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Abstract—In the biomedical domain, diagrammatical models have been extensively used to describe and 
understand the behaviour of biological organisms (biological agents) for decades. Although these models are 
simple and comprehensive, they can only offer a static picture of the corresponding biological systems with 
limited scalability. As a result, there is an increasing demand to integrate formalism into more dynamic forms 
that can be more scalable and can capture complex time-dependent processes. Stream X-Machine (SXM) is 
such a powerful formal method with a memory (data) structure and function-labelled transitions. One of the 
main strengths of the SXM is its associated testing strategy which ensures that, under well-defined conditions, 
all functional inconsistencies between the system under test and the model are revealed. In this paper, we adopt 
the concept of SXM to develop a tool known as T-SXM, which has the capabilities of modelling real world 
problems and generating test cases automatically based on the state-counting approach. The Type II diabetes 
case study has been used to demonstrate the abilities of the proposed tool. 
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1. INTRODUCTION 

Human body can be recognised as a complex 
system where constituent sub systems such as 
immune system, digesting system, 
cardiovascular system, etc. work together to 
keep the body active and healthy. As any other 
systems, human body also faces issues (errors or 
undesired state) namely diseases. Due to the 
complex inter-relationship of the constituent 
systems of human body, the diseases also 
demonstrate the same complex interconnections 
with the constituent systems of the body and as 
well as with the diseases themselves [1]. New 
omics sciences have identified that even though 
the diseases can be generalised, they act 
differently from individual to individual ( [2] 
[3]). 

Ferguson et al. [2] recognised that evidence-
based personalized or precision medicine 
through dietary intervention could add 
significant value on the healthcare sector which 

has a considerable potential in curing chronic 
diseases and improving healthy living. Evidence 
exists that dietary interventions have significant 
impact in genetical disorders, such as inborn 
errors of metabolism (e.g.  phenylketonuria 
mutations in human leukocyte antigen complex 
and other genes causes celiac disease or gluten 
sensitivity or variants in the lactate gene 
affecting lactate persistence) [2] [3] [4].  

A chronical medical condition or disease is 
classified as “physical or mental health condition 
that lasts more than one year and causes 
functional restrictions or requires ongoing 
monitoring or treatment” [5] [6]. Managing 
patients with chronical diseases has changed 
from single dimension (medicinal) to 
multidimensional approach. The state-of-the-art 
approaches in managing people with chronical 
diseases have now become more lifestyle 
modification, regular physical activities and 
especially nutritional and dietary cantered 
approach [7]. 
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At present, the medical professionals are 
focusing on precise medicine and alternative 
practices, such as nutritional interventions and 
behavioural changes in treating chronical 
diseases [8]. Currently there are very limited 
recourses/tools available to support this 
approach. Therefore, this has limited the ability 
of the healthcare professionals using this 
approach to provide their service to their patients 
[8] [9] [10]. 

Biological systems (e.g., human body) 
consist of closely connected components 
(organs) that change their actions and behaviours 
over the time and their interactions with 
exposure to external factors (e.g., nutrients, 
viruses, bacteria). In addressing such challenges, 
literature reveals that, there are few formal 
approaches has been occupied namely, Boolean 
Networks (BN) and its extensions (i.e.  
Qualitative Networks (QN), Gene Regulatory 
Networks (GRN) [11] [12] [13], Petri Nets (PR), 
Cellular Automata (CA), Population P systems 
(PPS), etc. 

Approximately one third of the world adult 
population is suffering from Multiple Chronic 
Conditions (MCCs) [14]. Therefore, researchers 
have also adopted Communicating X-Machine 
(CXM), a formal specification method, to model 
biological systems where it has given the ability 
of representing the inter-relationships and the 
communication aspects of such systems [15]. To 
the best of our knowledge, this is the first attempt 
that uses a formalism technique to model a 
chronic disease. 

Beside CXM, SXM is also a formal 
specification technique and is the most well-
known variance of the X-Machine introduced by 
Eilenberg [16]. SXM is supposed to resolve a 
problem that exists in the original X-Machine 
which is the lack of the ability to process 
sequences of inputs and outputs. According to 
Dranidis et al. [17], the powerful modelling 
capabilities of SXMs have been applied in a 
number of research projects such as the 
EURACE, SUMO, and Epitheleome for the 
simulation of cellular and social systems. 
Additionally, one of the great benefits of using 
an SXM to specify a system is its associated 
testing method which was initially developed for 

deterministic SXM [18] [19] and was further 
extended to non-deterministic SXM [20] and 
communicating SXM [21]. Under certain 
design-for-test conditions, this method can 
produce a test suite that can be used to verify the 
correctness of the SUT provided that the 
processing functions of the SXM specification 
have been correctly implemented [22]. 

