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Abstract 

Smart wearables sense and process information from the user’s body and environment and report results of 
their analysis as electrical signals. Conventional electronic sensors and controllers are commonly, sometimes 
augmented by recent advances in soft electronics. Organic electronics and bioelectronics, especially with living 
substrates, offer a great opportunity to incorporate parallel sensing and information processing capabilities of  
natural systems into future and emerging wearables. Nowadays fungi are emerging as a promising candidate 
to produce sustainable textiles to be used as ecofriendly biowearables. To assess the sensing potential of 
fungal wearables we undertook laboratory experiments on electrical response of a hemp fabric colonised by 
oyster fungi Pleurotus ostreatus to mechanical stretching and stimulation with attractants and repellents. We 
have shown that it is possible to discern a nature of stimuli from the fungi electrical responses.  The results 
paved a way towards future design of intelligent sensing patches to be used in reactive fungal wearables. 
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1. Introduction 

Smart wearables are devices that extend the functionality of clothes and gadgets, they are responsive to 
the wearer and can act as an interface between the wearer and the environment producing a user respon- 
sive symbiotic system. The smart wearables have been developed as a result of the convergence between 
textiles and electronics (e-textiles). They integrate a high level of technology to provide complex functions 
and an easy operation and maintenance [1]. They can be divided into three subgroups: (1) passive smart 
wearables: able to sense the environment/user, (2) active or reactive smart wearables: able to sense the 
environment/user, and react performing some actions, therefore integrating an actuator, (3) advanced smart  
wearables: able to sense, react and adapt their behaviour to given circumstances. Sensors provide means to 
detect signals, actuators react upon stimuli either autonomously or after commands received from a central 
processing unit [2]. Textile-embedded sensing systems have been developed and commercially exploited in 
both the biomedical and safety communities [3]. Smart wearables have been used to record electrocardiogra- 
phy signals [4], electromyography signals [5], electroencephalography signals [6], temperature [7], biophotonic 
sensing [8], movement [9], oxygen content, salinity, moisture, or contaminants [10, 11]. Active functionali- 
ties might include power generation or storage capabilities [12], machine to human interface elements [13],  
radio frequency communication capabilities [14]. Wearable intelligent systems, intrinsically soft and better 
compliant with extension, deformation and skin stiffness have been developed since a long time [15]. 

The electronic wearables cannot self-grow and self-repair. This deficiency limits their application in the 
field of soft robotics and self-growing robots [16, 17, 18, 19]. We can overcome these limits by incorporating 
living fabric in the smart wearables. One of the solutions, explored by us previously, would be to grow slime 
mould P. polycephalum on a surface of the cloths or a body of a robot [20]. The slime mould is proven to be a 
biosensor for the chemical, mechanical and optical stimuli [21, 22, 23]. Despite the sufficient sensorial abilities,  
the slime mould is rather fragile, highly dependent on environmental conditions and requires particular sources 
of nutrients. 

Fungi could, however, make a feasible alternative to the slime mould. Fungal materials — grow substrates 
colonised with mycelium of filamentous fungi — are emerging to be robust, reliable and ecologically friendly 
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replacement for conventional building materials and fabrics [24, 25, 26, 27, 28, 29, 30, 31, 32, 33].  Fungi 
“possess almost all the senses used by humans” [34]. Fungi sense light, chemicals, gases, gravity and electric  
fields. Fungi show a pronounced response to changes in a substrate pH [35], mechanical stimulation [36], 
toxic metals [37], CO2 [38], stress hormones [39]. Thus, wearables made of or incorporating fabric colonised 
by fungi might act as a large distributed sensorial network. Fungi is known to respond to chemical and 
physical stimuli by changing patterns of its electrical activity [40, 41, 42] and electrical properties [43]. This  
feature would allow to interface fungal wearables with conventional electronics. In view of their extension and 
interconnectivity, fungal networks represent certainly a sustainable infrastructure-forming substrate, able to 
wire loci separated by considerable space.  Moreover, there are indications that mycelium networks not just  
sense the external stimuli but also process information, and that there is feasible opportunity to convert fungal 
responses into Boolean circuits, thus making fungal wearables parallel biological processing networks [44].  
Previously conducted experiments on sensorial properties of fungi have been using experimental laboratory 
setups where substrates colonised by fungi have been kept in ‘comfortable’ conditions of closed containers  
with preserved humidity [45]. To assess the feasibility of a fungal wearable prototype in the real world we 
conducted experiments with a thin hemp-mycelium composite fabric incorporated on a t-shirt wore by a 
mannequin. 

