
A novel software fault prediction approach to predict error-type proneness in the
Java programs using Stream X-Machine and machine learning

Author
Organisation

City
Email

Author
Organisation

City
Email

Author
Organisation

City
Email

Abstract—Software fault prediction makes software quality
assurance process more efficient and economic. Most of the
works related to software fault prediction have mainly focused
on classifying software modules as faulty or not, which does not
produce sufficient information for developers and testers. In
this paper, we explore a novel approach using a streamlined
process linking Stream X-Machine and machine learning
techniques to predict if software modules are prone to having a
particular type of runtime error in Java programs. In
particular, Stream X-Machine is used to model and generate test
cases for different types of Java runtime errors, which will be
employed to extract error-type data from the source codes. This
data is subsequently added to the collected software metrics to
form new training data sets. We then explore the capabilities of
three machine learning techniques (Support Vector Machine,
Decision Tree, and Multi-layer Perceptron) for error-type
proneness prediction. The experimental results showed that the
new data sets could significantly improve the performances of
machine learning models in terms of predicting error-type
proneness.

Keywords-component; software fault prediction; Stream X-
Machine; error-type proneness prediction;

I. INTRODUCTION
Software quality assurance (SQA), which includes formal

code inspections, code walkthroughs, software testing,
validation, verification, and software fault prediction, ensures
the desired software quality at a lower cost by monitoring and
controlling the Software Development Life Cycle (SDLC) [1].
However, complete testing of a software system is practically
not possible as it consumes an enormous amount of time and
resources [2] [3]. Also, faults are not uniformly distributed
among software modules, which makes it less efficient when
spending the same amount of testing resources and efforts to
every module of the system under test (SUT). Therefore,
software fault prediction (SFP) comes to solve this problem.
SFP aims to economically optimise the allocation of limited
SQA resources with prior prediction of the fault-proneness of
software modules/classes. For instance, if there are only 25%
resources available, the prior knowledge of the more
vulnerable areas will help testers/developers prioritise the
available resources on fixing the modules/classes that are
more prone to faults. Hence, within a limited time and budget,

a robust software can still be produced. Over the last three
decades, the use of SFP techniques to identify faulty software
modules as early as possible within the SDLC has gained
considerable attention from researchers and software
developers.

According to Rathore and Kumar [1], the definition of
software fault proneness is very ambiguous and can be
measured in different ways since a fault can happen in any
phase of the SDLC and some faults remain undetected during
the testing phase and forwarded to regular use in the field.
Also, most of the SFP approaches are based on the binary-
class classification which predicts whether a software module
is fault prone or not fault prone [1] [2]. However, this
approach provides an ambiguous picture of fault prediction
because some modules are indeed more fault-prone and thus,
require more attention than the others [1]. In reality, it would
be more beneficial for software testers or analysts to focus on
more severe areas of the system if the SFP models can provide
more information about the faultiness of the software modules
such as the number of faults in a module, ranking of modules
fault-wise, severity of a fault, etc. [1] [2] [4].

Also, in their studies, Menzies et al. [4] and Rathore and
Kumar [1] pointed out that the techniques/approaches used for
SFP have hit the “performance ceiling”. Thus, simply
applying different or better techniques will not guarantee an
improved performance. In order to achieve better prediction
performance, Menzies et al. [5] suggested the use of additional
information when building SFP models while Rathore and
Kumar [1] recommended researchers to consider new
approaches for SFP.

Currently, only a few researchers have paid attention to
predicting the number of faults and the severity of faults in the
software modules. In [2] [6] [7], the authors presented their
SFP approaches with the severity ranking of the software
modules and the number of defects taken into consideration.
Some SFP studies demonstrated that a few numbers of
modules contain most of the faults in the system. For instance,
Ostrand et al. [8] proposed a study to detect the number of
faults in top 20% of the files. However, to the best of our
knowledge, there have been no SFP approaches that provide
information about the types of faults existing in each software
module. Therefore, in this paper, we are motivated to employ
Stream X-Machine (a formal specification method) and
machine learning techniques to propose a novel SFP approach

that can predict if a software module is prone to having an
error type. As Menzies et al. [5] suggested that researchers
should concentrate on finding solutions that work best for the
groups of related projects rather than trying to seek general
solutions that can be applied to many projects, our approach
will primarily focus on runtime error types in the Java
programming language (JPL).

The rest of the paper is structured as follows. Section II
contains the background research about software fault
prediction and Stream X-Machine, respectively. Section III
outlines the proposed methodology which illustrates the link
between Stream X-Machine and machine learning in the SFP
context. Section IV explains how the experiments were set up.
Section V consists of the experimental results. Section VI
concludes the paper and provides the directions for future
work.

