
Memory-Constrained Context-Aware Reasoning

Ijaz Uddin1, Abdur Rakib2, Mumtaz Ali1, and Phan Cong Vinh3

1 Department of Computer Science
City University of Science and Information Technology, Peshawar

ijazktk@gmail.com,mumtazali@cusit.edu.pk
2 Department of Computer Science and Creative Technologies

The University of the West of England, Bristol, UK
Rakib.Abdur@uwe.ac.uk

3 Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
pcvinh@ntt.edu.vn

Abstract. The context-aware computing paradigm introduces environ-
ments, known as smart spaces, which can unobtrusively and proactively
assist their users. These systems are currently mostly implemented on
mobile platforms considering various techniques, including ontology-driven
multi-agent rule-based reasoning. Rule-based reasoning is a relatively
simple model that can be adapted to different real-world problems. It
can be developed considering a set of assertions, which collectively con-
stitute the working memory, and a set of rules that specify how to act
on the assertion set. However, the size of the working memory is crucial
when developing context-aware systems in resource constrained devices
such as smartphones and wearables. In this paper, we discuss rule-based
context-aware systems and techniques for determining the required work-
ing memory size for a fixed set of rules.

Keywords: Context-Aware Systems · Rule-based Reasoning · Working
Memory.

1 Introduction

Rule-based reasoning attempts to emulate the capabilities of human reasoning
and problem solving. The technique models how a human expert analyses a
particular scenario by applying rules to the facts so that a conclusion can be
drawn [1]. The reasoning process in a forward chaining rule-based system starts
with known facts and progresses by using inference rules to extract more data.
The facts are represented in a working memory which is continually updated.
In rule-based systems, the knowledge is represented as a set of rules. The rules
serve as long-term memory, whereas the facts serve as short-term memory. [2, 3].
While humans perceive their surroundings through their senses of sight, hearing,
smell, taste, and touch, computers employ the context-awareness technique to
become aware of their surroundings. In sensor-rich systems, sensor data is col-
lected from a variety of sources by a device with various sensors attached to it.
It is often difficult to interpret this sensed raw data. As a result, in the literature

2 Ijaz Uddin et al.

Semantic Web technologies have been used in the design and implementation
of sensor-rich systems [4, 5]. In Semantic Web technology, ontological repre-
sentation allows context representation in terms of concepts and roles, context
sharing and semantic interoperability of heterogeneous systems [6]. A frame-
work for constructing context-aware systems in resource-bounded devices has
been proposed in [6], where a context-aware system is modelled as a distributed
rule-based agents. In the proposed model, the working memory containing facts
(contexts) is conceptually divided into two parts, such as static and dynamic
parts. The dynamic part of the working memory stores the newly derived con-
texts while the static part holds the initial contexts. The initial facts in the
static memory are vital to start running any system, and therefore can not be
removed or overwritten. More details of the setting can be found in [6]. In re-
source constrained systems, as a system moves, all the derived contexts cannot
be stored in the working memory. That is old contexts could be overwritten by
the newly derived contexts. In [5], it was shown how we can formally model and
verify resource requirements of a system of rule-based context-aware reasoning
agents. In this paper, we discuss techniques for determining the required working
memory size of a rule-based context-aware reasoning system with a fixed set of
rules.

The rest of the paper is structured as follow. Section 2 reviews related litera-
ture. Section 3 discusses an approach to smart space system modelling. Section 4
describes multi-agent rule-based reasoning and the basic components of rule-
based systems. Section 5 discusses the management of working memory. Finally,
Section 6 concludes the paper and discusses the scope for future work.

