
ISSN 0361-7688, Programming and Computer Software, 2016, Vol. .., No. .., pp. ...
Original Russian Text …….published in Proceedings of the Institute for System Programming of the Russian Academy of Sciences 2015

1

A Stream X-Machine tool for modelling and generating
test cases for chronic diseases based on state-counting

approach
Authors

Organisation.
e-mail: {email}@email

Received …….

Abstract—In the biomedical domain, diagrammatical models have been extensively used to describe and
understand the behaviour of biological organisms (biological agents) for decades. Although these models are
simple and comprehensive, they can only offer a static picture of the corresponding biological systems with
limited scalability. As a result, there is an increasing demand to integrate formalism into more dynamic forms
that can be more scalable and can capture complex time-dependent processes. Stream X-Machine (SXM) is
such a powerful formal method with a memory (data) structure and function-labelled transitions. One of the
main strengths of the SXM is its associated testing strategy which ensures that, under well-defined conditions,
all functional inconsistencies between the system under test and the model are revealed. In this paper, we adopt
the concept of SXM to develop a tool known as T-SXM, which has the capabilities of modelling real world
problems and generating test cases automatically based on the state-counting approach. The Type II diabetes
case study has been used to demonstrate the abilities of the proposed tool.

DOI:

1. INTRODUCTION

Human body can be recognised as a complex
system where constituent sub systems such as
immune system, digesting system,
cardiovascular system, etc. work together to
keep the body active and healthy. As any other
systems, human body also faces issues (errors or
undesired state) namely diseases. Due to the
complex inter-relationship of the constituent
systems of human body, the diseases also
demonstrate the same complex interconnections
with the constituent systems of the body and as
well as with the diseases themselves [1]. New
omics sciences have identified that even though
the diseases can be generalised, they act
differently from individual to individual ([2]
[3]).

Ferguson et al. [2] recognised that evidence-
based personalized or precision medicine
through dietary intervention could add
significant value on the healthcare sector which

has a considerable potential in curing chronic
diseases and improving healthy living. Evidence
exists that dietary interventions have significant
impact in genetical disorders, such as inborn
errors of metabolism (e.g. phenylketonuria
mutations in human leukocyte antigen complex
and other genes causes celiac disease or gluten
sensitivity or variants in the lactate gene
affecting lactate persistence) [2] [3] [4].

A chronical medical condition or disease is
classified as “physical or mental health condition
that lasts more than one year and causes
functional restrictions or requires ongoing
monitoring or treatment” [5] [6]. Managing
patients with chronical diseases has changed
from single dimension (medicinal) to
multidimensional approach. The state-of-the-art
approaches in managing people with chronical
diseases have now become more lifestyle
modification, regular physical activities and
especially nutritional and dietary cantered
approach [7].

Authors et al.

2

At present, the medical professionals are
focusing on precise medicine and alternative
practices, such as nutritional interventions and
behavioural changes in treating chronical
diseases [8]. Currently there are very limited
recourses/tools available to support this
approach. Therefore, this has limited the ability
of the healthcare professionals using this
approach to provide their service to their patients
[8] [9] [10].

Biological systems (e.g., human body)
consist of closely connected components
(organs) that change their actions and behaviours
over the time and their interactions with
exposure to external factors (e.g., nutrients,
viruses, bacteria). In addressing such challenges,
literature reveals that, there are few formal
approaches has been occupied namely, Boolean
Networks (BN) and its extensions (i.e.
Qualitative Networks (QN), Gene Regulatory
Networks (GRN) [11] [12] [13], Petri Nets (PR),
Cellular Automata (CA), Population P systems
(PPS), etc.

Approximately one third of the world adult
population is suffering from Multiple Chronic
Conditions (MCCs) [14]. Therefore, researchers
have also adopted Communicating X-Machine
(CXM), a formal specification method, to model
biological systems where it has given the ability
of representing the inter-relationships and the
communication aspects of such systems [15]. To
the best of our knowledge, this is the first attempt
that uses a formalism technique to model a
chronic disease.

Beside CXM, SXM is also a formal
specification technique and is the most well-
known variance of the X-Machine introduced by
Eilenberg [16]. SXM is supposed to resolve a
problem that exists in the original X-Machine
which is the lack of the ability to process
sequences of inputs and outputs. According to
Dranidis et al. [17], the powerful modelling
capabilities of SXMs have been applied in a
number of research projects such as the
EURACE, SUMO, and Epitheleome for the
simulation of cellular and social systems.
Additionally, one of the great benefits of using
an SXM to specify a system is its associated
testing method which was initially developed for

deterministic SXM [18] [19] and was further
extended to non-deterministic SXM [20] and
communicating SXM [21]. Under certain
design-for-test conditions, this method can
produce a test suite that can be used to verify the
correctness of the SUT provided that the
processing functions of the SXM specification
have been correctly implemented [22].

Although the effectiveness of the method has
been validated by a wide range of industrial case
studies [23], the application of the SXM based
testing method is often encumbered due to the
strictness of the design for test conditions. There
have been several improvements to the SXM
testing method with the aim to relax the design-
for-test conditions [19] [21] [22] [24]. Still, there
exists a limited number of tools that demonstrate
the practical benefits of the SXMs.

In this paper, we propose the T-SXM, a new
and, to the best of our knowledge, the only
existing tool that uses Java as the language to
describe the behaviours of a system (a.k.a.
formal specification) and supports automated
test generation based on the state-counting
approach [24]. This tool is an improved version
of the tool we proposed in [25]. We use the Type
II diabetes as a case study to evaluate the
performance of the T-SXM tool in terms of
modelling a chronic disease and generating test
cases.

