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Abstract 17 

The accurate phenotyping of the external quality attributes of potato tubers is important 18 

in potato breeding. Currently, the assessment of potato tuber shape, together with eye 19 

density and depth, are based on subjective naked eye visual evaluation. However, such 20 

a manual visual assessment makes it very difficult to reliably phenotype these and other 21 

important, more complicated, geometrical traits, such as shape uniformity.  22 

In this study, a 3D image analysis method has been developed for counting potato eyes 23 

and estimating eye depth based on an evaluation of the curvature of an acquired 3D point 24 

cloud. Six shape uniformity-related traits, together with their shape indices (SI), were 25 



measured for six potato varieties. These were collected from three field experiments 26 

designed initially to study the effects of variation in nitrogen (N), potassium (K) and 27 

compound fertilisers along with tuber mass, on all investigated external traits. We 28 

demonstrate that a 3D image analysis technique can estimate the number of potato eyes 29 

and their depth with a high degree of accuracy. In addition, three shape uniformity traits 30 

were identified as offering a better power discrimination between varieties. The 31 

preliminary experiment found potato tuber mass to significantly affect both the shape 32 

uniformity and eye count, while fertiliser treatments showed no effect on all traits except 33 

SI. However, further investigation with a larger sample size is required for confirmation.  34 
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Nomenclature 38 

Abbreviations  SI Shape index 
ABA Abscisic acid T Triangle 
ANOVA Analysis of variance TP True positive 
CF Compound fertiliser Z5 Zhongshu5 
CM Compound microorganism Z10 Zhongshu10 
CV Coefficient of variation Z18 Zhongshu18 
DBSCAN density-based spatial 

clustering of applications with 
noise 

Z19 Zhongshu19 

FAO Food and Agriculture 
Organisation 

  

FN False negative Parameters  
FP False positive A Area of the convex hull 
GA Gibberellin acid 𝐴𝑚 Area of the neighbouring incident 

triangles 
HSV Hue, Saturation and value D Euclidean distance between the top 

and bottom slice images 
K Potassium 𝑑𝑖 Euclidean distance between 

neighbouring slice images 
L Large K (𝑥𝑖) Mean curvature normal operator at 

vertex  𝑥𝑖 
M Medium 𝐾𝐻(𝑥𝑖) The mean curvature at 𝑥𝑖 
MAS Marker-assisted selection minPts Minimum number of points required to 

form a dense region 
N Nitrogen N(i) The 1-ring neighbours of the ith vertex 
OIF Organic-inorganic fertiliser p Perimeter of convex hull 



PCA Principal component analysis 𝑟2 Coefficient of determination 

RGB Red, green and blue 𝑥𝑖 The ith vertex  

RMSE Root mean squared error 𝛼𝑖𝑗, 𝛽𝑖𝑗 Angles between the two adjacent 
triangles sharing and subtending the 
edge of 𝑥𝑖𝑥𝑗 

S Small ε Maximum distance between two 
vertices 

SCF Soil conservation fertiliser   
SfM-MVS Structure from Motion 

Multiview Stereo 
  

 39 

1. Introduction  40 

Potato (Solanum Tuberosum L.) is the fourth most important staple food in the world after 41 

wheat, maize and rice. The Food and Agriculture Organisation (FAO) estimated global 42 

potato production at over 368 million metric tons in 2013, substantially increased from 43 

334 million tons in 2010 (FAOSTAT, 2013). Potato varieties with shallow eyes and regular 44 

round or oblong shapes are most often preferred by customers, including domestic 45 

consumers and processors. These attributes readily facilitate further processing to 46 

produce chips and French fries (Van Eck et al., 1994), and serve to reduce losses in 47 

peeling. With rapid advances in genomic technologies, marker-assisted selection (MAS) 48 

is now commonly being used in breeding programmes. Quantitative trait loci (QTLs) can 49 

be identified, and genes of interest cloned from the identified QTLs (Tester and Langridge, 50 

2010). Potato varieties have shown genetic differences in potato shape, shape uniformity, 51 

number of eyes and eye depth, and a number of candidate genes underlying the main 52 

QTL have been identified in tuber shape and eye depths (Lindqvist-Kreuze et al., 2015). 53 

Although with appropriate genomic selection, the breeding process and genetic gain can 54 

be faster and greater respectively, high-throughput phenotyping is still a major bottleneck 55 

in real-world applications. Currently, phenotyping is often highly subjective, labour-56 

intensive and sometimes destructive. A large number of studies on high-throughput 57 
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phenotyping or ‘phenomics’ have been published in recent years, with the majority 58 

focused on various forms of imaging-based technologies (Samal and Choudhury, 2020; 59 

Yang et al., 2020). For instance, 2D image analysis has been shown to have good 60 

potential in quantifying external fruit quality and has been widely applied to measure basic 61 

shape characteristics, including aspect ratio and volume (AKodagali and Balaji, 2012; 62 