2 Related Work

Users can access context-aware services in the mobile environment due to the
advent of small-scale microelectronic sensors and recent improvements in smart-
phones and other modern mobile devices such as smartwatches and wearable
devices. Furthermore, the social network plays an important role in this regard,
as users provide information primarily about their preferences, likes, and dis-
likes. In a different context, it can also provide contextual information about
users, their surroundings, and their behavioural activities [7]. In other words,
these smart devices are now a valuable source of data for determining context
and understanding user behavioural activities in various situations [8]. The So-
ciaCircuit Platform [9], for example, tracks various social interactions among
users and, as a result, causes a change in the user’s preferences. The developers
of [10] came up with the idea of identifying a social interaction between users
using data mining tools. The sociometric badge [11] tracks different activities
of employees throughout office hours, forecasts job satisfaction, and coworker
interaction based on that data/patterns. Although recent work on monitoring
user activities and relationships with other users has provided us with a wealth
of data and relevant information to analyse and draw conclusions, the domain
still lacks various features. The authors of [12], for example, developed an ex-

Memory-Constrained Context-Aware Reasoning 3

pert system that functions as an academic advisor. It’s a monotonous system
that takes six user inputs and provides recommendations based on those inputs.
However, this system is unable to run an alternative set of rules since the rules
are linked to the given interface. Other research [13–18] focused on developing
a client-server architecture model, in which the smartphone acts as an interface
for an application installed on it, with the server acting as a knowledge base.
Another iPhone platform research article [19] employs the same client-server
architecture for a safe emergency evacuation from a university campus (case sce-
nario). However, the authors did not specify the set of rules that define expert
knowledge.

There have already been attempts to bring advanced expert systems to the
Android platform. Although Android is based on Java, it lacks some classes that
are only available in desktop environments. A book for Android smart applica-
tions has been published by [20]. Throughout the book, the rule engines that can
be used with the Android platform are thoroughly described. These rule engines,
however, lack context awareness and resource friendliness, as well as the ability
to apply preferences for dynamic context awareness. Furthermore, according to
the author, these engines have several significant limitations. For example, the
Jrule engine and Zilonis do not support OR operators; in Termware, rules must
be written in code and are difficult to update later; and in Roolie, each rule
must be coded in its own file, which is also a time-consuming task that is nearly
impossible in larger systems. Some technical challenges were encountered while
porting various other rule engines. Since Drools is a memory-intensive engine,
Eclipse quickly runs out of memory while converting files to Dalvik format. Take
requires a Java compiler at runtime, and JLisa fails to function on Android due
to a stake overflow issue. Jess, on the other hand, is extremely expensive and
not recommended because its significant licencing costs, it is not compatible with
Android, and it consumes a significant amount of memory.

The majority of rule engines are based on the RETE algorithm, according
to our review and analysis of the literature. RETE is a memory-intensive algo-
rithm that loads all of the rules into memory before checking them one by one in
practise to see if they should be fired [21]. Similarly, checking all of the rules for
each instance takes a long time. To save memory, the work by [21] introduced
preferences. Instead of putting all of the rules into memory at once, their tech-
nique just loads the rules that are in the preference set. Although the approach
consumes less memory during loading due to preference sets, it does not remove
the already loaded rules from memory over time. In [6], the size of the memory
allocation is fixed. If the algorithm claims a random fixed size memory while
accounting for the size of the preference sets, it may run into issues if the system
has to invoke rules that are not currently in the preference set. In [21, 6], there is
no systematic technique for removing rules if the memory limit is reached. The
rules are remove from the memory at random, which is a problem because the
rule(s) selected for removal could be a key one that will be needed again soon
for the execution.

4 Ijaz Uddin et al.

3 Smart Space System Modelling

Developing intelligent, autonomous, and adaptable systems that work in com-
plex dynamic environments is a goal that has been around for decades. In recent
years work on this area has been a more focus of discussion and research [22–
26]. A smart space provides an interoperable heterogeneous environment within
which users, devices and services communicate. Such an environment ultimately
provides users with unobtrusive assistance based on contextual knowledge [27].
Interoperability is critical here, since smart spaces contain many different de-
vices and software components. It is a system’s ability to exchange information,
so that information is correctly interpreted by the receiving device in the same
way that the transmitting device intends. One way to achieve this is by us-
ing the Semantics Web technology [28]. While Semantic Web technologies can
be used to achieve interoperability on mobile devices, it is important to take
into account the resource limitations and unique characteristics of mobile and
embedded devices.

