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Abstract—Software fault prediction makes software quality 
assurance process more efficient and economic. Most of the 
works related to software fault prediction have mainly focused 
on classifying software modules as faulty or not, which does not 
produce sufficient information for developers and testers. In 
this paper, we explore a novel approach using a streamlined 
process linking Stream X-Machine and machine learning 
techniques to predict if software modules are prone to having a 
particular type of runtime error in Java programs. In 
particular, Stream X-Machine is used to model and generate test 
cases for different types of Java runtime errors, which will be 
employed to extract error-type data from the source codes. This 
data is subsequently added to the collected software metrics to 
form new training data sets. We then explore the capabilities of 
three machine learning techniques (Support Vector Machine, 
Decision Tree, and Multi-layer Perceptron) for error-type 
proneness prediction. The experimental results showed that the 
new data sets could significantly improve the performances of 
machine learning models in terms of predicting error-type 
proneness. 

Keywords-component; software fault prediction; Stream X-
Machine; error-type proneness prediction; 

I. INTRODUCTION 
Software quality assurance (SQA), which includes formal 

code inspections, code walkthroughs, software testing, 
validation, verification, and software fault prediction, ensures 
the desired software quality at a lower cost by monitoring and 
controlling the Software Development Life Cycle (SDLC) [1]. 
However, complete testing of a software system is practically 
not possible as it consumes an enormous amount of time and 
resources [2] [3]. Also, faults are not uniformly distributed 
among software modules, which makes it less efficient when 
spending the same amount of testing resources and efforts to 
every module of the system under test (SUT). Therefore, 
software fault prediction (SFP) comes to solve this problem. 
SFP aims to economically optimise the allocation of limited 
SQA resources with prior prediction of the fault-proneness of 
software modules/classes. For instance, if there are only 25% 
resources available, the prior knowledge of the more 
vulnerable areas will help testers/developers prioritise the 
available resources on fixing the modules/classes that are 
more prone to faults. Hence, within a limited time and budget, 

a robust software can still be produced. Over the last three 
decades, the use of SFP techniques to identify faulty software 
modules as early as possible within the SDLC has gained 
considerable attention from researchers and software 
developers. 

According to Rathore and Kumar [1], the definition of 
software fault proneness is very ambiguous and can be 
measured in different ways since a fault can happen in any 
phase of the SDLC and some faults remain undetected during 
the testing phase and forwarded to regular use in the field. 
Also, most of the SFP approaches are based on the binary-
class classification which predicts whether a software module 
is fault prone or not fault prone [1] [2]. However, this 
approach provides an ambiguous picture of fault prediction 
because some modules are indeed more fault-prone and thus, 
require more attention than the others [1]. In reality, it would 
be more beneficial for software testers or analysts to focus on 
more severe areas of the system if the SFP models can provide 
more information about the faultiness of the software modules 
such as the number of faults in a module, ranking of modules 
fault-wise, severity of a fault, etc. [1] [2] [4]. 

Also, in their studies, Menzies et al. [4] and Rathore and 
Kumar [1] pointed out that the techniques/approaches used for 
SFP have hit the “performance ceiling”. Thus, simply 
applying different or better techniques will not guarantee an 
improved performance. In order to achieve better prediction 
performance, Menzies et al. [5] suggested the use of additional 
information when building SFP models while Rathore and 
Kumar [1] recommended researchers to consider new 
approaches for SFP. 

Currently, only a few researchers have paid attention to 
predicting the number of faults and the severity of faults in the 
software modules. In [2] [6] [7], the authors presented their 
SFP approaches with the severity ranking of the software 
modules and the number of defects taken into consideration. 
Some SFP studies demonstrated that a few numbers of 
modules contain most of the faults in the system. For instance, 
Ostrand et al. [8] proposed a study to detect the number of 
faults in top 20% of the files. However, to the best of our 
knowledge, there have been no SFP approaches that provide 
information about the types of faults existing in each software 
module. Therefore, in this paper, we are motivated to employ 
Stream X-Machine (a formal specification method) and 
machine learning techniques to propose a novel SFP approach 



that can predict if a software module is prone to having an 
error type. As Menzies et al. [5] suggested that researchers 
should concentrate on finding solutions that work best for the 
groups of related projects rather than trying to seek general 
solutions that can be applied to many projects, our approach 
will primarily focus on runtime error types in the Java 
programming language (JPL). 