Although the effectiveness of the method has 
been validated by a wide range of industrial case 
studies [23], the application of the SXM based 
testing method is often encumbered due to the 
strictness of the design for test conditions. There 
have been several improvements to the SXM 
testing method with the aim to relax the design-
for-test conditions [19] [21] [22] [24]. Still, there 
exists a limited number of tools that demonstrate 
the practical benefits of the SXMs. 

In this paper, we propose the T-SXM, a new 
and, to the best of our knowledge, the only 
existing tool that uses Java as the language to 
describe the behaviours of a system (a.k.a. 
formal specification) and supports automated 
test generation based on the state-counting 
approach [24]. This tool is an improved version 
of the tool we proposed in [25]. We use the Type 
II diabetes as a case study to evaluate the 
performance of the T-SXM tool in terms of 
modelling a chronic disease and generating test 
cases. 

The rest of the paper is organised as follows. 
Section 2 provides an overview of the techniques 
that have been used to model chronic diseases. 
Section 3 defines the formalism of SXM. Section 
4 discusses the SXM testing method and the 
improvements of the method to relax the design-
for-test conditions. Section 5 introduces the T-
SXM tool with related algorithms. Section 6 
presents the Type II diabetes case study. Section 
7 discusses the evaluation of T-SXM in terms of 
modelling and generating test cases for the case 
study. Section 8 outlines and compares T-SXM 
with the existing related tools for SXMs. Finally, 
section 9 concludes the paper and presents the 
future research directions. 

2. DISEASE MODELS IN THE 
LITERATURE 
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There have been many attempts and research 
carried out in the scope of disease prediction 
based on biomedical data. However, most of 
these approaches have not been able to provide 
100% accurate analysis and, in a safety-critical 
domain like human medicine this poses a serious 
risk as consequences of an error could cause a 
life-threatening result [26] [27].  

BN considers the coarse approximation in 
which the individual models have two states 
namely active and inactive without considering 
intermediary states. However, in reality, 
biological systems consist of multiple states and 
in order to facilitate that, the QN approach has 
been proposed as an extension for the BN where 
each variable can have a small number of 
discreate variable values, and the dependencies 
of those values are expressed with algebraical 
functions instead of Boolean functions. This 
poses a challenge in modelling diseases as they 
consist of many different states which are 
interconnected with complex relationships [11] 
[12] [13].   

PR provides a very comprehensive 
modelling and analysing facility for distributed 
and concurrent systems such as biological 
systems. PR has the ability in modelling non-
deterministic systems. Compared to BN, PN has 
a good balance between modelling power and the 
analysability [28]. Hence, the ability of 
providing the concurrency the complexity of the 
model increases significantly. While subclasses 
of PR increase the decision-making power, they 
limit the ability of modelling larger system due 
to complexity. Nevertheless, PR suffers from the 
inability to test in unbounded places [29]. 

CA [30] provides a means of modelling 
interactive components on a system such as 
biological systems. CA consists of an array of 
cells or agents which has a predefined 
communication with the neighbouring agent.  
Each agent or the cell maintains a state and a 
logical operation for the next state on the agent 
and as well as for the neighbouring agent. Each 
agent has been formally defined as a finite state 
machine (FSM). CA is a powerful way of 
defining agent-based system due to the 
simplicity of following rules and ease of 
verification [30]. However, CA presents 

challenges in modelling non-trivial systems due 
to lack of data representation.  When the 
additional complexity adds to an agent, the 
neighbouring agents’ number of states and input 
symbols increase significantly, which leads to 
state and input symbol explosion. Furthermore, 
the agents are aligned with a static grid for 
communication, therefore mobility of agents are 
limited and the ability to communicate with 
different agents is restricted. This presents an 
enormous challenge in modelling diseases as the 
communications and the iterations cannot be 
predefined due to the uniqueness of the 
individual circumstances. 

PPS defines a system as an arbitrary graph. 
Each node of the graph contains membrane, that 
assigned to multiset of objects combine with set 
of rules that uses to modify the object and 
communicating is defined as edge of the graph. 
In the perspective of the biological systems, this 
can be interpreted as abstract entities of bio-
agents (medical and/or diseases) which 
aggregate to form a complex system (human). 
PPS provides a robust mechanism to introduce 
new nodes, remove nodes, and change the 
behaviour of the defined nodes. On the other 
hand, PPS lacks the ability to represent internal 
states and individual behaviour of the nodes [15].  
This indicates a significant challenge in defining 
the individual diseases (e.g., the complexity of 
the disease models encompasses a significant 
number of input symbols and states which need 
to be monitored and manipulated closely).   