The paper is structured as follows. We introduce experimental techniques in Sect. 2. Section 3 analyses 
the fungal response to stimulation with chemo-attractants, chemo-repellents and mechanical stretching. In 
Sect. 4 we talk about mechanisms of the fungal wearable response and propose directions for further studies. 

 
2. Methods 

 
A commercial strain of the fungus P. ostreatus (Mogu’s collection code 21-18), previously selected for its 

superior fitness growing on the targeted substrate, was cultured on a hemp bedding substrate in plastic boxes 
c. 35  20 cm

2
 in darkness at ambient room temperature c. 22

o
C. 

A hemp substrate well colonised by the fungus was spread on rectangular fragments, c.  12  12 cm
2
, 

of moisturised hemp fabric. When the fragments were colonised, as visualised by white mycelial growth on 
surface, they were used for experiments. The colonised fabric was attached to a cloth, which in turn was 
placed on a mannequin (Fig. 1(a)). The mannequin was covered by a plastic sheet to prevent a quick decrease 
of moisture in the fungal fabric. The fabric was sprayed with distilled water once per two days. The humidity 
of the fungal fabric was 70%-80% (MerlinLaser Protimeter, UK). The experiments were conducted in a room 
with ambient temperature 21

o
C and illumination 30-150 LUX (ISO-Tech ILM 1332A). 

Electrical activity of the colonised fabric was recorded using pairs of iridium-coated stainless steel sub- 
dermal needle electrodes (Spes Medica S.r.l., Italy), with twisted cables and ADC-24 (Pico Technology, UK) 
high-resolution data logger with a 24-bit A/D converter, galvanic isolation and software-selectable sample 
rates all contribute to a superior noise-free resolution. To keep electrodes stable we have been placing a 
polyurethane pad under the fabric. The pairs of electrodes were pierced through the fabric and into the 
polyurethane pad (Figs 1(b) and 1(c)). We recorded electrical activity one sample per second, where the 
minimum and maximum logging times were 60.04 and 93.45 hours, respectively. During the recording, the 
logger has been doing as many measurements as possible (typically up to 600 per second) and saving the 
average value. We set the acquisition voltage range to 156 mV with an offset accuracy of 9 µV at 1 Hz to 
maintain a gain error of 0.1%. Each electrode pair was considered independently with the noise-free resolution 
of 17 bits and conversion time of 60 ms. Each pair of electrodes, further called a Channel (Ch), reported 
a difference of the electrical potential between the electrodes. Distance between electrodes was 1-2 cm. In 
each trial, we recorded 5–8 electrode pairs (Ch) simultaneously. We stimulated the fungus with 96% ethanol, 
malt extract powder (Sigma Aldrich, UK) dissolved in distilled water, dextrose (Ritchie Products Ltd, UK) 
and by attaching weights (using foldback clips) to the hemp pads. 

 
3. Results 

 
A response of the fungal wearable to a chemo-attractant was studied using malt extract and dextrose. An 

exemplar response to application of malt extract is shown in Fig. 2(a). The immediate, first 3 hr, response is 
manifested in the spikes up to 15 mV and duration up to 140 min, and is due to a sudden increase in humidity 
of the substrate. Further response is attributed to fungi sensing malt extract as a chemo-attractant and a 
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(b) (c) 

 
Figure 1: Experimental setup. (a) Overall view of the experimental setup. (b) Close up of the fungal wearable incorporated 
into real cloth. (c) Exemplar locations of electrodes. 
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Figure 2: (a) Response to application of malt extract. The moment of malt extract application is shown by asterisk. (b) Low 
frequency trains of spikes. (c) High frequency trains of spikes. (d) Response to application of dextrose. The moment of malt 
extract application is shown by asterisk. (ef) Response to stimulation with ethanol. An overall response is shown in (e) with 
some channels zoomed in (f). 
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Figure 3: Fungal wearable’s response to stretching. (a) An exemplar response to stretching of the fabric by attaching 50 g weight 
to it. (b) Response to removal of 200 g weight recorded from five pairs of differential electrodes. (c) An exemplar response to 
removal of the weight recorded on one pair of differential electrodes. (d) Typical response to removal of 200 g weight, recorded 
on a one pair of differential electrodes. 