Context awareness is a key aspect of smart spaces, and context modelling is
a fundamental step in developing context-aware systems that operate in these
environments. By context, we refer to any physical or conceptual information
that can be used to identify the status of an entity. An entity can be a per-
son, a place, a physical or a computing object. This context is relevant to a
user and application, and reflects the relationship among themselves [29]. A
smart space serves its users by sensing and interpreting the situation they are
in, identifying their needs and delivering the necessary functionality according
to the available resources. This process involves three major steps, namely con-
text acquisition, context modelling and context-aware reasoning. Among other
approaches, ontology-based context modelling and rule-based context reasoning
are widely used techniques to enable semantic interoperability and interpreting
user situations in smart spaces [6]. The context acquisition process involves ac-
quiring context in raw format from a wide variety of sensors. It may also allow
the user to manually provide the contextual information [30]. To model a context
and adapt it to any domain, an ontology is requires which captures the generic
concepts to a higher level. The context model needs to provide frameworks for
expanding the specific context knowledge in a hierarchical way. The context on-
tology provides a shared vocabulary for representing knowledge about a domain
and for describing specific situations in a domain. The goal of contextual rea-
soning is to deduce higher-level contexts from the sensed low-level contexts as
well as to deduce new relevant knowledge for the use of applications and users
from various context-data sources. This stage is therefore primarily responsible
for interpreting the situation in a smart environment, and for deciding how its
users can be assisted [31]. The OWL 2 Web Ontology Language is one possible
knowledge representation language for ontologies. The W3C recommended OWL
specification includes the definition of three variants of OWL, with different lev-
els of expressiveness, namely OWL Lite, OWL DL and OWL Full. OWL DL and
OWL Lite are based on Description Logics, for which sound and complete rea-
soners exits. The W3C also recommended three profiles OWL 2 EL, OWL 2 QL

Memory-Constrained Context-Aware Reasoning 5

and OWL 2 RL, which are restricted sublanguages of OWL 2. For context mod-
elling and reasoning, OWL 2 RL and SWRL [32] languages can be used. OWL 2
RL is suitable for the design and development of rule-based systems, which can
be implemented using rule-based reasoning engines [5]. An OWL 2 RL ontology
can be translated into a set of Horn clause rules based on [33]. Moreover, more
complex rule-based concepts can be expressed using SWRL which allow us to
write rules using OWL concepts. In our framework, a context-aware system com-
posed of a set of rule-based agents, and firing of rules that infer new facts may
determine context changes and representing overall behaviour of the system. A
more detailed discussion of this approach can be found in [34].

4 Multi-Agent Rule-Based Reasoning Systems

Multi-agent systems (MASs) are based on the concept of a decentralised work-
ing group being able to deal with problems that are difficult to solve using
the conventional centralised computing approach. Intelligent agents are used to
work more effectively and in a versatile and interactive way to solve problems.
Multi-agent systems are considered to be a promising approach to dealing with
ubiquitous systems development because of their ability to adapt themselves to
dynamic environments. Such features together with collaborative behaviour, au-
tonomy, reactivity and pro-activity facilitate the modelling and reasoning about
complex context-aware system behaviour [5].

Fig. 1. Reasoning process of a rule-based agent

6 Ijaz Uddin et al.

An agent is called a rule-based agent, if its behaviour and/or its knowledge
is expressed by means of rules. A rule-based reasoning agent, as can be seen
in Figure 1, has few components such as a rule-base, an inference engine and
a working memory. A rule-base contains a collection of rules, where rules are
IF(antecedent)—THEN(consequent) statements. The antecedent is a sufficient
condition for the consequent and the consequent is a necessary condition for the
antecedent. The antecedent part is matched with the elements in the working
memory. If the antecedent of a rule is fully matched with the elements of the
working memory then the rule is said to be eligible for firing and the corre-
sponding rule instance(s) can be added to the agenda. The working memory of
an agent consists of facts. The facts are initial contexts, derived contexts and/or
communicated contexts received as messages from other agents in the system.
The inference engine loops through three sequential phases: Match, Select and
Act. In the Match phase, rules are matched with facts, if more than one rule is
eligible to fire then a conflict arises. The strategy to decide which is the next
rule to be fired is called conflict resolution. The next step is to resolve this con-
flict in the Select phase. Once a conflict is resolved than its time to fire the
rule in the Act phase. Firing a rule instance can add a context to the working
memory by possibly overriding an element from its dynamic part. Mostly the
literature discusses the rule-based reasoning from a point of view where the re-
sources (e.g., working memory size) are not considered. In our work, however,
we consider memory to be a limited resource. In the following, we will concen-
trate our discussion on the rule-based reasoning algorithm and working memory
management and updating.

