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Abstract—Robotic compliant manipulation is a very chal-
lenging but urgent research spot in the domain of robotics.
One difficulty lies in the lack of a unified representation for
encoding and learning of compliant profiles. This work aims to
introduce a novel learning and control framework to address this
problem: i) we provide a parametric representation that enables a
compliant skill to be encoded in a parametric space and allows a
robot to learn compliant manipulation skills based on motion
and force information collected from human demonstrations;
and ii) the updating laws of the compliant profiles including
impedance and force profiles are derived from a biomimetic
control strategy based on the human motor learning principles.
Our approach enables the simultaneous adaptation of impedance
and feedforward force online during robot’s reproduction of the
demonstrated tasks to deal with task dynamics and external
interferences. The proposed approach is verified based on both
simulation and real-world task scenarios.

Index Terms—Impedance and force learning; biomimetic con-
trol; Compliant manipulation; Learning from human demonstra-
tions; Human-robot physical interaction.

I. INTRODUCTION

Learning manipulation skills from humans can enable a
robot to effectively acquire the ability to perform particular
tasks [1], just requiring a limited number of demonstrations.
It has recently become a research hot spot in the relevant field
because of a number of advantages. The most important one is
probably that it has a big potential to bring human factors into
robotic systems, and therefore to combine the advantages of
both humans and robots. Learning from human demonstration
(LfHD) has been proven to be one promising way for robots
to learn different types of tasks, including industrial assembly
[2], surgical manipulation [3], and autonomous navigation [4],
etc.

Despite many exciting examples and improvements in robot
learning, so far learning compliant manipulation is still an
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open challenging problem. Only learning of motion primi-
tives/features is usually not enough to encode a skill when
it comes to the term of compliance. More features such as
impedance and force need to be considered and included in the
skill-encoding process [5–7]. In a common grasping task, for
instance, we should not only consider where to grasp but also
need to know how much force is needed for grasping different
objects with rigid or soft characteristics. In this sense, how to
adapt the impedance/force profiles in a specific task needs to
be addressed. In other words, how impedance/force profiles
should respond to task dynamics with respect to the evolution
of motion trajectories needs to be answered. In this paper,
we propose a novel mechanism for adaptation of impedance
and force profiles which is inspired by a biomimetic control
strategy developed from human motor learning regulations in
the muscle space. In order to overcome uncertainties caused
by environmental interferences, these profiles are learned and
adapted online automatically during the task reproduction
based on the prior knowledge of motion and force information
collected from demonstrations.

In this work, we propose a unified representation framework
for the encoding of compliant skills. Several learning and
control approaches have been developed so far for robot
compliant manipulation. However, most of these are focused
on either learning or control, namely, learning and control are
treated separately. Inspired by human motor learning, we argue
that they can be integrated in a unified manner. Furthermore,
in the domain of robot control it has illustrated that learning
algorithms can be used for control (see, e.g., [5, 8, 9]), i.e.,
learning for control. In contrast, this paper argues that it is
also reasonable to implement control strategies for learning
robotic skills, i.e., control for learning.

We seek to provide a representation of the compliant
profiles. If we want manipulation skills to be shared and
transferred across different robot platforms and task scenarios
in the future, it would be better to represent them in a unified
way [10]. In this work, we propose to convert the compliant
profiles including motion trajectories, impedance, and force
profiles from trajectory-level into a parametric space. And
the adaptation of these trajectories is achieved directly in
the parametric space instead of trajectory-level updating. One
advantage of doing this is that we can use a particular set of
parameters to represent a specific skill.

The remainder of this paper is organized as follows: Sec-
tion II summarizes the most related previous works on this
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topic. Section III reviews the biomimetic control strategy. The
proposed approach is detailed in Section IV, followed by the
experiments in Section V. Section VI finally concludes this
paper and gives possible future research directions.

II. RELATED WORKS

Trajectory-based movement encoding is an efficient way for
robots to imitate, and even generalize human skills. In the last
two decades, several types of models have been developed
to encode data collected from human demonstrations, to learn
motion control strategies from these data, and then to generate
control commands based on the learned strategies for robots to
reproduce tasks. Among these models, dynamical movement
primitives (DMPs) have been widely used in a large number
of robotic tasks, thanks to their fine characteristics such as the
high-computing efficiency and the good generalizability [11].
DMPs model represents a trajectory by a linear term, plus a
non-linear one represented by an inner product of weights and
Gaussian basis. Inspired by this, our approach takes a similar
but a bit different way, in order to represent the compliant
profiles in the parametric space.

Adaptive learning approaches can be utilized for the esti-
mation of a proper impedance profile in an impedance-based
torque controller to achieve compliant robotic behaviors [12–
15]. They usually enable a robot to follow planned trajectories
during which impedance is adapted to meet some specific
requirements. However, these approaches may be difficult for
learning control commands from demonstration data because
the physical interaction force/torque information between the
human tutor and the robot needs to be included in the learning
process. Reinforcement learning techniques have also been
used for adaptive impedance control in robotic manipulation
and grasping tasks [16–18]. In this case, it often requires a
number of trials with a task-specific cost function to finally
obtain a proper impedance profile.

Learning impedance or force/torque primitives has been
recently proposed to encode impedance or force/torque data
collected from physical demonstrations [19–21]. This ap-
proach usually treats the impedance or force/torque similar
to the motion trajectories, encoded either by the non-linear
term stated above [22] or by probabilistic models [23]. This
approach has shown good results to deal with LfHD-based
physical interaction tasks (see e.g., [22]). However, impedance
and force/torque profiles are considered in a separate manner.
Until now, there lacks a unified framework to encode all the
compliant profiles simultaneously.

