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Abstract—In this work, a human motion intention prediction
method based on an autoregressive (AR) model for teleoperation
is developed. Based on this method, the robot’s motion trajectory
can be updated in real time through updating the parameters of
the AR model. In the teleoperated robot’s control loop, a virtual
force model is defined to describe the interaction profile and to
correct the robot’s motion trajectory in real time. The proposed
human motion prediction algorithm acts a feedforward model to
update the robot’s motion and to revise this motion in the process
of human-robot interaction. The convergence of this method
is analysed theoretically. Comparative studies demonstrate the
enhanced performance of the proposed approach.
Note to Practitioners— In general, the robot trajectory is prede-
termined and it does not consider the influence of the interaction
profiles in terms of position and interaction force between the
human and the robot. In addition, it is hard to quantify the
influence of interaction profile for the robot trajectory. For
teleoperation, an AR-based model is proposed to predict the
trajectory of the human and then to update the trajectory of
the robot. The developed method includes the following aspects:
1) the robot trajectory can be regulated based on the interaction
profiles; 2) the feedforward model can estimate the trajectory of
the human to achieve the purpose of human intention recognition
in advance for the robot; 3) the proposed method can be
potentially utilized for telerehabilitation and microsurgery, etc.

Index Terms—Teleoperation system, human motion estimation,
virtual force, prediction model, physical human-robot interaction

I. INTRODUCTION

Teleoperation is an important type of human-robot interface
[1] [2] [3] as it allows humans to complete a task by combining
the human perception and robot’s capabilities in two separate
spaces [4] [5] [6] [7]. Dünser et al. proposed a visual and
manual control algorithm [8] to explore the suitability of
teleoperation. Electromyography (EMG) based methods were
developed to improve the human-robot interaction (HRI) in
teleoperation [9] [10] [11]. Improving ecological interfaces
and mixed-initiative haptic strategy were proposed to enhance
the performance of mobile robot teleoperation [12] [13] [14].
Haptic interface is an effective interface for teleoperation [15].
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In [16], a haptic feedback algorithm based on psychophys-
ical signals and motor learning was developed to guide the
teleoperated aerial robots to perform a task. In [17], a haptic
feedback approach was proposed to conduct the microinjection
task for the teleoperated robotic system. In [18], Stefanov et
al. designed a haptic computer-assistant to improve the task
performance of the system through action recognition unit and
an assistive unit. In addition, assisted control methods are the
solution to simplify the remote manipulation. For example,
Munoz et al. developed an adaptive multispace transformation
to improve the precision and ergonomics and to reduce the
task execution time [19].

Since the teleoperated robots represent typical human-in-
the-loop systems, human intention may impact on the per-
formance of teleoperation. Therefore, it is essential to know
how to utilize the human intention in order to enhance the
performance of teleoperation. In [20], an intention recognition
framework was proposed to enhance the task performance
through exchanging the dynamic role of partners in haptic
collaboration. A control method based on haptic intention
augmentation with force feedback was developed in a col-
laborative task [21]. Narayanan et al. introduced a frame-
work of human-ware control to achieve a safe and compliant
motion interaction for a teleoperated wheelchair system [22].
In addition, shared control algorithms were widely used to
recognize the humans’ intent for the teleoperated system [23]
[24]. For instance, in [25], a recognition framework involving
shared control was developed for teleoperation. Gao et al.
proposed a shared autonomy strategy to recognize human
intention and to provide a motion assistance [26]. An assistive
grasping strategy [27] and a task planing approach based on
projection [28] were developed to detect human intention in an
interaction task. Furthermore, programming by demonstration
was often used to encode human motion in the applications of
teleoperation [29] [30] [31].

It is demonstrated that human motion prediction can en-
hance the quality of the experience and performance in tele-
operation [32]. In [33], a trajectory prediction algorithm based
on contextual information and sharing autonomy was proposed
to infer the human trajectory. Wang et al. presented a virutal
reality method involving a hidden Markov model and K-means
clustering to predict human welder’s operation [34]. A Kalman
filter method was presented to predict human motion in real
time and applied on a haptic device in teleoperation [35].
These methods used the human motion profile but not the
force information in teleoperation.

In this paper, we develop a novel prediction method based



on autoregressive (AR) model to estimate the human motion
intention for the teleoperated system. In the proposed method,
the human motion prediction can be adapted on-line through
updating the parameters of AR. In addition, we use the inter-
action force of HRI to adjust the predicted motion intention.
For this purpose, we propose a virtual force model. Theoretical
analysis based on Lyapunov theory indicates the convergence
of the this method. Experimental results demonstrated the
effectiveness and feasibility of proposed method.