5 Management of Working Memory

As previously discussed, the working memory is divided into two parts. Each part
plays its own role. Part of the emphasis in this discussion is dynamic working
memory. A newly created context may be added to the dynamic working memory
by firing a rule instance, or a context may be added as a message received from
another device or agent. In order to accommodate this new context, we must
first review our current working mechanism and then suggest new techniques to
substitute the current framework for efficient use of the working memory.

5.1 Working Memory Updating

The working memory acts as a holder for the currently available contexts and
helps to perform context-aware reasoning. Where the emphasis is on resource
limitations, memory is one of the primary resources we aim to save during the
entire system design and implementation stages. The restriction on the size of
the working memory is to ensure that it does not exceed the maximum number
of contexts it can hold at any given time. However, contexts can be generated at
every iteration, and preserving those contexts that are more crucial for execution
is a critical task. In our implementation, the working memory is basically a fixed

Memory-Constrained Context-Aware Reasoning 7

size container, which is divided into static memory and dynamic parts. The
dynamic memory is bounded in size, where one unit of memory corresponds
to the ability to store an arbitrary context. Only facts stored in the dynamic
memory may get overwritten, and this happens if an agent’s memory is full or a
contradictory context arrives in the working memory (even if the memory is not
full) [5]. Whenever a newly derived context arrives in the memory, it is compared
with the existing contexts to see if any conflict arises. If so then the corresponding
contradictory context will be replaced with the newly derived context, otherwise,
the new context will be added to the working memory by overwriting an arbitrary
context if the working memory is full. Since the dynamic memory is bounded
in size, the system possibly can go through an infinite execution if a goal is
not achievable and there is no way to forcefully stop the inference engine. For
example, let’s assume an instance of a rule r1 generates a new context that can
activate another rule r2 and vice versa. If we have a single memory unit then
the system will be in the infinite running state, unless otherwise controlled. To
overcome this issue, we set the number of iterations equal to the number of
rules. This will ensure that each rule is tested and, if no matches are found, the
system will stop itself instead of abrupt behaviour. This also saves the resources
of the host system. The Algorithm 1 describes the steps involved in executing
the instance of the selected rule and updating the working memory.

5.2 Estimating Size of the Working Memory

Estimating the working memory size can help to minimise context loss, in par-
ticular the critical contexts. It can be achieved using the following techniques.

Distinct Working Memory(DWM) In the database analogy, the distinct
returns all the results so that the duplicated values are only seen once instead
of being replicated. Similarly, the working memory size can be set equal to the
number of distinct consequences of the rules. Let R be the total number of rules
in the rule base, Rc be the total number of consequences of the rules and Rdc

be the total number of distinct consequences such that Rdc ≤ Rc and Rdc > 0.
Then the required size of the working memory will be Rdc.

Average of the Preference Sets(APS) In this technique, the sets of prefer-
ences are taken into account. The primary idea is to customize user preferences
so that resource-bounded context-aware applications can be personalised [30].
When preferences need to be implemented, the procedure is more complex than
the prior method, but it saves space. This method considers the rules of sev-
eral different groups of preferences. To begin, it calculates an average working
memory size based on the overall average of rule base sizes. It then determines
how many preference sets have WM requirements that are higher than the com-
puted average. In the second stage, the technique will verify these preference
sets (which have higher requirements than the average size) for distinct values
in their consequent parts. If the number of distinct consequent parts in any of

8 Ijaz Uddin et al.

Input: to fire: A selected rule instance to be fired [Rc: A communication
rule instance, Rg: A rule instance contains a goal context, Rd: A
deduction rule instance, Rf : Rule Flag, Rcons: Consequent,
MAX SIZE: memory size]

Output: Rule instance executed, consequent added to WM and
corresponding action performed.