Due to the above-mentioned reasons, many 
mathematical models present significant 
challenges in modelling diseases due to the 
highly complex relationship(s) among the 
disease models. As the behaviours of the model 
are highly complex, most of the mathematical 
models have been challenged and become 
unmanageable [26]. Therefore, Wang et al. [28] 
recommended the use of formalism approaches 
for modelling the disease models. Specifically, 
SXM models will be more appropriate due to 
their power of modelling real world systems 
where the data structure and controllers need to 
be managed separately. 

3. STREAM X-MACHINE 
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An X-Machine [16] is an enhanced version 
of an FSM with a basic data set, X, and a set of 
processing functions, Φ, which operate on X. An 
X-Machine can potentially model very general 
systems as the data set X can contain information 
about the system internal memory as well as 
different output behaviours.  

A number of classes of X-Machines have 
been identified and studied [31]. Among these 
classes, the stream X-Machine (SXM) has 
received the most attention. The SXM is 
supposed to resolve a problem that exists in the 
original X-Machine which is the lack of the 
ability to process sequences of inputs and 
outputs. In this section, the Stream X-Machine 
and its related basic concepts are defined.  

 
Definition 1. A Stream X-Machine is a 

tuple: 
 
Z = (Σ, Γ, Q, M, Φ, F, q0, m0)  
 
where:  
• Σ is a finite set of input symbols, 
• Γ is a finite set of output symbols, 
• Q is a finite set of states, 
• M is a (possibly) infinite set called 

memory, 
• Φ is a finite set of partial functions φ 

(processing functions) that map 
memory-input pairs to output-memory 
pairs, φ: M × Σ → Γ × M, 

• F is the next-state partial function, F: Q 
× Φ → Q 

• q0 ∈ Q and m0 ∈ M are the initial state 
and initial memory respectively.  

Intuitively, an SXM can be thought as a 
finite automaton with the arcs labelled by 
functions from the type Φ. The automaton AZ = 
(Φ, Q, F, I, T) is called the associated finite 
automaton (FA) of Z and is usually described by 
a state-transition diagram.  

 
Definition 2. An SXM Z is called 

deterministic if the following conditions are met. 
• The associated FA is deterministic: 

o Z has only one initial state: I = 
{q0};  

o The next state function of Z 
maps each pair (state, 
processing function) onto at 
most one state: F: Q × Φ → Q;  

• Any two distinct processing functions 
that label arcs emerging from the same 
state have disjoint domains: ∀φ1, φ2 ∈ Φ, 
((∃q ∈ Q with (q, φ1), (q, φ2) ∈ dom(F)) 
⇒ (φ1 = φ2 or dom(φ1) ∩ dom(φ2) = ∅))  

An SXM is deterministic when there is 
exactly one transition for any triplet q ∈ Q, m ∈ 
M, σ ∈ Φ. 

 
Definition 3. For q ∈ Q, the language 

accepted by Z in q, denoted by LZ(q), is defined 
by: 

LZ(q) = {s ∈ Σ* | (q, s) ∈ dom(F*). 
The language accepted by Z in q0 is simply 

called the language accepted by Z and is denoted 
by LAZ. 

 
Definition 4. A state q ∈ Q is called 

accessible if ∃s ∈ Σ* with F*(q0, s) = q. Z is 
called accessible if ∀q ∈ Q, q is accessible.  

 
Definition 5. For U ⊆ Σ*, two states q1 and 

q2 are called U-equivalent if LZ(q1) ∩ U = LZ(q2) 
∩ U. Otherwise, q1 and q2 are called U-
distinguishable. If U = Σ*, then q1 and q2 are 
simply called equivalent or distinguishable. Z is 
called reduced if ∀q1, q2 ∈ Q, q1 and q2 are 
distinguishable. 

 
Definition 6. A deterministic stream X-

Machine, Z, is called minimal if and only if Z is 
accessible and reduced [16]. 

 
In what follows, we only consider minimal 

deterministic SXM (DSXM) specifications. 

4. STREAM X-MACHINE FOR 
TESTING 

The testing method was developed for SXM 
specifications that meet two design for test 
conditions: output-distinguishability and input-
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completeness (controllability) [18]. The first 
requires that every processing function can be 
distinguished by examining the output produced 
when an input is applied to any given memory 
value. Controllability basically means that every 
path in the associated automaton can actually be 
driven by suitable input sequences. Whilst the 
first condition is quite natural and can be 
satisfied by a suitable enrichment of the observed 
output, controllability is seldom met by non-
trivial specifications. Therefore, in [24], the 
original testing method is generalised by 
replacing the input-completeness condition by a 
laxer condition, called input-uniformity. 

4.1. Reaching and distinguishing states in DSXM 
 

A. Realisable sequences 

As the labels used in the state-transition 
diagram of a DSXM are actual functions, there 
may be states that are reachable in the diagram 
but cannot be reached in practice by any input 
sequence [24]. Similarly, there may be pairs of 
distinguishable states in the associated FA for 
which the sequences of processing functions that 
distinguish them can never be applied [24].  