II. BACKGROUND

1. Software fault prediction
Software fault prediction aims to predict the fault-

proneness of modules in a given SUT. The process of SFP
typically includes training a prediction model using the
underlying properties of the software project, and
subsequently using the prediction model to predict faults for
unknown software projects. Figure 1 illustrates an overview
of the SFP process. Firstly, software project repositories are
collected to extract software fault data that is related to the
SDLC such as source code, change logs, and fault
information. Secondly, independent variables (a.k.a. features
or inputs to be analysed) are collected by extracting values of
multiple software metrics (e.g., Lines of code – LOC) while
dependent variables are the required fault information with
respect to the fault prediction (e.g., number of faults, fault
prone or not fault prone). Thirdly, statistical and machine
learning techniques are used to construct the SFP models.
Finally, different measures (e.g., accuracy, precision, recall,
F1-score, and Area Under the Curve – AUC) [1] [9] are
applied to evaluate the performance of the built SFP model. In
the following subsections, we further elaborate software fault
data set and prediction techniques used in SFP with related
works.

1.1. Software fault data set
Software fault data set plays a role as the training data set

and testing data set during SFP process. It consists of three
main components: set of software metrics, fault information,
and meta information about the software project. In the
upcoming subsections, these components are reviewed in
detail.

1.1.1. Software metrics
Software metrics are the timely and continuously

measured information of different characteristics of a software
product [10]. Software metrics can be used to quantitatively
analyse and evaluate the quality of a software product [1].
According to Bansiya and Davis [11], each software metric is
related to some functional properties such as coupling,
cohesion, inheritance, etc., and is used to derive an external

quality attribute such as reliability, testability, or fault-
proneness. There are various software metrics in the literature
such as Object-Oriented (OO) metrics with CK metrics suite
[12], MOODS metrics suite [13], Bansiya metrics suite [11],
etc.; or Traditional metrics with Size metrics (e.g., Function
Points – FP, Source lines of code – SLOC, Kilo-SLOC –
KSLOC), Quality metrics (e.g., Defects per FP after delivery,
Defects per SLOC or KSLOC after delivery), System complex
metrics [14], Halstead metrics [15], etc. According to Rathore
and Kumar [1], various works have been conducted to
evaluate the capabilities of software metrics for SFP;
however, with the availability of the NASA and PROMISE
data repositories, many researchers have started to perform
their studies using open-source software projects (OSS). The
benefit of using OSS is that it enables anyone to replicate the
study and verify its findings.

Based on the study of Rathore and Kumar [1], some
observations drawn from the software metrics literature are as
follows:

• The metrics that perform well in one environment
may not perform similarly in another (e.g., open-
source environment vs. commercial environment).

• Most of the studies confirmed that OO metrics (e.g.,
coupling between objects – Coupling Between
Objects – CBO, Response for a Class – RFC, and
Weighted Method Count – WFC) are the best
predictors of faults.

• Many studies have reported the positive correlation
between size metric (e.g., Lines of Code – LOC) and
fault proneness.

1.1.2. Project’s fault information
The fault information indicates how faults are recorded in

a software module and their severity levels. Fault data is
collected and recorded in an associated database during
requirements, design, development, and in various testing
phases of the software project [16]. According to Radjenovic
et al. [17], there are three fault data repositories that can be
used for SFP including Private/commercial, Partially
public/freeware, and Public (e.g., NASA and PROMISE
repositories). Some of the fault data sets included information
on both the number of faults and severity of faults (e.g., KC1,
KC2, KC3, PC4, and Eclipse 2.0, 2.1, 3.0, etc. from the
PROMISE data repository) [1], which makes it easier for
software engineers to focus their testing efforts on the most
sever modules first or to allocate the testing resources
optimally [18].

1.1.3. Meta information about project
Meta information about the software project contains

contextual information about various characteristics
(properties) of that project such as the domain of software
development, the number of revisions, etc. [1]. According to
Hall et al. [19], the current knowledge about the influence of
context variables on the SFP models is still limited; therefore,
most of the studies did not pay much attention on the context
variables before building the SFP models. Some of the basic
contextual variables/factors that are applied in SFP are Source
of Data, Maturity of the System, Size, Application Domain,

and The Granularity of Prediction. In their systematic
literature review, Hall et al. [19] analysed 19 papers and
figured out that context variables affect the performance of
SFP model. Also, they found that large-sized software
projects tend to have higher probability of fault detection.
Additionally, the maturity of the system, the programming
language used, or the granularity level of prediction has little
or no impacts on the model’s performance.

1.1.4. Data quality
According to Rathore and Kumar [1], the quality of SFP

models highly depends on the quality of the fault data set.
Public data sets (e.g., NASA and PROMISE data
repositories), which are typically used in SFP studies, may
deteriorate the performance of the classifiers as they may
contain irrelevant or unnecessary information. From their
study, Rathore and Kumar [1] found evidence that data quality
issues have not been handled adequately in many SFP
approaches. Therefore, the performances of the learners are
not up to the mark. According to Gray et al. [20], there are a
number of quality issues associated with software fault data
sets that researchers need to properly handle before using
them to construct SFP models.

• Outlier: Outliers are the data points that do not meet
the general behaviour of the data [1]. Outliers are
essential in SFP as they may indicate faulty modules.
Therefore, arbitrarily removing outliers can
potentially lead to insignificant results.

• Missing value: Values that are left blank in the data
set. According to Gray et al. [21], some prediction
techniques can automatically deal with missing
values and no special care is required.