The rest of the paper is structured as follows. Section II 
contains the background research about software fault 
prediction and Stream X-Machine, respectively. Section III 
outlines the proposed methodology which illustrates the link 
between Stream X-Machine and machine learning in the SFP 
context. Section IV explains how the experiments were set up. 
Section V consists of the experimental results. Section VI 
concludes the paper and provides the directions for future 
work. 

II. BACKGROUND 

1. Software fault prediction 
Software fault prediction aims to predict the fault-

proneness of modules in a given SUT. The process of SFP 
typically includes training a prediction model using the 
underlying properties of the software project, and 
subsequently using the prediction model to predict faults for 
unknown software projects. Figure 1 illustrates an overview 
of the SFP process. Firstly, software project repositories are 
collected to extract software fault data that is related to the 
SDLC such as source code, change logs, and fault 
information. Secondly, independent variables (a.k.a. features 
or inputs to be analysed) are collected by extracting values of 
multiple software metrics (e.g., Lines of code – LOC) while 
dependent variables are the required fault information with 
respect to the fault prediction (e.g., number of faults, fault 
prone or not fault prone). Thirdly, statistical and machine 
learning techniques are used to construct the SFP models. 
Finally, different measures (e.g., accuracy, precision, recall, 
F1-score, and Area Under the Curve – AUC) [1] [9] are 
applied to evaluate the performance of the built SFP model. In 
the following subsections, we further elaborate software fault 
data set and prediction techniques used in SFP with related 
works. 

1.1. Software fault data set 
Software fault data set plays a role as the training data set 

and testing data set during SFP process. It consists of three 
main components: set of software metrics, fault information, 
and meta information about the software project. In the 
upcoming subsections, these components are reviewed in 
detail. 

1.1.1. Software metrics 
Software metrics are the timely and continuously 

measured information of different characteristics of a software 
product [10]. Software metrics can be used to quantitatively 
analyse and evaluate the quality of a software product [1]. 
According to Bansiya and Davis [11], each software metric is 
related to some functional properties such as coupling, 
cohesion, inheritance, etc., and is used to derive an external 

quality attribute such as reliability, testability, or fault-
proneness. There are various software metrics in the literature 
such as Object-Oriented (OO) metrics with CK metrics suite 
[12], MOODS metrics suite [13], Bansiya metrics suite [11], 
etc.; or Traditional metrics with Size metrics (e.g., Function 
Points – FP, Source lines of code – SLOC, Kilo-SLOC – 
KSLOC), Quality metrics (e.g., Defects per FP after delivery, 
Defects per SLOC or KSLOC after delivery), System complex 
metrics [14], Halstead metrics [15], etc. According to Rathore 
and Kumar [1], various works have been conducted to 
evaluate the capabilities of software metrics for SFP; 
however, with the availability of the NASA and PROMISE 
data repositories, many researchers have started to perform 
their studies using open-source software projects (OSS). The 
benefit of using OSS is that it enables anyone to replicate the 
study and verify its findings.  

Based on the study of Rathore and Kumar [1], some 
observations drawn from the software metrics literature are as 
follows: 

• The metrics that perform well in one environment 
may not perform similarly in another (e.g., open-
source environment vs. commercial environment). 

• Most of the studies confirmed that OO metrics (e.g., 
coupling between objects – Coupling Between 
Objects – CBO, Response for a Class – RFC, and 
Weighted Method Count – WFC) are the best 
predictors of faults. 

• Many studies have reported the positive correlation 
between size metric (e.g., Lines of Code – LOC) and 
fault proneness. 

1.1.2. Project’s fault information 
The fault information indicates how faults are recorded in 

a software module and their severity levels. Fault data is 
collected and recorded in an associated database during 
requirements, design, development, and in various testing 
phases of the software project [16]. According to Radjenovic 
et al. [17], there are three fault data repositories that can be 
used for SFP including Private/commercial, Partially 
public/freeware, and Public (e.g., NASA and PROMISE 
repositories). Some of the fault data sets included information 
on both the number of faults and severity of faults (e.g., KC1, 
KC2, KC3, PC4, and Eclipse 2.0, 2.1, 3.0, etc. from the 
PROMISE data repository) [1], which makes it easier for 
software engineers to focus their testing efforts on the most 
sever modules first or to allocate the testing resources 
optimally [18]. 

