3 2 12369 12172.8 214.534 12369 12156.7 183.883 12369 12013.4 264.661
PI 3 3 13614 13315.1 127.952 13609 13307.1 136.457 13500 13215 135.312
PI 3 4 11298 10849.9 145.333 11298 10817.5 139.872 10973 10730 143.184
PI 3 5 11538 11246.9 183.863 11538 11217.2 191.406 11538 11141.7 169.399
PI 3 6 11502 11024.8 232.097 11590 11042.9 216.742 11377 10887.4 232.341
PI 3 7 10180 9941.43 76.98 10397 9955.62 104.965 10176 9890.62 76.3551
PI 3 8 9960 9462.28 165.694 9865 9439.48 140.503 9831 9364.28 150.273
PI 3 9 10846 10640.6 108.112 11018 10603.6 125.988 10823 10519.9 133.872
PI 3 10 9964 9434.52 155.976 9686 9389.84 124.552 9788 9283.56 163.665

Table 5: The statistical analysis of results for operator selections on the SUKP instances

Set1 Set2 Set3
Best Mean Best Mean Best Mean

RLABC 1.6 1.3 1.5 1.2 1.3 1.4
PM 1.4 1.7 1.5 1.8 1.5 1.6
Random 1.9 3.0 2.0 3.0 2.3 3.0
p-value 0.34 0.0003 0.118 0.0002 0.26 0.0005
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Figure 2: Cumulative reward gained by each operator presented in log scale

have been mirrored from original studies. The results plotted in Figure 3, 4 and 5 and presented

in Tables A.7,A.8 and A.9 suggest that the proposed approach, RLABC, overwhelmingly performs

better than all rival algorithms with respect to Mean and St Dev measures across the majority of

benchmarking instances, while the first runner up algorithm appears to be GPSO, which competes

with RLABC mainly in terms of Best measure and occasionally of other measures. RLABC ’s

competition with GPSO can be seen over the plots presented in Figure 3(a), 4(a) and 5(a) with

respect to Best measures, while RLABC ’s strength over GPSO is seen on Figure 3(b), 4(b) and

5(b) in which they look nearly overlapping due to the scale of the plot and and the strength in

performance of both over other rivals. In fact, as can be observed from Tables A.7, A.8 and A.9,

RLABC overwhelmingly solves the instance problems of Set1 and Set3 better; winning 8 cases out

of 10, while solves 6 out of 10 cases in Set2. This suggests that although GPSO wins some cases,

the robustness does not sound promising.

The significance of the results indicate the success of proposed approach over the state-of-the-

art methods has been statistically investigated with Friedman test and the results are tabulated in

Table 6. As clearly seen, RLABC achieves the lowest averaged rank with respect to Mean, while

competes with GPSO in terms of Best measure. The p-values demonstrate the significance in 95%
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(a) Best values (b) Mean values

(c) St. Dev values

Figure 3: Comparative results for benchmarks in Set1 by all algorithms
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(a) Best values (b) Mean values

(c) St. Dev values

Figure 4: Comparative results for benchmarks in Set2 by all algorithms
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(a) Best values (b) Mean values

(c) St. Dev values

Figure 5: Comparative results for benchmarks in Set3 by all algorithms
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confidence level for Mean, but GPSO remains winner with respect to Best measure, which does not

support stability and robustness since it fails winning with respect to Mean measure.

Table 6: Friedman Test on algorithms with corresponding chi-square (χ̃2) and p-values. Proposed method is high-
lighted with bold.

Set1 Set2 Set3
Algorithm Best Mean Best Mean Best Mean
A-SUKP 7.0 7.0 7.0 6.8 7.0 6.7
GA 4.1 4.6 4.6 4.5 3.9 4.4
BABC 3.6 3.0 3.1 3.1 3.3 3.3
ABCBin 5.4 5.9 5.9 6.1 5.6 5.9
binDE 3.8 4.2 3.6 4.4 4.6 4.6
GPSO 1.2 2.0 1.1 1.7 1.1 1.9
RLABC 1.5 1.3 1.8 1.4 1.5 1.2
p-value 1.19E-09 6.68E-10 9.91E-10 5.36E-10 1.45E-09 2.07E-09

5. Conclusion

In this paper, a novel adaptive operator selection scheme has been proposed based on rein-

forcement learning in which the problem states are mapped to the operators based on the success

level per operation. The reinforcement learning algorithm has been developed based on Q-Learning

merged with Hard-C-Means clustering algorithm, which is revised to facilitate the search agent to

learn how to select the best operator online subject to given circumstances. The approach implies

that each operator is represented with a cluster center and the dimensions of the centers are fine-

tuned with gained rewards. The approach has been comparatively tested with state-of-art adaptive

selection approaches in solving set union knapsack problems formalised in a binary representation.