The rest of the paper is organised as follows.
Section 2 provides an overview of the techniques
that have been used to model chronic diseases.
Section 3 defines the formalism of SXM. Section
4 discusses the SXM testing method and the
improvements of the method to relax the design-
for-test conditions. Section 5 introduces the T-
SXM tool with related algorithms. Section 6
presents the Type II diabetes case study. Section
7 discusses the evaluation of T-SXM in terms of
modelling and generating test cases for the case
study. Section 8 outlines and compares T-SXM
with the existing related tools for SXMs. Finally,
section 9 concludes the paper and presents the
future research directions.

2. DISEASE MODELS IN THE
LITERATURE

ISSN 0361-7688, Programming and Computer Software, 2016, Vol. .., No. .., pp. ...
Original Russian Text …….published in Proceedings of the Institute for System Programming of the Russian Academy of Sciences 2015

3

There have been many attempts and research
carried out in the scope of disease prediction
based on biomedical data. However, most of
these approaches have not been able to provide
100% accurate analysis and, in a safety-critical
domain like human medicine this poses a serious
risk as consequences of an error could cause a
life-threatening result [26] [27].

BN considers the coarse approximation in
which the individual models have two states
namely active and inactive without considering
intermediary states. However, in reality,
biological systems consist of multiple states and
in order to facilitate that, the QN approach has
been proposed as an extension for the BN where
each variable can have a small number of
discreate variable values, and the dependencies
of those values are expressed with algebraical
functions instead of Boolean functions. This
poses a challenge in modelling diseases as they
consist of many different states which are
interconnected with complex relationships [11]
[12] [13].

PR provides a very comprehensive
modelling and analysing facility for distributed
and concurrent systems such as biological
systems. PR has the ability in modelling non-
deterministic systems. Compared to BN, PN has
a good balance between modelling power and the
analysability [28]. Hence, the ability of
providing the concurrency the complexity of the
model increases significantly. While subclasses
of PR increase the decision-making power, they
limit the ability of modelling larger system due
to complexity. Nevertheless, PR suffers from the
inability to test in unbounded places [29].

CA [30] provides a means of modelling
interactive components on a system such as
biological systems. CA consists of an array of
cells or agents which has a predefined
communication with the neighbouring agent.
Each agent or the cell maintains a state and a
logical operation for the next state on the agent
and as well as for the neighbouring agent. Each
agent has been formally defined as a finite state
machine (FSM). CA is a powerful way of
defining agent-based system due to the
simplicity of following rules and ease of
verification [30]. However, CA presents

challenges in modelling non-trivial systems due
to lack of data representation. When the
additional complexity adds to an agent, the
neighbouring agents’ number of states and input
symbols increase significantly, which leads to
state and input symbol explosion. Furthermore,
the agents are aligned with a static grid for
communication, therefore mobility of agents are
limited and the ability to communicate with
different agents is restricted. This presents an
enormous challenge in modelling diseases as the
communications and the iterations cannot be
predefined due to the uniqueness of the
individual circumstances.

PPS defines a system as an arbitrary graph.
Each node of the graph contains membrane, that
assigned to multiset of objects combine with set
of rules that uses to modify the object and
communicating is defined as edge of the graph.
In the perspective of the biological systems, this
can be interpreted as abstract entities of bio-
agents (medical and/or diseases) which
aggregate to form a complex system (human).
PPS provides a robust mechanism to introduce
new nodes, remove nodes, and change the
behaviour of the defined nodes. On the other
hand, PPS lacks the ability to represent internal
states and individual behaviour of the nodes [15].
This indicates a significant challenge in defining
the individual diseases (e.g., the complexity of
the disease models encompasses a significant
number of input symbols and states which need
to be monitored and manipulated closely).

Due to the above-mentioned reasons, many
mathematical models present significant
challenges in modelling diseases due to the
highly complex relationship(s) among the
disease models. As the behaviours of the model
are highly complex, most of the mathematical
models have been challenged and become
unmanageable [26]. Therefore, Wang et al. [28]
recommended the use of formalism approaches
for modelling the disease models. Specifically,
SXM models will be more appropriate due to
their power of modelling real world systems
where the data structure and controllers need to
be managed separately.

3. STREAM X-MACHINE

Authors et al.

4

An X-Machine [16] is an enhanced version
of an FSM with a basic data set, X, and a set of
processing functions, Φ, which operate on X. An
X-Machine can potentially model very general
systems as the data set X can contain information
about the system internal memory as well as
different output behaviours.

A number of classes of X-Machines have
been identified and studied [31]. Among these
classes, the stream X-Machine (SXM) has
received the most attention. The SXM is
supposed to resolve a problem that exists in the
original X-Machine which is the lack of the
ability to process sequences of inputs and
outputs. In this section, the Stream X-Machine
and its related basic concepts are defined.

Definition 1. A Stream X-Machine is a

tuple:

Z = (Σ, Γ, Q, M, Φ, F, q0, m0)

where:
• Σ is a finite set of input symbols,
• Γ is a finite set of output symbols,
• Q is a finite set of states,
• M is a (possibly) infinite set called

memory,
• Φ is a finite set of partial functions φ

(processing functions) that map
memory-input pairs to output-memory
pairs, φ: M × Σ → Γ × M,

• F is the next-state partial function, F: Q
× Φ → Q

• q0 ∈ Q and m0 ∈ M are the initial state
and initial memory respectively.

Intuitively, an SXM can be thought as a
finite automaton with the arcs labelled by
functions from the type Φ. The automaton AZ =
(Φ, Q, F, I, T) is called the associated finite
automaton (FA) of Z and is usually described by
a state-transition diagram.