1.1.3. Meta information about project 
Meta information about the software project contains 

contextual information about various characteristics 
(properties) of that project such as the domain of software 
development, the number of revisions, etc. [1]. According to 
Hall et al. [19], the current knowledge about the influence of 
context variables on the SFP models is still limited; therefore, 
most of the studies did not pay much attention on the context 
variables before building the SFP models. Some of the basic 
contextual variables/factors that are applied in SFP are Source 
of Data, Maturity of the System, Size, Application Domain, 



and The Granularity of Prediction. In their systematic 
literature review, Hall et al. [19] analysed 19 papers and 
figured out that context variables affect the performance of 
SFP model. Also, they found that large-sized software 
projects tend to have higher probability of fault detection. 
Additionally, the maturity of the system, the programming 
language used, or the granularity level of prediction has little 
or no impacts on the model’s performance. 

1.1.4. Data quality 
According to Rathore and Kumar [1], the quality of SFP 

models highly depends on the quality of the fault data set. 
Public data sets (e.g., NASA and PROMISE data 
repositories), which are typically used in SFP studies, may 
deteriorate the performance of the classifiers as they may 
contain irrelevant or unnecessary information. From their 
study, Rathore and Kumar [1] found evidence that data quality 
issues have not been handled adequately in many SFP 
approaches. Therefore, the performances of the learners are 
not up to the mark. According to Gray et al. [20], there are a 
number of quality issues associated with software fault data 
sets that researchers need to properly handle before using 
them to construct SFP models. 

• Outlier: Outliers are the data points that do not meet 
the general behaviour of the data [1]. Outliers are 
essential in SFP as they may indicate faulty modules. 
Therefore, arbitrarily removing outliers can 
potentially lead to insignificant results. 

• Missing value: Values that are left blank in the data 
set. According to Gray et al. [21], some prediction 
techniques can automatically deal with missing 
values and no special care is required. 

• Repeated value: Two or more attributes have the 
same values for each instance. Gray et al. [21] 
suggested removing one of the attributes so that the 
values are only represented once in the data set. 

• Redundant and irrelevant value: Same features 
(attributes) describe multiple modules with the same 
class label [1]. These data points are problematic in 
the context of SFP. Therefore, Gray et al. [21] 
suggested that the classifiers should be tested upon 
such data points independently of those used during 
training [1]. This issue needs to be addressed before 
building any prediction model.  

• Class imbalance: Certain types of instances (minor 
class) are mostly dominated in the data set by the 
other types of instances (major class) [1]. In such 
cases, the classifiers may have biases towards the 
instances of the major class. Therefore, poor results 
can be produced for the minor class instances [22]. 

• Data shift problem: Data shifting is a problem where 
the joint distribution of the training data is different 
from the distribution of the testing data. 

• High dimensionality of data: The data set is stuffed 
with unnecessary features. According to Gao et al. 
[23], higher dimensional data can potentially lead to 
lower classification accuracy, higher computational 
cost, and higher memory usage. 
 

To sum up, this subsection has provided an overview of 
the software fault data set used in most of the SFP approaches 
by outlining its main components with related works and 
figuring out the potential quality issues that researchers need 
to pay attention to when using public data sets. Also, it can be 
seen that the existing fault data sets do not contain information 
about error types, which makes it impossible for the SFP 
models to predict the proneness of error types in software 
modules.  