To seek solutions for addressing problems in robot com-
pliant manipulation from human motor learning has shown
promising performances [24]. Recent findings in neuroscience
have revealed that humans can perform task compliantly by
properly adapting arm impedance and force following partic-
ular principles in the muscle space, under the control of the
central nervous systems [25, 26]. Based on these principles,
a biomimetic control strategy has been developed in our
previous works [27–29] for achieving the robotic compliant
behaviors. In this work, we take one step forward to enable
this control strategy facilitating robot learning from demon-
strations. Further, in order to fit it into the aforementioned

unified representation, we enable the updating of the compliant
profiles in the parametric space.

To summarize, the novelties and contributions of this work
are as follows:

i) We present a LfHD approach derived from a control
strategy based on the human motor learning regulations, to
address the learning of compliant manipulation skills. The
results show that human-inspired control could be promising
for robot learning of manipulation skills.

and ii) We provide a unified representation for the encoding
of the compliant profiles. The impedance and force profiles can
be adapted online during the task reproduction phase, along
with the execution of motion trajectories. Further, we propose
to encode all the compliant profiles in the parametric space
instead of a trajectory-level way.

III. PRELIMINARY

In this section, we briefly review the biomimetic control
strategy in [27, 28], which is developed from the human motor
learning control.

A. Robotic impedance controller in Cartesian space
We consider a rigid-body robot with the dynamics in the

Cartesian space as below.

M(q)ẍ+ C(q, q̇)ẋ+G(q) = τc + fext (1)

where q is the joint angle, and q̇ and q̈ are corresponding
joint velocity and acceleration, respectively. x represents the
position of the robotic arm endpoint. M(q), C(q, q̇) and
G(q) represent inertia, Coriolis and centrifugal matrix, and
gravitational force, respectively. τc is the control input, and
fext represents the external force exerted on the robot by its
environment or a human user.

According to the biomimetic control strategy [28], the
control input is split into two parts, i.e.,

τc = v + w (2)

where v is designed to track the reference trajectory xr by
compensating for the robot’s dynamics.

v = M(q)ẍ+ C(q, q̇)ẋ+G(q)− Γε (3)

with
ẋe = ẋr − αe, e = x− xr (4)

where α is a positive constant coefficient. ẋe is an auxiliary
variable defined with the trajectory tracking error e. Γ is a
positive-definite matrix, and ε is the sliding operation.

ε = ė+ αe (5)

Another term in the controller, i.e., w is designed to com-
pensate for the dynamics during interaction with the external
environment, defined by

w = −F −KSx−KDẋ (6)

where F , KS and KD represent feedforward force, stiffness
and damping, respectively, that are used to compensate for the
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counterparts of the environment, with the following assump-
tion.

fext = F ∗ +K∗Sx+K∗Dẋ (7)

where F ∗, K∗S and K∗D are unknown environmental parame-
ters

B. Adaptation of impedance and feedforward force based on
human motor control

According to the computational model of human motor
learning [27, 30], the adaptation of impedance and feedforward
force can be achieved by concurrently minimizing the cost
function as below:

J = Je + Jc (8)

where Je(t) deals with trajectory tracking:

Je(t) =
1

2
ε(t)TM(q)ε(t) (9)

The second term in the cost function, Jc is used to rep-
resent the residual errors of feedforward force, stiffness and
damping, between the control inputs and the dynamics of the
environment, defined by:

Jc(t) =
1

2

∫ t

t−T
[(F ∗ − F )TQ−1F (F ∗ − F )

+ vecT (K∗S −KS)Q−1S vec(K∗S −KS)

+ vecT (K∗D −KD)Q−1D vec(K∗D −KD)]dτ

(10)

with the symmetric positive-definite matrices QF , QK and
QD. vec represents the operator for column vectorization.

The minimization of the cost can be achieved through the
update laws as below:

∆KS(t) = QS [ε(t)x(t)T − βKS(t)] (11)

∆KD(t) = QD[ε(t)ẋ(t)T − βKD(t)] (12)

∆F (t) = QF [ε(t)− βF (t)] (13)

where β is a positive coefficient.

C. Adaptation of reference trajectory for consideration of
contact force

This subsection is to introduce how to further adapt the
reference trajectory to consider the contact forces between
the robot and the environment during the execution of a task,
inspired by the fact that humans can do so for adaptation to
different environments [31]. As suggested in [28], a desired
xd is assumed to generate the desired contact force, with the
same format as in (7), i.e.,

Fd = F ∗ +K∗Sxd +K∗Dẋd (14)

Then, the following update law of the reference trajectory
xr is designed to track the desired trajectory xd by minimizing
the error between the control force and the desired force, and
it is defined by:

∆ξr(t) = Qr[Fd(t)− F (t)− ξr(t)] (15)

where Qr is also a positive-definite constant matrix set in
advance. The auxiliary variable ξr is defined as below:

ξr = KSxr +KDẋr (16)

Similar to (10), this update law is used for the minimization
of the following cost:

Jr =
1

2

∫ t

t−T
(ξr − ξd)TQT

r (ξr − ξd)dτ (17)

Then, the adaptation of trajectory ∆xr is achieved by

∆xr(t) = K−1S [∆ξr(t)−∆KSxr(t)−∆KDẋr(t)] (18)

Finally, to couple together the adaptation of the feedforward
force and the trajectory, the updating law for the force (13) is
modified as:

∆F (t) = QF [ε(t)− βF (t) +QT
r ∆ξr(t)] (19)

IV. PROPOSED APPROACH

In this section, we will first introduce the representation
of a compliant skill in the parametric space. Then, we will
present how to encode reference trajectories and desired force
profiles from human demonstrations. Subsequently, the online
learning of impedance and feedforward force in the parametric
space will be derived based on the preliminary works. Finally,
we will show how to integrate the learning/representation of
all these profiles. Some important aspects of the proposed
approach will also be briefly commented.