Definition 2. An SXM Z is called

deterministic if the following conditions are met.
• The associated FA is deterministic:

o Z has only one initial state: I =
{q0};

o The next state function of Z
maps each pair (state,
processing function) onto at
most one state: F: Q × Φ → Q;

• Any two distinct processing functions
that label arcs emerging from the same
state have disjoint domains: ∀φ1, φ2 ∈ Φ,
((∃q ∈ Q with (q, φ1), (q, φ2) ∈ dom(F))
⇒ (φ1 = φ2 or dom(φ1) ∩ dom(φ2) = ∅))

An SXM is deterministic when there is
exactly one transition for any triplet q ∈ Q, m ∈
M, σ ∈ Φ.

Definition 3. For q ∈ Q, the language

accepted by Z in q, denoted by LZ(q), is defined
by:

LZ(q) = {s ∈ Σ* | (q, s) ∈ dom(F*).
The language accepted by Z in q0 is simply

called the language accepted by Z and is denoted
by LAZ.

Definition 4. A state q ∈ Q is called

accessible if ∃s ∈ Σ* with F*(q0, s) = q. Z is
called accessible if ∀q ∈ Q, q is accessible.

Definition 5. For U ⊆ Σ*, two states q1 and

q2 are called U-equivalent if LZ(q1) ∩ U = LZ(q2)
∩ U. Otherwise, q1 and q2 are called U-
distinguishable. If U = Σ*, then q1 and q2 are
simply called equivalent or distinguishable. Z is
called reduced if ∀q1, q2 ∈ Q, q1 and q2 are
distinguishable.

Definition 6. A deterministic stream X-

Machine, Z, is called minimal if and only if Z is
accessible and reduced [16].

In what follows, we only consider minimal

deterministic SXM (DSXM) specifications.

4. STREAM X-MACHINE FOR
TESTING

The testing method was developed for SXM
specifications that meet two design for test
conditions: output-distinguishability and input-

ISSN 0361-7688, Programming and Computer Software, 2016, Vol. .., No. .., pp. ...
Original Russian Text …….published in Proceedings of the Institute for System Programming of the Russian Academy of Sciences 2015

5

completeness (controllability) [18]. The first
requires that every processing function can be
distinguished by examining the output produced
when an input is applied to any given memory
value. Controllability basically means that every
path in the associated automaton can actually be
driven by suitable input sequences. Whilst the
first condition is quite natural and can be
satisfied by a suitable enrichment of the observed
output, controllability is seldom met by non-
trivial specifications. Therefore, in [24], the
original testing method is generalised by
replacing the input-completeness condition by a
laxer condition, called input-uniformity.

4.1. Reaching and distinguishing states in DSXM

A. Realisable sequences

As the labels used in the state-transition
diagram of a DSXM are actual functions, there
may be states that are reachable in the diagram
but cannot be reached in practice by any input
sequence [24]. Similarly, there may be pairs of
distinguishable states in the associated FA for
which the sequences of processing functions that
distinguish them can never be applied [24].

To determine which states can practically be
reached or distinguished, it is essential to
identify which sequences of processing
functions in the associated FA can be driven by
the input sequences from each state q and
memory value m.

Definition 7. The set RΦ(m) ⊆ Φ* is defined

to consist all sequences of processing functions
p = φ1 · · · φn ∈ Φ*, n ≥ 0, for which there exists
s = σ1 · · · σn ∈ Σ* such that (m, s) ∈ dom∥p∥.
Then, LRZ(q, m) = LAZ(q) ∩ RΦ(m) and LRZ =
LAZ ∩ RΦ(m0).

B. r-reachable states

It is possible to reach some states of a DSXM
with sequences in LRZ using appropriate input
sequences. Such states are said to be r-reachable.

Definition 8. State q of Z is said to be r-

reachable if there exists p ∈ LRZ such that F*(q0,
p) = q.

Any states that are not r-reachable can be

removed from the machine without affecting the
function computed by the machine. Since ε ∈
LRZ, the initial state is always r-reachable.

An r-state cover of Z is a minimal set of
realisable sequences Sr ⊆ LRZ, ε ∈ Sr, that reaches
every r-reachable state in Z.

Definition 9. A set Sr ⊆ LRZ is called an r-

state cover of Z if:
• ε ∈ Sr
• For every r-reachable state q of Z, there

exists p ∈ Sr such that F*(q0, m) = q.
For every two distinct sequences p1, p2 ∈ Sr,

F*(q0, p1) ≠ F*(q0, p2).

C. Separable states

States in the specifications can be
distinguished by applying a finite set of
realisable sequences of processing functions to
their current memory values [24]. More
formally, the set MAtt(q) of attainable memory
values in state q is defined to consist all memory
values computed along all sequences in LRZ that
reach q.

m ∈ MAtt(q) if there exists p ∈ LRZ, s ∈ Σ*, g
∈ Γ* such that F*(q0, p) = q and ∥p∥(m0, s) = (g,
m).

States q1 and q2 are said to be r-
distinguishable if there exists a finite set of
sequences Y such that for every m1 ∈ MAtt(q1)
and every m2 ∈ MAtt(q2), LRZ(q1, m1) ∩ Y ≠
LRZ(q2, m2) ∩ Y.

Based on [22], it can be said that r-
distinguishability is sufficient when the DSXM
model of the implementation is known to be
controllable. On the other hand, a stronger
condition, called separability, is required which
ensures that states are r-distinguished by
sequences with overlapping domains [32].

Definition 10. States q1 and q2 are said to be
separable if there exists a finite set of sequences

Authors et al.