To determine which states can practically be 
reached or distinguished, it is essential to 
identify which sequences of processing 
functions in the associated FA can be driven by 
the input sequences from each state q and 
memory value m. 

 
Definition 7. The set RΦ(m) ⊆ Φ* is defined 

to consist all sequences of processing functions 
p = φ1 · · · φn ∈ Φ*, n ≥ 0, for which there exists 
s = σ1 · · · σn ∈ Σ* such that (m, s) ∈ dom∥p∥. 
Then, LRZ(q, m) = LAZ(q) ∩ RΦ(m) and LRZ = 
LAZ ∩ RΦ(m0). 

B. r-reachable states 

It is possible to reach some states of a DSXM 
with sequences in LRZ using appropriate input 
sequences. Such states are said to be r-reachable. 

 
Definition 8. State q of Z is said to be r-

reachable if there exists p ∈ LRZ such that F*(q0, 
p) = q. 

 
Any states that are not r-reachable can be 

removed from the machine without affecting the 
function computed by the machine. Since ε ∈ 
LRZ, the initial state is always r-reachable. 

An r-state cover of Z is a minimal set of 
realisable sequences Sr ⊆ LRZ, ε ∈ Sr, that reaches 
every r-reachable state in Z.  

 
Definition 9. A set Sr ⊆ LRZ is called an r-

state cover of Z if: 
• ε ∈ Sr 
• For every r-reachable state q of Z, there 

exists p ∈ Sr such that F*(q0, m) = q. 
For every two distinct sequences p1, p2 ∈ Sr, 

F*(q0, p1) ≠ F*(q0, p2). 

C. Separable states 

States in the specifications can be 
distinguished by applying a finite set of 
realisable sequences of processing functions to 
their current memory values [24]. More 
formally, the set MAtt(q) of attainable memory 
values in state q is defined to consist all memory 
values computed along all sequences in LRZ that 
reach q. 

m ∈ MAtt(q) if there exists p ∈ LRZ, s ∈ Σ*, g 
∈ Γ* such that F*(q0, p) = q and ∥p∥(m0, s) = (g, 
m).  

States q1 and q2 are said to be r-
distinguishable if there exists a finite set of 
sequences Y such that for every m1 ∈ MAtt(q1) 
and every m2 ∈ MAtt(q2), LRZ(q1, m1) ∩ Y ≠ 
LRZ(q2, m2) ∩ Y. 

Based on [22], it can be said that r-
distinguishability is sufficient when the DSXM 
model of the implementation is known to be 
controllable. On the other hand, a stronger 
condition, called separability, is required which 
ensures that states are r-distinguished by 
sequences with overlapping domains [32]. 

Definition 10. States q1 and q2 are said to be 
separable if there exists a finite set of sequences 



Authors et al. 

6 

Y such that for every m1 ∈ MAtt(q1) and every m2 
∈ MAtt(q2), there exists p1 ∈ LRZ(q1, m1) ∩ Y and 
p2 ∈ LRZ(q2, m2) ∩ Y such that p1 ≠ p2 and 
dom∥p1∥ ∩ dom∥p2∥ ≠	∅. Y is said to separate 
between q1 and q2. 

Definition 11. A separating set Ws ⊆ Φ* of 
Z is a set of sequences of processing functions 
that separates between every pair of separable 
states of Z.  

4.2. Design for test conditions 

Definition 12. Φ is said to be output-
distinguishable if for all φ1, φ2 ∈ Φ, whenever 
there exists m, m1, m2 ∈ M, σ ∈ Σ, γ ∈ Γ such 
that φ1(m, σ) = (γ, m1) and φ2(m, σ) = (γ, m2), 
then φ1 = φ2. 

 
With the output-distinguishability condition, 

testers can determine the sequence of processing 
functions applied in the implementation under 
test (IUT) by examining the output sequence 
produced when an input sequence is applied. 

Whilst the output-distinguishability 
condition is quite natural and can be satisfied by 
a suitable enhancement of the observed output, 
the input-completeness condition is seldom met 
by non-trivial SXM specifications [22]. This 
condition is normally enforced by designing 
extra input symbols to trigger the functions. 
Nevertheless, these additional inputs must be 
removed after testing has been completed and 
thus, it can potentially lead to extra errors in the 
specification. In [24], the input-completeness 
was slightly relaxed, being replaced by the input-
uniformity condition which also suffers from the 
same limitations [22]. Therefore, in this paper, 
the input-completeness or input-uniformity 
condition is no longer required in the 
specification. 

4.3. Reduced test function 

A test generation process includes two 
phases: initially, test cases are derived in the 
form of sequences of processing functions and 
later on, these sequences of processing functions 
are transformed into input sequences which are 
also referred to as the actual test data [22]. 