Beyer et al., 2002; He et al., 2017; Ishikawa et al., 2018). More recently, a reduction in 63 

hardware and computational cost has seen 3D imaging techniques being increasingly 64 

explored. For example, a 3D model reconstructed using the Structure from Motion 65 

Multiview Stereo (SfM-MVS) technique has been successfully deployed to estimate more 66 

sophisticated shape characteristics of strawberry, including eight significant uniformity-67 

related traits (Li et al., 2020). In addition, a structured light-based technique has been 68 

successfully applied to the 3D reconstruction of the whole plant (Nguyen et al., 2015), 69 

where a commercialised device with integrated software was able to perform both data 70 

collection and 3D reconstruction (Morena et al., 2019). Another 3D reconstruction 71 

technique, in the form of laser scanning, has been applied for fruit size measurement, 72 

although the scanning stage is comparatively slower than the other two methods 73 

(Scarmana et al., 2020).  74 

 75 

In potato breeding, accurate and fast tuber shape assessment is still a bottleneck in our 76 

effort to understand the association between the genetic variant and phenotype. Great 77 

efforts have been devoted to measuring potato shape from a 2D image analysis. Potato 78 

shape is most often divided into five categories based on the length to width ratio as: 79 

round, round-oval, oval, long-oval and very long. Prior work has included an image 80 
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analysis algorithm for automated segmentation and aspect ratio estimation in video 81 

frames developed to assess this characteristic (Razmjooy et al., 2012; Si et al., 2018). A 82 

more sophisticated method was developed by using six parameters from a spherical-83 

harmonic model (Torppa et al., 2007). Potato shape uniformity is an important trait due to 84 

its direct influence on customer satisfaction and benefits in further processing, including 85 

the production of chips or French fries. Afshin et al. (2016) developed a classification 86 

model with extracted size-shape features including roundness, elongation, eccentricity 87 

and extent, that involved the use of Fourier-shape features. Their total correct 88 

classification rate was 98% although this was only allocated to two shape categories 89 

(‘regular’ and ‘irregular’). To improve size classification accuracy and take thickness 90 

information into account, a low-cost 3D stereo camera was applied to generate accurate 91 

potato tuber volume estimation, and showed promising results as an online size grading 92 

system (Smith et al., 2018; Su et al., 2017; Torppa et al., 2007). An oval difference degree 93 

and a grid calculation method were developed for surface area shape detection and 94 

subsequent classification of tubers into categories of normal, bump, bent shape, and 95 

hollow (Su et al., 2018). It is clear that as a high dimensional feature, shape uniformity 96 

cannot be objectively measured by manual assessment. Also, the number of potato eyes 97 

and their depth are usually evaluated manually, where eye depth is allocated into four 98 

categories of: superficial, slightly deep, deep and very deep. Manual assessment for 99 

potato eye categorisation can be fast, but given that each potato tuber has multiple eyes 100 

with varied depths, their determination can be extremely rater dependent (Lindqvist-101 

Kreuze et al., 2015). Tuber formation and development is a complex process, which is 102 

affected by environmental, biochemical and genetic factors, for which Nitrogen (N), 103 

https://paperpile.com/c/6gkvq8/Ktmn+kmCY
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potassium (K) and phosphorus (P) all play important roles (Rens et al. 2015, Grzebisz et 104 

al. 2018). However, the mechanisms concerning the phenotypic plasticity of shape 105 

uniformity of potato tubers under differing nutrient regimes together with the role of size 106 

remains unknown.  107 

This study aimed to develop automated 3D image analysis software to: (1) assess 108 

algorithm performance for counting potato eyes together with their depth estimation; (2) 109 

analyse the tuber shape uniformity of six potato varieties; (3) evaluate the influence of 110 

genotype, tuber mass and different nutrient regimes on tuber shape uniformity, eye 111 

number and depth.  112 

 113 

2. Material and methods 114 

2.1. Potato samples 115 

In order to understand the nutrient influence on the external quality traits of potato tubers, 116 

potato samples were collected from three large field experiments at Chabei Research 117 

Station (41°27’N, 115°3’E, Elevation 1358 m) in Zhangjiakou, Hebei province, China. The 118 

soil type is chestnut, typical in the Hebei Bashang plateau. The soil organic matter and 119 

total nitrogen content were 2.70% and 0.09%, respectively; the soil potassium level was 120 

142 mg kg-1. 121 

 122 

A total of three large field experiments were laid out in a randomised block design, planted 123 

on 1st May 2019. Experiment 1 consisted of four sub-experiments, each of which 124 

contained three blocks. There were five plots for each block, randomly allocated to one 125 

of the five levels of nitrogen (N) fertiliser input (0, 100, 200, 300 and 400 kg ha-1) with 126 



fixed P and K rates at 240 and 300 kg ha-1; each sub-experiment area was allocated to 127 

one of the four varieties: Favorita, Zhongshu10 (Z10), Zhongshu18 (Z18) and 128 

Zhongshu19 (Z19). Experiment 2 consisted of three blocks, with twelve plots per block. 129 