• Repeated value: Two or more attributes have the
same values for each instance. Gray et al. [21]
suggested removing one of the attributes so that the
values are only represented once in the data set.

• Redundant and irrelevant value: Same features
(attributes) describe multiple modules with the same
class label [1]. These data points are problematic in
the context of SFP. Therefore, Gray et al. [21]
suggested that the classifiers should be tested upon
such data points independently of those used during
training [1]. This issue needs to be addressed before
building any prediction model.

• Class imbalance: Certain types of instances (minor
class) are mostly dominated in the data set by the
other types of instances (major class) [1]. In such
cases, the classifiers may have biases towards the
instances of the major class. Therefore, poor results
can be produced for the minor class instances [22].

• Data shift problem: Data shifting is a problem where
the joint distribution of the training data is different
from the distribution of the testing data.

• High dimensionality of data: The data set is stuffed
with unnecessary features. According to Gao et al.
[23], higher dimensional data can potentially lead to
lower classification accuracy, higher computational
cost, and higher memory usage.

To sum up, this subsection has provided an overview of
the software fault data set used in most of the SFP approaches
by outlining its main components with related works and
figuring out the potential quality issues that researchers need
to pay attention to when using public data sets. Also, it can be
seen that the existing fault data sets do not contain information
about error types, which makes it impossible for the SFP
models to predict the proneness of error types in software
modules.

Figure 1. Software fault prediction process [1]

2. Methods to build SFP models
In the literature, there is a wide range of machine learning

techniques for SFP. Based on their systematic review, Rathore
and Kumar [1] summarised various schemes used for SFP as
in Figure 2. Additionally, according to the study conducted by
Malhotra [9], the most frequently used machine learning
techniques for SFP have been C4.5 in Decision Tree (DT)
category (46%), Naïve Bayes (NB) in Bayesian learners (BL)
category (74%), Multi-layer Perceptron (MLP) in Neural
Networks (NN) category (85%), and Random Forest (RF) in
Ensemble learners (EL) category (59%). The five techniques
that performed the best in SFP were C4.5, NB, MLP, Support
Vector Machine (SVM), and RF. According to [9] and [24],
the strengths and weaknesses of these techniques are provided
in Table I.

TABLE I. STRENGTHS AND WEAKNESSES OF THE TOP FIVE MACHINE
LEARNING TECHNIQUES USED IN SOFTWARE FAULT PREDICTION

Technique Strengths Weaknesses

C4.5 - Requires less efforts for
data preparation during
pre-processing.
- Easy to build and apply.
- Comprehensive
capability.

- A small change in the
data can cause a large
change in the structure of
the model.

Random
Forest (RF)

- It can efficiently handle
large data and is a
consistent performer.
- Robust to noisy and
missing data.
- Fast to train, robust
towards parameter settings.
- Comprehensive
capability.

- Requires much more
computational power and
resources.
- Requires much more
time to train compared to
C4.5.

Naïve
Bayes (NB)

- Robust in nature.
- Easy to interpret and
construct.
- Computationally
efficient.

- Does not consider
feature correlation.
- Implicitly assumes that
all the attributes are
mutually independent,
which is almost
impossible in practice.
- Unable to discard
irrelevant attributes.

Support
Vector
Machine
(SVM)

- Has good tolerance for
high-dimensional space
and redundant features.
- Robust in nature.
- Can handle complex
functions and non-linear
problems.
- A small change in the
data does not greatly affect
the model.

- Could be tricky and
complex when handling
non-linear data.
- Requires a lot of
memory when training.
- Takes a significant
amount of time to train
on large data sets.
- Difficult to understand
and interpret by human
beings.

Figure 2. Taxonomy of software fault prediction techniques [1]

Multi-layer
Perceptron
(MLP)

- Can infer complex non-
linear input/output
transformation.

- Requires huge amount
of data.
- Computationally
expensive to train.
- The classifier produced
is incomprehensive to
interpret.

In general, a prediction model is used to predict the fault-

proneness of software modules in one of the three categories:
binary-class classification of faults, number of faults/fault
density prediction, and severity of fault prediction [1]. The use
of SFP models for binary-class classification has been
investigated by various researchers. The systematic reviews
and analysis of some of these studies can be found in [1] [9]
[25] [26]. However, there have been very few efforts that
focused on predicting the fault density or fault severity of
software modules. With the motivation of addressing the lack
of information issue in SFP (discussed in Section I), in what
follows, we only focus on analysing and critically reviewing
the SFP approaches that could provide more useful
information (e.g., prediction of number of faults and severity
of faults in software modules) for testers and developer.

In 2005, Ostrand et al. [8] proposed an approach for
predicting the number of faults and fault density using
negative binomial regression (NBR) technique. The study was
performed over the code of the file in the current release, and
fault and modification history of the file from previous
releases. The prediction aimed to identify top 20% of files
with the highest percentage of the predicted number of faults.
The analysis indicated that NBR-based models could produce
accurate results for the number of faults and fault density
predictions. However, no comparison and evaluation were
provided with respect to the actual value of faults. A similar
type of work was also reported in [27]. A few years later, Yu
[28] conducted a deeper study to investigate the effectiveness
of NBR in the context of Apache Ant software system. The
results showed that NBR could not outperform Binary
Logistic Regression in predicting fault prone modules.
However, the study demonstrated that (1) the performance of
forward assessment is better than or at least the same as the
performance of self-assessment; and (2) NBR is effective in
predicting multiple faults in one module.