A test function is a function of the general 
form t: Φ* à Σ* that satisfies the conditions 
which will be described later. Previous SXM 
based testing methods ( [18] [24] [32]) relied on 
the test function that appends to the longest 
realisable prefixes of the processing function 
sequence, an extra input that causes the 
invocation of a non-existing transition in the 
associate FA. In [22], a reduced test function was 
introduced to reduce the length of the test 
sequences.  

In what follows, we first present the 
definition of the original test function and then, 
we present the definition of the reduced test 
function. 

 
 Definition 13. A test function of an SXM Z 

is a function t: Φ* à Σ* that satisfies the 
following conditions:  

• t(ε) = ε. (1) 
• Let p = φ1 · · · φk ∈ Φ*, k ≥ 1. 

o If φ1 · · · φk-1 ∈ LAZ and φ1 · · · 
φk ∈ RΦ(m0), then t(p) = σ1 · · · σk 
for some σ1,…, σk such that (m0, 
σ1 · · · σk) ∈ dom∥p∥; (2) 

o Otherwise, t(p) = t(φ1 · · · φk-1). 
(3) 

 
The first rule says that an empty path is 

transformed into an empty sequence. The second 
rule states that if the longest proper prefix φ1 · · 
· φk-1 is a path in AZ then t(p) is an input sequence, 
if exists, that drives p. Eventually, when φ1 · · · 
φk-1 is not a path in AZ or no such input sequence 
exist, the construction of t(p) is recursively 
reduced to the construction of t(φ1 · · · φk-1). 

 
Definition 14. A reduced test function of an 

SXM Z is a function τ: Φ* à Σ* that satisfies the 
following conditions: 

• τ(ε) = ε. (1) 
• Let p = φ1 · · · φk ∈ Φ*, k ≥ 1. 

o If φ1 · · · φk-1 ∈ LRZ, then τ(p) = 
σ1 · · · σk for some σ1,…, σk such 
that (m0, σ1 · · · σk) ∈ dom∥p∥; (2) 

o Otherwise, τ(p) = τ(φ1 · · · φk-1). 
(3) 
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As above, if p = φ1 · · · φk is a path in AZ then 

τ(p) is a sequence of inputs that drives p, if there 
exists. Otherwise, if p = φ1 · · · φk is not a path in 
AZ or there exists no such an input sequence, 
then τ returns an input sequence that drives the 
longest prefix of p that is a path in AZ (without 
extending this prefix with an input to check the 
first non-existing arc, like in the case of t. In this 
paper, we will be using the reduced test function 
to generate input sequences for a processing 
function sequence.  

4.4. Deriving integration test sequences through 
state-counting 

The state-counting approach was described 
in detail in [22] and [24] with intuitive examples. 
In this paper, we summarise the key values and 
sets used in equation (1) which calculates the test 
suite U:  

 

U =	 , -𝑝!/𝑝𝑟𝑒𝑓3𝑉(𝑞)8𝑊"
!	∈	%!

									(1) 

 
In order to construct the test suite U, we first 

need to select two sets of sequences of 
processing functions, Sr and Ws, and of a relation 
ds on the states of Z as follows: 

• Sr is a non-empty set of realisable 
sequences such that no state in Z is 
reached by more than one sequence in 
Sr. 

• Ws is a finite set that separates between 
separable states of Z. Ws is required to be 
non-empty. 

• ds: Q ←→ Q is a relation on the states of 
Z that satisfies the following conditions: 
for every two states q1, q2 ∈ Q, if (q1, q2) 
∈ ds then q1 and q2 are separated by Ws. 
The relation (ds) identifies pairs of states 
that are known to be separated by Ws.  

• The maximal sets Q1,...,Qj of states of Z 
that are known to be pairwise separated 
by Ws. 

 
The definition of the set V(q) can be found in 

[24]. 

For any choice of Sr, Ws, and ds and for every 
q ∈ Qr, the set V(q) can be computed [24]. Once 
the V(q) sets have been constructed, a test suite 
can be generated by taking all sequences in 
{pq}pref(V(q)), concatenating them with Ws and 
applying the reduced test function τ: Φ* à Σ* to 
every resulting sequence of processing 
functions. 

For any choice of Sr, Ws, and ds, the set U is 
finite and computable [24]. 

The test suites generated using the state-
counting approach may be significantly larger 
than those generated by the W-method. 
However, the size of the test suite and the 
complexity of the test generation algorithm can 
be significantly reduced by designing the SXM 
specification in which all states are pairwise r-
distinguishable [24].  

5. THE T-SXM TOOL 
In this section, we present the T-SXM tool, 

which implements the strength of the SXM-
based testing strategy.  

T-SXM is a tool, developed in Java, that 
allows the specification of SXM models, and 
most importantly, the automated test generation. 