 

 
 

 
Figure 1. Software fault prediction process [1] 



 

2. Methods to build SFP models 
In the literature, there is a wide range of machine learning 

techniques for SFP. Based on their systematic review, Rathore 
and Kumar [1] summarised various schemes used for SFP as 
in Figure 2. Additionally, according to the study conducted by 
Malhotra [9], the most frequently used machine learning 
techniques for SFP have been C4.5 in Decision Tree (DT) 
category (46%), Naïve Bayes (NB) in Bayesian learners (BL) 
category (74%), Multi-layer Perceptron (MLP) in Neural 
Networks (NN) category (85%), and Random Forest (RF) in 
Ensemble learners (EL) category (59%). The five techniques 
that performed the best in SFP were C4.5, NB, MLP, Support 
Vector Machine (SVM), and RF. According to [9] and [24], 
the strengths and weaknesses of these techniques are provided 
in Table I. 

TABLE I.  STRENGTHS AND WEAKNESSES OF THE TOP FIVE MACHINE 
LEARNING TECHNIQUES USED IN SOFTWARE FAULT PREDICTION 

Technique Strengths Weaknesses 
 

C4.5 - Requires less efforts for 
data preparation during 
pre-processing. 
- Easy to build and apply. 
- Comprehensive 
capability. 
 

- A small change in the 
data can cause a large 
change in the structure of 
the model. 

Random 
Forest (RF) 

- It can efficiently handle 
large data and is a 
consistent performer. 
- Robust to noisy and 
missing data. 
- Fast to train, robust 
towards parameter settings. 
- Comprehensive 
capability. 
 

- Requires much more 
computational power and 
resources. 
- Requires much more 
time to train compared to 
C4.5. 

Naïve 
Bayes (NB) 

- Robust in nature. 
- Easy to interpret and 
construct. 
- Computationally 
efficient. 

- Does not consider 
feature correlation. 
- Implicitly assumes that 
all the attributes are 
mutually independent, 
which is almost 
impossible in practice. 
- Unable to discard 
irrelevant attributes. 
 

Support 
Vector 
Machine 
(SVM) 

- Has good tolerance for 
high-dimensional space 
and redundant features. 
- Robust in nature. 
- Can handle complex 
functions and non-linear 
problems. 
- A small change in the 
data does not greatly affect 
the model. 
 

- Could be tricky and 
complex when handling 
non-linear data. 
- Requires a lot of 
memory when training. 
- Takes a significant 
amount of time to train 
on large data sets. 
- Difficult to understand 
and interpret by human 
beings. 
 

Figure 2. Taxonomy of software fault prediction techniques [1] 



Multi-layer 
Perceptron 
(MLP) 

- Can infer complex non-
linear input/output 
transformation. 

- Requires huge amount 
of data. 
- Computationally 
expensive to train. 
- The classifier produced 
is incomprehensive to 
interpret. 
 

 
In general, a prediction model is used to predict the fault-

proneness of software modules in one of the three categories: 
binary-class classification of faults, number of faults/fault 
density prediction, and severity of fault prediction [1]. The use 
of SFP models for binary-class classification has been 
investigated by various researchers. The systematic reviews 
and analysis of some of these studies can be found in [1] [9] 
[25] [26]. However, there have been very few efforts that 
focused on predicting the fault density or fault severity of 
software modules. With the motivation of addressing the lack 
of information issue in SFP (discussed in Section I), in what 
follows, we only focus on analysing and critically reviewing 
the SFP approaches that could provide more useful 
information (e.g., prediction of number of faults and severity 
of faults in software modules) for testers and developer. 

In 2005, Ostrand et al. [8] proposed an approach for 
predicting the number of faults and fault density using 
negative binomial regression (NBR) technique. The study was 
performed over the code of the file in the current release, and 
fault and modification history of the file from previous 
releases. The prediction aimed to identify top 20% of files 
with the highest percentage of the predicted number of faults. 
The analysis indicated that NBR-based models could produce 
accurate results for the number of faults and fault density 
predictions. However, no comparison and evaluation were 
provided with respect to the actual value of faults. A similar 
type of work was also reported in [27]. A few years later, Yu 
[28] conducted a deeper study to investigate the effectiveness 
of NBR in the context of Apache Ant software system. The 
results showed that NBR could not outperform Binary 
Logistic Regression in predicting fault prone modules. 
However, the study demonstrated that (1) the performance of 
forward assessment is better than or at least the same as the 
performance of self-assessment; and (2) NBR is effective in 
predicting multiple faults in one module. 