Section II elaborates the problem formulation and pre-
liminaries about teleoperated system and AR model. The
prediction model of human motion and the virtual force
model are presented in Section III. Section IV presents the
theoretical analysis of the proposed method. The comparative
experimental results are given in Section V. Finally, conclusion
and discussion are given in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem formulation

In the teleoperated system, a human partner holds the
joystick of the haptic device to control the slave robot. We
consider the interaction between the haptic device and the
human partner in the teleoperated system and the applied force
of human partner fh is an input of the system, therefore the
dynamics of the human partner with the haptic device can be
defined as

Mm(xd)ẍd + Cm(xd, ẋd)ẋd +Gm(xd) = um + fh (1)
where Mm and Cm are the inertia matrix and Coriolis and
centrifugal matrix of the haptic device, respectively. Gm

denotes the gravitational force matrix. xd is the position in
the process of interaction. um denotes the control input of the
haptic device.

Impedance control is usually used for human-robot interac-
tion, which can be achieved by designing a control input as
below

um = Cm(xd, ẋd)ẋd +Gm(xd)− fh
+Mm(xd)(ẍm −M−1

md(Dmd(ẋd − ẋm)

+Kmd(xd − xm)− fh))
(2)

where Mmd denotes the desired inertia matrix of the haptic
device. Dmd and Kmd are the desired damping and stiffness
matrices of the haptic device, respectively. xm denotes the
reference trajectory of the haptic device.

Based on (1) and (2), one has

Mmd(ẍd− ẍm)+Dmd(ẋd− ẋm)+Kmd(xd−xm) = fh (3)
which is the impedance model for the haptic device. By setting
xm = 0 and Kmd = 0, the haptic device can passively follow
the movement of the human partner. In this case, the haptic
device cannot cooperate with the human parter actively, which
requires a force from the human parter to compensate for the
dynamics of the haptic device. This can be observed from the
following equation:

Mmdẍd +Dmdẋd = fh (4)

On the contrary, if Kmd 6= 0 and xm can be designed
correctly based on the motion intention of the human partner,
the haptic device can move to xm actively, so it can reduce
effort of the human partner.

Therefore, the aim of this paper is to design the reference
motion of the haptic device according to the prediction of the
motion intention of the human partner.

B. Preliminaries

1) Dynamic model of teleoperation system: The dynamics
of master side in the joint space can be presented as

Mm(qm)q̈m+Cm(qm, q̇m)+Gm(qm) = Fm(t)+JT
mFh(t)−τm

(5)
where qm ∈ Rm, q̇m ∈ Rm, q̈m ∈ Rm represent the joint
variables in terms of joint angle, velocity, and acceleration, re-
spectively. Mm ∈ Rm×m, Cm(qm, q̇m) ∈ Rm, Gm(qm) ∈ Rm

are the inertia matrix, Coriolis and centripetal matrix, and
gravity matrix, respectively. It is noted that Mm(qm) is a
symmetric and positive definite matrix. Fm(t) ∈ Rm denotes
the disturbance. Fh(t) ∈ Rh is the human applied force.
Jm ∈ Rh×m represents the Jacobian matrix. τm ∈ Rm denotes
the control input of the master.

Similarly, the dynamic model of slave side can be described
as
Ms(qs)q̈s+Cs(qs, q̇s)+Gs(qs) = Fs(t)−JT

s Fe(t)+ τs (6)
where qs ∈ Rn, q̇s ∈ Rn, q̈s ∈ Rs are the joint angle, velocity,
and acceleration, respectively. Ms ∈ Rn×n is the inertia
matrix. Cs(qs, q̇s) ∈ Rn denotes Coriolis and centripetal
matrix. Gs(qs) ∈ Rn is the gravity matrix. Fs(t) ∈ Rn, Js ∈
Rh1×n, τs ∈ Rm are the disturbance, Jacobian matrix, and
control input of the slave, respectively. Fe(t) ∈ Rh1 indicates
the interaction force between the environment and the slave
robot.

There are four properties for the teleoperation system [36],
which will be used for the controller design.

Theorem 1. For the master, it satisfies zT (Mm(qm) −
2Cm(qm, q̇m))z = 0,∀z ∈ Rm.