1 START
2 to fire from conflict resolution and Rcons is the consequent
3 if Rg then
4 if Rcons is a conflicting context then
5 Overwrite the contradictory context with Rcons

6 end
7 else if |WM| < MAX SIZE then
8 Add Rcons to WM
9 end

10 else
11 Overwrire an existing context with Rcons

12 end
13 Goal Reached
14 Execution Halts

15 end
16 else
17 if Rcons is a conflicting context then
18 Overwrite the contradictory context with Rcons

19 if Rc then
20 initiate communication module
21 end

22 end
23 else if |WM| < MAX SIZE then
24 Add Rcons to WM
25 if Rc then
26 initiate communication module
27 end

28 end
29 else
30 Overwrite an existing context with Rcons

31 if Rc then
32 initiate communication module
33 end

34 end

35 end
36 END

Algorithm 1: Execution of a rule

Memory-Constrained Context-Aware Reasoning 9

these preference sets checked for WM is less than the average, the system will
request WM size equal to the calculated average. However, if the value is higher
than the average, the system will request a WM size that is equal to this value.
To avoid context loss, the system will use the largest calculated value as the WM
size in both cases. Let R be a rule base with n = |R| number of rules and there
are m preference sets P1, P2, . . . Pm with varied preference methods. Then the
size of the working memory will be (|P1|+ |P2|+ . . .+ |Pm|)/m, where |Pi| is the
size of the preference set Pi for 1 ≤ i ≤ m. However, the memory size may be
larger than the calculated average if any preference set requires more memory
as discussed above.

Smart Average of the Preference Sets (SAPS) Preference sets are another
focus of the SAPS technique. This technique is similar to APS, but it has the
added benefit of reducing the computation factor if certain conditions are met.
Otherwise, it will function in the same way as APS does. In this approach, the
standard deviation (SD) of the available preference sets is first calculated. A low
standard deviation implies that the values are close to the set’s mean, whereas a
high standard deviation shows that the values are spread out over a larger range.
Therefore, if the SD is small (less than a threshold value 2) then the number of
rules in the preference sets will be close to the mean. In this case, among the
available preference sets, the system will request the preference set that requires
the most memory units. There will be no need to do any further calculations
because the size will be enough for any other preference sets. However, if the SD
is large (greater than or equal to a threshold value 2), it will function similarly
to APS.

5.3 An Example

Let us consider an example system developed using a set of rules presented in
Table 1 [30]. There are 18 different rules in this rule base. Some rules have the
same consequence, and some of the rules have the same preference set. We have
shown below how the aforementioned techniques are applied to Table 1.

Distinct Working Memory As previously explained, this technique returns
all distinct results and does not display duplicated values; duplicated values are
displayed just once. The following terms are used to apply the DWM approach
to the table. Here, |R| = 18 (total number of rules), |Rc| = 7 (total number of
consequences of the rules) and |Rdc| = 4 (total number of distinct consequences).
In this case, |Rc| ≥ Rdc and the size of WM =Rdc. We get 12 distinct rules out
of a total of 18 rules if we use the DWM technique to group the rules that
have the same consequence and define the working memory on DWM bases. In
this specific case, the DWM technique decreases the number of rules by almost
33.33%. This technique mainly depends on the number of rules having the same
consequences. It will work more efficiently as the number of rules with the same
consequence grows.

10 Ijaz Uddin et al.

Table 1. Blood pressure and heart rate rules

Blood pressure category rules

Category m Corresponding rule F CS

Low BP 1 Person(?p), hasSystolicBloodPressure(?p,?sbp), hasDiastolicBloodPressure(?p, D -
?dbp), lessThan(?sbp, ’90), lessThan(?dbp,60) −→ hasBPCategory(?p,LowBP)

Normal 1 Person(?p),hasSystolicBloodPressure(?p,?sbp), hasDiastolicBloodPressure(?p, D -
?dbp), greaterThan(?sbp,90), greaterthan(?dbp,60), lessThan(?sbp,120), less-
Than(?dbp,80) −→ hasBPCategory(?p,Normal)

Pre high 1 Person(?p), hasSystolicBloodPressure(?p,?sbp), hasDiastolicBloodPressure(?p, D -
?dbp),greaterThan(?sbp,120), greaterThan(?dbp,80),lessThan(?sbp,140), less-
Than(?dbp,90)−→ hasBPCategory(?p,PreHigh)