In another study, Afzal et al. [29] applied genetic 
programming (GP) for predicting the number of faults in a 
given project. The independent variables used to train the 
model were the weekly fault count data collected from three 
industrial projects. The empirical results indicated a 
significant accuracy rate of GP-based model for fault count 
prediction. Also, in [30], Rathore and Kumar presented an 
approach for predicting the number of faults using GP over 
several open-source software projects. The results 
demonstrated the significant accuracy and completeness of 
GP-based model in predicting the number of faults in software 
modules.  In [31], Gao et al. presented a comprehensive 
analysis of five count models including Poisson Regression 
model (PR) [32], Zero-Inflated Poisson model (ZIP) [33], 
NBR model, Zero-Inflated Negative Binomial model (ZINB) 
[34], and Hurdle Regression model (HR) [35]. The results 

showed that ZINB and HR models produced better prediction 
accuracy for fault counts. Recently, Rathore and Kumar [2] 
explored the capability of Decision Tree Regression (DTR) 
for the number of faults prediction in two different scenarios, 
intra-release and inter-release predictions for a given software 
project. Five open-source software projects with their 
nineteen releases collected from the PROMISE data 
repository were chosen to perform the experimental study. 
The results indicated that DTR-based model could produce 
significant accuracy in both the considered scenarios.  

Yang et al. [6] believed that predicting the exact number 
of faults in a software module is difficult due to noisy data that 
exists in the fault data set; therefore, the authors introduced a 
learning-to-rank (LTR) approach to construct the SFP models 
by directly optimising the ranking performance. The LTR 
approach has two major benefits which are (1) more robust 
against noisy data and (2) unlike the other approaches which 
have to predict the number of faults in the software modules 
before ranking them, it provides a way to rank the level of 
severity of the software modules directly. The empirical 
results showed the effectiveness of the LTR approach for the 
ranking task. 

In general, it can be seen that all of the SFP studies 
reviewed in this section fall into one of the following three 
categories: (i) binary-class classification of faults, (ii) number 
of faults/fault density prediction, and (iii) severity of fault 
prediction. There are no approaches that can indicate/identify 
the types of faults existing in the software modules. With the 
lack of useful information for analysts that most existing SFP 
approaches are facing, we believe that it would be much more 
useful for testers and/or developers if SFP models can predict 
the types of faults besides the number of faults in a module or 
the ranking of the modules fault-wise. The prediction of a 
fault’s type and its location will enable developers to have 
identify/spot out what the fault is and thus, handle it early. 
Therefore, our proposed approach differs from these studies 
in several ways. Firstly, beside using the set of OO metrics 
recommended in [2] and [9] for constructing the SFP model, 
we will introduce a data set containing information about the 
types of runtime errors that can be found in the JPL by using 
a formal specification method, especially Stream X-Machine, 
which will be further elaborated in Section II.3. Secondly, in 
our proposed work, we will explore the capabilities of the best 
performing machine learning techniques (from the most 
commonly used ones presented in Table I) for the purpose of 
predicting if software modules are prone to having a particular 
type of runtime error. 

3. Stream X-Machine 
A Stream X-Machine (SXM) is a comprehensive and 

powerful modelling formalism that extends finite state 
machines with a memory (data) structure, X, and a set of 
labelled processing functions, Φ, which operate on X [36]. An 
SXM can potentially model very general systems as the data 
set X can contain information about the system internal 
memory as well as different output behaviours. One of the 
great benefits of using an SXM to specify a system is its 
associated testing method which was initially developed for 
deterministic SXM [37] [38] and was further extended to non-



deterministic SXM [39] and communicating SXM [40]. 
Under certain design-for-test conditions [37], this method can 
produce a test suite that can be used to verify the correctness 
of the implementation under test (IUT), provided that the 
processing functions of the SXM specification have been 
correctly implemented [41]. SXM has been applied 
extensively in various modelling areas (e.g., modelling agents 
in biology [42]) and automating software testing to evaluate 
the behaviours of object-oriented systems [40] [43] [44]. The 
automation helps to reduce human involvement to avoid 
human errors and increase reliability of the software testing 
process [36]. 

