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Abstract. We present WhiskEye, a visual tactile robot supporting a
neurorobotic investigation of spatial memory as a multisensory recon-
structive process. This article outlines the motivation for building Whisk-
Eye; the technical details of the physical robot, and the publicly available
simulated platform via the NeuroRobotics Platform (NRP) from the Hu-
man Brain Project; and the biomimetic control architecture. The multi-
sensory reconstruction model of place recognition based on deep predic-
tive coding network is presented and datasets collected from the NRP
are used to train and test the network. We demonstrate that the joint
latent representations inferred by this system are positively correlated
to displacements in pose space suggesting it is an advantageous sensory
processing front-end for our neuro-plausible model of spatial memory.

Keywords: Neurorobotics · neural networks · multisensory inference

1 Introduction

As we move through the world we see, touch, smell, taste and hear the envi-
ronment around us. We use this sensory information to navigate safely and to
plan routes to previously visited locations. How this multisensory information
is represented, stored and recalled by the brain to aid in navigation is not fully
understood. In the 19th century Heinrich von Helmholtz proposed that the brain
was not a passive observer of the environment through the senses, rather it was
actively engaged in predicting how the world behaves [8]. This conceptual shift
in understanding has become increasingly popular in contemporary neuroscience
research with many works advocating and demonstrating the role of prediction
in describing physiology and behaviour [6], [2], [18]. Models for how the neocor-
tex may implement this learning have also been proposed [19] which in turn has
resulted in neural network models that can be constructed and implemented us-
ing the readily available machine learning toolboxes [3]. Deep predictive coding
neural networks differ from conventional deep learning neural networks in that
the error correction step applied to the weight array is computed locally in each
training epoch in parallel across the network, i.e., the global derivative and back
propagation of error is not required. Instead each layer in the network attempts
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to predict the output of the previous layer, refining its predictions by comparing
them to the actual output. In other words, higher layers are trained to recon-
struct the activity of lower layers but using an increasingly smaller dimensional
representation space to do so. This enables a hierarchical learning of represen-
tations but with the benefit of priors that can anticipate familiar sensory inputs
by generating predictions that are tested against incoming evidence.

In this paper we describe how such a network has been integrated into the
processing architecture of a biomimetic multisensory robot called WhiskEye.
WhiskEye has an array of active tactile whiskers and cameras for eyes that
explores its environment in an ethologically plausible way. Using a model of
tactile attention, it gathers visual and tactile impressions from its environment
which are used to train a multimodal predictive coding implementation called
MultiPredNet. The representations generated by this network show a strong cor-
relation to pose space, and thus are useful for place recognition.

The main contributions of this paper are:

1. Overview of a novel multisensory biomimetic robot platform
2. Introduction of a publicly available simulation platform of the WhiskEye
3. A neuroplausible multimodal deep predictive coding network model that can

combine vision and tactile sensory information
4. A demonstration that the network model can generate representations that

are beneficial to place recognition

2 Related work

The brain is renowned for its ability to combine different modalities to solve
problems, in artificial systems we refer to this ability as sensor fusion[10]. Model
free approaches to sensor fusion include Variational AutoEncoders (VAEs) which
have proven successful by being able to create joint latent spaces that encode
the regularities between multiple modalities[11]. Predictive coding systems take
this a step further by using bio-plausible learning rules and generating repre-
sentations at each layer, whilst also showing the ability to extract disentangled
latent variables[13]. To the best of our knowledge this approach has not been
applied specifically to place recognition.

RatSLAM[14] is a successful Simultaneous Localisation and Mapping (SLAM)
approach inspired, like WhiskEye, by rat behaviour. Unlike RatSLAM, this paper
does not purport to solve the full SLAM problem, instead focusing on represen-
tation learning for place recognition. This is equivalent to the sensory front-end
of RatSLAM, processing raw sensor data into a form suitable for a future down-
stream mapping system. The use of whisker-based touch has been successfully
incorporated into a SLAM system before[5] and is promising in terms of the re-
dundancy and robustness it offers. WhiskEye builds on prior works using whisker
based tactile sensing for mobile robots[17], [16] by introducing the head-mounted
cameras to coarsely approximate rat vision and allowing us to capture rich mul-
tisensory datasets during mobile exploration.
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3 Materials and methods

3.1 WhiskEye platform

(a) Physical WhiskEye in the BRL test
arena

(b) Simulated WhiskEye in an NRP
virtual arena

Fig. 1: Both incarnations of WhiskEye. Note the differences in whisker shape and
simplified structure of the simulated model, with extraneous detail like wires and
the onboard display omitted.