High 1 Person(?p), hasSystolicBloodPressure(?p,?sbp), hasDiastolicBloodPressure(?p, D -
?dbp), greaterThan(?sbp,140), greaterThan(?dbp,90)−→ hasBPCategory(?p,
HighBP)

Heart rate category rules

Category m Corresponding rule F CS

Athlete 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,48), lessThan(?hrt,55) D -
−→ hasHRCategory(?p, Athlete)

Excellent 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,54), lessThan(?hrt,62) D -
−→ hasHRCategory(?p,Excellent)

Good 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,61), lessThan(?hrt,66) D -
−→ hasHRCategory(?p,Good)

Above Average 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,65), lessThan(?hrt,71) D -
−→ hasHRCategory(?p,AboveAverage)

Average 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,70), lessThan(?hrt,75) D -
−→ hasHRCategory(?p,Average)

Below Average 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,74),lessThan(?hrt,82) D -
−→ hasHRCategory(?p,BelowAverage)

Poor 1 Person(?p), hasHeartRate(?p,?hrt), greaterThan(?hrt,81) D -
−→ hasHRCategory(?p,Poor)

Some example rules to derive different situations

Category m Corresponding rule F CS

Emergency 2 Patient(?p), hasBPCategory(?p,HighBP), hasHRCategory(?p,Poor) D H
→ hasSituation (?p,Emergency)

Emergency 2 Patient(?p), hasBPCategory(?p,PreHigh), hasHRCategory(?p,Poor) D H
→ hasSituation (?p,Emergency)

Emergency 2 Patient(?p),hasBPCategory(?p,Normal), hasHRCategory(?p,Poor) D N
→ hasSituation (?p,Emergency)

Emergency 2 Patient(?p),hasBPCategory(?p,LowBp), hasHRCategory(?p,Poor) D L
→hasSituation (?p,Emergency)

Non 1 Patient(?p),hasBPCategory(?p,Normal), hasHRCategory(?p,Average) D N
Emergency → ∼hasSituation (?p,Emergency)

Non 1 Patient(?p),hasBPCategory(?p,Normal), hasHRCategory(?p,AboveAverage) D N
Emergency → ∼hasSituation (?p,Emergency)

Non 1 Patient(?p),hasBPCategory(?p,Normal), hasHRCategory(?p,Good) D N
Emergency → ∼hasSituation (?p,Emergency)

Memory-Constrained Context-Aware Reasoning 11

Average of the Preference Sets (APS) The APS approach is primarily
concerned with preference sets. This technique takes into account the rules in
various preference sets and calculates an average; the WM size is determined
by the calculated average. The WM is the same size as the average. There can
be four different preference sets based on the rule-base in Table 1, consisting
of 11, 2, 1, and 4 rules, with an average (11 + 2 + 1 + 4)/4 = 4.5. However,
the preference set P1 having 9(> 5) distinct consequences. Thus, the size of
the working memory WM is 9. This method will reduce the amount of time it
takes to calculate and check each rule for distinct consequences. In this example,
instead of 18 rules, only 9 rules were checked, which is a 50 percent reduction.
In other circumstances, depending on the number of rules in the preference sets
with values higher than the average calculated, it can be reduced from 20 to 60
percent. In the general case, the required WM size for the DWM technique is
12, whereas it is for the APS technique is 9, which is roughly 25 percent less
than the DWM technique. However, the results may vary from one example
to another. It’s also worth mentioning that this just applies to the size of the
dynamic working memory.

Smart Average of the Preference Sets (SAPS) In the above example,
|P1| = 11, |P2| = 2, |P3| = 1, and |P4| = 4. Therefore, the average is 4.5, while
the standard deviation is 3.90. As a result, it will function similarly to APS,
and the required WM size will be 9. However, for example, if we have a scenario
where |P1| = 5, |P2| = 6, |P3| = 7, and |P4| = 8, the average and standard
deviation would be 6.5 and 1.11, respectively. In this case, the WM size will be
8 since standard deviation is smaller than the threshold value and the memory
requirement of the preference set with the most rules is 8.