Four levels of potassium (K) fertiliser input (0, 150, 300 and 450 kg ha-1) with fixed N and 130 

P rates at 300 and 240 kg ha-1 were applied to each of the three varieties: Zhongshu5 131 

(Z5), Z18 and Shepody. Experiment 3 contained three blocks, each with fifteen plots; five 132 

compound fertilisers (Table 1) were applied to each block for two varieties, including Z5 133 

and Z18. There were in total 126 plots in this experiment and three potato samples, 134 

including the large, medium and small sizes, which were subjectively collected from each 135 

plot to increase the variability of size and shape (Table 2).  136 

Table 1. Details of the five compound fertilizer treatments used in the new fertiliser 137 

experiment to study the effects of these treatments on potato growth and yield 138 

 F1 F2 F3 F4 F5 

Treatment* 

Compound 

fertiliser (CF, kg 

ha-1) 

(N:P2O5:K2O 

=15:15:15) 

F1+25% 

F1 (CF, 

kg ha-1) 

F1+Organic-

inorganic fertiliser 

(OIF, kg ha-1) 

F1+Soil 

Conservation 

fertiliser (SCF, kg 

ha-1) 

F1+Compound 

microorganism 

(CM, kg ha-1) 

Base 

Fertiliser 

CF480 CF780 CF480+OIF300 CF480+OIF300 CF480+OIF600 

*CF: Sino-Arab Chemical Fertilizers Co.,Ltd (SACF), N:P2O5:K2O = 15:15:15; 139 

SCF: Guizhou Bao Tu ecological recycling agriculture technology Co., Ltd., N:P:K = 6:4:10; 140 

OIF: Yunnan Tumama Fertilizers Co.,Ltd, N:P2O5:K2O = 8:8:14, Organic matter ≥12%;  141 



CM: Bacillus subtilis / Bacillus licheniformis, complex fermentation, microbial content ≥ 0.2 billion per gram. 142 

 143 

2.2. Manual assessment 144 

In order to evaluate the performance of the 3D image analysis for potato eye evaluation, 145 

manual assessment was conducted for both the number and depth of the eyes. The 146 

number of eyes was counted manually for 122 randomly selected tuber samples. 78 eyes 147 

were selected from 15 tubers for eye depth measurement. Modelling clay was molded 148 

into each potato eye depression, where the resulting positive molding defined the eye 149 

shape after peeling off. The eye depth was then obtained by measuring the height of the 150 

positive clay model of the eye. All eyes were individually labelled using a marker pen so 151 

that they could later be correctly located in acquired point clouds. 152 

 153 

Table 2. Mean and standard deviation potato tuber mass (g) for each variety in the three 154 

experiments.  155 

 Favorita Z5 Z10 Z18 Z19 Shepody 

1 267.9±121.0  222.3±96.7 221.7±132.7 251.0±151.6  

2  260.4±114.4  224.9±96.4  204.6±72.5 

3  183.1±93.9  162.0±58.7   

 156 

2.3. Image acquisition system 157 

A 3D imaging platform (Greenpheno Ltd, Wuhan, China), placed in a darkroom, was used 158 

to reconstruct a complete 3D model of the potato tubers. The imaging platform consisted 159 

of a Basler camera (acA2040-25gc, Germany) mounted on a tripod with a resolution of 160 



2046 x 2046 pixels and exposure time of 10 ms, a turntable (MERA300, Hongxingyang 161 

Technology Ltd, China), a white LED lighting panel (1200 x 600 mm) behind the camera, 162 

and a blue cuboid holder in the middle of the turntable (29 x 29 x 58 mm) on which potato 163 

tubers were pinned. The schematic of the measurement configuration is shown as figure 164 

1a. With a viewing angle of 35° in the horizontal, the distance between the lens and 165 

sample was approximately 80 cm. The camera trigger and turntable rotation were 166 

controlled and synchronised via custom-built software, and images were captured evenly 167 

at 37 viewing angles at a speed of 56 s per complete rotation.  168 

The image capture and processing were conducted using a high-performance computer 169 

with Intel Core i9 9900k processor, 32 GB of memory, and a NVIDIA GeForce 2080ti 170 

graphics processing unit (GPU). 171 

 172 

Figure 1. Schematic showing configuration of the measurement system (a) and the 173 

resulting point cloud of the potato tuber and holder (b). 174 

 175 

2.4. 3D model reconstruction 176 

In order to optimise processing speed and reconstruction accuracy, the original 2D image 177 

was first cropped to a lower resolution (1957 x 1401 pixels), which was high enough to 178 

accommodate potato tubers of all sizes in this study. The cropped image was then 179 

converted from RGB (red, green and blue) to a grayscale image. Because the background 180 

intensity was lower than the potato tuber and its holder, an arbitrary thresholding was 181 

then applied to remove the background - setting the background pixel values to zero. 182 