5.1. The package and class diagram 

Fig. 1 shows the class diagram which is the 
design for the T-SXM tool, where: 

 
• SXMBase: the base data model of an 

SXM, 
• SXM: the extension of SXMBase with 

testing functions, 
• State: the state of the SXM, 
• Memory: the memory of the SXM, 
• Function: the processing function of the 

SXM, 
• Transition: the transition of the SXM, 
• Variable: the input and output alphabet 

of the SXM, 
• DataType: the data type of the SXM, 
• InputType: the input type of the SXM, 
• OutputType: the output type of the 

SXM. 
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• InputMemoryPair: the input – memory 
tuple, 

• OutputMemoryPair: the wrapper class 
for the output – memory tuple that a 

processing function should return after 
completing the computation.

 

 

5.2. The related algorithms 

This section outlines the algorithms that are 
used to validate an SXM specification and derive 
the key values and sets of equation (1) discussed 
in section II.C.4. 

A. Algorithm for checking output-
distinguishability condition 

As output-distinguishability is one of design 
for test conditions, we developed a dedicated 

algorithm to ensure the specification meets this 
condition. 

 
Input: None 
Output: boolean 
--------------------------------------------------------------------------- 
 
possibleInputs ß all combinations of possible inputs 
possibleMemories ß all combinations of possible memory values 
functionSet ß set of all processing functions 
 
pairsOfNonDistinguishableFunctions = {} 
 
While possibleMemories != {}:  
 While possibleInputs != {}: 

Fig. 1. T-SXM class diagram 
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  pm ß get memory element 
  pi ß get input element  
 
  outputsForThisInput = {} 
 
  While functionSet != {}: 
   f ß get function 
   If F(pi, pm) ∈ domain(f), then:  
    outputsForThisInput 
= outputsForThisInput ∪ Pair(f, output) 
 
  For every Pair(f1, output1), (f2, output2) ∈ 
outputsForThisInput:  
   If there exists any f1 != f2 and 
output1 = output2, then: 
   
 pairsOfNonDistinguishableFunctions =  
    
 pairsOfNonDistinguishableFunctions ∪ Pair(f1, f2) 
    
If PairsOfNonDistinguishableFunctions = {}, return true. 
Otherwise, return false. 

 

B. Algorithm for generating Sr and Qr 

Sr and Qr are two of the key sets required in 
equation (1) discussed in section II.C.4. This 
algorithm is designed to identify all the r-
reachable states in the SXM specification and 
construct the Sr and Qr sets accordingly. Also, all 
the states that are not r-reachable along with the 
arcs (transitions) emerging from or arriving to 
them will be removed. 

 
Input: None 
Output: None (this function will directly update the Sr and Qr sets in the 
machine) 
--------------------------------------------------------------------------- 
 
Sr = {} 
Qr = {} 
possibleInputs ß all combinations of possible inputs 
possibleMemories ß all combinations of possible memory values 
stateSet ß set of all states 
 
While stateSet != {}: 
 q ß get state 
 For all pi ∈ possibleInputs, pm ∈ possibleMemories: 
  If there exists a sequence of functions, p, that 
actually reach q, then: 
   Qr = Qr ∪ q 
   Sr = Sr ∪ p 
 
Remove all states that are not r-reachable 
Remove all arcs (transitions) emerging from or arriving to those states. 
 

C. Algorithm for generating Qi set 

This algorithm is the solution for 
constructing the Qi sets. 

 
Input: Ws, nonSeparablePairsOfStates 
Output: None (this function will directly update the Qi set in the 
machine) 
--------------------------------------------------------------------------- 
 
Qi = {} 
 
If nonSeparablePairsOfStates = {}: 
 Qi = Qi ∪ Qr 
Else: 
 For each pair(q1, q2) ∈  nonSeparablePairsOfStates: 
  setOne = {q1} 
  setTwo = {q2} 
 
  For each q ∈ Qr: 
   If q and q1 are pairwise 
separated: 
    setOne = setOne ∪ 
q 
   If q and q2 are pairwise 
separated: 
    setTwo = setTwo ∪ 
q 
 
  If setOne does not exist in Qr: 
   Qi = Qi ∪ setOne 
 
  If setTwo does not exist in Qr: 
   Qi = Qi ∪ setTwo 
 

D. Algorithm for computing V(q) 

Based on the key values and sets which are 
computed by algorithms b and c, we can derive 
the V(q) using this algorithm. 