6

Y such that for every m1 ∈ MAtt(q1) and every m2
∈ MAtt(q2), there exists p1 ∈ LRZ(q1, m1) ∩ Y and
p2 ∈ LRZ(q2, m2) ∩ Y such that p1 ≠ p2 and
dom∥p1∥ ∩ dom∥p2∥ ≠	∅. Y is said to separate
between q1 and q2.

Definition 11. A separating set Ws ⊆ Φ* of
Z is a set of sequences of processing functions
that separates between every pair of separable
states of Z.

4.2. Design for test conditions

Definition 12. Φ is said to be output-
distinguishable if for all φ1, φ2 ∈ Φ, whenever
there exists m, m1, m2 ∈ M, σ ∈ Σ, γ ∈ Γ such
that φ1(m, σ) = (γ, m1) and φ2(m, σ) = (γ, m2),
then φ1 = φ2.

With the output-distinguishability condition,

testers can determine the sequence of processing
functions applied in the implementation under
test (IUT) by examining the output sequence
produced when an input sequence is applied.

Whilst the output-distinguishability
condition is quite natural and can be satisfied by
a suitable enhancement of the observed output,
the input-completeness condition is seldom met
by non-trivial SXM specifications [22]. This
condition is normally enforced by designing
extra input symbols to trigger the functions.
Nevertheless, these additional inputs must be
removed after testing has been completed and
thus, it can potentially lead to extra errors in the
specification. In [24], the input-completeness
was slightly relaxed, being replaced by the input-
uniformity condition which also suffers from the
same limitations [22]. Therefore, in this paper,
the input-completeness or input-uniformity
condition is no longer required in the
specification.

4.3. Reduced test function

A test generation process includes two
phases: initially, test cases are derived in the
form of sequences of processing functions and
later on, these sequences of processing functions
are transformed into input sequences which are
also referred to as the actual test data [22].

A test function is a function of the general
form t: Φ* à Σ* that satisfies the conditions
which will be described later. Previous SXM
based testing methods ([18] [24] [32]) relied on
the test function that appends to the longest
realisable prefixes of the processing function
sequence, an extra input that causes the
invocation of a non-existing transition in the
associate FA. In [22], a reduced test function was
introduced to reduce the length of the test
sequences.

In what follows, we first present the
definition of the original test function and then,
we present the definition of the reduced test
function.

 Definition 13. A test function of an SXM Z

is a function t: Φ* à Σ* that satisfies the
following conditions:

• t(ε) = ε. (1)
• Let p = φ1 · · · φk ∈ Φ*, k ≥ 1.

o If φ1 · · · φk-1 ∈ LAZ and φ1 · · ·
φk ∈ RΦ(m0), then t(p) = σ1 · · · σk
for some σ1,…, σk such that (m0,
σ1 · · · σk) ∈ dom∥p∥; (2)

o Otherwise, t(p) = t(φ1 · · · φk-1).
(3)

The first rule says that an empty path is

transformed into an empty sequence. The second
rule states that if the longest proper prefix φ1 · ·
· φk-1 is a path in AZ then t(p) is an input sequence,
if exists, that drives p. Eventually, when φ1 · · ·
φk-1 is not a path in AZ or no such input sequence
exist, the construction of t(p) is recursively
reduced to the construction of t(φ1 · · · φk-1).

Definition 14. A reduced test function of an

SXM Z is a function τ: Φ* à Σ* that satisfies the
following conditions:

• τ(ε) = ε. (1)
• Let p = φ1 · · · φk ∈ Φ*, k ≥ 1.

o If φ1 · · · φk-1 ∈ LRZ, then τ(p) =
σ1 · · · σk for some σ1,…, σk such
that (m0, σ1 · · · σk) ∈ dom∥p∥; (2)

o Otherwise, τ(p) = τ(φ1 · · · φk-1).
(3)

ISSN 0361-7688, Programming and Computer Software, 2016, Vol. .., No. .., pp. ...
Original Russian Text …….published in Proceedings of the Institute for System Programming of the Russian Academy of Sciences 2015

7

As above, if p = φ1 · · · φk is a path in AZ then

τ(p) is a sequence of inputs that drives p, if there
exists. Otherwise, if p = φ1 · · · φk is not a path in
AZ or there exists no such an input sequence,
then τ returns an input sequence that drives the
longest prefix of p that is a path in AZ (without
extending this prefix with an input to check the
first non-existing arc, like in the case of t. In this
paper, we will be using the reduced test function
to generate input sequences for a processing
function sequence.

4.4. Deriving integration test sequences through
state-counting

The state-counting approach was described
in detail in [22] and [24] with intuitive examples.
In this paper, we summarise the key values and
sets used in equation (1) which calculates the test
suite U:

U =	 , -𝑝!/𝑝𝑟𝑒𝑓3𝑉(𝑞)8𝑊"
!	∈	%!

									(1)

In order to construct the test suite U, we first

need to select two sets of sequences of
processing functions, Sr and Ws, and of a relation
ds on the states of Z as follows:

• Sr is a non-empty set of realisable
sequences such that no state in Z is
reached by more than one sequence in
Sr.

• Ws is a finite set that separates between
separable states of Z. Ws is required to be
non-empty.

• ds: Q ←→ Q is a relation on the states of
Z that satisfies the following conditions:
for every two states q1, q2 ∈ Q, if (q1, q2)
∈ ds then q1 and q2 are separated by Ws.
The relation (ds) identifies pairs of states
that are known to be separated by Ws.

• The maximal sets Q1,...,Qj of states of Z
that are known to be pairwise separated
by Ws.

The definition of the set V(q) can be found in

[24].