A. Parametric representation of a compliant skill
A compliant skill here is defined as a combination of

the reference motion trajectories and the control variables
(including impedance, damping, and feedforward force), plus
the desired contact force profiles, i.e.,

C(t) = [xr(t),KS(t),KD(t), F (t), Fd(t)] (20)

where
xr(t) = [xr,1(t), xr,2(t), ..., xr,M (t)]T

KS(t) = [KS,1(t),KS,2(t), ...,KS,M (t)]T

KD(t) = [KD,1(t),KD,2(t), ...,KD,M (t)]T

F (t) = [F1(t), F2(t), ..., FM (t)]T

Fd(t) = [Fd,1(t), Fd,2(t), ..., Fd,M (t)]T

(21)

where M is the number of DOFs (degrees of freedom) of the
control space, and the time step t = 1, 2, ..., T .

We go further to utilize a set of parameters for the rep-
resentation of a compliant skill by representing the above
trajectories/profiles in a parametric space as follows.

θ(t) = {θp,i(t), θKS ,i(t), θKD,i(t), θF,i(t), θFd,i(t)}Mi=1 (22)

where
θp,i(t) = [θp,i,1(t), θp,i,2(t), ..., θp,i,Np(t)]T

θKS ,i(t) = [θKS ,i,1(t), θKS ,i,2(t), ..., θKS ,i,NKS
(t)]T

θKD,i(t) = [θKD,i,1(t), θKD,i,2(t), ..., θKD,i,NKD
(t)]T

θF,i(t) = [θF,i,1(t), θF,i,2(t), ..., θF,i,NF
(t)]T

θFd,i(t) = [θFd,i,1(t), θFd,i,2(t), ..., θFd,i,NFD
(t)]T

(23)
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where N() represents the number of the elements of each
corresponding vector.

Compared with the trajectory-level representation, the para-
metric representation of a compliant skill has several advan-
tages. For instance, optimization techniques may be used to
refine the compliant skill through optimizing the parameters,
instead of the whole trajectory. Here, the parametric represen-
tations θp,i and θFd,i for the position trajectories and force
profiles are estimated from the data collected from human
demonstrations. The other parametric vectors are learned based
on the above-mentioned biomimetic control. In the following
subsections, we will introduce how to update these parameters
in detail.

B. Learning of reference trajectories and estimation of the
desired force from human demonstrations

1) Learning of reference trajectories: During each human
demonstration, the robot states (e.g., endpoint’s pose) and the
interaction force are recorded. First, we use the well-known
DMPs model to encode the motion trajectories. For 1-DOF
motion trajectory x(t), the following set of equations are used
to encode it by using a parametric representation [32].

τ ż = α(β(xgoal − x)− z) + f(s) (24)

τ ẋ = z (25)

τ ṡ = −αss (26)

f(s) = θTp gp (27)

with

[gp]n =
ωn(s)s∑Np

n=1 ωn(s)
(xgoal − x0) (28)

and

ωn(s) = exp(−0.5hn(s− cn)2) (29)

where xgoal is the goal of the trajectory, and x0 the start point,
i.e., x0 = x(0) and xgoal = x(T ). τ > 0 is a time scaling
factor, α > 0, β > 0, and αs > 0 are constant coefficients. s ∈
[0, 1] is a phase variable. Note that in (31) θp is the parametric
vector as defined in (23). Correspondingly, gp is a basis vector,
and the n-th element is defined in (28). Combining with (29),
gp can be regarded as a scaled Gaussian basis vector. Np is
the number of the Gaussian functions, and cn and hn are the
center and width respectively.

The target is given by

θTp gp = τ2ẍ+ ατẋ− αβ(xgoal − x) (30)

Then, the parameter θp can be estimated by optimizing the
target using LWR, given the observation data x.

2) Learning of force profiles: For the desired force Fd, i.e.,
the measured force data collected from human demonstrations,
we use the following equations to convert it into a parametric
space.

Fd = θTFd
g (31)

with
[g]n =

ωn(s)∑N
n=1 ωn(s)

(32)

The estimation of the parametric vector θFd
can be achieved

similarly using the above recursive regression algorithm by:

min ‖ Fmes − θTFd
g ‖2 (33)

where Fmes represents the measured forces during the human
demonstration.

C. Learning of the parameters for the impedance and
feedforward force profiles

1) Representation of the impedance and feedforward force
profiles in parametric spaces: We first need to represent
the impedance (stiffness and damping) and feedforward force
profiles in the parametric spaces, as stated above, to represent
all the control variables in a unified manner.

Similarly, they can be represented as a dot product of two
vectors, i.e.,

KS = diag{θTKS
g};KD = diag{θTKD

g};F = θTF g (34)

where g is the Gaussian basis vector which is directly fused
from (32). Note that the number of Gaussian functions, i.e.,
N can be set as different values for different variables here.

2) Adaptation of the impedance and feedforward force: As
mentioned above, the impedance and feedforward force are
adapted to minimize the tracking error. Here, we propose to
adapt them in the parametric spaces, namely, the vectors θKS

,
θKD

and θF are adapted at each time step during a control
loop.

According to (11) and (12), we develop the following
updating laws for θKS

, θKD
and θF .