In another study, Afzal et al. [29] applied genetic
programming (GP) for predicting the number of faults in a
given project. The independent variables used to train the
model were the weekly fault count data collected from three
industrial projects. The empirical results indicated a
significant accuracy rate of GP-based model for fault count
prediction. Also, in [30], Rathore and Kumar presented an
approach for predicting the number of faults using GP over
several open-source software projects. The results
demonstrated the significant accuracy and completeness of
GP-based model in predicting the number of faults in software
modules. In [31], Gao et al. presented a comprehensive
analysis of five count models including Poisson Regression
model (PR) [32], Zero-Inflated Poisson model (ZIP) [33],
NBR model, Zero-Inflated Negative Binomial model (ZINB)
[34], and Hurdle Regression model (HR) [35]. The results

showed that ZINB and HR models produced better prediction
accuracy for fault counts. Recently, Rathore and Kumar [2]
explored the capability of Decision Tree Regression (DTR)
for the number of faults prediction in two different scenarios,
intra-release and inter-release predictions for a given software
project. Five open-source software projects with their
nineteen releases collected from the PROMISE data
repository were chosen to perform the experimental study.
The results indicated that DTR-based model could produce
significant accuracy in both the considered scenarios.

Yang et al. [6] believed that predicting the exact number
of faults in a software module is difficult due to noisy data that
exists in the fault data set; therefore, the authors introduced a
learning-to-rank (LTR) approach to construct the SFP models
by directly optimising the ranking performance. The LTR
approach has two major benefits which are (1) more robust
against noisy data and (2) unlike the other approaches which
have to predict the number of faults in the software modules
before ranking them, it provides a way to rank the level of
severity of the software modules directly. The empirical
results showed the effectiveness of the LTR approach for the
ranking task.

In general, it can be seen that all of the SFP studies
reviewed in this section fall into one of the following three
categories: (i) binary-class classification of faults, (ii) number
of faults/fault density prediction, and (iii) severity of fault
prediction. There are no approaches that can indicate/identify
the types of faults existing in the software modules. With the
lack of useful information for analysts that most existing SFP
approaches are facing, we believe that it would be much more
useful for testers and/or developers if SFP models can predict
the types of faults besides the number of faults in a module or
the ranking of the modules fault-wise. The prediction of a
fault’s type and its location will enable developers to have
identify/spot out what the fault is and thus, handle it early.
Therefore, our proposed approach differs from these studies
in several ways. Firstly, beside using the set of OO metrics
recommended in [2] and [9] for constructing the SFP model,
we will introduce a data set containing information about the
types of runtime errors that can be found in the JPL by using
a formal specification method, especially Stream X-Machine,
which will be further elaborated in Section II.3. Secondly, in
our proposed work, we will explore the capabilities of the best
performing machine learning techniques (from the most
commonly used ones presented in Table I) for the purpose of
predicting if software modules are prone to having a particular
type of runtime error.

3. Stream X-Machine
A Stream X-Machine (SXM) is a comprehensive and

powerful modelling formalism that extends finite state
machines with a memory (data) structure, X, and a set of
labelled processing functions, Φ, which operate on X [36]. An
SXM can potentially model very general systems as the data
set X can contain information about the system internal
memory as well as different output behaviours. One of the
great benefits of using an SXM to specify a system is its
associated testing method which was initially developed for
deterministic SXM [37] [38] and was further extended to non-

deterministic SXM [39] and communicating SXM [40].
Under certain design-for-test conditions [37], this method can
produce a test suite that can be used to verify the correctness
of the implementation under test (IUT), provided that the
processing functions of the SXM specification have been
correctly implemented [41]. SXM has been applied
extensively in various modelling areas (e.g., modelling agents
in biology [42]) and automating software testing to evaluate
the behaviours of object-oriented systems [40] [43] [44]. The
automation helps to reduce human involvement to avoid
human errors and increase reliability of the software testing
process [36].

Definition: A Stream X-Machine is a tuple:

Z = (Σ, Γ, Q, M, Φ, F, q0, m0)
where:
• Σ is a finite set of input symbols,
• Γ is a finite set of output symbols,
• Q is a finite set of states,
• M is a (possibly) infinite set called memory,
• Φ is a finite set of partial functions φ (processing

functions) that map memory-input pairs to output-
memory pairs, φ: M × Σ → Γ × M,

• F is the next-state partial function, F: Q × Φ → Q
• q0 ∈ Q and m0 ∈ M are the initial state and initial

memory respectively.

Intuitively, an SXM can be thought as a finite automaton
with the arcs labelled by functions from the type Φ. The
automaton AZ = (Φ, Q, F, I, T) is called the associated finite
automaton (FA) of Z and is usually described by a state-
transition diagram. An example of a three-state SXM is shown
in Figure 3.