 
Definition: A Stream X-Machine is a tuple: 
 
Z = (Σ, Γ, Q, M, Φ, F, q0, m0)  
where:  
• Σ is a finite set of input symbols, 
• Γ is a finite set of output symbols, 
• Q is a finite set of states, 
• M is a (possibly) infinite set called memory, 
• Φ is a finite set of partial functions φ (processing 

functions) that map memory-input pairs to output-
memory pairs, φ: M × Σ → Γ × M, 

• F is the next-state partial function, F: Q × Φ → Q 
• q0 ∈ Q and m0 ∈ M are the initial state and initial 

memory respectively.  
 

Intuitively, an SXM can be thought as a finite automaton 
with the arcs labelled by functions from the type Φ. The 
automaton AZ = (Φ, Q, F, I, T) is called the associated finite 
automaton (FA) of Z and is usually described by a state-
transition diagram. An example of a three-state SXM is shown 
in Figure 3. 

In general, from the definition of SXM and the areas where 
SXM is employed, it can be seen that SXM is not related to 
SFP. However, in this paper, we introduce a novel SFP where 
SXM will be applied to model Java runtime errors. The details 
of the proposed methodology are outlined in Section III. 

 

 

 

 
 

III. METHODOLOGY 
In Section II, we reviewed the SFP process in general, 

machine learning techniques that are used in SFP, and SXM 
in the context of automating software testing. In this section, 
we present our proposed methodology which highlights the 
link between SXM and machine learning in the context of 
SFP. There are 5 essential steps which are presented as 
follows: 

 
• Step 1: Create and generate test cases for JPL runtime 

errors using SXM (Figure 4). 
o In particular, a runtime error might occur when one 

object operates an action on another object. 
Therefore, the general equation is as follows: 
 

𝑨	𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑠	𝑜𝑛	𝑩				(1) 
 
Where: 
§ A and B are either literals (e.g., literal string, 

literal integer, etc.) or references (e.g., string 
reference, integer reference, object, etc.) 

§ “operates on” denotes any action that A acts on 
B (e.g., Number A divides Number B à 
ArithmeticException error might occur; Array A 
accesses Bth element of itself à 
IndexOutOfBoundsException error might occur, 
etc.) 

 
o With the information about A, B, and “operates on” 

from equation (1), we can determine some features of 
an error such as what the error is, how it happens, and 
in which context it happens. Therefore, we represent 
equation (1) as a SXM for a runtime error. This 
runtime error SXM is also known as an Error 
Specification Machine (ESM). Figure 5 illustrates the 
ESM’s state-transition diagram with five states (state 
1, state 2, state 3, state 4, and state 5) and four 
processing functions (getA, getOperation, getB, and 
getErrorLabel). 
 

o SXM is used to model the formal specification for 
each Java runtime error (a.k.a. ESM) from the ESM’s 
state-transition diagram. Subsequently, the associated 
SXM testing method is applied to generate cases for 
each ESM. An example of the test cases for 
ArithmeticException is given in Figure 6. 

 
• Step 2: Extract ESM values for different types of 

runtime errors from software modules. 
o In a software module, an ESM value for a runtime 

error (e.g., IndexOutOfBoundsException) is the sum 
of all the lines of code that have the pattern “A 
operates on B” and that pattern matches one or more 
test cases (generated from Step 1) of that error. An 
example of how ESM values can be extracted is 
provided in Figure 9. 

 

Figure 3. A three-state Stream X-Machine diagram 



• Step 3: Extract OO software metrics from software 
modules. 
o The metrics we collect include Coupling Between 

Objects (CBO), Depth of Inheritance Tree (DIT), 
Lack of Cohesion in Methods (LCOM), Number of 
Children (NOC), Response for a Class (RFC), 
Weighted Methods per Class (WMC), Lines of Code 
(LOC), and Comment Lines of Code (CLOC). 

 
• Step 4: Create new training data sets. 

o Combine software metrics with the ESM value of a 
runtime error to create a new training data set of the 
error. This means that for each particular runtime 
error, there is a corresponding training data set that 
includes the ESM value of that error, alongside with 
the software metrics. Figure 7 illustrates an overview 
of the data set for IndexOutOfBoundsException. 
 

o In each data set, the independent variables are the 
software metrics and the ESM value of the error. The 
dependent variable (a.k.a. result or outputs) has the 
value of Yes or No which indicates if the software 
module has the error or not. A sample data set for 
IndexOutOfBoundsException is provided in Figure 8. 