Theorem 2. For the master, Mm(qm), Gm(qm) are bound-
ed. It satisfies ∀qm ∈ Rm, q̇m) ∈ Rm,∃Kcm ∈ R >
0 based on Cm(qm, q̇m), thus ‖Cm(qm, q̇m)‖ ≤ Kcm | q̇m |.

Theorem 3. For the slave, it satisfies zT (Ms(qs) −
2Cs(qs, q̇s))z = 0,∀z ∈ Rn.

Theorem 4. For the slave, Ms(qs), Gs(qs) are bound-
ed. It satisfies ∀qs ∈ Rn, q̇s) ∈ Rm,∃Kcs ∈ R >
0 based on Cm(qs, q̇s), thus ‖Cs(qs, q̇s)‖ ≤ Kcs | q̇s |.

With the forward kinematics between the joint space and
the Cartesian space ẋm = Jmq̇m and ẋs = Jsq̇s, one has

q̇m = J−1
m ẋm

q̈m = J̇−1
m ẋm + J−1

m ẍm
q̇s = J−1

s ẋs
q̈s = J̇−1

s ẋs + J−1
s ẍs

(7)

2



where J−1
m , J−1

s are the inverses of Jm, Js. xi, ẋi, ẍi denote
the position, velocity, and acceleration variables, respectively
with i = m, s.

Based on (5)-(7), we can obtain the dynamics of teleoper-
ation system in Cartesian space.

2) Autoregressive model: In this paper, we aim to predict
the human motion to enhance the teleoperation performance.
It has been verified that human motion can be described using
a time series model [37]. Among different methods, the AR
method is widely used in many areas such as generalized
predictive control [38], gait analysis [39], and elbow joint
angle estimation [40] etc. In general, a time series can be
described using an AR model as

yt = φ0 + φ1yt−1 + φ2yt−2 + ...+ φpyt−p + et (8)
where φ0, φ1, φ1, ..., φp are the parameters that need to be
determined. et denotes the white noise with mean value 0
and variance σ.

Eq. (8) can be rewritten in the form of state space as

Yt = HtAt + Vt (9)

where At = (φ0, φ1, φ2, ..., φp). Ht = (yt−1, yt−2, ..., yt−p).
Vt = 0. The AR method can be solved by using Yule-Walker
equation [41].

III. METHOD

In this paper, we propose a method to adapt the robot’s
trajectory in Fig. 1. It can be seen that the robot trajectory is
adapted based on the human motion prediction, which utilizes
the interaction profiles between the robot and the human.

A. Prediction model of human motion

The framework of the proposed method for the teleoperated
system is presented in Fig. 2. It can be seen that there are
two parts: master part and slave part. On the master side,
the human partner moves the haptic device, whose position
is predicted based on the proposed prediction model. The
predicted position is used as the reference position for the
slave robot, whose actual position is fedback to the master
side to close the loop.

We suppose that the hand motion of the human partner is
a continuous trajectory defined as below

ẋhuman(t) = a0 + a1x(t) + a2x(t− T ) + ...

+ aix(t− (i− 1)T ) + ...+ apx(t− (p− 1)T )
(10)

where T denotes a time step. ai, i = 0, 1, 2, ..., p represents the
weight. The value of p is determined by the types of human
hand motion. x(t− iT ) denotes the ith time step information.

For convenience, (10) can be rewritten as below

ẋhuman(t) = ATL(t) (11)

with
AT = [a0, a1, a2, ..., ap] (12)

L(t) = [1, x(t), x(t− T ), ..., x(t− (p− 1)T )] (13)

In order to obtain ẋhuman(t), we can make an approxima-
tion as below

˙̂xhuman = ÂTL(t)− α1x̃human(t− T ) (14)

with

x̃human(t− T ) = x̂human(t− T )− xhuman(t− T )
= x̂human(t− T )− xd(t)

(15)

where Â denotes the estimated value of A. α1 represents a
positive scalar.

In order to capture motion intention of human hand accu-
rately, we propose an update law

˙̂
A = −x̃human(t− T )L(t)− α2f̃L(t) (16)

where α2 > 0.
The reference trajectory of the haptic device can be defined

as below

ẋm = x̂human − α3f̃ + α1x̃human(t− T ) (17)

where α3 denotes a positive scalar.

B. Virtual force model

As shown in Fig. 3, it can be seen that the interaction force is
a virtual force generated by the motion tracking error between
the haptic device and the slave robot. The virtual force can be
represented using an admittance model as below:

f̃ =Mvirtual(ẍd−ẍs)+Bvirtual(ẋd−ẋs)+Kvirtual(xd−xs)
(18)

where Mvirtual is a virtual mass. Bvirtual and Kvirtual are
the virtual damping and the virtual stiffness, respectively.