 
 

source of nutrients. The onset of the response is characterised by low frequency trains of spikes (Fig. 2(b)). 
There are 3-4 spikes, with amplitude over 2 mV, in each train. Average distance between spikes in each 
train is 291 sec, σ = 90, average spike width is 273 sec, σ = 110, average spike amplitude 2.6 mV, σ = 0.15. 
Average duration of a train is 31 min, σ = 3, a distance is up to one hour. Typically, a frequency of spike 
trains increases with time, a distance between trains decreases to 15 min in average, σ=5 (Fig. 2(c)). Average 
amplitude of spike trains is 4.6 mV, σ=2.5. 

Results of experiments with malt extract echo in the experiments with application of dextrose (Fig. 2(d)). 
The fungi show low frequency oscillatory activity before stimulation: average distance between spikes is  
197 min, σ = 13.9, average amplitude 0.3 mV, σ = 0.2. In first 5 hours after the dextrose application the 
frequency of spikes substantially increases: average distance between spikes becomes 22 min, σ = 13 and 
amplitude increases to average 0.43 mV, σ = 0.27. In next 5 hours average amplitude of spikes increases to 

1.3 mV, σ = 0.35, and distance between spikes 20 min, σ = 7. 
To assess a response to chemo-attractants we used ethanol. We applied 1 ml of 96 % ethanol on the 

colonised fabric near loci of Ch5. The response on one of the channel close to the application loci is shown in 
Fig. 2(e). We observed a drop by nearly 8 mV followed by further drop of the electrical potential by nearly 
8 mV. The time to the peak of the response is c. 7 sec. The drop in potential followed by repolarisation 
phase, which lasted c. 14 sec. The potential remained c. 11 mV lower than that before stimulation. The 
response on channels further from the application loci is less pronounced, as seen in Fig. 2(f). The spikes of 
electrical potential recorded on the channels have the following amplitudes: 0.65 mV on Ch1, 0.34 mV on 
Ch3, 0.31 mV on Ch7, 0.5 mV on Ch11, and 0.3 mV on Ch13, where Ch1 is the closest to the application 
loci and Ch13 is the farthest one. 

To uncover the fungal wearable’s response to stretching we attached 50 g and 200 g weights to the bottom 
part of the fabric colonised by the fungus. A typical response to the application of 50 g weight is shown 
in Fig. 3(a)). The response duration is 97 sec in average, σ=37 sec with average response amplitudes is 
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1.3 mV, σ=0.74 mV. Differential electrode pairs, labelled as channels in Fig. 3(a) have been arranged in a 
line from the top to the bottom (Fig. 1(c)), with Ch1 being closest to the top of the fabric and Ch13 to 
the bottom part. Most of the response spikes show action potential like depolarisation, repolarisation and 
hyperpolarisation phases. Ch1 and Ch13 show hyperpolarisation phases set up at higher, compared to that  
before stimulation, base potential. 

On application of 200 g weight to lower part of the fabric, variety of response from differential electrodes 
pairs have been recorded. An exemplar response is shown in Fig. 3(b). The response has an average duration 
38 min, σ=2 min, and average amplitude 1.56 mV, σ=1.24 mV. The response in the example consists of two 
trains of high (‘high’ in the frameworks of fungal temporal activity) frequency spikes. Average spike width is 
80 sec (σ = 50), average amplitude 0.31 mV (σ=0.32), average distance between spike in each train is 71 sec 
(σ=47 sec). 

Overall reaction to the removal of the stretching stimuli is in the drift of the base potentials on electrodes 
towards zero, e.g. in Fig. 3(c) we see that the average based potential is -1.17 mV, σ=2 mV, before stimulation 
was removed, and -0.8 mV, σ=1.3 mV, after the weight was removed. A typical response, to removal of 200 g, 
recorded on a single Ch is shown in Fig. 3(d)). The spike there has a duration of 9 sec and amplitude 11 mV. 