6 Discussion and Future Work

In this paper we have addressed the issues with the working memory in resource
constrained devices and proposed a possible solution as to how much dynamic
memory size of an agent is required with a fixed set of rules. There can be
more complex solutions but resources should be considered. In the future we
intend to work on the reverse engineering of the preference sets. Although, in our
proposed system, we have a well-explained mechanism for deriving a preference
set from a set of rules. This set depends on a variety of choices by a user such
as context-based, derived or live preferences. However, it is unavoidable to make
a strategy that can reverse a set of rules when not required. The preference set
may be able to remove rules which are not likely to fire in the future by its
own. As a result, redundancy will be reduced, allowing the system’s output to
be maximised. Another area where further development could be made is with
the rule generating strategy. Because the rules are created in software or with a
tool and then processed in a typical manner, in our situation, we have several
options for creating and changing rules, including a web-based interface, writing
to a JSON file, and utilising the Onto-HCR tool [24]. We would also like to

12 Ijaz Uddin et al.

make changes to the generated rules for preferences and other factors. It would
be more convenient to do devoted research in this regard in order to develop
a standalone framework capable of automating all of the processes mentioned
above.

References

1. A. Ligeza, Logical Foundations for Rule-Based Systems, vol. 11(2). Berlin, Heidel-
berg: Springer-Verlag, 2006.

2. J. C. Giarratano and G. Riley, “Expert systems, principles and programming,
thomson course of technology,” Boston, Australia, 2005.

3. G. F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem
Solving–6th Edition.

4. W. Tai, J. Keeney, and D. O’Sullivan, “Resource-constrained reasoning using a
reasoner composition approach,” Semantic Web, vol. 6, pp. 35–59, 2015.

5. A. Rakib and H. M. U. Haque, “A logic for context-aware non-monotonic reasoning
agents,” in Mexican International Conference on Artificial Intelligence, pp. 453–
471, Springer, 2014.

6. A. Rakib and I. Uddin, “An efficient rule-based distributed reasoning framework
for resource-bounded systems,” Mobile Networks and Applications, vol. 24, no. 1,
pp. 82–99, 2019.

7. I. H. Sarker, “Mobile data science: Towards understanding data-driven intelligent
mobile applications,” arXiv preprint arXiv:1811.02491, 2018.

8. I. H. Sarker, “Behavminer: Mining user behaviors from mobile phone data for
personalized services,” in 2018 IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PerCom Workshops), pp. 452–453, IEEE
Computer Society, 2018.

9. I. Chronis, A. Madan, and A. Pentland, “Socialcircuits: the art of using mobile
phones for modeling personal interactions,” in Proceedings of the ICMI-MLMI’09
Workshop on Multimodal Sensor-Based Systems and Mobile Phones for Social
Computing, pp. 1–4, 2009.

10. J. J. Jung, “Contextualized mobile recommendation service based on interactive
social network discovered from mobile users,” Expert Systems with Applications,
vol. 36, no. 9, pp. 11950–11956, 2009.

11. D. O. Olgúın, B. N. Waber, T. Kim, A. Mohan, K. Ara, and A. Pentland, “Sensible
organizations: Technology and methodology for automatically measuring organi-
zational behavior,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 39, no. 1, pp. 43–55, 2008.

12. W. M. Aly, K. A. Eskaf, and A. S. Selim, “Fuzzy mobile expert system for academic
advising,” in 2017 IEEE 30th Canadian Conference on Electrical and Computer
Engineering (CCECE), pp. 1–5, IEEE, 2017.

13. A. Ghasempour, “Optimized scalable decentralized hybrid advanced metering in-
frastructure for smart grid,” in 2015 IEEE International Conference on Smart Grid
Communications (SmartGridComm), pp. 223–228, IEEE, 2015.

14. A. Ghasempour, “Optimum packet service and arrival rates in advanced meter-
ing infrastructure architecture of smart grid,” in 2016 IEEE Green Technologies
Conference (GreenTech), pp. 1–5, IEEE, 2016.

15. A. Ghasempour, “Optimized advanced metering infrastructure architecture of
smart grid based on total cost, energy, and delay,” in 2016 IEEE Power & Energy

Memory-Constrained Context-Aware Reasoning 13

Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–6, IEEE,
2016.