For any choice of Sr, Ws, and ds and for every
q ∈ Qr, the set V(q) can be computed [24]. Once
the V(q) sets have been constructed, a test suite
can be generated by taking all sequences in
{pq}pref(V(q)), concatenating them with Ws and
applying the reduced test function τ: Φ* à Σ* to
every resulting sequence of processing
functions.

For any choice of Sr, Ws, and ds, the set U is
finite and computable [24].

The test suites generated using the state-
counting approach may be significantly larger
than those generated by the W-method.
However, the size of the test suite and the
complexity of the test generation algorithm can
be significantly reduced by designing the SXM
specification in which all states are pairwise r-
distinguishable [24].

5. THE T-SXM TOOL
In this section, we present the T-SXM tool,

which implements the strength of the SXM-
based testing strategy.

T-SXM is a tool, developed in Java, that
allows the specification of SXM models, and
most importantly, the automated test generation.

5.1. The package and class diagram

Fig. 1 shows the class diagram which is the
design for the T-SXM tool, where:

• SXMBase: the base data model of an

SXM,
• SXM: the extension of SXMBase with

testing functions,
• State: the state of the SXM,
• Memory: the memory of the SXM,
• Function: the processing function of the

SXM,
• Transition: the transition of the SXM,
• Variable: the input and output alphabet

of the SXM,
• DataType: the data type of the SXM,
• InputType: the input type of the SXM,
• OutputType: the output type of the

SXM.

Authors et al.

8

• InputMemoryPair: the input – memory
tuple,

• OutputMemoryPair: the wrapper class
for the output – memory tuple that a

processing function should return after
completing the computation.

5.2. The related algorithms

This section outlines the algorithms that are
used to validate an SXM specification and derive
the key values and sets of equation (1) discussed
in section II.C.4.

A. Algorithm for checking output-
distinguishability condition

As output-distinguishability is one of design
for test conditions, we developed a dedicated

algorithm to ensure the specification meets this
condition.

Input: None
Output: boolean

possibleInputs ß all combinations of possible inputs
possibleMemories ß all combinations of possible memory values
functionSet ß set of all processing functions

pairsOfNonDistinguishableFunctions = {}

While possibleMemories != {}:
 While possibleInputs != {}:

Fig. 1. T-SXM class diagram

ISSN 0361-7688, Programming and Computer Software, 2016, Vol. .., No. .., pp. ...
Original Russian Text …….published in Proceedings of the Institute for System Programming of the Russian Academy of Sciences 2015

9

 pm ß get memory element
 pi ß get input element

 outputsForThisInput = {}

 While functionSet != {}:
 f ß get function
 If F(pi, pm) ∈ domain(f), then:
 outputsForThisInput
= outputsForThisInput ∪ Pair(f, output)

 For every Pair(f1, output1), (f2, output2) ∈
outputsForThisInput:
 If there exists any f1 != f2 and
output1 = output2, then:

 pairsOfNonDistinguishableFunctions =

 pairsOfNonDistinguishableFunctions ∪ Pair(f1, f2)

If PairsOfNonDistinguishableFunctions = {}, return true.
Otherwise, return false.

B. Algorithm for generating Sr and Qr

Sr and Qr are two of the key sets required in
equation (1) discussed in section II.C.4. This
algorithm is designed to identify all the r-
reachable states in the SXM specification and
construct the Sr and Qr sets accordingly. Also, all
the states that are not r-reachable along with the
arcs (transitions) emerging from or arriving to
them will be removed.

Input: None
Output: None (this function will directly update the Sr and Qr sets in the
machine)

Sr = {}
Qr = {}
possibleInputs ß all combinations of possible inputs
possibleMemories ß all combinations of possible memory values
stateSet ß set of all states

While stateSet != {}:
 q ß get state
 For all pi ∈ possibleInputs, pm ∈ possibleMemories:
 If there exists a sequence of functions, p, that
actually reach q, then:
 Qr = Qr ∪ q
 Sr = Sr ∪ p

Remove all states that are not r-reachable
Remove all arcs (transitions) emerging from or arriving to those states.

C. Algorithm for generating Qi set

This algorithm is the solution for
constructing the Qi sets.

Input: Ws, nonSeparablePairsOfStates
Output: None (this function will directly update the Qi set in the
machine)

Qi = {}

If nonSeparablePairsOfStates = {}:
 Qi = Qi ∪ Qr
Else:
 For each pair(q1, q2) ∈ nonSeparablePairsOfStates:
 setOne = {q1}
 setTwo = {q2}

 For each q ∈ Qr:
 If q and q1 are pairwise
separated:
 setOne = setOne ∪
q
 If q and q2 are pairwise
separated:
 setTwo = setTwo ∪
q

 If setOne does not exist in Qr:
 Qi = Qi ∪ setOne

 If setTwo does not exist in Qr:
 Qi = Qi ∪ setTwo

D. Algorithm for computing V(q)

Based on the key values and sets which are
computed by algorithms b and c, we can derive
the V(q) using this algorithm.

Input: k ß estimated number of states in the IUT, state q
Output: Vq

Vq = {}
stateCountQis = {n0 = 0, n1 = 0,..., nj = 0} ß j = length of Qi set

Y = {Triplet(<>, q, stateCountQis)} ß list of triplets each of which
contains 3 elements: function sequence, state, and stateCountQis

While Y != {}:
 y = Y.remove(0)
 yFunctionSequence = y.getValue0()
 yState = y.getValue1()
 yStateCountQis = y.getValue2()

 For each φ ∈ functions deriving from yState:
 If F(yState, φ) ∈ Qi, then:
 stateCountQis[i] += 1

 If there exists i, 0 <= i <= length(Qi) such that
stateCountQis[i] = k – length(Qi’) + 1, then:

Authors et al.