In general, from the definition of SXM and the areas where
SXM is employed, it can be seen that SXM is not related to
SFP. However, in this paper, we introduce a novel SFP where
SXM will be applied to model Java runtime errors. The details
of the proposed methodology are outlined in Section III.

III. METHODOLOGY
In Section II, we reviewed the SFP process in general,

machine learning techniques that are used in SFP, and SXM
in the context of automating software testing. In this section,
we present our proposed methodology which highlights the
link between SXM and machine learning in the context of
SFP. There are 5 essential steps which are presented as
follows:

• Step 1: Create and generate test cases for JPL runtime

errors using SXM (Figure 4).
o In particular, a runtime error might occur when one

object operates an action on another object.
Therefore, the general equation is as follows:

𝑨	𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑠	𝑜𝑛	𝑩				(1)

Where:
§ A and B are either literals (e.g., literal string,

literal integer, etc.) or references (e.g., string
reference, integer reference, object, etc.)

§ “operates on” denotes any action that A acts on
B (e.g., Number A divides Number B à
ArithmeticException error might occur; Array A
accesses Bth element of itself à
IndexOutOfBoundsException error might occur,
etc.)

o With the information about A, B, and “operates on”

from equation (1), we can determine some features of
an error such as what the error is, how it happens, and
in which context it happens. Therefore, we represent
equation (1) as a SXM for a runtime error. This
runtime error SXM is also known as an Error
Specification Machine (ESM). Figure 5 illustrates the
ESM’s state-transition diagram with five states (state
1, state 2, state 3, state 4, and state 5) and four
processing functions (getA, getOperation, getB, and
getErrorLabel).

o SXM is used to model the formal specification for
each Java runtime error (a.k.a. ESM) from the ESM’s
state-transition diagram. Subsequently, the associated
SXM testing method is applied to generate cases for
each ESM. An example of the test cases for
ArithmeticException is given in Figure 6.

• Step 2: Extract ESM values for different types of

runtime errors from software modules.
o In a software module, an ESM value for a runtime

error (e.g., IndexOutOfBoundsException) is the sum
of all the lines of code that have the pattern “A
operates on B” and that pattern matches one or more
test cases (generated from Step 1) of that error. An
example of how ESM values can be extracted is
provided in Figure 9.

Figure 3. A three-state Stream X-Machine diagram

• Step 3: Extract OO software metrics from software
modules.
o The metrics we collect include Coupling Between

Objects (CBO), Depth of Inheritance Tree (DIT),
Lack of Cohesion in Methods (LCOM), Number of
Children (NOC), Response for a Class (RFC),
Weighted Methods per Class (WMC), Lines of Code
(LOC), and Comment Lines of Code (CLOC).

• Step 4: Create new training data sets.

o Combine software metrics with the ESM value of a
runtime error to create a new training data set of the
error. This means that for each particular runtime
error, there is a corresponding training data set that
includes the ESM value of that error, alongside with
the software metrics. Figure 7 illustrates an overview
of the data set for IndexOutOfBoundsException.

o In each data set, the independent variables are the
software metrics and the ESM value of the error. The
dependent variable (a.k.a. result or outputs) has the
value of Yes or No which indicates if the software
module has the error or not. A sample data set for
IndexOutOfBoundsException is provided in Figure 8.

• Step 5: Explore the performances of different

machine learning algorithms on the new training data
sets.
o Accuracy and F1-score are used to evaluate the

performances of the trained models.

§ Accuracy score indicates the fraction or the count

of correct predictions [45].
§ F1-score is a weighted average between precision

and recall [45]. F1-score’s best value is 1 and
worst value is 0. The formula for the F1-score is
as follow:

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

To sum up, in this proposed methodology, SXM is used to

represent formal specifications of different Java runtime
errors (a.k.a. ESM) and generate test cases for these ESMs,
which will be used to extract ESM values from Java source
codes. ESM values will then be combined with the existing
OO software metrics to construct new SFP data sets which
contain information about error types. Finally, machine
learning algorithms are employed to train on these new data
sets to evaluate their effectiveness.

Figure 4. Process of creating and generating test cases for JPL runtime
errors using SXM

Figure 5. ESM's state-transition diagram

Figure 6. Example test cases for ArithmeticException

Figure 7. Overview the training data sets corresponding to different types
of runtime errors

Figure 8. Sample data set for IndexOutOfBoundsException

Figure 9. Example of how to extract ESM values from source codes

IV. EXPERIMENTAL SETUP
This section provides the details of the whole experimental

setup including the software fault data set used in this study.
Also, we present the objectives of the experiments, what
machine learning techniques were used and what tools were
applied to train SFP models.

1. Experiement objectives
The experiment was conducted with three objectives:

i) Examine the correlation between the ESM value
of each type of runtime error and the software
metrics.

ii) Investigate if the software metrics alone can be
used to predict the error-type proneness.

iii) Investigate if the software metrics and the ESM
value together can be used to predict the error-
type proneness.