Commercial software Agisoft Photoscan (Agisoft, LLC, St. Petersburg, Russia) was used 183 



to reconstruct the 3D point cloud model by implementing the SfM-MVS algorithm. This 184 

first generates a sparse point cloud to identify overlapping images based on SfM using 185 

input images calibrated for the camera locations. This is followed by applying MVS to 186 

produce a dense point cloud (Fig. 1b) based on the calibrated images (Westoby et al., 187 

2012).  188 

 189 

2.5. Point cloud pre-processing 190 

Due to the arbitrary 3D coordinate system generated by SfM, which leads to inconsistent 191 

orientations for samples, pre-processing was conducted to calculate the coordinates 192 

obtained by the moment and translation of the raw point cloud to the origin of the 3D 193 

coordinate system. Principal component analysis (PCA) was applied to the coordinates 194 

of all cloud points to obtain the eigenvector corresponding to the largest eigenvalue. This 195 

gave the major principal axis and so the main orientation along the potato tuber and holder. 196 

A rotation matrix was then derived and used to rotate the point cloud to align it with the z 197 

axis of the system coordinate frame. The resulting point cloud was converted from RGB 198 

(red, green and blue) to HSV (hue, saturation and value). Exploiting the colour difference 199 

between potato tuber and its holder, arbitrary thresholding was applied on the hue 200 

channel so that the potato tuber could be separated from the whole point cloud. In order 201 

to facilitate curvature analysis, a mesh was generated from the pre-processed 3D point 202 

cloud, as shown in figure 2a, by Poisson mesh reconstruction (Kazhdan et al., 2006).  203 

 204 

2.6. Accuracy of the 3D reconstruction 205 

https://paperpile.com/c/6gkvq8/wGo2
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The accuracy of the 3D model reconstruction was evaluated by comparing the tuber 206 

volumes measured by image analysis with the water displacement method for 30 sample 207 

tubers (Li et al., 2017), where the volume of the tested tubers ranged from 150 to 718 208 

cm3. A QuickHull algorithm was performed to obtain the convex hull of the point cloud. 209 

This consisted of many triangles together with the cloud centroid. The volume of the 210 

convex hull was calculated by integrating the volumes of the individual tetrahedrons 211 

(Yamamoto et al., 2018). As the blue holder could be segmented from the point cloud and 212 

the volume was known, the absolute estimated tuber volume could be derived.  213 

 214 

2.7. Curvature-based potato eye counting and depth estimation 215 

The mean curvature describes locally how the curvature of an embedded surface in an 216 

ambient space, such as Euclidean space, changes from one place to another. It can thus 217 

be used to detect and describe the eye traits of a potato tuber. The mean curvature values 218 

of the vertices were calculated using the method described in Meyer et al. (2003), where 219 

the potato tuber is represented as a triangular mesh. Then for each vertex 𝑥𝑖, its 1-ring 220 

neighbours N(i) can be determined. The mean curvature normal operator K (𝑥𝑖) at vertex 221 

𝑥𝑖 was calculated as:  222 

K(𝑥𝑖) =
1

2𝐴𝑚
∑ (cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗)(𝑥𝑖 − 𝑥𝑗)𝑗∈𝑁(𝑖)   223 

where 𝐴𝑚  is the area of the neighbouring incident triangles. This is calculated using the 224 

following iterative procedure, irrespective of whether the triangle T incident to 𝑥𝑖 is obtuse 225 

or not: (a) initialize 𝐴𝑚=0, (b) for each T, if it is non-obtuse, then 𝐴𝑚 += 𝐴𝑣; otherwise, if 226 

the angle at 𝑥𝑖 in T is obtuse, then 𝐴𝑚 += area(T)/2; otherwise𝐴𝑚 += area(T)/4, where  227 

𝐴𝑣 =
1

8
∑ (cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗)||𝑥𝑖 − 𝑥𝑗||2

𝑗∈𝑁(𝑖) , 𝛼𝑖𝑗  and 𝛽𝑖𝑗  are the angles between the two 228 
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adjacent triangles sharing and subtending the edge of 𝑥𝑖𝑥𝑗. The mean curvature 𝐾𝐻 at 𝑥𝑖 229 

is finally estimated as half the magnitude of K(𝑥𝑖): 𝐾𝐻(𝑥𝑖)=0.5||K(𝑥𝑖)||. 230 

A surface region with a negative value was deemed as a downward concavity and hence 231 

potentially an eye. An arbitrary threshold (-1.8) was applied to remove both convex and 232 

shallow concave vertices. To cluster together the vertices corresponding to the same eye, 233 

density-based spatial clustering of applications with noise (DBSCAN) was applied. 234 

Finding DBSCAN groups points that are close to each other was based on the 235 

measurement of Euclidean distance (Ngo and Macabebe, 2016). Two parameters 236 

including ε (eps) and the minimum number of points required to form a dense region 237 