For the m-th DOF at the time step t, they are recursively
updated as

θKS ,m,n(t+ 1) =

Ω1(t)−
N∑
j=1

θKs,m,j,j 6=n(t)gj,j 6=n

1−
N∑
j=1

gj,j 6=n

(35)

with

Ω1(t) = QK,mεm(t)xm(t) + (1−QK,mβ)θTKS ,m(t)g (36)

And

θKD,m,n(t+ 1) =

Ω2(t)−
N∑
j=1

θKD,m,j,j 6=n(t)gj,j 6=n

1−
N∑
j=1

gj,j 6=n

(37)
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Algorithm 1: Online learning of impedance and feedfor-
ward force parametric vectors/matrices

Input:
The reference trajectories: {xr, ẋr}M,T

m=1,t=1;
The desired force profiles: {Fd}M,T

m=1,t=1;
The constant matrices/coefficients: QS , QD,QF ,Qr, β, α.
Output:
The parametric vectors/matrices: θKS

, θKD
, θF .

1 begin
2 Create a parametric skill database ;
3 Initialize the parameters θKS

, θKD
, and θF ;

4 for t = 1 to T do
5 Get the robot current states;
6 Compute the sliding error using (5);
7 Compute the adaptation of reference trajectory

with (18);
8 for m = 1 to M do
9 Compute Ω1(t), Ω2(t), and Ω3(t);

10 for n = 1 to N do
11 for j = 1 to N AND j 6= n do
12 Compute

∑N
j=1 θKs,m,j(t)gj ,∑N

j=1 θKD,m,j(t)gj ,∑N
j=1 θF,m,j(t)gj ;

13 end
14 Update the parametric matrix θKS

(t+ 1),
θKD

(t+ 1), and θF (t+ 1);
15 end
16 end
17 Add the learned parametric vectors/matrices to

the skill database; Generate force/torque control
commands;

18 Send commands to robot actuators;
19 end
20 end

with

Ω2(t) = QD,mεm(t)ẋm(t) + (1−QD,mβ)θTKD,m(t)g (38)

And

θF,m,n(t+ 1) =

Ω3(t)−
N∑
j=1

θF,m,j,j 6=n(t)gj,j 6=n

1−
N∑
j=1

gj,j 6=n

(39)

with

Ω3(t) = QF,mεm(t) + (1−QF,mβ)θTF,m(t)g

+QF,mQr,m∆εr(t)
(40)

The derivation of the updating laws for θKS
, θKD

and
θKF

is given in Appendix. The learning of impedance and
feedforward force parametric vectors in an online manner is
summarized in Algorithm 1.

Fig. 1: The diagram of integrating learning of a compliant skill
in the parametric space.

D. Integrating learning/representation of a compliant skill
in the parametric space

Our approach requires two phases for integrating learn-
ing/representation of a compliant skill in the parametric space.
In the first phase, the goal is to obtain the parametric vectors θp
and θFd

. The human/robot states including position trajectories
and interaction forces during human demonstrations are first
recorded as the observation data. After human demonstrations
and generation of optimal trajectories, the position trajectories
and desired force profiles are converted to the corresponding
parametric vectors (matrices for multiple DOFs) and stored in
the parametric skill database. This phase is completed offline
before the robotic execution.

The second phase aims to address the learning of the
other parameters, i.e., θKS

, θKD
, and θF during the robotic

execution of the task. These parameters are first initialized
by setting the elements as constant values. During a control
loop, these parametric vectors/matrices and the Gaussian basis
are performed inner product to yield the control variables and
further generate the control command. At each time step, the
parameters of the stiffness, damping, and feedforward force
are adapted online with the robot current states, the reference
position trajectories, and the desired force profiles which are
obtained in the first phase. Meanwhile, the learned parameters
are also added to the parametric skill database. The procedure
of the skill learning process is illustrated in Fig. 1.

E. Comments

1) Learning/control in joint space: Although the learning
and control procedure is written in the Cartesian space, our
approach can also be easily implemented in the joint space.
In that case, the robot states including joint angles and the
interaction forces with the external environments are recorded
during demonstrations. The desired joint torques are obtained
through the inverse kinematics with the forces collected during
demonstrations. Then, the learning/control procedure is the
same as described above.
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Fig. 2: The collected robot endpoint position and force profiles
in z axis under conditions (A)-(E).

Fig. 3: Simulation of the catching-a-ball task. From left to
right: before contact, during contact and after contact.

2) Stability and parameters convergence: It is noted that
although our approach enables the learning of stiffness, damp-
ing, and feedforward force in the parametric space, the control
variables are formed in the trajectory-level (see Fig. 1) before
the generation of the control commands. The stability issue
and parameters convergence of the controller can be analyzed
and guaranteed using the same procedure in [27, 28].

TABLE I: The results of the catching-a-ball task.

(A) (B) (C) (D) (E)

Succeed? NO YES YES NO YES
Rebound? YES YES YES YES NO
RMSE [m] 0.0224 0.0177 0.0146 0.0141 0.0298

Fig. 4: The illustration of the experimental setup for the
drawing-a-line task.

V. EXPERIMENTAL VALIDATION

A. Catching-a-ball task in simulation
A catching-a-ball task in the simulation environment PyRep

[33] is considered to validate the proposed control strategy.
The experimental setting is that a Franka Panda robot arm is
controlled in the torque control mode with a fixed pose to catch
a ball falling from the height of 1.6 [m]. The angles of the
seven joints of the robot arm are set as [0,−90, 0, 0, 0, 90, 45].
Bullet 2.78 is chosen as the simulation engine with the time
step 1.0 [ms].