 
4. Discussion 

 
We demonstrated that a fabric colonised by the fungus P. ostreatus shows distinctive sets of responses to 

chemical and mechanical stimulation. The response to 50 g load, Fig. 3(a), is in the range of c. 1.5 min which 
might indicate that rather purely electro-mechanical events take place than reactions involving propagation 
of calcium waves [46]. A difference d between timing of the response spikes peaks at the electrodes pairs in 
the line is as follows: d(Ch1, Ch3)=3.6 sec, d(Ch1, Ch5)=20 sec, d(Ch1, Ch7)=16 sec, d(Ch1, Ch13)=3 sec. 
This might indicate that the mycelium networks closer to the fixed end (Ch1) and the end where the load is 
attached (Ch13) react to the stretching first, the reaction then propagates further into the interior parts of 
the fabric, thus delayed reactions are recorded on the channels Ch5 and Ch7. 

The response to stimulation with ethanol is in a range of 7 sec. This would rather indicate physico- 
chemical damages to hyphae walls and corresponding electrical responses. Would amplitude of a response 
spike reflect a distance to the stimulation loci? As seen in Fig. 2(f), on most channel the response amplitudes 
slightly decrease with increasing distance to the stimulation loci however more studies are required to give a 
certain answer. The response on the channels remote to the stimulation loci happens at the same time, as on 
the channel in proximity of the stimulation loci. This indicates that the response might be purely electrical 
(due to damage to cell walls impulse) and not due to diffusion in the fabric or volatile ethanol. 

The increase of frequency of electrical potential oscillation in a response to application of chemo-attractants 
or nutrients is consistent with previous studies, where intracellular electrical potential of stimulated fungi was 
measured [40]. Even if in the case of malt extract solution increased spiking could be attributed to a water 
the experiments with dextrose, which was applied dry, show that the spiking shown increased frequency, and 
often amplitude, due to reaction to a chemoattractant or nutrient. The increase in amplitude of spiking 
five hours after the application of malt or dextrose might be due to the fungus ingesting the nutrients and 
transposing them across the wide mycelial network. 

In laboratory conditions the fungal wearables survive for several months being kept in high humidity 
conditions. For practical future applications of the fungal wearables, preserving the moisture is fundamental. 
For example, the fragments of fungal materials could be coated with a breathable bioplastic. 

Future developments in the field of fungal wearables may be along the following directions. 
First direction is a computational one.  We demonstrate in computational models that a fungal colony 

can implement a range of Boolean function [44]. It might be possible to implement an experimental mapping 
between a set of stimuli and distribution of Boolean gates implemented by fungal wearables, as we demon- 
strated on sensing and computing organic liquid skin [47]. In other words, in a response to a particular 
stimuli the fungal wearable will generate a unique set of Boolean function. 

Second direction is in development of a large scale fabric made purely from mycelium — fungal skin 
(Fig. 4) and tailoring the fabric into wearables. Such mycelial tissue can be prepared using trimitic polypore 
fungal cultures, which are apparently preferred for the production of sturdy fungal skins, such as fungal 
leather or mycoleather [33]. More specifically, a fungal fabric can be prepared by pouring a homogenised 
slurry of a liquid culture of Ganoderma resinaceum into a static fermentation tray and incubated for two 
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Figure 4: Example of pure fungal flexible materials grown by Mogu S.rl. and branded as PURA Flex™. (a) Harvesting of a 
fungal skin, (b) size comparison with a human being, (c) texture detail resembling animal skin and (d) backpack prototype 
made with PURA Flex™ material. 



8  

 
(a) (b) 

 
Figure 5: (a) Part of the hemp glove colonised by fungus is visible in reflected light. (b) Stands of hyphae on the hemp fabric. 

 
 

weeks to allow the fungal hyphae to intermesh, forming a floating mat or skin [42]. Examples of such type 
of fungal fabrics are shown in Fig. 4. 

Third direction would be to culture fungi directly onto the pieces of clothing (Fig. 5(a)). This will allow 
us to achieve full response cloths and garments. 