16. A. Ghasempour, Optimizing the advanced metering infrastructure architecture in
smart grid. Utah State University, 2016.

17. V. Sharma, F. Song, I. You, and M. Atiquzzaman, “Energy efficient device dis-
covery for reliable communication in 5g-based iot and bsns using unmanned aerial
vehicles,” Journal of Network and Computer Applications, vol. 97, pp. 79–95, 2017.

18. V. Sharma, I. You, K. Andersson, F. Palmieri, M. H. Rehmani, and J. Lim, “Se-
curity, privacy and trust for smart mobile-internet of things (m-iot): A survey,”
IEEE Access, vol. 8, pp. 167123–167163, 2020.

19. M. F. Abulkhair and L. F. Ibrahim, “Using rule base system in mobile platform
to build alert system for evacuation and guidance,” Int J Adv Comput Sci Appl,
vol. 7, no. 4, pp. 68–79, 2016.

20. C. Mukherjee, Build Android-Based Smart Applications: Using Rules Engines,
NLP and Automation Frameworks. Apress, 2017.

21. I. Uddin, A rule-based framework for developing context-aware systems for smart
spaces. PhD thesis, University of Nottingham, 2019.

22. M. Alirezaie, J. Renoux, U. Köckemann, A. Kristoffersson, L. Karlsson,
E. Blomqvist, N. Tsiftes, T. Voigt, and A. Loutfi, “An ontology-based context-
aware system for smart homes: E-care@home,” Sensors (Basel, Switzerland),
vol. 17, 2017.

23. R. Abdur, “Smart space system interoperability,” in Proceedings of the 3rd Inter-
national Workshop on (Meta)Modelling for Healthcare Systems, Bergen, Norway,
vol. 2336, pp. 16–23, CEUR Workshop Proceedings, 2018.

24. I. Uddin, A. Rakib, H. M. U. Haque, and P. C. Vinh, “Modeling and reason-
ing about preference-based context-aware agents over heterogeneous knowledge
sources,” Mobile Networks and Applications, vol. 23, pp. 13–26, 2018.

25. N. A. Streitz, D. Charitos, M. Kaptein, and M. Böhlen, “Grand challenges for
ambient intelligence and implications for design contexts and smart societies,” J.
Ambient Intell. Smart Environ., vol. 11, pp. 87–107, 2019.

26. P. N. Mahalle and P. S. Dhotre, Context-Aware Pervasive Systems and Applica-
tions, vol. 169 of Intelligent Systems Reference Library. Springer, 2020.

27. D. Cook and S. Das, Smart Environments: Technology, Protocols and Applications
(Wiley Series on Parallel and Distributed Computing). USA: Wiley-Interscience,
2004.

28. N. Noy, D. McGuinness, and P. J. Hayes, “Semantic integration & interoperability
using RDF and OWL.” W3C Editor’s Draft 3 November, 2005.

29. A. K. Dey, “Understanding and using context,” Personal Ubiquitous Comput.,
vol. 5, p. 4–7, Jan. 2001.

30. I. Uddin and A. Rakib, “A preference-based application framework for resource-
bounded context-aware agents,” in International conference on mobile and wireless
technology, pp. 187–196, Springer, 2017.

31. X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung, “Ontology based context
modeling and reasoning using owl,” in IEEE Annual Conference on Pervasive
Computing and Communications Workshops, pp. 18–22, 2004.

32. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean,
“SWRL: A Semantic Web rule language combining OWL and RuleML. Acknowl-
edged W3C submission, standards proposal research report: Version 0.6,” April
2004.

14 Ijaz Uddin et al.

33. B. Grosof, I. Horrocks, R. Volz, and S. Decker, “Description logic programs: Com-
bining logic programs with description logics,” in The Twelfth International World
Wide Web Conference, Budapest, pp. 48–57, ACM, 2003.

34. A. Rakib, H. M. U. Haque, and R. U. Faruqui, “A temporal description logic
for resource-bounded rule-based context-aware agents,” in Context-Aware Systems
and Applications, pp. 3–14, Springer, 2014.