 
• Step 5: Explore the performances of different 

machine learning algorithms on the new training data 
sets. 
o Accuracy and F1-score are used to evaluate the 

performances of the trained models.  
 
§ Accuracy score indicates the fraction or the count 

of correct predictions [45]. 
§ F1-score is a weighted average between precision 

and recall [45]. F1-score’s best value is 1 and 
worst value is 0. The formula for the F1-score is 
as follow: 
 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 

 
To sum up, in this proposed methodology, SXM is used to 

represent formal specifications of different Java runtime 
errors (a.k.a. ESM) and generate test cases for these ESMs, 
which will be used to extract ESM values from Java source 
codes. ESM values will then be combined with the existing 
OO software metrics to construct new SFP data sets which 
contain information about error types. Finally, machine 
learning algorithms are employed to train on these new data 
sets to evaluate their effectiveness. 

 

 

 

 
 

 
 

 
 

Figure 4. Process of creating and generating test cases for JPL runtime 
errors using SXM 

Figure 5. ESM's state-transition diagram 

Figure 6. Example test cases for ArithmeticException 

Figure 7. Overview the training data sets corresponding to different types 
of runtime errors 



 

 

 

 

Figure 8. Sample data set for IndexOutOfBoundsException 

Figure 9. Example of how to extract ESM values from source codes 



IV. EXPERIMENTAL SETUP 
This section provides the details of the whole experimental 

setup including the software fault data set used in this study. 
Also, we present the objectives of the experiments, what 
machine learning techniques were used and what tools were 
applied to train SFP models. 

1. Experiement objectives 
The experiment was conducted with three objectives: 

i) Examine the correlation between the ESM value 
of each type of runtime error and the software 
metrics. 

ii) Investigate if the software metrics alone can be 
used to predict the error-type proneness. 

iii) Investigate if the software metrics and the ESM 
value together can be used to predict the error-
type proneness. 

2. Software fault data set 
The data set of the faults used in this study was taken from 

the Java source codes created by a group of volunteers (not 
expert programmers) who have been asked to create a solution 
for a given problem. The reason we did not use public data 
sets (e.g., NASA and PROMISE data repositories) is that the 
source codes of the projects featured in these data sets are not 
available for us to extract the ESM values. 

We used a plugin from IntelliJ IDEA [46] to obtain the 
software metrics from the source codes. Also, due to not 
having a dedicated tool to extract the ESM values, we did it 
manually by examining each line of code carefully. 

3. SXM tool 
Among the SXM tools (e.g., SXMtool [47], JSXM [36], 

and T-SXM [48]), in this study, we employed T-SXM as the 
SXM tool for modelling and generating test cases for the 
ESMs. The reason for using this tool is (1) it can automatically 
generate test cases for a specification and (2) it allows using 
Java as the language for modelling SXM specification while 
the other tools require the specification to be written using the 
X-Machine Design Language (XMLD) [49] which is not 
comprehensive when logical code is required within the 
model’s description. 

4. SFP models and evaluation measures 
The experiment in this study was conducted using scikit-

learn [45], which is an open-source library for predictive data 
analysis. The three machine learning algorithms we used to 
build our SFP models were Support Vector Machine (SVM), 
Decision Tree (DT), and Multi-layer Perceptron (MLP). 

V. EXPERIMENTAL RESULTS 
In this section, we present the experimental results 

corresponding to the objectives outlined in Section IV.2. 

1. The correlation between the ESM value and the 
software metrics 

From Table II and Table III, it can be seen that the ESM 
values of IndexOutOfBoundsException and 

NullPointerException have no correlations with the software 
metrics; hence, software metrics cannot be used to predict 
ESM values. 