10

 Vq = Vq ∪
{...yFunctionSequence, φ}
 Else:
 Y = Y ∪
Triplet({...yFunctionSequence, φ}, F(yState, φ),
updatedStateCountQis)

Return Vq

E. Algorithm for computing the test suite U

This algorithm is designed to derive the test
suite U using the results obtained from algorithm
d.

Input: k ß estimated number of states in the IUT
Output: SetOfInputSequences (U)

U = {}

For each q ∈ Qr:
 pq ß Get realisable sequence for state q
 Vq = generateVq(k, q) ß Algorithm f

 For each t ∈ Vq:
 s = pq tWs
 U = U ∪ s

Return U

5.3. Correctness of an SXM description using
the T-SXM tool

The T-SXM tool supports two basic levels of
correctness for an SXM specification, namely
the semantic level, and the logical level.

A. Semantic level

This level guarantees that an SXM
specification is at least mathematically correct.
At least three basic conditions should be
checked:

• Data types: the types contain the
parameters and returning values that is
legally accepted by the specification.
Data type checking is also applied for
the definition of external operators.
They are used to define the types of the
input, output and memory.
Consequently, the system is responsible
for ensuring that the values returned by

the operators are of the expected data
type.

• Sets: anything that is defined as a set
(i.e., data type set, state set, function set,
transition set) should not contain
duplicated elements.

• Functions: each function is applied to a
tuple containing an input and a memory
state, and produces another tuple
containing an output and a memory
state. Any typical Java function that has
the OutputMemoryPair object as the
return type and takes the
InputMemoryPair object as the only
parameter will automatically be treated
as a processing function. Therefore, the
system guarantees that the same function
should not be able to produce more than
one output – memory state tuples for one
input – memory state tuple. Note that if
m ∈ M, σ ∈ Σ, and (m, σ) ∈ dom φ, then
φ must return a non-null
OutputMemoryPair object.

B. Logical level

This level takes care of the checking for the
model’s general consistency. Questions referring
to the model’s input-completeness, output-
distinguishability, minimality, etc. should be
addressed. These conditions must be checked
before starting the test generation process.

6. CASE STUDY
A patient getting diabetic has four stages

namely pre-metabolic syndrome, metabolic
syndrome, pre-diabetic, and type II diabetes. A
patient can start off with any single stage of these
stages, depending on the time of the diagnosis.

To begin with, we identify the possible paths
that the disease can take and look for all the
possible scenarios that a patient can progress
with the disease. The stage of the disease is
initially determined by evaluating the number of
positive symptoms that a patient is experiencing
at the time of the diagnosis. The evaluation
criteria of the symptoms are as follows.

• a waist circumference of:

ISSN 0361-7688, Programming and Computer Software, 2016, Vol. .., No. .., pp. ...
Original Russian Text …….published in Proceedings of the Institute for System Programming of the Russian Academy of Sciences 2015

11

o 94cm or more in European men,
or 90cm or more in South Asian
men,

o a waist circumference of 80cm
or more in European and South
Asian women.

• high triglyceride levels (fat in the blood)
and low levels of HDL (the “good”
cholesterol) in the blood, which can lead
to atherosclerosis (where arteries
become clogged with fatty substances
such as cholesterol).

• high blood pressure (BP) that's
consistently 140/90mmHg or higher.

• an inability to control blood sugar levels
(insulin resistance).

• a tendency to develop irritation and
swelling of body tissue (inflammation).

Based on the preliminary identification of
number of symptoms, medical practitioners can
determine which state of the disease a patient is
in. With a set of determination criteria in Table
1, we designed the state-transition diagram (Fig.
2) for Stream X-Machine that represents the full
diagnostic process. The first four states (Start,

Triglyceride levels checked, Waist
circumference checked, and BP checked) help to
count the number of symptoms the patient is
suffering from. The five states that proceed to
the diagnostics of the disease are Normal, Pre-
Metabolic Syndrome, Metabolic Syndrome, Pre-
Diabetes, and Type II Diabetes. These five states
are relevant to the data gathered in the
perspective of the symptoms. We consider that
the initial state of diabetes is Normal. If a patient
is presenting with one or two symptoms, they are
in the Pre-Metabolic Syndrome state. Thereafter,
if a patient presents with three or more
symptoms, they are in the Metabolic syndrome
state. Likewise, if the patient is presenting with
four or more symptoms, they are in Pre-diabetes
state. Finally, a patient is in Type II diabetes state
if they have five or more symptoms.

Table 1. Diabetic state determination criteria

Diabetic state Number of symptoms that a
patient presents at the time
of diagnosis

Pre-metabolic syndrome One to two
Metabolic syndrome Three or more
Pre-diabetic Four or more
Type II diabetic Uncontrollable insulin levels

Fig. 2. State-transition diagram for Type 2 diabetes diagnostic process

Babenko M., Tchernykh A. et al.

12

7. RESULTS
Let n and n’ be the number of states of the

specification and the IUT, respectively, and k =
number of processing functions in the
specification. The worst scenario is when Sr = Ws
= {ε}, which means only the initial state is r-
reachable by Sr and no states are pairwise
separated by Ws, so the Qi set only contains
singletons. As a consequence, the test set
consists of all sequences that reach some states
in Q n’ times. According to [22], as there are n
states in Q, the upper bound on the number of
such sequences is proportional to kn.n’. However,
this extreme seldom happens in practice. In usual
applications, all states are r-reachable and there
are at most only a few pairs of states that are non-
separable. In most scenarios, it is safely to
assume that the number of states in the
specification represents a good approximation
for the number of states in the IUT (otherwise, it
would demonstrate a gross misunderstanding
from the part of the developers) [22]. As a result,
in the experiment, we do not assume n’ to be
significantly larger than n. Also, the test
generation was performed on a 3.1 GHz Dual-
Core Intel Core i5.