 
Input: k ß estimated number of states in the IUT, state q 
Output: Vq 
--------------------------------------------------------------------------- 
 
Vq = {} 
stateCountQis = {n0 = 0, n1 = 0,..., nj = 0} ß j = length of Qi set 
 
Y = {Triplet(<>, q, stateCountQis)} ß list of triplets each of which 
contains 3 elements: function sequence, state, and stateCountQis 
 
While Y != {}: 
 y = Y.remove(0) 
 yFunctionSequence = y.getValue0() 
 yState = y.getValue1() 
 yStateCountQis = y.getValue2() 
 
 For each φ ∈ functions deriving from yState: 
  If F(yState, φ) ∈ Qi, then:  
   stateCountQis[i] += 1 
   
  If there exists i, 0 <= i <= length(Qi) such that 
stateCountQis[i] = k – length(Qi’) + 1, then: 
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   Vq = Vq ∪ 
{...yFunctionSequence, φ} 
  Else: 
   Y = Y ∪ 
Triplet({...yFunctionSequence, φ}, F(yState, φ), 
updatedStateCountQis) 
 
Return Vq 
 

E. Algorithm for computing the test suite U 

This algorithm is designed to derive the test 
suite U using the results obtained from algorithm 
d. 

 
Input: k ß estimated number of states in the IUT 
Output: SetOfInputSequences (U) 
--------------------------------------------------------------------------- 
 
U = {} 
 
For each q ∈ Qr: 
 pq ß Get realisable sequence for state q 
 Vq = generateVq(k, q) ß Algorithm f 
 
 For each t ∈ Vq: 
  s = pq tWs 
  U = U ∪ s 
 
Return U 
 

5.3. Correctness of an SXM description using 
the T-SXM tool 

The T-SXM tool supports two basic levels of 
correctness for an SXM specification, namely 
the semantic level, and the logical level.  

A. Semantic level 

This level guarantees that an SXM 
specification is at least mathematically correct. 
At least three basic conditions should be 
checked: 

• Data types: the types contain the 
parameters and returning values that is 
legally accepted by the specification. 
Data type checking is also applied for 
the definition of external operators. 
They are used to define the types of the 
input, output and memory. 
Consequently, the system is responsible 
for ensuring that the values returned by 

the operators are of the expected data 
type.  

• Sets: anything that is defined as a set 
(i.e., data type set, state set, function set, 
transition set) should not contain 
duplicated elements.  

• Functions: each function is applied to a 
tuple containing an input and a memory 
state, and produces another tuple 
containing an output and a memory 
state. Any typical Java function that has 
the OutputMemoryPair object as the 
return type and takes the 
InputMemoryPair object as the only 
parameter will automatically be treated 
as a processing function. Therefore, the 
system guarantees that the same function 
should not be able to produce more than 
one output – memory state tuples for one 
input – memory state tuple. Note that if 
m ∈ M, σ ∈ Σ, and (m, σ) ∈ dom φ, then 
φ must return a non-null 
OutputMemoryPair object. 

B. Logical level 

This level takes care of the checking for the 
model’s general consistency. Questions referring 
to the model’s input-completeness, output-
distinguishability, minimality, etc. should be 
addressed. These conditions must be checked 
before starting the test generation process.   

6. CASE STUDY 
A patient getting diabetic has four stages 

namely pre-metabolic syndrome, metabolic 
syndrome, pre-diabetic, and type II diabetes. A 
patient can start off with any single stage of these 
stages, depending on the time of the diagnosis.  

To begin with, we identify the possible paths 
that the disease can take and look for all the 
possible scenarios that a patient can progress 
with the disease. The stage of the disease is 
initially determined by evaluating the number of 
positive symptoms that a patient is experiencing 
at the time of the diagnosis. The evaluation 
criteria of the symptoms are as follows. 

• a waist circumference of:  
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o 94cm or more in European men, 
or 90cm or more in South Asian 
men,  

o a waist circumference of 80cm 
or more in European and South 
Asian women.  

• high triglyceride levels (fat in the blood) 
and low levels of HDL (the “good” 
cholesterol) in the blood, which can lead 
to atherosclerosis (where arteries 
become clogged with fatty substances 
such as cholesterol).  

• high blood pressure (BP) that's 
consistently 140/90mmHg or higher.  

• an inability to control blood sugar levels 
(insulin resistance).  

• a tendency to develop irritation and 
swelling of body tissue (inflammation). 
  

Based on the preliminary identification of 
number of symptoms, medical practitioners can 
determine which state of the disease a patient is 
in. With a set of determination criteria in Table 
1, we designed the state-transition diagram (Fig. 
2) for Stream X-Machine that represents the full 
diagnostic process. The first four states (Start, 

Triglyceride levels checked, Waist 
circumference checked, and BP checked) help to 
count the number of symptoms the patient is 
suffering from.  The five states that proceed to 
the diagnostics of the disease are Normal, Pre-
Metabolic Syndrome, Metabolic Syndrome, Pre-
Diabetes, and Type II Diabetes. These five states 
are relevant to the data gathered in the 
perspective of the symptoms. We consider that 
the initial state of diabetes is Normal. If a patient 
is presenting with one or two symptoms, they are 
in the Pre-Metabolic Syndrome state. Thereafter, 
if a patient presents with three or more 
symptoms, they are in the Metabolic syndrome 
state. Likewise, if the patient is presenting with 
four or more symptoms, they are in Pre-diabetes 
state. Finally, a patient is in Type II diabetes state 
if they have five or more symptoms.  