We compare our approach with the conventional fixed
impedance control. The stiffness matrix for the 7 DOFs
is set as ς × diag{100, 100, 100, 100, 100, 50, 50}, where ς
is a constant coefficient. The task is performed under five
conditions: (A) ς = 15, (B) ς = 20, (C) ς = 25, (D) ς = 30,
and (E) using the proposed control strategy with QK = 300,
QD = 50, QF = 5, QR = 0, β = 0.01, and α = 501.
Three factors are considered to evaluate the performances: 1)
Whether the ball is caught successfully? 2) Whether the ball
is rebounded back after contact? 3) Root Mean Square Error
(RMSE) values of the positions in z axis.

The experimental results are summarized in Table I, and
Fig. 2 shows the measured position and force profiles in z axis.
All the force values are filtered with the window size 50. We
observe that under the conditions (A) and (D) the robot is not
able to catch the ball successfully, which is visualized from the
force profiles in Fig. 2 (B) and (C): the contact force is almost
zero from 800th time step. It suggests too low or too high
stiffness both result in task failure under the fixed impedance
control mode. Under conditions (B), (C), and (E), the task
is successfully completed (see Fig. 3 for an example). It is
observed that, however, under the fixed impedance mode the
ball tends to be rebounded back after contact, due to the rigid
contact between the ball and the cup. This is visualized from
the force profiles in Fig. 2 (B) and (C): from 600th to 800th
time steps the contact force values decrease to zero. Using the
proposed approach the contact force gradually increases to a
nearly constant value after contact, which means a compliant
catching process is achieved, see Fig. 2 (E). The RMSE values

1We set the same values for all DOFs in the experiments.
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Fig. 5: Left column: the learned position trajectories from demonstrations (gray dashed lines) and the collected position
trajectories (colored lines) during task reproductions. The middle and right columns are the learned stiffness and feedforward
force profiles during task reproductions. The subplots (A)-(E) correspond to the five different conditions successively.

TABLE II: The RMSE values for the drawing-a-line task of
the measured endpoint positions with respect to the demon-
strations.

RMSE [m] (A) (B) (C) (D) (E)

x 0.0108 0.0041 0.0077 0.0066 0.0093
y 0.0154 0.0135 0.0198 0.0167 0.0207
z 0.0161 0.0433 0.040 0.0314 0.0312

suggest the fixed impedance control has a better performance
in position tracking. Our approach sacrifices the position
tracking accuracy to maintain the compliant behaviours.

B. Drawing-a-line task

A drawing-a-line task is first performed to verify the adapt-
ability of the proposed approach. A Sawyer robot is taught
by a human tutor to draw a straight line along the y axis in
the x − y plane (see Fig. 4). A whiteboard pen is attached
to the endpoint of the robot as a tool for drawing. During
the demonstration phase, the tutor holds on the endpoint to
drive the robot which is controlled in the demonstration mode
to complete the task, and the endpoint motion trajectories, as
well as force profiles, are recorded. For the robot production
of the task after the human demonstration, we set five different
conditions as follows:

Condition (A): The robot reproduces the drawing task in the
same task scenario as in the demonstration phase, i.e., without
any change of the settings.

Condition (B): We change the task setting by moving up
the whiteboard about 5cm in z direction.

Condition (C): Based on condition (B), the whiteboard is
further rotated about 10◦ along x axis.

Condition (D): A small disturbance is applied to the robot
by slightly pushing the endpoint along the y axis.

Condition (E): Compared with condition (D), a relatively
larger disturbance is applied to the robot that would cause
slightly unstable interactions.

The main parameters are set as below: QK = 40, QD = 2,
QF = 4, QR = 0.05, β = 0.05, and α = 30, and the number
of Gaussian components N is set 15. The learning results of
this task are shown in Fig. 5. The first row shows the collected
position trajectories in the demonstration and reproductions in
y and z directions, respectively. The second and third rows
are the learned stiffness and feedforward force profiles in
these reproductions under different conditions, corresponding
to the subplots (A)-(E). Under the first condition, the robot can
reproduce the drawing task successfully by slightly adapting
the stiffness and feedforward force profiles, to make the robot
endpoint to follow the reference trajectories in the absence
of the human guidance. When the whiteboard is raised in z
direction, it is observed that both stiffness and feedforward
force in the z axis would increase to adapt to this change.
However, these profiles in y direction almost remain the same,
which means the profiles are adapted selectively to respond
to the task dynamics. This adaptability can also be further
observed under the third task condition [see Fig. 5(C)]. When
the whiteboard is rotated, our approach could recognize this
change and respond to it by correspondingly adapting the
stiffness and feedforward force profiles in z axis, and keep the
stiffness and force almost unaffected in the y axis. The ability
of resistance to external disturbances is tested in the last two
conditions. A small disturbance is first applied to the robot in
y direction, and we can see that our approach could respond to
the disturbance to reduce the position error by mostly adapting
the feedforward force, but the stiffness does not change too
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Fig. 6: The experimental setup for the writing task during the
demonstration phase.

much [see Fig. 5(D)]. If a larger disturbance is applied to
the robot that might cause unstable interaction, however, both
stiffness and feedforward force profiles could be adapted to
reduce the influence of the disturbance [see Fig. 5(E)]. This
observation is consistent with the principles of human motor
learning and the experimental findings in [27].

Table II shows the RMSE values for the drawing-a-line
task of the measured endpoint positions with respect to the
demonstrations. The RMSE values in different task conditions
can verify the above analysis. For instance, the RMSE values
in the y axis in the first two conditions are close, and the
RMSE values in the z axis in the last two conditions are
close. It means that the different settings in one axis would
not largely affect the situation in another axis.