(minPts) were required to implement DBSCAN. Eps determines the maximum distance 238 

between two vertices for which one can be considered as within the neighborhood of the 239 

other, and minPts defines the minimum number of points for each cluster (Fig. 2b). Here, 240 

the value of 0.1 (ε) and 20 (minPts) were selected for the best agreement with ground-241 

truth data. The number of eyes (Eye_N) for each potato tuber was determined by the 242 

number of clusters and the average curvature of each cluster was used to correlate with 243 

actual eye depth. In this study, the average of all eye depths for each sample (Eye_D) 244 

was used for data analysis.  245 

 246 

Figure 2. 3D mesh of a potato tuber surface generated from a point cloud (a) and 247 

identified eyes labelled with false colours (b).  248 

 249 

2.8. Potato tuber external quality traits 250 

https://paperpile.com/c/6gkvq8/Y7KT


The shape index (SI) is a typical shape trait applied to the potato longitudinal section that 251 

was measured in 2D space in a previous study (Nankar et al., 2020). However, the results 252 

are highly dependent on the viewing angle and shape uniformity. In this study, the SI was 253 

defined as the ratio between the tuber length and the maximum width of the largest lateral 254 

image slice in parallel with the horizontal plane. Six shape uniformity-related parameters, 255 

which showed good correlations with manual assessment for fruit uniformity assessment, 256 

were measured in the study. A 3D imaging-based shape uniformity assessment was used 257 

to quantify the difference between a series of roundness measures taken from the top 258 

view (Fig. 3a) and the side views around the whole tuber, including area and main 259 

orientation (Fig. 3b). A more detailed explanation and specific characterisation of all 260 

shape uniformity-related traits was provided by Li et al. (2020). All the shape uniformity 261 

traits used in this study are listed in Table 3 along with brief descriptions.  262 

 263 

2.9. Data analysis 264 

2.9.1 Evaluation of potato eye counting 265 

The evaluation of eye counting was based on the correct recognition of potato eyes 266 

present in the 3D model. The region is classified as true positive (TP) if the eye is correctly 267 

recognised; as false positive (FP) if there is no eye in the target region; or as false 268 

negative (FN) if the eye is present in the 3D model but is not recognised. The performance 269 

of the curvature-based potato eye recognition was measured by a precision (Eq. 1) and 270 

recall (Eq. 2) analysis (Zhao et al., 2011). A high precision indicates a high TP percentage 271 

and low FP percentage, whilst a high recall indicates a high TP percentage.  272 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                 (1) 273 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                      (2) 274 

 275 

Further assessment was by the measurement of the F1 score (Eq. 3), which takes both 276 

precision and recall into account and provides an overall measure of the robustness: 277 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                              (3) 278 

2.9.3. Statistical analysis 279 

Minitab 19 (Minitab Inc., USA) was used for the statistical analysis - analysis of variance 280 

(ANOVA). For all three experiments, fertiliser treatment and variety were considered as 281 

two fixed effects and mass as a covariate in ANOVA.  282 

 283 

Table 3. Description of the shape uniformity parameters measured for potato 284 

tubers  285 

Shape uniformity 

parameters 

Description 

CV_A 

Coefficient of variation (CV) of 100 side view areas with 3.6° intervals along 

the z axis. Only the pixels within the middle 80% of the total height were 

used for the area calculation. 

Max_A/Min_A Ratio between the maximum and minimum areas within 100 side views.  

CV_D 
The CV of principal orientations of 100 side view projected images, 

calculated by principal component analysis (PCA). 

L/W 
Aspect ratio of the minimum bounding box of the maximum circumference 

for horizontal slice images.  

CIR 
Circularity of the convex hull of the maximum circumference calculated by 

Eq. 4, where A and p are the area and perimeter of the convex hull.   



STR 

Straightness of the curve passing through the centroid of all horizontal slice 

images (N=80) calculated by Eq. 5, where 𝑑𝑖 is the Euclidean distance 

between neighbouring slice images, and the D is the Euclidean distance 

between the top and bottom slice images. 

 286 

𝐶𝐼𝑅 =  
4𝜋𝐴

𝑝2
                                                              (4) 287 

𝑆𝑇𝑅 = 
∑ 𝑑𝑖

𝑁−1
𝑖=1

𝐷
                                                             (5) 288 

 289 

3. Results 290 

3.1. Performance evaluation of the 3D reconstruction 291 

The accuracy of the 3D reconstruction was evaluated by comparing the actual tuber 292 

volumes with the estimated volume measured by image analysis. The comparison is 293 

displayed in figure 4, where the small deviation observed in the 𝑟2 and RMSE values of 294 

0.99 and 10.4 cm3 respectively, shows good performance in the 3D reconstruction.  295 