The virtual force provides a haptic feedback in the process
of interaction between the teleoperated system and the human
partner. In addition, the human hand model can be presented
as

fh = Khuman(xd − xhuman) (19)

where Khuman is the control gain of the human partner. It
is noted that xhuman is unknown to the haptic device. In the
teleoperated system, the human force is an input of system,
so the system of haptic device can be written as below

fh = m(t)ẍd + b(t)ẋd + f̃ (20)

where m(t) and b(t) denote the inertia matrix and Coriolis
and centrifugal matrix of the haptic device.

When the motion of the teleoperation system is slow, ac-
celeration ẍd and velocity ẋd of haptic device can be ignored.
Therefore, (19) can be rewritten as

fh = f̃ (21)

which indicates that we can obtain the human applied force
fh without a force sensor through the virtual model.
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IV. CONVERGENCE ANALYSIS

In this section, we aim to establish the convergence of the
human motion estimation approach.

Considering the Lyapunov function candidate as below

V = V1 + V2 + V3 + V4 (22)

where

V1 =
1

2α2
trace(ÃTÃ) (23)

V2 =
1

2α2
x̃Thumanx̃human (24)

V3 =
1

2
(ėTMmdė+ eTKmde) (25)

where e = xd − xm.

V4 =
1

2
(xd − xhuman)

TKT
human(xd − xhuman) (26)

For V1, by taking the derivative with respect to time, one
has

V̇1 =
1

α2
trace(ÃTÃ)

=
1

α2
trace(ÃT ˙̂

A)
(27)

where Ȧ = 0.
Based on (16) and (27), one has

V̇1 = −trace(ÃT(
1

α2
x̃Thuman(t− T )L(t) + f̃TL(t))) (28)

Differentiating V2 with respect to time, one has

V̇2 = − 1

α2
x̃Thuman

˙̃xhuman (29)

Based on (11) and (14), one has

˙̃xhuman(t) = ÃTL(t)− α1x̃human(t− T ) (30)

Therefore, (29) can be rewritten as
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V̇2 = − 1

α2
x̃Thuman(Ã

TL(t)− α1x̃human(t− T )) (31)

We assume that the time step T is small and combine (28)
and (31), so we have

V̇1 + V̇2 = −f̃TÃTL(t)− 1

α2
x̃Thumanα1x̃human (32)

Differentiating V3 with respect to time, one has

V̇3 = ėT(Mmdë+Kmde) (33)

Based on the impedance model (3), we have

V̇3 = ėT(−Dmdė+ f̃)

= −ėTDmdė+ ėTf̃
(34)

Differentiating V4 with respect to time, one has

V̇4 = (xd − xs)TKT
human(ẋd − ẋhuman) (35)

Based on (17) and (21), (35) can be rewritten as

V̇4 = f̃T(ẋd − ẋhuman + ˙̃xhuman)

= f̃T(ẋd − ẋm − α3f̃ + α1x̃human + ˙̃xhuman)

= −α3f̃
Tf̃ + f̃Tė+ f̃T(α1x̃human + ˙̃xhuman)

(36)

Based on (30), one has

V̇4 = −α3f̃
Tf̃ + f̃Tė+ f̃TÃTL(t) (37)

Differentiating V with respect to time, we have

V̇ = V̇1 + V̇2 + V̇3 + V̇4

= − 1

α2
x̃Thumanα1x̃human − ėTDmdė− α3f̃

Tf̃

≤ 0

(38)

Therefore, when t −→ ∞, x̃human −→ 0, ė −→ 0, and
f̃ −→ 0. In this sense, the desired motion of human hand
can be obtained, and the haptic device can track the reference
motion xd.

V. EXPERIMENTS AND RESULTS

In this section, the performance of the proposed method is
demonstrated by comparative experiments.

A. Experiment setup

The experimental platform is built to validate the effective-
ness of the developed approach. A Touch X joystick is used
as the haptic device, and a Baxter robot with seven joints is
utilized as a slave device. The human moves the Touch X
to manipulate the slave Baxter. All devices are controlled us-
ing robot operating system (ROS). A proportional-differential
(PD) controller with Kp = diag[150, 80, 25, 10, 3, 3, 2.5] and
Kd = diag[7, 6, 5, 2, 0.8, 0.8, 0.015] is utilized to control the
Baxter robot. α1 = 0.0001, α2 = 0.00001, and α3 = 0.2.