TABLE II.  CORRELATIONS BETWEEN ESM 
INDEXOUTOFBOUNDSEXCEPTION AND SOFTWARE METRICS 

 ESM IndexOutOfBoundsException 

CBO -0.36 

RFC -0.25 

WMC 0.52 

LOC 0.58 

CLOC 0.27 

TABLE III.  CORRELATIONS BETWEEN ESM NULLPOINTEREXCEPTION 
AND SOFTWARE METRICS 

 ESM NullPointerException 

CBO 0.02 

RFC 0.18 

WMC 0.49 

LOC 0.63 

CLOC 0.47 

2. Investigate if the software metrics alone can be used to 
predict the error-type proneness 

In this experiment, for IndexOutOfBoundsException, we 
trained three models with three machine learning algorithms 
(SVM, DT, and MLP) on the training data set that only 
consists of the software metrics (we removed the ESM 
IndexOutOfBoundsException from the independent 
variables). The F1-scores and accuracies of these models are 
shown in Table IV. It can be seen that SVM can potentially be 
used to predict IndexOutOfBoundsException proneness by 
just using software metrics, while DT and MLP did not 
perform well with low F1-scores and accuracy rates. 

TABLE IV.  F1-SCORES AND ACCURACIES OF SFP MODELS TRAINED ON 
THE DATA SET WITH ONLY SOFTWARE METRICS 

 SVM DT MLP 

F1-score 0.89 0.57 0.75 

Accuracy 0.80 0.40 0.60 

3. Investigate if the software metrics and the ESM value 
together can be used to predict the error-type proneness 

In this experiment, for IndexOutOfBoundsException, we 
trained three models with three machine learning algorithms 



(SVM, DT, and MLP) on the full training data set. The F1-
scores and accuracies of these models are shown in Table V. 
By comparing the results in Table IV and Table V, it can be 
seen that the presence of the ESM 
IndexOutOfBoundsException in the training set has 
significantly improved the performances of the models, 
especially DT and MLP, in terms of predicting 
IndexOutOfBoundsException proneness. Therefore, in the 
case of IndexOutOfBoundsException, the ESM value plays a 
significant role in the training data set to help improve the 
performances of the machine learning algorithms. 

TABLE V.  F1-SCORES AND ACCURACIES OF SFP MODELS TRAINED ON 
THE DATA SET WITH BOTH SOFTWARE METRICS AND ESM VALUE 

 SVM DT MLP 

F1-score 0.97 
 
(increased by 
8.9%) 

0.89 
 
(increased by 
56%) 
 

0.91 
 
(increased by 
21%) 

Accuracy 0.91 
 
(increased by 
14%) 

0.80 
 
(increased by 
100%) 
 

0.86 
 
(increased by 
43%) 

4. Limitations and threats to validity 
Experiments are always associated with a set of threats 

which could potentially hinder the findings. Here, we present 
some limitations and threats to the validity of the study. The 
first concern is the size of the software fault data set. We did 
not use public data sets like the other SFP approaches; 
instead, we established the data set by collecting source codes 
from voluntarily non-expert programmers. Therefore, the 
size of our data set is much smaller than the public data sets 
such as PROMISE and NASA. We performed the 
experiments with 8 software metrics which are measured at 
the class level (not at the method level). Software metrics at 
method level (e.g., Halstead metrics [15]) should also be 
used. We have built and evaluated SFP models over small 
projects created by non-expert programmers while the other 
industrial projects may possess different fault patterns. 
Therefore, it is recommended that one should take care of the 
underlying pattern of software system before applying the 
proposed approach. Also, in the experiments, we extracted 
the ESM values from the source codes manually which could 
potentially lead to some unwanted mistakes. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a novel approach for 

predicting error-type proneness in software modules using a 
streamlined process linking SXM and machine learning 
techniques. We assessed the performances of SVM, DT, and 
MLP in two scenarios: data set with only software metrics and 
data set with both software metrics and the ESM value. The 
experimental results showed that the trained models 
(especially DT and MLP) performed much better on the data 
set with the ESM value. However, there are still a number of 

limitations and threats (discussed in Section IV.4) that can 
potentially affect the findings of the study. 

In the future, we will develop a tool which has the 
capability of extracting ESM values automatically from the 
source codes, which will help us speed up the process of 
collecting data and reducing mistakes. We will use more 
software metrics from industrial projects with larger sizes to 
improve the generalisation of the results and consolidate the 
findings of our investigation. 
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