 296 

Figure 4. Regression analysis for tuber volume as measured by both manual assessment 297 

and image analysis. Red line is the idealised regression curve.  298 

 299 

3.2. Potato eye counting and depth estimation 300 

With the current PC configuration, the processing time for the eye traits generation was 301 

around 2.5 minutes per tuber. To evaluate the performance of curvature-based potato 302 

eye counting, the results from image analysis methods were compared with manual 303 

assessments (Fig. 5a). Linear regression indicated the image analysis-based potato eye 304 

counting was highly consistent and comparable with manual counting (𝑟2 = 0.90, RMSE 305 



= 0.95). The image analysis method was also superior in recall (0.95) and precision (0.96), 306 

showing a high F1 measure (0.95).  307 

For eye depth, a linear relationship was found between the curvature values (Fig. 5b) and 308 

depth from manual assessment (𝑟2 = 0.81, RMSE = 0.51 mm). The slope (-0.902) and 309 

intercept (0.111) of this linear relationship were used to estimate the eye depth of other 310 

potato samples collected from the main experiments.  311 

Figure 5. Comparison of the estimated potato eye number by a 3D image analysis 312 

software with manual counting (a). Correlation between the estimated curvature values 313 

and actual potato eye depth assessed manually (b). Red lines are idealised regression 314 

curves. 315 

 316 

3.3. The effects of genotypes, fertiliser treatment and tuber mass on shape traits 317 

With the current PC configuration, the processing time for the generation of tuber shape 318 

traits was between 6 and 10 seconds per tuber. Significant differences were found in SI, 319 

eye traits and all shape uniformity related traits except STR (Table 4) among the tested 320 

varieties in all three experiments. Genotypes differed significantly in STR for both 321 

experiments 1 and 3, approaching significantly in experiment 2 (p-value = 0.051). 322 

Fertiliser treatments did not significantly affect any trait, except N fertiliser on SI: where 323 

increasing N led to decreasing SI. The analysis of mass effects showed consistent results 324 

for SI and all shape uniformity related traits except CV_A, CV_D and STR.  325 

According to the statistical analysis for experiments 1 and 2, L/W, Max_A/Min_A and CIR 326 

showed better discriminative power among varieties than the other three shape 327 

uniformity-related traits. According to the national potato quality standard in China, potato 328 



tubers can be categorised into small (< 100 g), medium (100 – 300 g) and large (> 300 g) 329 

size groups. Due to the limited number of tubers in the small group for all experiments, 330 

and large group for experiment 3, further analysis was only conducted on these three 331 

shape uniformity-related traits and the eye traits in experiment 1 and 2 by selecting the 332 

samples of each variety from the medium and large groups. Most of the varieties showed 333 

higher shape uniformity for the medium sized tubers than for the large ones (p-value < 334 

0.05). The only exception was Z18, which did not show significant differences among 335 

sizing groups in both experiments (Fig. 6). 336 

A significant difference was found for the number of eyes (Eye_N) among varieties. Z5, 337 

Z19 and Favorita all had higher counts than other varieties (Fig. 7). The effect of tuber 338 

mass on Eye_N was significant for all three experiments. More detailed analysis was 339 

conducted for each individual variety (Fig. 7a and c), and generally the Eye_N showed 340 

an increasing trend from medium to large sized tubers in both experiments. Consistent 341 

with previous knowledge, Z5 (Fig. 7c) and Favorita (Fig. 7a) are varieties with high Eye_N.  342 

Z19 had significantly higher Eye_D than either Z10 and Z18 (p-value < 0.05) in 343 

experiment 1 (Fig. 7b), and Z5 showed the highest Eye_D in experiment 2 (Fig. 7d). The 344 

influence of tuber mass on Eye_D was inconsistent between experiments, but no 345 

significant difference was observed between large and medium size groups for both 346 

experiments.  347 

 348 

Table 4. ANOVA of potato tuber and eye traits in dependency of genotype, fertiliser 349 

treatment and mass. 350 

 351 

 352 



 353 

 354 

 355 



 Treatment  SI L/W CV_A Max_A/Min_A CV_D CIR STR Eye_N Eye_D 

Variety 
x 
N 
x 

Weight 

Variety           

Favorita  1.97 a 1.21 b 0.20 b 1.18 b 1.56 b 0.98 b 1.05 b 10.34 a 3.56 ab 

Z10  1.66 b 1.20 b 0.17 b 1.16 bc 1.57 b 0.98 b 1.06 b 6.28 c 3.02 c 

Z18  1.89 a 1.17 b 0.18 b 1.13 c 1.59 b 0.98 b 1.05 b 7.08 bc 3.44 bc 

Z19  1.50 c 1.33 a 0.21 a 1.27 a 1.76 a 0.96 a 1.08 a 8.02 b 4.06 a 
 Fa 52.7*** 22.6*** 16.1*** 45.0*** 20.4*** 35.4*** 6.97*** 18.51*** 9.31*** 