2. Software fault data set
The data set of the faults used in this study was taken from

the Java source codes created by a group of volunteers (not
expert programmers) who have been asked to create a solution
for a given problem. The reason we did not use public data
sets (e.g., NASA and PROMISE data repositories) is that the
source codes of the projects featured in these data sets are not
available for us to extract the ESM values.

We used a plugin from IntelliJ IDEA [46] to obtain the
software metrics from the source codes. Also, due to not
having a dedicated tool to extract the ESM values, we did it
manually by examining each line of code carefully.

3. SXM tool
Among the SXM tools (e.g., SXMtool [47], JSXM [36],

and T-SXM [48]), in this study, we employed T-SXM as the
SXM tool for modelling and generating test cases for the
ESMs. The reason for using this tool is (1) it can automatically
generate test cases for a specification and (2) it allows using
Java as the language for modelling SXM specification while
the other tools require the specification to be written using the
X-Machine Design Language (XMLD) [49] which is not
comprehensive when logical code is required within the
model’s description.

4. SFP models and evaluation measures
The experiment in this study was conducted using scikit-

learn [45], which is an open-source library for predictive data
analysis. The three machine learning algorithms we used to
build our SFP models were Support Vector Machine (SVM),
Decision Tree (DT), and Multi-layer Perceptron (MLP).

V. EXPERIMENTAL RESULTS
In this section, we present the experimental results

corresponding to the objectives outlined in Section IV.2.

1. The correlation between the ESM value and the
software metrics

From Table II and Table III, it can be seen that the ESM
values of IndexOutOfBoundsException and

NullPointerException have no correlations with the software
metrics; hence, software metrics cannot be used to predict
ESM values.

TABLE II. CORRELATIONS BETWEEN ESM
INDEXOUTOFBOUNDSEXCEPTION AND SOFTWARE METRICS

 ESM IndexOutOfBoundsException

CBO -0.36

RFC -0.25

WMC 0.52

LOC 0.58

CLOC 0.27

TABLE III. CORRELATIONS BETWEEN ESM NULLPOINTEREXCEPTION
AND SOFTWARE METRICS

 ESM NullPointerException

CBO 0.02

RFC 0.18

WMC 0.49

LOC 0.63

CLOC 0.47

2. Investigate if the software metrics alone can be used to
predict the error-type proneness

In this experiment, for IndexOutOfBoundsException, we
trained three models with three machine learning algorithms
(SVM, DT, and MLP) on the training data set that only
consists of the software metrics (we removed the ESM
IndexOutOfBoundsException from the independent
variables). The F1-scores and accuracies of these models are
shown in Table IV. It can be seen that SVM can potentially be
used to predict IndexOutOfBoundsException proneness by
just using software metrics, while DT and MLP did not
perform well with low F1-scores and accuracy rates.

TABLE IV. F1-SCORES AND ACCURACIES OF SFP MODELS TRAINED ON
THE DATA SET WITH ONLY SOFTWARE METRICS

 SVM DT MLP

F1-score 0.89 0.57 0.75

Accuracy 0.80 0.40 0.60

3. Investigate if the software metrics and the ESM value
together can be used to predict the error-type proneness

In this experiment, for IndexOutOfBoundsException, we
trained three models with three machine learning algorithms

(SVM, DT, and MLP) on the full training data set. The F1-
scores and accuracies of these models are shown in Table V.
By comparing the results in Table IV and Table V, it can be
seen that the presence of the ESM
IndexOutOfBoundsException in the training set has
significantly improved the performances of the models,
especially DT and MLP, in terms of predicting
IndexOutOfBoundsException proneness. Therefore, in the
case of IndexOutOfBoundsException, the ESM value plays a
significant role in the training data set to help improve the
performances of the machine learning algorithms.

TABLE V. F1-SCORES AND ACCURACIES OF SFP MODELS TRAINED ON
THE DATA SET WITH BOTH SOFTWARE METRICS AND ESM VALUE

 SVM DT MLP

F1-score 0.97

(increased by
8.9%)

0.89

(increased by
56%)

0.91

(increased by
21%)

Accuracy 0.91

(increased by
14%)

0.80

(increased by
100%)

0.86

(increased by
43%)

4. Limitations and threats to validity
Experiments are always associated with a set of threats

which could potentially hinder the findings. Here, we present
some limitations and threats to the validity of the study. The
first concern is the size of the software fault data set. We did
not use public data sets like the other SFP approaches;
instead, we established the data set by collecting source codes
from voluntarily non-expert programmers. Therefore, the
size of our data set is much smaller than the public data sets
such as PROMISE and NASA. We performed the
experiments with 8 software metrics which are measured at
the class level (not at the method level). Software metrics at
method level (e.g., Halstead metrics [15]) should also be
used. We have built and evaluated SFP models over small
projects created by non-expert programmers while the other
industrial projects may possess different fault patterns.
Therefore, it is recommended that one should take care of the
underlying pattern of software system before applying the
proposed approach. Also, in the experiments, we extracted
the ESM values from the source codes manually which could
potentially lead to some unwanted mistakes.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel approach for

predicting error-type proneness in software modules using a
streamlined process linking SXM and machine learning
techniques. We assessed the performances of SVM, DT, and
MLP in two scenarios: data set with only software metrics and
data set with both software metrics and the ESM value. The
experimental results showed that the trained models
(especially DT and MLP) performed much better on the data
set with the ESM value. However, there are still a number of

limitations and threats (discussed in Section IV.4) that can
potentially affect the findings of the study.