Table 1. Diabetic state determination criteria 

Diabetic state Number of symptoms that a 
patient presents at the time 
of diagnosis  

Pre-metabolic syndrome One to two 
Metabolic syndrome Three or more 
Pre-diabetic Four or more 
Type II diabetic Uncontrollable insulin levels 

 
 

 

Fig. 2. State-transition diagram for Type 2 diabetes diagnostic process 
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7. RESULTS 
Let n and n’ be the number of states of the 

specification and the IUT, respectively, and k = 
number of processing functions in the 
specification. The worst scenario is when Sr = Ws 
= {ε}, which means only the initial state is r-
reachable by Sr and no states are pairwise 
separated by Ws, so the Qi set only contains 
singletons. As a consequence, the test set 
consists of all sequences that reach some states 
in Q n’ times. According to [22], as there are n 
states in Q, the upper bound on the number of 
such sequences is proportional to kn.n’. However, 
this extreme seldom happens in practice. In usual 
applications, all states are r-reachable and there 
are at most only a few pairs of states that are non-
separable. In most scenarios, it is safely to 
assume that the number of states in the 
specification represents a good approximation 
for the number of states in the IUT (otherwise, it 
would demonstrate a gross misunderstanding 
from the part of the developers) [22]. As a result, 
in the experiment, we do not assume n’ to be 
significantly larger than n. Also, the test 
generation was performed on a 3.1 GHz Dual-
Core Intel Core i5. 

Table 2 shows the number of test cases 
generated and the time required for the test 
generation for the Type II diabetes case study 
discussed in section 6 with different values of n’. 
The absolute times in seconds are provided only 
as an indication. 

Table 2. Number of generated test cases and generation 
time for different values of n’ 

n’ 10 11 12 
Number of 
test cases 

5296 5414 5526 

Time to 
generate 
(sec) 

1.313 1.602 1.343 

 

 

8. RELATED TOOLS 
Currently, a small number of SXM tools is 

available. Most tools concentrated on the 
modelling and animation of SXM models like 
[33] and [34]. 

SXMtool [35] is a tool for SXM models and 
the automatic test generation. However, it is not 
evident if this tool is capable of generating 
concrete test cases, since the authors only 
demonstrated the generation of the processing 
function sequences. 

JSXM [17] is a tool that supports the 
animation of SXM models for model validation, 
the automatic generation of abstract test cases 
from the SXM specifications and the 
transformation of abstract test cases into 
concrete test cases in the implementation 
language of the SUT. This tool is supposed to be 
the only tool available for automatically 
generating concrete (executable) test cases based 
on the SXM testing method. 

In comparison, although T-SXM does not 
support model animation like the other tools, it 
can generate concrete test cases for an SXM 
specification just like what JSXM is capable of. 
However, T-SXM overcomes JSXM with the 
ability to validate an SXM specification (e.g., 
check for accessibility, check for the output-
distinguishability condition, etc.). Also, while 
JSXM requires manual input of the r-state cover 
to start generating test cases, T-SXM can 
automatically detect all the r-reachable states and 
construct the corresponding r-state cover.  To the 
best of our knowledge, T-SXM is the only tool 
that uses Java as the language for specifying an 
SXM specification using intuitive wrapper 
classes. This is considered as an advantage for T-
SXM over the other tools as the processing 
functions can be implemented in a much more 
intuitive way compared to using in-line C or Java 
code within XMML or XMDL.  

9. CONCLUSIONS 
In conclusion, given that this study is based 

on the theoretical foundations presented in [10], 
the newly proposed T-SXM tool is built based on 
the state-counting approach which helps to 
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overcome the limitations that have been 
presented in the previous version. In order to 
demonstrate the improvements of the current 
version, we have employed a case study from the 
medical domain where it is very challenging to 
design models which adhere to the design-for-
test conditions. With the success of modelling 
and generating test sequences for a chronic 
disease (Type II diabetes), this paper has 
demonstrated that this tool can be employed not 
only in the software engineering domain but also 
in the other domains where dynamic and 
complex models are required. As the main 
researchers of this project, we believe that this is 
a significant milestone not only in improving the 
T-SXM tool, but also in expanding the horizons 
of its capabilities of being employed in other 
domains. We will conduct further research to 
improve the tool and make it more effective for 
testing object-oriented systems, especially those 
written in the Java programming language. 
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