The results suggest that the proposed approach produces much better performance in comparison

to the renown adaptive approaches.

The immediate future work of this study is that reinforcement learning algorithms require more

investigations to achieve further generalisation to be used in solving more binary problems, es-

pecially more combinatorial problems. For longer term, it is needed to achieve transferability of

learned experience via RL in problem solving while gained experience with some problem types

and instances can be exploited in solving different problem types and instances. It is expected that

search algorithms furnished with reinforcement learning facilities are to help develop approaches

with which solving moderately difficult problems would be used as training stage and attempting

to solve highly complex and larger size problems with adaptive selection schemes constructed via

reinforcement learning.
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Appendix A. Comparison tables for all benchmark instances

Table A.7: Comparison with state-of-art methods for Set1 problem instances

Benchmarks A-SUKP GA BABC ABCBin binDE GPSO RLABC

PI 1 1
Best 12459 13044 13251 13044 13044 13283 13283
Mean 12459 12956 13029 12819 12991 13051 13066.58
Std 0 130.66 92.63 153.06 75.95 37.41 55.69079

PI 1 2
Best 11119 12066 12238 12238 12274 12274 12274
Mean 11119 11546 12155 12049 12124 12085 12143.75
St Dev 0 214.94 53.29 96.11 67.61 95.38 74.65017

PI 1 3
Best 11292 13064 13241 12946 13241 13405 13502
Mean 11292 12493 13064 11862 12941 13287 13275.5
St Dev 0 320.03 99.57 324.65 205.7 93.18 105.1587

PI 1 4
Best 12262 13671 13829 13671 13671 14044 14215
Mean 12262 12803 13359 12537 13110 13493 13660.93
St Dev 0 291.66 234.99 289.53 269.69 328.72 259.8194

PI 1 5
Best 8941 10553 10428 9751 10420 11335 11319
Mean 8941 9981 9995 9339 9899 10670 10678.22
St Dev 0 142.97 154.03 158.15 153.18 227.85 191.8163

PI 1 6
Best 9432 11016 12012 10913 11661 12245 12245
Mean 9432 10350 10903 9958 10499 11607 11742.11
St Dev 0 215.13 449.45 276.9 403.95 477.8 298.4585

PI 1 7
Best 9076 10083 10766 9674 10576 11484 11294
Mean 9076 9642 10065 9188 9681 10916 10757.61
St Dev 0 168.94 241.45 167.08 275.05 367.75 219.1303

PI 1 8
Best 8514 9831 9649 8978 9649 10710 10267
Mean 8514 9327 9136 8540 9021 9865 10070.94
St Dev 0 192.2 151.9 161.83 150.99 315.38 127.9108

PI 1 9
Best 9864 11031 10784 10340 10586 11722 11495
Mean 9864 10568 10452 9910 10364 11185 11229.93
St Dev 0 123.15 114.35 120.82 93.39 322.98 146.9566

PI 1 10
Best 8299 9472 9090 8789 9191 10022 9707
Mean 8299 8693 8858 8364 8784 9300 9325.42
St Dev 0 180.12 94.55 114.1 131.05 277.62 161.3318

-
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Table A.8: Comparison with state-of-art methods for Set2 problem instances

Benchmarks A-SUKP GA BABC ABCBin binDE GPSO RLABC

PI 2 1
Best 10231 11454 11664 11206 11352 12045 12045
Mean 10231 11093 11183 10880 11075 11487 11650.44
St Dev 0 171.22 183.57 163.62 119.42 137.52 191.2869

PI 2 2
Best 10483 12124 12369 12006 12369 12369 12369
Mean 10483 11326 12082 11485 11876 11994 12172.78
St Dev 0 417 193.79 248.33 336.94 436.81 214.5339