In the future, we will develop a tool which has the
capability of extracting ESM values automatically from the
source codes, which will help us speed up the process of
collecting data and reducing mistakes. We will use more
software metrics from industrial projects with larger sizes to
improve the generalisation of the results and consolidate the
findings of our investigation.

REFERENCES

[1] S. S. Rathore and S. Kumar, “A study on software fault prediction

techniques,” Artificial Intelligence Review, vol. 51, no. 2, pp. 255-327,
2019.

[2] S. S. Rathore and S. Kumar, “A Decision Tree Regression based
Approach for the Number of Software Faults Prediction,” ACM
SIGSOFT Software Engineering Notes, vol. 41, no. 1, pp. 1-6, 2016.

[3] R. Hierons, K. Bogdanov, J. Bowen, R. Cleaveland, J. Derrick, J.
Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause and G.
Lüttgen, “Using formal specifications to support testing,” ACM
Computing Surveys (CSUR), vol. 41, no. 2, pp. 1-76, 2009.

[4] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic and Y. Jiang,
“Implications of ceiling effects in defect predictors,” Proceedings of
the 4th international workshop on Predictor models in software
engineering, pp. 47-54, 2008.

[5] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann and D. Cok,
“Local vs. global models for effort estimation and defect prediction,”
2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pp. 343-351, 2011.

[6] X. Yang, K. Tang and X. Yao, “A Learning-to-Rank Approach to
Software Defect Prediction,” IEEE Transactions on Reliability, vol.
64, no. 1, pp. 234-246, 2014.

[7] Z. Yan, X. Chen and P. Guo, “Software defect prediction using fuzzy
support vector regression,” International symposium on neural
networks, pp. 17-24, 2010.

[8] T. Ostrand, E. Weyuker and R. Bell, “Predicting the Location and
Number of Faults in Large Software Systems,” IEEE Transactions on
Software Engineering, vol. 31, no. 4, pp. 340-355, 2005.

[9] R. Malhotra, “A systematic review of machine learning techniques for
software fault prediction,” Applied Soft Computing, vol. 27, pp. 504-
518, 2015.

[10] P. Goodman, Practical Implementation of Software Metrics, London:
McGraw-Hill, 1993.

[11] J. Bansiya and C. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on software
engineering, vol. 28, no. 1, pp. 4-17, 2002.

[12] S. Chidamber and C. Kemerer, “A metrics suite for object-oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6,
pp. 476-493, 1994.

[13] R. Harrison, S. Counsell and R. Nithi, “An evaluation of the mood set
of object-oriented software metrics,” IEEE Transactions on Software
Engineering, vol. 24, no. 6, pp. 491-496, 1998.

[14] “A complexity measure,” IEEE Transactions on software
Engineering, vol. 4, pp. 308-320, 1976.

[15] M. Halstead, Elements of software science, New York: Elsevier, 1977.
[16] M. Jureczko, “Significance of different software metrics in defect

prediction,” Software Engineering: An International Journal, vol. 1,
no. 1, pp. 86-95, 2011.

[17] D. Radjenović, M. Heričko, R. Torkar and A. Živkovič, “Software
fault prediction metrics: a systematic literature review,” Information
and software technology, vol. 55, no. 8, pp. 1397-1418, 2013.

[18] P. Shanthi and K. Duraiswamy, “An empirical validation of software
quality metric suites on open source software for fault-proneness
prediction in object oriented systems,” European journal of Scientific
Research, vol. 5, no. 2, pp. 168-181, 2011.

[19] T. Hall, S. Beecham, D. Bowes, D. Gray and S. Counsell, “A
systematic review of fault prediction performance in software
engineering,” Software Engineering Softw. Eng. IEEE Trans, p. 1,
2011.

[20] T. Hall, S. Beecham, D. Bowes, D. Gray and S. Counsell, “The misuse
of the nasa metrics data program data sets for automated software
defect prediction,” A Systematic Review of Fault Prediction
Performance in Software Engineering Softw. Eng. IEEE Trans, p. 1,
2011.

[21] D. Gray, D. Bowes, N. Davey, Y. Sun and B. Christianson, “The
misuse of the nasa metrics data program data sets for automated
software defect prediction,” 15th Annual Conference on Evaluation &
Assessment in Software Engineering (EASE 2011), pp. 96-103, 2011.

[22] J. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. Chawla and F.
Herrera, “A unifying view on dataset shift in classification,” Pattern
recognition, vol. 45, no. 1, pp. 521-530, 2012.

[23] K. Gao, T. Khoshgoftaar, H. Wang and N. Seliya, “Choosing software
metrics for defect prediction: an investigation on feature selection
techniques,” Software: Practice and Experience, vol. 41, no. 5, pp.
579-606, 2011.