Table 2 shows the number of test cases
generated and the time required for the test
generation for the Type II diabetes case study
discussed in section 6 with different values of n’.
The absolute times in seconds are provided only
as an indication.

Table 2. Number of generated test cases and generation
time for different values of n’

n’ 10 11 12
Number of
test cases

5296 5414 5526

Time to
generate
(sec)

1.313 1.602 1.343

8. RELATED TOOLS
Currently, a small number of SXM tools is

available. Most tools concentrated on the
modelling and animation of SXM models like
[33] and [34].

SXMtool [35] is a tool for SXM models and
the automatic test generation. However, it is not
evident if this tool is capable of generating
concrete test cases, since the authors only
demonstrated the generation of the processing
function sequences.

JSXM [17] is a tool that supports the
animation of SXM models for model validation,
the automatic generation of abstract test cases
from the SXM specifications and the
transformation of abstract test cases into
concrete test cases in the implementation
language of the SUT. This tool is supposed to be
the only tool available for automatically
generating concrete (executable) test cases based
on the SXM testing method.

In comparison, although T-SXM does not
support model animation like the other tools, it
can generate concrete test cases for an SXM
specification just like what JSXM is capable of.
However, T-SXM overcomes JSXM with the
ability to validate an SXM specification (e.g.,
check for accessibility, check for the output-
distinguishability condition, etc.). Also, while
JSXM requires manual input of the r-state cover
to start generating test cases, T-SXM can
automatically detect all the r-reachable states and
construct the corresponding r-state cover. To the
best of our knowledge, T-SXM is the only tool
that uses Java as the language for specifying an
SXM specification using intuitive wrapper
classes. This is considered as an advantage for T-
SXM over the other tools as the processing
functions can be implemented in a much more
intuitive way compared to using in-line C or Java
code within XMML or XMDL.

9. CONCLUSIONS
In conclusion, given that this study is based

on the theoretical foundations presented in [10],
the newly proposed T-SXM tool is built based on
the state-counting approach which helps to

ISSN 0361-7688, Programming and Computer Software, 2016, Vol. .., No. .., pp. ...
Original Russian Text …….published in Proceedings of the Institute for System Programming of the Russian Academy of Sciences 2015

13

overcome the limitations that have been
presented in the previous version. In order to
demonstrate the improvements of the current
version, we have employed a case study from the
medical domain where it is very challenging to
design models which adhere to the design-for-
test conditions. With the success of modelling
and generating test sequences for a chronic
disease (Type II diabetes), this paper has
demonstrated that this tool can be employed not
only in the software engineering domain but also
in the other domains where dynamic and
complex models are required. As the main
researchers of this project, we believe that this is
a significant milestone not only in improving the
T-SXM tool, but also in expanding the horizons
of its capabilities of being employed in other
domains. We will conduct further research to
improve the tool and make it more effective for
testing object-oriented systems, especially those
written in the Java programming language.

REFERENCES

[1] B. M. Sörensen, A. J. H. M. Houben, T. T. J. M.
Berendschot, J. S. A. G. Schouten, A. A. Kroon, C. J. H. van
der Kallen, R. M. A. Henry, A. Koster, S. J. S. Sep, P. C.
Dagnelie, N. C. Schaper and M. Schram, “Prediabetes and
Type 2 Diabetes Are Associated With Generalized
Microvascular Dysfunction,” Circulation, vol. 134, no. 18,
pp. 1339-1352, 2016.

[2] J. . F. Ferguson, H. Allayee, R. E. Gerszten, F. Ideraabdullah,
P. M. Kris-Etherton, J. M. Ordovás, E. B. Rimm, T. J. Wang
and B. J. Bennett, “Nutrigenomics, the Microbiome, and
Gene-Environment Interactions: New Directions in
Cardiovascular Disease Research, Prevention, and
Treatment,” Circulation: Cardiovascular Genetics, vol. 9,
no. 3, pp. 291-313, 2016.

[3] P. J. Meikle, G. Wong, C. K. Barlow, J. M. Weir, M. A.
Greeve, G. L. MacIntosh, L. Almasy, A. G. Comuzzie, M.
C. Mahaney, A. Kowalczyk, I. Haviv, N. Grantham, D. J.
Magliano and J, “Plasma Lipid Profiling Shows Similar
Associations with Prediabetes and Type 2 Diabetes,” PLoS
ONE, vol. 8, no. 9, p. e74341, 2013.

[4] A. Sigruener, M. E. Kleber, S. Heimerl, G. Liebisch, G.
Schmitz and W. Maerz, “Glycerophospholipid and
sphingolipid species and mortality: the Ludwigshafen Risk

and Cardiovascular Health (LURIC) study,” PLoS One, vol.
9, no. 1, p. e85724, 2014.

[5] J. Basu, R. Avila and R. Ricciardi, “Hospital Readmission
Rates in U.S. States: Are Readmissions Higher Where More
Patients with Multiple Chronic Conditions Cluster?,” Health
Services Research, vol. 51, no. 3, pp. 1135-1151, 2015.

[6] C. Buttorff, T. Ruder and M. Bauman, Multiple Chronic
Conditions in the United States, Santa Monica, CA: RAND
Corporation, 2017.

[7] O. Ojo, “Nutrition and Chronic Conditions,” Nutrients, vol.
11, no. 2, p. 459, 2019.

[8] E. I. Mandel, E. N. Taylor and G. C. Curhan, “Dietary and
Lifestyle Factors and Medical Conditions Associated with
Urinary Citrate Excretion,” Clinical Journal of the American
Society of Nephrology, vol. 8, no. 6, pp. 901-908, 2013.