C. Writing-letters task

Another task, i.e., writing task, is then performed to further
verify the proposed approach. The experimental setup for the
task demonstration is shown in Fig. 6. It shows how a human
tutor teaches the robot writing on a whiteboard in the x − z
plane. It should be noted that the human tutor only drags the
endpoint of the robot during the demonstration, and no external
force is applied to the other parts of the robot arm. First, the
human tutor teaches the robot to write a character, the robot
then reproduces the writing of this character with the online
learning of impedance and feedforward force profiles, along
with the execution of the position trajectories. To add uncer-
tainties and increase the difficulty of this task, the whiteboard
is not completely fixed onto the ground in x axis, and can also
be rotated along the y axis.

Different types of characters are written in this task. The
human tutor teaches the robot to write two Chinese characters,
‘shi’ and ‘ba’, two English letters, ‘b’ and ‘w’, and two
numbers, ‘2’ and ‘8’. The robot then autonomously writes
these characters by itself. Fig. 7 shows an example of the
learned position trajectories and force profiles with respect
to the demonstration ones. As shown in Fig. 8, the task can
be reproduced by the robot successfully with the proposed
approach. Some defects can also be seen in the reproductions
which may be due to the uncertainties. The collected position
trajectories and the learned stiffness and feedforward force
profiles are illustrated in Fig. 9. Table III shows the RMSE
values for the writing task of the measured endpoint positions
with respect to the demonstration ones.

The stiffness and feedforward force profiles are both adapted
simultaneously during the writing process as observed in the

Fig. 7: An example of the learned position and force profiles
(colored lines) with respect to the demonstrations (gray lines).

TABLE III: The RMSE values for the writing experiment of
the measured endpoint positions with respect to the demon-
strations.

RMSE [m] (A) (B) (C) (D) (E) (F)

x 0.0323 0.0420 0.0565 0.0413 0.0315 0.0238
y 0.0156 0.0242 0.0295 0.0134 0.0156 0.0242
z 0.0093 0.0234 0.0271 0.0161 0.0103 0.0140

last task. Due to the uncertainties in x direction, the position
tracking errors in x axis are relatively larger than that in y
and z directions (see Table III). In order to overcome the
uncertainties, however, the stiffness profiles in the x axis are
adapted to a larger degree than that in the z axis, as can be seen
in Fig. 9. This adaptability of our approach can automatically
enable the rigid control in one axis but remain compliant
in another one so that the robot could flexibly perform the
task. It is interesting to find that the shapes of the stiffness
and feedforward force profiles can sometimes demonstrate the
features of the strokes, especially for the writing of the Chinese
characters. For instance, the feedforward force in the x axis
for the horizontal and vertical strokes in the character ‘shi’ is
almost kept constant, while for the left-falling and right-falling
strokes in the character ‘ba’ it is first slowly increased and
then decreased. This adaptation is similar to the adaptation of
human arm stiffness/force during the process of writing these
strokes. We also find that the reproduction of the English and
number characters are more difficult for the robot. This may be
explained by the fact that the English and number characters
consist of continuous strokes. The robot has to interact with the
environment continuously and the cumulative errors in former
steps may have an influence on the execution in later steps.

Robot learning of writing skills has been discussed in sever-
al works in the last several years, and shown fine performances
if using a brush that can avoid hard physical interaction
between the robot and the environment (see e.g., [34, 35]). Our
experiment focuses on allowing the robot to learn the contact-
rich handwriting skills by adapting to the physical interaction
with its environments, thanks to the stiffness/force adaptation
mechanism. Compared with the writing skill learning method
in [36], the proposed approach enables the efficient online
learning of stiffness and force profiles during reproduction and
does not require a time-consuming process of measurement of
human arm stiffness in advance before the demonstration.
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Fig. 8: The human demonstrations (upper row) and robot reproductions (bottom row) of the characters. From (A) to (F): the
Chinese characters ‘shi’ and ‘ba’, the English letters ‘b’ and ‘w’, and the numbers ‘2’ and ‘8’.

Fig. 9: Left column: the learned position trajectories from demonstrations (gray dashed lines) the collected position trajectories
(colored lines) during task reproductions. The middle and right columns are the learned stiffness and feedforward force profiles
during task reproductions.

VI. CONCLUSION AND FUTURE WORK

We develop a novel learning and control framework that
allows the robots to learn compliant manipulation skills from
human demonstrations, taking into consideration of both mo-
tion data and force information. We have successfully verified
our approach in three scenarios including one simulation and
two real-world tasks and on two different robotic manipulators.
The proposed representation enables to encode a skill by a
set of parameters that can represent the compliant profiles
including motion trajectories, impedance, and force profiles.
Furthermore, the compliant profiles can be directly updated in
the parametric space instead of the trajectory level, which may
facilitate robotic skill learning and transfer.

Our approach is derived from the computational model of
the control strategy of human motor learning. As a result, the
impedance and feedforward force profiles could be adapted
simultaneously in an online manner during task reproduction,
to deal with external uncertainties. Our bio-inspired approach
integrates learning and control to achieve the skill transfer
from the human tutor to the robot.

Our approach has several weaknesses: i) it does not guar-
antee accurate trajectory tracking. Therefore, our approach is
more suitable for task scenarios where compliant manipulation
instead of a high position accuracy is required; ii) it requires
manually setting the open parameters that may vary from one
task to another. Our strategy is to safely start with relatively
low values, and then increase them progressively; and iii)
Our approach has shown its generalizability, however, it is
still limited in varying task scenarios. For instance, once the
compliant profiles are learned, they may not be able to deal
with a significantly different task scenario.