N           

N0  1.83 a 1.24 0.19 1.19 1.64 0.97 1.05 7.96 3.51 

N100  1.76 ab 1.24 0.19 1.20 1.62 0.97 1.06 8.09 3.41 

N200  1.83 a 1.24 0.20 1.19 1.63 0.98 1.06 7.44 3.47 

N300  1.68 b 1.22 0.19 1.18 1.59 0.98 1.06 7.63 3.53 

N400  1.68 b 1.20 0.18 1.17 1.62 0.98 1.07 8.56 3.67 
 F 4.82** 1.20 ns 0.49 ns 1.29 ns 0.69 ns 1.05 ns 2.08 ns 0.90 ns 0.39 ns 

Weight           

 F 112.9*** 11.09*** 1.79 ns 8.12** 0.18 ns 18.85*** 2.34 ns 36.52*** 0.82 ns  

Variety 
x 
K 
x 

Weight 

Variety           

Shepody  2.22 a 1.27 a 0.21 a 1.23 a 1.59a 0.97 a 1.05 6.08 a 3.34 a 

Z18  1.97 b 1.18 b 0.18 b 1.14 b 1.59a 0.98 b 1.04 6.94 a 3.62 a 

Z5  1.63 c 1.45 c 0.23 a 1.37 c 1.73b 0.95 c 1.06 10.21 b 5.14 b 
 F 72.8*** 54.3*** 17.8*** 105.0*** 20.4*** 29.85*** 3.05 (p=0.051) 31.77*** 44.3*** 

K           

K0  1.94 1.29 0.20 1.23 1.63 0.96 1.06 7.83 3.91 

K150  1.97 1.31 0.21 1.25 1.65 0.97 1.04 7.06 4.02 

K300  1.91 1.31 0.20 1.24 1.64 0.97 1.06 8.40 4.02 

K450  1.94 1.30 0.21 1.26 1.62 0.96 1.05 7.68 4.18 
 F 0.34 ns 0.15 ns 0.51 ns 0.60 ns 0.49 ns 0.44 ns 0.72 ns 1.84 ns 0.50 ns 

Weight           

 F 17.28*** 5.38* 2.86 ns 8.62** 0.79 ns 6.39* 0.05 ns 31.77*** 4.36*  

Variety 
x 

CF 
x 

Weight 

Variety           

Z18  1.91 a 1.17 a 0.18 a 1.13 a 1.59 a 0.98 a 1.04 a 6.10 a 3.50 a 

Z5  1.53 b 1.38 b 0.22 b 1.32 b 1.79 b 0.95 b 1.07 b 9.49 b 5.14 b 
 F 124.2*** 88.5*** 24.5*** 212.2*** 61.5*** 100.4*** 16.0*** 81.5*** 102.0*** 

CF           

F1  1.76 1.29 0.21 1.24 1.65 0.97 1.04 7.34 4.35 

F2  1.71 1.28 0.20 1.23 1.67 0.97 1.06 7.21 4.73 

F3  1.75 1.29 0.19 1.22 1.70 0.96 1.07 8.05 3.96 

F4  1.71 1.28 0.19 1.22 1.71 0.97 1.05 7.87 4.28 

F5  1.68 1.25 0.21 1.22 1.72 0.97 1.06 7.74 4.28 
 F 0.67 ns 0.59 ns 0.93 ns 0.50 ns 1.10 ns 0.76 ns 2.27 ns 0.60 ns 2.37 ns 

Weight           

 F 6.88** 10.97** 0.11 ns 12.14** 0.47 ns 13.84*** 0.00 ns 87.65*** 12.88** 

 356 

*Significant at 0.05 level; ** Significant at 0.01 level; *** Significant at 0.001 level  357 

aF: F-value358 



 359 

Figure 6. Analysis of the effect of potato size groups: large (L) and medium (M) on L/W, 360 

Max_A/Min_A and CIR in experiment 1 (a-c) and 2 (d-f).   361 

 362 

Figure 7. The effect of potato size group large (L) and medium (M) on Eye_N and Eye_D 363 

in experiment 1 (a, b) and 2 (c, d). 364 

 365 

4. Discussion 366 

The present study is the first to use 3D imaging technology for counting potato eyes and 367 

assessing qualitative traits, including potato Eye_N and Eye_D, using an imaging-based 368 

analysis. Generally, large differences in Eye_N were found between large and medium 369 

sized tubers for Z18 and Z19. For relatively small potatoes, eyes might not have fully 370 

developed and hence the image analysis software might not be sensitive enough to detect 371 

the extremely shallow eye depressions, which may result in the underestimation of Eye_N. 372 

Consequently, phenotyping Eye_N in a practical breeding programme requires a 373 

relatively large potato tuber for more robust results; thus, future studies are necessary to 374 

establish a mass threshold for each variety to better assess eye count reliably.  375 