Mean absolute error (MAE) is used to quantify the perfor-
mance of the developed method.

B. Experiment 1

In Experiment 1, three different motions are performed.
Fig. 4 shows the results of tracking performance in the
condition of time delay 20ms.

Fig. 4(a) indicates that when the teleoperation is performed
without prediction, the slave cannot track the master accurately
in the whole process. In comparison, the teleoperation achieves
a better performance of trajectory tracking in the case of pre-
diction. Fig. 4(b) shows the tracking errors with and without
prediction. It can be seen that the slave robot achieves a smaller
tracking error by predicting the human motion intention.

In order to verify the robustness of the proposed method, an-
other two different motions are performed in the experiments.
Figs. 4(c)-4(f) show the tracking results of trajectories 2 and
3, respectively. Compared with the tracking performance of
trajectory 1, there is a similar result for trajectories 2 and 3. It
can be concluded that the slave can update its trajectory online
based on prediction of human motion and tracks the master
accurately in the presence of time delay.

TABLE I
COMPARISONS (MAE) IN THE CONDITION OF TIME DELAY 20MS FOR

TRAJECTORIES 1, 2, 3 IN EXPERIMENT 1.

Parameters Without prediction (m) With prediction (m)
Trajectory 1 0.0017 8.0279e−4

Trajectory 2 0.0027 0.0020
Trajectory 3 0.0022 0.0012

Traj. 1 Traj. 1 Traj. 2 Traj. 2 Traj. 3 Traj. 3 MAE 
of trajectories 1, 2 and 3 in the condition of time delay 20ms.

0

0.5
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1.5

2

2.5

3

E
rr

or
 (

m
) 

#10-3

Without prediction
With prediction

Fig. 5. Comparison of MAE with/without prediction in Experiment 1.

Table I and Fig. 5 show the MAE of tracking performance
for trajectories 1, 2, 3 in the condition of time delay 20ms.
It can be concluded that the proposed method based on
prediction can achieve smaller tracking error than that without
prediction.

C. Experiment 2

In this section, we demonstrate the performance of the
proposed method in the conditions of different time delays.
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Fig. 4. Performance comparison with/without prediction in Experiment 1.

Fig. 6(a) illustrates the tracking performance under time delay
20ms. In comparison, there are relatively large errors when the
slave (the black line) tracks the master (the red line) without
prediction for time delays of 50ms and 80ms in Figs. 6(c)
and 6(e). Additionally, the tracking error increases with the
increase of time delay. In this sense, the teleoperation system
cannot work without human motion prediction.

As presented in Figs. 6(b)-6(f), the trajectory of the slave
stays close to the master’s by using the proposed method with
prediction. Figs. 6(b), 6(d), and 6(f) illustrate that the proposed
method can achieve similar performance in the condition of
time delay 80ms in comparison with that of time delays 20ms
and 50ms. It indicates that the performance of the proposed
method is independent of the time delay’s increment.

Table II and Fig. 7 present the performance comparison of
the teleoperation system in terms of MAE. It can be seen that
the MAE without prediction is larger than that with prediction.

In summary, the proposed method is tested by different

TABLE II
COMPARISONS (MAE) IN THE CONDITIONS OF TIME DELAYS 20MS, 50MS

AND 80MS IN EXPERIMENT 2.

Parameters Without prediction (m) With prediction (m)
20ms 0.0017 8.0279e−4

50ms 0.0031 7.4042e−4

80ms 0.0045 7.9180e−4

human motion trajectories and different time delay conditions.
In this sense, the effectiveness and robustness of the proposed
approach are verified.

VI. CONCLUSION AND DISCUSSION

In this paper, a robot motion updating strategy based on
human motion prediction is developed for teleoperation. In
order to utilize the interaction profile, we propose a virtual
force model to correct the robot’s motion trajectory. The
human motion prediction can provide a feedforward model to
the robots, and the virtual force provides a feedback to adapt
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(b) Tracking error in the condition of time delay 20ms.
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(d) Tracking error in the condition of time delay 50m.
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Fig. 6. Performance comparison with/without prediction in Experiment 2.

the robot motion. The comparative experimental results verify
the effectiveness of the developed approach. It is noted that
there are many methods to deal with the time delay problem
for teleoperation such as neural network and wave variable
method. Compared to these methods, ours uses not only
prediction of human movement as a feedforward component,
but also a virtual force as a feedback. Other control methods
will be used to enhance the active interaction performance of
the robot in future work [42].
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