Hardware The main physical components of WhiskEye are the head, neck and
body. The body is a RobotinoTM chassis from Festo Didactic, with an onboard
Intel computer running the robot control software, including ROS. This com-
puter communicates to a head mounted master SPI bus that controls much of
the robot’s behaviour. Within the RobotinoTM is an ARM microcomputer that
itself runs ROS, interacting as a ROS device with the onboard computer. Logs
and data are sent via wi-fi to a remote desktop. Three omni-wheels allow for
arbitrary motion in x, y and θ.

The neck is custom-built, attaching to the front of the Robotino chassis with
a USB connection to the onboard computer. This USB is set up as a ROS device,
allowing for data to be read from sensors and commands to be sent to neck and
head actuators.

The head is also custom-built, mounting the aforementioned head SPI master.
This controls the 6 whisker arrays and neck via 7 slave SPIs. Each whisker array
consists of 4 whisker complexes, each with its own motor, ARM processor, a 2-
axis Hall Effect sensor and the whisker proper; a flexible, tapering plastic rod that
mimics small mammal whiskers. Each ARM processor coordinates its whiskers
to generate ‘whisks’ of synchronised movement across the array, but allows each
to respond individually to impingement for whisker-specific retraction.
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Neurorobotics Platform The NeuroRobotics Platform (NRP) [4] is a web
based robotics and neuroscience research tool for neuroscience based robotics
experiments, particularly through time sensitive coupling between Gazebo and
spiking neural network simulators such as NEST. For very large network models
it also provides an API to deploy on the SpiNNaker neuromorphic supercomputer
[7]. A CAD model of WhiskEye has been instantiated into the NRP with a
Gazebo-ROS plugin deployed to mirror the interface of the physical platform
described above. To accommodate the flexible whiskers within Gazebo’s rigid
body physics, whisker collisions were disabled; instead, surface penetration depth
was used to calculate the corresponding force experienced at the base of each
whisker in the 2 orthogonal planes (xwhisk, ywhisk). Crucially, the NRP hosts the
same ROS control architectures as the physical robot, ensuring parity between
simulated and physical behaviour.

Control architecture WhiskEye’s movements are initiated and coordinated
through a model of whisker based tactile attention derived from prior work [15].
It is composed of an interconnected network of functional models of mid brain
structures of the rat that have been modelled using Python and compatible with
ROS. Each module encapsulates a specific set of functions necessary for control,
with many modules implementing neuro-plausible functional models.

Environment

Platform
publish 
topics

Sensory

Spatial

Action

Reflex

World

Motor

- Publish ROStopics
- Manage logging

- Preprocess tactile inputs
- Filter reafferent noise

- Manage saliency map
- Inhibit return

- Automatically retract to 
avoid head collisions

- Log visited locations
- Log whisker contacts

- Control motor plant
- Move to salient areas

- Foveate to most salient
  point in 3D space

Fig. 2: Cascading view of control functions. Each function is called sequentially
and contributes to the final, salience-guided foveation, sampling the environ-
ment in an ethologically plausible way. ROStopics of cameras and whiskers are
published, permitting collection of datasets for MultiPredNet training (3.2)
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Figure 2 shows WhiskEye’s cascade of controller functions that each con-
tribute to the final behaviour of the robot:-

– Platform - creates publishers for all relevant ROStopics that can be sub-
scribed to both internally (such as whisker inputs for tactile attention) and
externally (for monitoring and data collection).

– Sensory - preprocesses incoming sensory data, reshaping and removing reaf-
ferent noise with a high-pass filter, preserving deflections caused by impinge-
ment; loosely analogous to a proposed cerebellar role for re-afferent sensory
prediction [1].

– Spatial - manages a Superior Colliculus-inspired salience map fed by tactile
data. This determines where the robot will orient to. Local space is mapped
as head-centric (xh, yh, zh) and the most salient location identified. If its
salience exceeds a threshold, the coordinates pass to the Action module. If
not, structured noise is applied that raises salience around the fovea until a
candidate location is found.

– Action - inspired by the Basal Ganglia - deciding how to act, and how much
- the desired position in head space is transformed into world space (xw,
yw, zw). The difference between the current and desired position forms the
movement vector describing the orient required.

– Reflex - responds via callbacks to any potential collisions that a movement
can cause; since obstacles can be interesting features themselves, this is
a common occurrence. Proportional retraction ensures collisions are min-
imised.