Fourth direction in the development of fungal wearables could be in using fungal hyphae (Fig. 5(b)) as 
wires and programmable (with e.g. light) resistor or electrically activated resistive switching devices in hybrid  
architectures incorporating conventional flexible electronics [48] and live fungi. Routing the direction of the 
fungal wires can be done by arranging sources of attractants and repellents. Isolation of fungal wires, as 
well as localized connections when ordered arrays like the cross-bar array arrangement are required, could 
be done using inorganic materials, such as metal oxides of the proper work function deposited by means of 
atomic layer deposition [49], or digitally printed over a large scale, also in case of uneven surfaces [50]. 
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[9] J. Meyer, P. Lukowicz, G. Tröster,  Textile pressure sensor for muscle activity and motion detection,  in: 
Proceeding of the 10th IEEE International Symposium on Wearable Computers, IEEE, 2006, pp. 11–14. 

[10] S. Coyle, K.-T. Lau, N. Moyna, D. O‘Gorman, D. Diamond, F. Di Francesco, D. Costanzo, P. Salvo, 
M. Trivella, D. De Rossi, Flexible temperature sensors on fibers, IEEE Trans. Inf. Technol. Biomed. 14 
(2010) 364–370. 

[11] E. Zadeh, Flexible biochemical sensor array for laboratory-on-chip applications, in: Proceeding of the 
International Workshop on Computer Architecture for Machine Perception and Sensing, 2006, pp. 65–66. 

[12] D. Vatansever, E. Siores, R. Hadimani, T. Shah, Smart Woven Fabrics in Renewable Energy Generation, 
InTech, 2011. 

[13] S. Baurley, Interactive and experiential design in smart textile products and applications, Personal and 
Ubiquitous Computing 8 (2004) 274–281. 

[14] S. Black, Trends in Smart Medical Textiles. In: Smart Textiles for Medicine and Healthcare: Materials, 
Systems and Applications, University of Ghent, 2007. 

[15] K. Rajan, E. Garofalo, A. Chiolerio, Wearable intrinsically soft, stretchable, flexible devices for memories 
and computing, Sensors 18 (2018) 367. 

[16] B. Mazzolai, Plant-inspired growing robots, in: Soft Robotics: Trends, Applications and Challenges, 
Springer, 2017, pp. 57–63. 

[17] A. Sadeghi, A. Mondini, B. Mazzolai, Toward self-growing soft robots inspired by plant roots and based 
on additive manufacturing technologies, Soft robotics 4 (2017) 211–223. 

[18] E. Del Dottore, A. Sadeghi, A. Mondini, V. Mattoli, B. Mazzolai, Toward growing robots: a historical  
evolution from cellular to plant-inspired robotics, Frontiers in Robotics and AI 5 (2018) 16. 

[19] A. Sadeghi, E. Del Dottore, A. Mondini, B. Mazzolai, Passive morphological adaptation for obstacle 
avoidance in a self-growing robot produced by additive manufacturing, Soft Robotics 7 (2020) 85–94. 

[20] T. Schubert, M. Markert, M. Dreßler, A. Adamatzky, Bodymetries. mapping the human body through 
amorphous intelligence, in: Experiencing the Unconventional: Science in Art, World Scientific, 2015, 
pp. 315–327. 

[21] J. G. Whiting, B. P. de Lacy Costello, A. Adamatzky, Towards slime mould chemical sensor: Mapping 
chemical inputs onto electrical potential dynamics of Physarum Polycephalum, Sensors and Actuators 
B: Chemical 191 (2014) 844–853. 

[22] A. Adamatzky, Slime mould tactile sensor, Sensors and actuators B: chemical 188 (2013) 38–44. 

[23] A. Adamatzky, Towards slime mould colour sensor: Recognition of colours by Physarum polycephalum, 
Organic electronics 14 (2013) 3355–3361. 



10  

[24] S. Travaglini, C. Dharan, P. Ross, Manufacturing of mycology composites, in: Proceedings of the 
American Society for Composites: Thirty-First Technical Conference, 2016. 

[25] M. Haneef, L. Ceseracciu, C. Canale, I. S. Bayer, J. A. Heredia-Guerrero, A. Athanassiou, Advanced 
materials from fungal mycelium: fabrication and tuning of physical properties, Scientific reports 7 (2017) 
1–11. 

[26] P. Ross, Method for producing fungus structures, 2018. US Patent 9,951,307. 

[27] F. V. Appels, S. Camere, M. Montalti, E. Karana, K. M. Jansen, J. Dijksterhuis, P. Krijgsheld, H. A. 
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