One future research line is to enable efficient skill gener-
alization based on our approach. This may be achieved by
directly generalizing the parameters using statistical learning
algorithms such as Gaussian process regression (GPR) as-
sociated with task-specific variables and external perception
information, in order to adapt these compliant profiles to deal
with new task situations. The generalization process might be
similar to [37]. Another future work is to enable encoding
of orientation data (e.g., quaternions and rotational stiffness
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profiles) in the Cartesian space, making the approach suitable
for more task scenarios.

APPENDIX

According to the updating law in (11), for the m-th DOF
at the time step t, we have

∆KS ,m(t) = QS,m[εm(t)xm(t)− βKS,m(t)] (41)

Then, we have

∆θTKS ,m(t)g = QS,m[εm(t)xm(t)− βθTKS ,m(t)g] (42)

∆θTKS ,m(t) = θTKS ,m(t+ 1)− θTKS ,m(t) (43)

Combining the above two equations, we have

θTKS ,m(t+ 1)g = QS,mεm(t)xm(t)

+ (1−QS,mβ)θTKS ,m(t)g
(44)

The right hand side of the above equation is denoted as
A(t). For simplicity, we neglect the subscript, superscript and
timestamps from now on. The above equation is written as

Ω1 = θT g = θ1g1 + ...+ θngn + ....+ θNgN (45)

Note that gn will satisfy the constraints as below.

0 < gn < 1,

N∑
n=1

gn = 1 (46)

Then, we can obtain

Ω1 = θ1g1...+ θn(1−
N∑
j=1

gj,j 6=n) + ....+ θNgN (47)

Then, we have

θn(1−
N∑
j=1

gj,j 6=n) = Ω1 −
N∑
j=1

θj,j 6=ngj,j 6=n (48)

Finally, we have

θn =

Ω1 −
N∑
j=1

θj,j 6=ngj,j 6=n

1−
N∑
j=1

gj,j 6=n

(49)

The derivation of the updating laws for the damping θKD

and the feedforward θF can be achieved in a similar way. We
neglect the denominator parts in practical applications.

REFERENCES
[1] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent

advances in robot learning from demonstration,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 3, 2020.

[2] Z. Zhu and H. Hu, “Robot learning from demonstration in robotic
assembly: A survey,” Robotics, vol. 7, no. 2, p. 17, 2018.

[3] W. Xu, J. Chen, H. Y. Lau, and H. Ren, “Automate surgical tasks for
a flexible serpentine manipulator via learning actuation space trajec-
tory from demonstration,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2016, pp. 4406–4413.

[4] X. Zhang, J. Zhang, and J. Zhong, “Toward navigation ability for
autonomous mobile robots with learning from demonstration paradigm:
A view of hierarchical temporal memory,” International Journal of
Advanced Robotic Systems, vol. 15, no. 3, p. 1729881418777939, 2018.

[5] J. Duan, Y. Gan, M. Chen, and X. Dai, “Adaptive variable impedance
control for dynamic contact force tracking in uncertain environment,”
Robotics and Autonomous Systems, vol. 102, pp. 54–65, 2018.

[6] F. J. Abu-Dakka, L. Rozo, and D. G. Caldwell, “Force-based variable
impedance learning for robotic manipulation,” Robotics and Autonomous
Systems, vol. 109, pp. 156–167, 2018.

[7] C. Zeng, C. Yang, H. Cheng, Y. Li, and S.-L. Dai, “Simultaneously
encoding movement and semg-based stiffness for robotic skill learning,”
IEEE Transactions on Industrial Informatics, vol. 17, no. 2, pp. 1244–
1252, 2020.

[8] X. Yu, W. He, Y. Li, C. Xue, J. Li, J. Zou, and C. Yang, “Bayesian
estimation of human impedance and motion intention for human-robot
collaboration,” IEEE Transactions on Cybernetics, 2019.

[9] W. He, C. Xue, X. Yu, Z. Li, and C. Yang, “Admittance-based controller
design for physical human-robot interaction in the constrained task
space,” IEEE Transactions on Automation Science and Engineering,
2020.

[10] L. Fraser, B. Rekabdar, M. Nicolescu, M. Nicolescu, D. Feil-Seifer, and
G. Bebis, “A compact task representation for hierarchical robot control,”
in 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids). IEEE, 2016, pp. 697–704.

[11] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proceedings 2002
IEEE International Conference on Robotics and Automation, vol. 2.
IEEE, 2002, pp. 1398–1403.

[12] W. He and Y. Dong, “Adaptive fuzzy neural network control for a
constrained robot using impedance learning,” IEEE transactions on
neural networks and learning systems, vol. 29, no. 4, pp. 1174–1186,
2017.

[13] Y. Dong and B. Ren, “Ude-based variable impedance control of
uncertain robot systems,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 49, no. 12, pp. 2487–2498, 2019.

[14] T. Sun, L. Peng, L. Cheng, Z.-G. Hou, and Y. Pan, “Stability-guaranteed
variable impedance control of robots based on approximate dynamic
inversion,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 2019.

[15] C. Zeng, X. Chen, N. Wang, and C. Yang, “Learning compliant
robotic movements based on biomimetic motor adaptation,” Robotics
and Autonomous Systems, vol. 135, p. 103668, 2021.

[16] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable
impedance control,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 820–833, 2011.

[17] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar, and
P. Abbeel, “Reinforcement learning on variable impedance controller for
high-precision robotic assembly,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 3080–3087.

[18] M. Bogdanovic, M. Khadiv, and L. Righetti, “Learning variable
impedance control for contact sensitive tasks,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 6129–6136, 2020.