– World - logs visited locations, implementing Inhibition of Return (IoR) by
temporarily masking their coordinates in the salience map. This avoids in-
cessant exploration of a single location, encouraging orienting to novel areas.

– Motor - translates the Action module transformations to motor commands.
Orienting is head-led, only moving the neck and body if head movement
alone cannot reach the destination. Once the salient location is reached, a
whisking bout is induced, repeating the cycle.

3.2 Multisensory integration and reconstruction using multimodal
predictive coding network

To generate multisensory inferences, a MultiPredNet architecture is used1. Based
on principles of predictive coding[2][6][19] and building on prior work[3], this net-
work flips the conventional Deep Learning information flow on its head. Rather
than being led by the sensory data filtering through weight matrices, the Mul-
tiPredNet instead leads by predictions. Hypothesised ‘causes’, high-level predic-
tions of what the world contains, are passed in a top-down fashion and compared
with the sensory input at each level. The remainder of the signal - that not pre-
dicted by the causes - will continue to propagate upwards.

1 Code and data can be found at:
https://github.com/TomKnowles1994/MultiPredNet/releases/tag/1.3.2
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Fig. 3: The MultiPredNet architecture. Each layer contains a filter of learned
weights (Wx) and receives top-down, hypothesised causes (cx) of the input at
the preceding (l − 1) layer. Causes pass through these weights, generating pre-
dictions of lower layer cause values. Discrepancy between predictions and causes
propagate to higher layers as error gradients. The topmost layer integrates both
modalities, learning a single set of causes that, filtered through modality-specific
weights, reconstruct each unimodal data input.

The MultiPredNet begins with randomly initialised weights and arbitrary
cause values (0.1 by default). Each layer of causes (y(l)) is updated in parallel
with a Hebbian-like learning rule:

∆y(l) = ηy

(
Wl(l−1)φ′(ŷ(l−1))

((
y(l−1) − ŷ(l−1)

)
+

(
y(l) − ŷ(l)

)))
(1)

where ηy is the learning rate and φ′ is the derivative of the activation func-
tion. Error component (y(l−1) − ŷ(l−1)) is the bottom-up error, comparing the
prediction derived from the upper cause to the actual value of the causes. This
penalises causes that cause poor predictions of lower layer causes. Error compo-
nent (y(l)− ŷ(l)) is the top-down error, comparing the current value of the cause
to what it was predicted to be by y(l+1). This penalises causes that are difficult
to predict by higher layers. Note that y(l+1) is not a component of this learning
rule, as its own value is not required to update y(l), only its prediction (ŷ(l)).
Note that for the uppermost layer, there is no higher layer to predict causes, and
thus top-down error is treated as 0.

Each layer has a threshold defines the margin of error (10−3 to 10−4) between
a cause (or data item) and its prediction. Once all layers are within their error
criteria (or after a maximum number of iterations), inference stops and the final
causes values compared to the predictions. Further discrepancy between final
causes and predictions leads to a weight update as per:



WhiskEye 7

∆Wl(l−1) = ηwy
(l)φ′(ŷ(l−1))

(
y(l−1) − ŷ(l−1)

)T

(2)

with ηw being the learning rate for the weights. This iterative adjustment of
causes occurs both during training and when generating inferences. Inferences
do not invoke weight updates - the filters are ’fixed’ - and rely on adjustment
of causes to match predictions to the data presented. These predictions should
therefore not be considered a direct window into the latent representations of the
network, nor a decoded reconstruction of such, instead being a live hypothesis
of the network as to the causes of the l0x sensory impingement.

4 Results

Datasets were collected from WhiskEye exploring a virtual ovoid arena popu-
lated with coloured cubes and cylinders. Visual data consisted of 3-channel RGB
images from the left camera, downsized to 80x45x3 pixels and flattened into a
1-D array of 10,800 elements. Tactile data consisted of 24 whisker protractions
(θwhisk) and 24 x 2 values of deflection data (xwhisk and ywhisk) concatenated
into a 1-D, 72 element array. Sampling was driven by the rat-inspired whisking
behaviour described in Section 3.1, with ‘views’ in both modalities captured at
the moment of whisker peak protraction; whether the whiskers reached their
desired theta angle or not (due to obstacles and/or IOR).