It is worth noting that errors in the estimation of Eye_N and Eye_D could be introduced in 376 

the imaging setup and 3D reconstruction algorithm as well as in manual assessment. Due 377 

to the limitation of the viewing angle for the imaging setup, the bottoms of the potato 378 

tubers were partly occluded and could not be fully reconstructed, which led to the 379 

underestimation of Eye_N and decreased the accuracy of Eye_D. There is no widely 380 

accepted method to accurately measure the potato eye depth as far as we know. A 381 



modelling clay method was used in this study but due to the irregular shape of the potato 382 

tuber, it was hard to standardise this method, which also may have introduced errors in 383 

the eye depth estimation. The effect of genotypes on Eye_N and Eye_D is consistent with 384 

previous knowledge and fertiliser input appears not to have had an effect on Eye_N and 385 

Eye_D.  386 

Accurate estimation of Eye_D requires a higher quality of 3D model than other traits. For 387 

SfM-MVS, high quality 3D reconstruction relies on a large number of viewing angles and 388 

sufficient depth variation, which cannot be fully controlled due to the variation of the 389 

smoothness of surfaces in the present study, and this was probably the major error source 390 

for Eye_D estimation. Inaccurate feature extraction and matching always leads to spikes 391 

and holes in reconstructed point clouds/meshes. The density, resolution and quality of 392 

the 3D reconstructed point cloud/mesh directly affects the estimation of the mean 393 

curvature of the points. The lower the density, resolution and quality of the 3D point 394 

cloud/mesh, the less accurate the estimated mean curvature, and thus the less reliable 395 

the estimated potato eye depth. To improve the quality of the 3D reconstructed point 396 

cloud/mesh, more accurate SfM techniques, such as a fast feature detector (Ghahremani 397 

et al., 2021), can be applied. Other 3D scanning techniques can also generate 3D point 398 

cloud data that is compatible with the proposed image analysis software. Structured light-399 

based 3D scanning can potentially provide more rapid and automated data acquisition. 400 

Structured light-based scanners project a pattern of light onto the sample and calculate 401 

the distance of each point based on the shape of the observed pattern of reflected light. 402 

Compared with SfM-MVS, structured light requires fewer rotations of the sample and 403 

generates high quality point cloud data in a more robust manner. Moreover, commercial 404 

https://paperpile.com/c/6gkvq8/9QvG
https://paperpile.com/c/6gkvq8/9QvG


structured light scanning systems do not need separate software to implement 3D 405 

reconstruction. While it is difficult to apply structured light scanning to shiny specular 406 

surfaces, such as strawberry fruit, the rough matt surface of potato tubers may make it 407 

suitable in a future study. 408 

Phenotyping potato tuber shape in current potato breeding programmes simply groups 409 

shape into six broad shape categories. Any assessment of shape uniformity is still lacking, 410 

although this can be a more important trait in both potato retail and processing. Six shape 411 

uniformity-related traits, which previously showed good agreement with manual 412 

assessment in strawberries, were adopted in this study. Shape uniformity differed 413 

significantly among the chosen varieties. Z18 was found to have a better shape-uniformity 414 

than other varieties in the three experiments, and Z10 was comparable with Z18 in 415 

experiment 1 for all shape uniformity-related traits. It is possible that there is genetic 416 

variability in the potato tuber shape uniformity which can potentially be exploited in 417 

breeding programmes. In previous studies (Li et al., 2020), CIR, Max_A/Min_A and L/W 418 

were considered as more important variables than others, and this was consistent with 419 

the present study in that a greater number of varieties could be discriminated against by 420 

them. In this study, the potato tubers in the large group showed a trend of lower shape 421 

uniformity than the medium sized tubers, except for Z18, which showed a consistently 422 

higher shape uniformity than the other varieties. This hypothesis needs to be confirmed 423 

in a future study with a larger number of samples. As a high input of N fertiliser can 424 

increase the tuber size, a future study can be conducted to understand the optimal N 425 

input to balance the tuber size and external quality, including SI and shape uniformity.  426 

https://paperpile.com/c/6gkvq8/qSBM


Although the effects of fertiliser treatments on shape uniformity and eye traits were initially 427 

investigated with a sampling method in this study, further work with a larger number of 428 

samples should be conducted based on the automated imaging methodology developed 429 

here to confirm the initial finding.  430 

 431 

5. Conclusion 432 

Overall, this study demonstrated that the proposed 3D image analysis method is capable 433 

of providing quantitative phenotypic data for SI, shape uniformity and eye-related traits in 434 

potatoes. L/W, Max_A/Min_A and CIR were found to show the best discriminative power 435 

among varieties. The impact of variety, fertiliser and mass on tuber shape uniformity were 436 

innovatively assessed based on a 3D image analysis method. In this preliminary study, 437 

different fertiliser treatments showed no significant impact on shape uniformity and eye 438 

traits, but tuber size significantly affected the selected shape-uniformity traits. Inconsistent 439 

results were obtained for the analysis of the effect of tuber mass on the eye depth, 440 

probably due to the inadequate quality of the 3D model and limited sample number. By 441 

adopting an alternative 3D scanning method, such as a structured light based 3D 442 

reconstruction approach, it is believed that high-throughput phenotyping for novel external 443 

traits could be obtained in a practical commercial potato breeding programme.  444 
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