[19] C. Yang, C. Zeng, C. Fang, W. He, and Z. Li, “A dmps-based framework
for robot learning and generalization of humanlike variable impedance
skills,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, pp.
1193–1203, 2018.

[20] F. Bian, D. Ren, R. Li, P. Liang, K. Wang, and L. Zhao, “An extended
dmp framework for robot learning and improving variable stiffness
manipulation,” Assembly Automation, vol. 40, no. 1, pp. 85–94, 2019.

[21] A. Naceri, T. Schumacher, Q. Li, S. Calinon, and H. Ritter, “Learning
optimal impedance control during complex 3d arm movements,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 1248–1255, 2021.
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[37] T. Petrič, A. Gams, L. Colasanto, A. J. Ijspeert, and A. Ude, “Accel-
erated sensorimotor learning of compliant movement primitives,” IEEE
Transactions on Robotics, vol. 34, no. 6, pp. 1636–1642, 2018.

Chao Zeng (S’18-M’20) received the Ph.D. degree
in pattern recognition and intelligent systems from
South China University of Technology, Guangzhou,
China, in December 2019. He visited Department of
Informatics, Universitt Hamburg(UHH), Germany,
from October 2018 to October 2019. He is a research
assistant in Guangdong University of Technology
where he did this research from January 2020. He is
a research associate at UHH from September 2020.
His research interest includes robot learning and
control, physical human-robot interaction.

Yanan Li (S’10-M’14) received the BEng and
MEng degrees from the Harbin Institute of Technol-
ogy, China, in 2006 and 2008, respectively, and the
PhD degree from the National University of Singa-
pore, in 2013. Currently he is a Lecturer in Control
Engineering with the Department of Engineering
and Design, University of Sussex, UK. His general
research interests include human-robot interaction,
robot control and control theory and applications.

Jing Guo obtained his Ph.D degree from LIRMM,
CNRS-University of Montpelier, France in 2016.
He received his master and bachelor degree from
Guangdong University of Technology in 2009 and
2012 respectively. He has been research fellow
at National University of Singapore (NUS) during
2016-2018. He is an associate proferssor affilicat-
ed with Guangdong University of Technology. His
current research interests include robotic control and
learning, haptic bilateral teleoperation, and surgical
robotics, has served as guest editor for IEEE RA-L,

Frontiers in Robotics and AI, etc.

Zhifeng Huang received his BEng degree in Mecha-
tronics Engineering from the South China University
of Technology, China, in 2007, and his MEng degree
in the same discipline from the Harbin Institute of
Technology, China, in 2010. In 2014, he received his
PhD from the Department of Precision Engineering,
the University of Tokyo. He is now a associate
professor at the School of Automation, Guangdong
University of Technology, China. His research inter-
ests include humanoid robot, nursing engineering,
skill acquisition, and healthcare robotics.

Ning Wang is a Senior Lecturer in Robotics at
the Bristol Robotics Laboratory, University of the
West of England, United Kingdom. She received the
M.Phil. and Ph.D. degrees in electronics engineering
from the Department of Electronics Engineering,
The Chinese University of Hong Kong, Hong Kong,
in 2007 and 2011, respectively. Ning has rich project
experience, she has been key member of EU F-
P7 Project ROBOT-ERA, EU Regional Develop-
ment Funded Project ASTUTE 2020 and industrial
projects with UK companies. She has been awarded

several awards including best paper award of ICIRA’15, best student paper
award nomination of ISCSLP’10, and award of merit of 2008 IEEE Signal
Processing Postgraduate Forum, etc. Her research interests lie in signal
processing, intelligent data analysis, human-robot interaction and autonomous
driving.

Chenguang Yang henguangYanghenguangYangC
(M’10-SM’16) received the Ph.D. degree in con-
trol engineering from the National University of
Singapore, Singapore, in 2010, and postdoctoral
training in human robotics from the Imperial Col-
lege London, London, U.K. He was awarded UK
EPSRC UKRI Innovation Fellowship and individual
EU Marie Curie International Incoming Fellowship.
As lead author, he won the IEEE Transactions on
Robotics Best Paper Award (2012) and IEEE Trans-
actions on Neural Networks and Learning Systems

Outstanding Paper Award (2022).He is a Co-Chair of IEEE Technical Commit-
tee on Collaborative Automation for Flexible Manufacturing (CAFM) and a
Co-Chair of IEEE Technical Committee on Bio-mechatronics and Bio-robotics
Systems (B2S). He serves as Associate Editors of a number of international top
journals including Neurocomputing and seven IEEE Transactions.His research
interest lies in human robot interaction and intelligent system design.


	Introduction
	Related works
	Preliminary
	Robotic impedance controller in Cartesian space
	Adaptation of impedance and feedforward force based on human motor control
	Adaptation of reference trajectory for consideration of contact force

	Proposed approach
	Parametric representation of a compliant skill
	Learning of reference trajectories and estimation of the desired force from human demonstrations
	Learning of reference trajectories
	Learning of force profiles

	Learning of the parameters for the impedance and feedforward force profiles
	Representation of the impedance and feedforward force profiles in parametric spaces
	Adaptation of the impedance and feedforward force

	Integrating learning/representation of a compliant skill in the parametric space
	Comments
	Learning/control in joint space
	Stability and parameters convergence


	Experimental Validation
	Catching-a-ball task in simulation
	Drawing-a-line task
	Writing-letters task

	Conclusion and Future Work
	Appendix
	Biographies
	Chao Zeng
	Yanan Li
	Jing Guo
	Zhifeng Huang
	Ning Wang
	Chenguang Yang