Note the relationship between visual and tactile data (Figure 4); a visual
scene displaying largely wall implies proximity to the wall (f ), and thus many
whiskers colliding with the surface. The tactile data reflects this, with greater
and more numerous deflections (d) in comparison to a clear visual scene (c, e).
Relationships like these can be learned by MultiPredNet’s multisensory layer,
inferring that denser tactile input implies a more occluded visual scene and vice-
versa.

The MultiPredNet was initialised with random filter weights and causes set
to 0.1; two visual layers of 1000 (L1

vis) and 300 (L2
vis) neurons; two tactile layers

of 50 (L1
tac) and 20 (L2

tac) neurons; and a single Lmsi layer of 100. Causes were
allowed to infer for 50 cause epochs before weight updates took place. 1900
samples of training data were divided into minibatches of 10 and the network
trained for 200 training epochs. During some inferences, modalities were masked
to test robustness to sensory dropout.

Figure 5 shows sample inferences generated from testsets 1 and 4 as per
Section 3.2. Representational Similarity Analysis [12] was used to compare the
distances between samples within each space. Assuming the robot can only rotate
its head around the z-axis and is bound to a flat plane, its position and orien-
tation is represented completely by a pose vector (xpose, ypose, θpose); a high
quality reference representation useful for localisation. Therefore, if dissimilarity
within pose space correlates well with that of MultiPredNet inference space, the
inference will be of good quality proportional to that correlation. Results from
all test sets under all conditions show a mean correlation well above significance,
thus the representations generated are useful for localisation.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: A sample of MultiPredNet data from testsets 1 and 4. a and b: Quiver plot
of poses (xwhisk, ywhisk, θwhisk) c and d : Sample instances of whisker θwhisk an-
gle alongside the resulting magnitude of whisker deflection in xwhisk and ywhisk

axes. e and f : Sample instances of camera visual input.
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Fig. 5: RDM plots and Spearman’s rank correlation coefficient scores for infer-
ences on 100 samples from test sets 1 and 2 with visual, tactile, or both inputs
unmasked. The top row of heatmaps show Euclidean distance between visited
locations in pose space (xpose, ypose, θpose). The bottom rows of heatmaps show
the 1-Pearson correlation distance between samples in MultiPredNet inference
space; [12] shows this to be a more suitable metric for high-dimensional repre-
sentation spaces. Below the heatmaps are boxplots of the correlation between
spaces, with dotted line R marking correlation with a uniform random RDM,
and dashed line α showing the threshold for significance (0.167). Significance is
determined by p < 0.05 for N = 100 samples.

5 Discussion

In this paper we have described a novel multisensory robot which investigates
salient environmental features in an ethological manner. The datasets from these
investigations have then been used to train a multisensory predictive coding
network that can generate inferences useful for place recognition. Furthermore,
generated inferences remain useful even when modalities are obscured, a trait
useful for real-world situations where vision is poor or whiskers are damaged.

Though fit for purpose, the datasets gathered have several areas of improve-
ment. A prominent feature in every camera frame is the whisker array itself; with
no benefit to localisation, this is an irrelevant feature that will be removed in
future work to allow the network to learn more about the external environment,
rather than itself. The unused right camera feed (with its own whisker array
portion removed) can be used to make up the difference without altering the
input shape of the network; important both for comparing results and re-using
trained weights.

The results show a clear correlation between inference space and pose space,
showing that something useful for place recognition is captured by the network,
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and the correlation with pose specifically suggests that the MultiPredNet’s is
able to extract latent features relating to the observer; namely position and ori-
entation. However, unlike in some other generative models such as β-VAEs[9],
these latent features are highly entangled and not human-legible; there are no
explicit ‘xpose’, ‘ypose’ or ‘θpose’ variables in the representation, and to the ex-
tent these are represented, it is as a high-dimensional mix of other variables.
In a similar vein, MultiPredNet current stores representations as single, dis-
crete numbers, rather than as a distribution (as VAEs in general do); as VAE
disentanglement factors e.g. Kullbach-Leiber Divergence require distributed rep-
resentations, this makes disentangling MultiPredNet’s representations by these
methods intractable in their current form.

To address both these issues, future work will look towards creating a ‘Vari-
ational MultiPredNet’ to learn disentangled representations at each layer. We
will then use this as the sensory front end of a full localisation system, using
the multimodal inferences produced by the MultiPredNet as a prediction of the
current pose. This inferred pose will then be used to correct for inherent drift in
internal representations of self motion modelled as spiking neural networks in-
spired by mammalian spatial cells, a task made easier by the NRP’s integration
with both SpiNNaker and NEST.
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