[24] N. Kumar, “The Professionals Point,” 2019. [Online]. Available:
http://theprofessionalspoint.blogspot.com. [Accessed 06 02 2021].

[25] H. Alsolai and M. Roper, “A systematic literature review of machine
learning techniques for software maintainability prediction,”
Information and Software Technology, vol. 119, 2020.

[26] A. Kumar and A. Bansal, “Software Fault Proneness Prediction Using
Genetic Based Machine Learning Techniques,” 2019 4th
International Conference on Internet of Things: Smart Innovation and
Usages (IoT-SIU), pp. 1-5, 2019.

[27] T. Ostrand, E. Weyuker and R. Bell, “Where the bugs are,” ACM
SIGSOFT Software Engineering Notes, vol. 29, no. 4, pp. 86-96, 2004.

[28] L. Yu, “Using negative binomial regression analysis to predict
software faults: A study of apache ant,” 2012.

[29] W. Afzal, R. Torkar and R. Feldt, “Prediction of fault count data using
genetic programming,” 2008 IEEE International Multitopic
Conference, pp. 349-356, 2008.

[30] S. Rathore and S. Kumar, “Predicting number of faults in software
system using genetic programming,” SCSE, pp. 303-311, 2015.

[31] K. Gao and T. Khoshgoftaar, “A comprehensive empirical study of
count models for software fault prediction,” IEEE Transactions on
Reliability, vol. 56, no. 2, pp. 223-236, 2007.

[32] P. Consul and F. Famoye, “Generalized Poisson regression model,”
Communications in Statistics-Theory and Methods, vol. 21, no. 1, pp.
89-109, 1992.

[33] M. Xie, B. He and T. Goh, “Zero-inflated Poisson model in statistical
process control,” Computational statistics & data analysis, vol. 38,
no. 2, pp. 191-201, 2001.

[34] M. Ridout, J. Hinde and C. Demétrio, “A score test for testing a zero‐
inflated Poisson regression model against zero‐inflated negative
binomial alternatives,” Biometrics, vol. 57, no. 1, pp. 219-223, 2001.

[35] S. Gurmu, “Semi‐parametric estimation of hurdle regression models
with an application to Medicaid utilization,” Journal of applied
econometrics, vol. 12, no. 3, pp. 225-242, 1997.

[36] D. Dranidis, K. Bratanis and F. Ipate, “JSXM: A tool for automated
test generation,” International Conference on Software Engineering
and Formal Methods, pp. 352-366, 2012.

[37] M. Holcombe and F. Ipate, Correct Systems: Building a Business
Process Solution, Berlin: Springer, 1998.

[38] F. Ipate and M. Holcombe, “An integration testing method that is
proved to find all faults,” Internat. J. Comput. Math, vol. 63, pp. 159-
178, 1997.

[39] F. Ipate and M. Holcombe, “Generating test sequences from non-
deterministic generalized stream X-machines,” Formal Aspects of
Comput., vol. 12, no. 6, pp. 443-458, 2000.

[40] F. Ipate and M. Holcombe, “Testing conditions for communicating
stream X-machine systems,” Formal Aspects of Comput., vol. 13, no.
6, pp. 431-446, 2002.

[41] F. Ipate and D. Dranidis, “A unified integration and component testing
approach from deterministic stream X-machine specifications,”
Formal Aspects of Computing, vol. 28, no. 1, pp. 1-20, 2016.

[42] S. Coakley, R. Smallwood and M. Holcombe, “Using x-machines as
a formal basis for describing agents in agent-based modelling,”
Simulation Series, vol. 38, no. 2, p. 33, 2006.

[43] F. Ipate and M. Holcombe, “Testing data processing-oriented systems
from stream X-machine models,” Theoretical Computer Science, vol.
403, no. 2-3, pp. 176-191, 2008.

[44] F. Ipate, M. Gheorghe and M. Holcombe, “Testing(Stream)X-
machines,” Applicable Algebra in Engineering, Communication and
Computing, vol. 14, no. 3, pp. 217-237, 2003.

[45] “Scikit-learn,” [Online]. Available: https://scikit-learn.org/stable/.
[Accessed 07 05 2021].

[46] I. IntelliJ, “The most intelligent Java IDE,” JetBrains, 2011. [Online].
Available: https://www. jetbrains. com/idea/.

[47] C. Ma, J. Wu and T. Zhang, “Sxmtool: A tool for stream x-machine
testing,” World Congress on Software Engineering, 2010.

[48] K. Phung and E. Ogunshile, “An algorithm for implementing a
minimal stream X-Machine model to test the correctness of a system,”
2020 8th International Conference in Software Engineering Research
and Innovation (CONISOFT), pp. 93-101, 2020.

[49] P. Kapeti and P. Kefalas, “A design language and tool for X-machines
specification,” Advances in Informatics, pp. 134-145, 2000.

[50] S. Eilenberg, “Automata, languages and machines,” Academic Press,
vol. A, 1974.

[51] F. Ipate and M. Holcombe, “A method for refining and testing
generalized machine specifications,” J. Computer Math, vol. 68, pp.
197-219, 1998.