PI 2 3
Best 11508 12841 13047 12308 13024 13696 13614
Mean 11508 12237 12523 11668 12278 13204 13315.14
St Dev 0 198.18 201.35 177.14 234.24 366.56 127.9523

PI 2 4
Best 8621 10920 10602 10376 10547 11298 11298
Mean 8621 10352 10151 9684 10085 10801 10849.9
St Dev 0 208.08 152.91 184.84 160.6 205.76 145.3334

PI 2 5
Best 9961 10994 11158 10269 11152 11568 11538
Mean 9961 10640 10776 9957 10661 11318 11246.91
St Dev 0 126.84 116.8 141.48 149.84 182.82 183.8626

PI 2 6
Best 9618 11093 10528 10051 10528 11517 11502
Mean 9618 10190 9898 9424 9832 10899 11024.78
St Dev 0 249.76 186.53 197.14 232.72 300.36 232.0975

PI 2 7
Best 8672 9799 10085 9235 9883 10483 10180
Mean 8672 9433 9538 8905 9315 10013 9941.43
St Dev 0 163.84 184.62 111.85 191.59 202.4 76.98003

PI 2 8
Best 8064 9173 9456 8932 9352 10338 9960
Mean 8064 8704 9090 8407 8847 9525 9462.28
St Dev 0 154.15 156.69 148.52 210.91 286.16 165.6945

PI 2 9
Best 9559 10311 10823 10537 10728 11094 10846
Mean 9559 9993 10483 9615 10159 10688 10640.58
St Dev 0 117.73 228.34 151.41 198.49 168.06 108.1116

PI 2 10
Best 8157 9329 9333 8799 9218 10104 9964
Mean 8157 8849 9086 8348 8920 9383 9434.52
St Dev 0 141.84 115.62 122.65 168.9 241.01 155.9758

Table A.9: Comparison with state-of-art methods for Set3 problem instances

Benchmarks A-SUKP GA BABC ABCBin binDE GPSO RLABC

PI 3 1
Best 13634 14044 13860 13860 13814 14044 14044
Mean 13634 13806 13735 13547 13676 13855 13935.99
St Dev 0 144.91 70.76 199.11 119.53 96.23 82.66734

PI 3 2
Best 11325 13145 13508 13498 13407 13508 13508
Mean 11325 12235 13352 13103 13212 13347 13419.77
St Dev 0 388.66 155.14 343.46 287.45 194.34 104.0195

PI 3 3
Best 10328 11656 11846 11191 11535 12522 12374
Mean 10328 10889 11194 10424 10969 11899 11941.37
St Dev 0 237.85 249.58 197.88 302.52 391.83 226.143

PI 3 4
Best 9784 11792 11521 11287 11469 12317 12063
Mean 9784 10828 10945 10346 10717 11585 11688.66
St Dev 0 334.43 255.14 273.47 341.08 275.32 171.2813

PI 3 5
Best 10208 12055 12186 11494 12304 12695 12677
Mean 10208 11755 11946 10922 11865 12411 12574.97
St Dev 0 144.45 127.8 182.63 160.42 225.8 136.0644

PI 3 6
Best 9183 10666 10382 9633 10382 11425 11425
Mean 9183 10099 9860 9187 9710 10568 10683.27
St Dev 0 337.42 177.02 147.78 208.48 327.48 136.5139

PI 3 7
Best 9751 10570 10626 10160 10462 11531 11249
Mean 9751 10112 10101 9549 9976 10959 10910.82
St Dev 0 157.89 196.99 141.27 185.57 274.9 151.6247

PI 3 8
Best 8497 9235 9541 9033 9388 10927 10500
Mean 8497 8794 9033 8366 8768 9845 9881.76
St Dev 0 169.52 194.18 153.4 212.24 358.91 242.734

PI 3 9
Best 9615 10460 10755 10071 10546 10888 10902
Mean 9615 10185 10328 9738 10228 10681 10669.59
St Dev 0 114.19 91.61 111.64 103.32 125.36 71.08264

PI 3 10
Best 7883 9496 9318 9262 9312 10194 10194
Mean 7883 8883 9181 9618 9096 9704 9857.12
St Dev 0 158.21 84.91 141.32 145.45 252.84 224.8679
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