[9] K. M. Kolasa and K. Rickett, “Barriers to Providing
Nutrition Counseling Cited by Physicians,” Nutrition in
Clinical Practice, vol. 25, no. 5, pp. 502-509, 2010.

[10] M. Flynn, C. Sciamanna and K. Vigilante, “Inadequate
physician knowledge of the effects of diet on blood lipids
and lipoproteins.,” Nutrition Journal, vol. 2, no. 1, 2003.

[11] M. A. Schaub, T. A. Henzinger and J. Fisher, “Qualitative
networks: a symbolic approach to analyze biological
signaling networks,” BMC Systems Biology, vol. 1, no. 1, pp.
1-21, 2007.

[12] A. Naldi, D. Thieffry and C. Chaouiya, “Decision Diagrams
for the Representation and Analysis of Logical Models of
Genetic Networks,” in Computational Methods in Systems
Biology, Berlin, Heidelberg, 2007.

[13] N. Miskov-Zivanov, P. Wei and C. S. C. Loh, “THiMED:
Time in hierarchical model extraction and design,”
International Conference on Computational Methods in
Systems Biology, pp. 260-263, 2014.

[14] C. Hajat and E. Stein, “The global burden of multiple chronic
conditions: A narrative review,” Preventive Medicine
Reports, vol. 12, pp. 284-293, 2018.

[15] I. Stamatopoulou, M. Gheorghe and P. Kefalas, Modelling
Dynamic Organization of Biology-Inspired Multi-agent
Systems with Communicating X-Machines and Population P
Systems, 2005, pp. 389-403.

[16] S. Eilenberg, “Automata, languages and machines,”
Academic Press, vol. A, 1974.

[17] D. Dranidis, K. Bratanis and F. Ipate, “JSXM: A tool for
automated test generation,” International Conference on

Babenko M., Tchernykh A. et al.

14

Software Engineering and Formal Methods, pp. 352-366,
2012.

[18] M. Holcombe and F. Ipate, Correct Systems: Building a
Business Process Solution, Berlin: Springer, 1998.

[19] F. Ipate and M. Holcombe, “An integration testing method
that is proved to find all faults,” Internat. J. Comput. Math,
vol. 63, pp. 159-178, 1997.

[20] F. Ipate and M. Holcombe, “Generating test sequences from
non-deterministic generalized stream X-machines,” Formal
Aspects of Comput., vol. 12, no. 6, pp. 443-458, 2000.

[21] F. Ipate and M. Holcombe, “Testing conditions for
communicating stream X-machine systems,” Formal
Aspects of Comput., vol. 13, no. 6, pp. 431-446, 2002.

[22] F. Ipate and D. Dranidis, “A unified integration and
component testing approach from deterministic stream X-
machine specifications,” Formal Aspects of Computing, vol.
28, no. 1, pp. 1-20, 2016.

[23] K. Bogdanov, M. Holcombe, F. Ipate, L. Seed and S. Vanak,
“Testing methods for X-machines, a review,” Formal
Aspects of Comput., 2006.

[24] F. Ipate, “Testing against a non-controllable stream X-
machine using state counting,” Theoretical computer
science, vol. 353, pp. 291-316, 2006.

[25] K. Phung and E. Ogunshile, “An algorithm for implementing
a minimal stream X-Machine model to test the correctness
of a system,” 2020 8th International Conference in Software
Engineering Research and Innovation (CONISOFT), pp. 93-
101, 2020.

[26] M. A. Boemo, L. Cardelli and C. A. Nieduszynski, “The
Beacon Calculus: A formal method for the flexible and
concise modelling of biological,” PLOS Computational
Biology, vol. 16, no. 3, 2020.

[27] R. Adnan, H. Osman, S. Umair and T. Sofiène, “Formal
reasoning about systems biology using theorem proving,”
PLOS ONE, vol. 12, pp. 1-27, 2017.

[28] Q. Wang and E. M. Clarke, “Formal modeling of biological
systems,” 2016 IEEE International High Level Design
Validation and Test Workshop (HLDVT), pp. 178-184, 2016.

[29] J. Mortimer (Ed.), “The FMS Report: Ingersoll Engineers,”
IFS Publications, Kempston, Bedfordshire, 1984.

[30] S. Wolfram, A New Kind of Science, Wolfram Media, 2002.

[31] F. Ipate and M. Holcombe, “A method for refining and
testing generalized machine specifications,” J. Computer
Math, vol. 68, pp. 197-219, 1998.

[32] F. Ipate and M. Holcombe, “Testing data processing-
oriented systems from stream X-machine models,”
Theoretical Computer Science, Vols. 2-3, no. 176-191, p.
403, 2008.

[33] P. Kapeti and P. Kefalas, “A design language and tool for X-
machines specification,” Advances in Informatics, 2000.

[34] M. Holcombe, S. Coakley and R. Smallwood, “A general
framework for agent-based modelling of complex systems,”
European Conf. on Complex Systems, 2006.

[35] C. Ma, J. Wu and T. Zhang, “Sxmtool: A tool for stream x-
machine testing,” World Congress on Software Engineering,
2010.

[36] T. S. Chow, “Testing software design modeled by finite-state
machines,” IEEE transactions on software engineering, vol.
3, pp. 178-187, 1978.

[37] M. Buysschaert, J.-L. Medina, B. Buysschaert and M.
Bergman, “Definitions (and Current Controversies) of
Diabetes and Prediabetes,” Current Diabetes Reviews, vol.
12, no. 1, pp. 8-13, 2016.

