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ABSTRACT 

Illumination variance is one of the largest real-world problems 

when deploying face recognition systems. Over the last few years 

much work has gone into the development of novel 3D face 

recognition methods to overcome this issue. Photometric stereo is 

a well-established 3D reconstruction technique capable of re-

covering the normals and albedo of a surface. Although it 

provides a way to obtain 3D data, the amount of training data 

available captured using photometric stereo often does not provide 

sufficient modelling capacity for training state-of-the-art feature 

extractors, such as deep convolutional neural networks, from 

scratch.  

In this work we present a novel approach to utilising the lighting 

apparatus commonly used for photometric stereo to synthesise 

data that can act as a biometric. Combining this with deep 

learning techniques not only did we achieve near state-of-the-art 

results, but it gave insight into the possibility of using photometric 

stereo without the need of reconstruction. This could not only 

simplify the face recognition process but avoid unnecessary error 

that may arise from reconstruction.  

Additionally, we utilise the active lighting from photometric 

stereo to evaluate the effect of illumination on face recognition. 

We compare our method to the state-of-the-art 3D methods and 

discuss potential use cases for our system. 
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1 Introduction 

Photometric stereo is a technique capable of capturing 3D 

information using multiple light sources. Using at least three 

independent light sources, photometric stereo can recover the 

surface normal of a point [1]. The method is capable of being used 

for many different contexts including face recognition [4, 6, 7]. 

Although much of the research states its applicability to face 

recognition, little offers insight into the performance of the 

surface recovery in relation to recognition accuracy. Unlike 

traditional stereo methods, photometric stereo recovers the surface 

normal and albedo of a point instead of the depth. Recovering the 

depth has been widely used for face recognition and performance 

improvements can be seen over 2D information [2, 8]. The surface 

normal recovered using photometric stereo is represented as a 

vector signifying a perpendicular line to the point, while the 

albedo represents the proportion of incident light being reflected 

by the surface. Shown in Figure 1 are examples of subject images 

and their corresponding surface reconstructions. 

 

Photometric stereo was first developed to overcome the problems 

of traditional stereo techniques, namely the correspondence 

problem [3]. Traditional stereo techniques, such as binocular 

stereo vision, need to correspond several points in a pair of stereo 

images to recover the depth. This introduces a major concern in 

the context of face recognition, since the amount of time to 

establish the correspondence can be much larger than the 

recognition itself, making it a challenge to implement a real-time 

system. Additionally, a common technique to overcome the 

correspondence problem is to employ a block matching algorithm 

[5]. Unfortunately, the algorithm often incurs pixel loss when 

generating the disparity between the left and right image [9]. The 

main concern using lower resolution images for face recognition 

is the loss of texture information. Many feature extractors, such as 

local binary patterns (LBP), rely on surface texture analysis. 

Compared to employing low resolution data, providing better 

resolution images can often increase accuracy. 

 

Face recognition algorithms commonly contain three primary 

steps: data acquisition, feature extraction and classification. In 

recent years, much attention has gone into feature extraction, with 
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multiple variants of traditional methods being developed [10, 11, 

12, 13]. It is not until recently that extracting 3D data has been 

investigated to overcome the limitations of current systems, such 

as illumination and face expression variations. 2D data 

acquisitioning methods are direct measures of light irradiance, and 

therefore the data are influenced heavily by the light conditions of 

the environment. 3D methods attempt to overcome this by 

transforming the 2D information in a way such that it is 

descriptive but contains less dependency on the lighting 

conditions. In addition to surface gradients and albedo, other 

values such as BRDF and depth can be exploited [19].  

 

The objective to this research is to determine the effectiveness of 

transfer learning from data captured using photometric stereo. 

Additionally, we present a novel approach to synthesizing data 

using the lighting apparatus to act as a biometric, replacing 

traditional 3D data found from the surface reconstruction process. 

Finally, we utilise the unique active lighting apparatus from 

photometric stereo to perform experiments on the effect of 

illumination variance on face recognition performance. 

 

 
Figure 1: Example of Photoface subject images and their 

corresponding surface reconstructions 

2 Related Work 

2.1  Photometric Stereo for 3D Face 

Reconstruction 

Ridgefaces introduced in [14] is a variant of the eigenfaces 

approach [38] in which ridglet transforms are applied to the 3D 

data recovered using Photometric Stereo. Results were obtained 

using the Photoface database and showed the method 

outperforming PCA and fisherfaces by 12%. The paper performed 

many experiments on the different 3D data and showed the 

surface gradients along the X and Y axis outperforming the 

albedo. The best recognition rate was achieved by combining the 

surface normals with their l1 and l2 norms. Since the ridgefaces 

paper, notable progress has been made around the capability of 

automatically identifying features, such as convolutional neural 

networks. Our work attempts to combine the use of photometric 

stereo for 3D reconstruction with the performance of state-of-the-

art feature learning methods, as opposed to conventional 

techniques using hand crafted features such as eigenfaces. 

 

Photometric stereo is a technique capable of recovering 3D 

information from a Lambertian surface. It has been widely 

adopted as a 3D reconstruction technique since the 1980’s [1]. 

Although much work has been done in its ability to reconstruct a 

face [6, 7, 15, 16], little research has shown the influence of 

recognition accuracy. Given that photometric stereo generates 

several different types of features, more work investigating the 

features recovered in the context of face recognition could provide 

better results. 

 

Cheol et al. experimented with face recognition using photometric 

stereo [20]. PCA, GaborJets and a proposed method was 

evaluated using the surface normals and albedo. Although this 

paper gives insight into the use of photometric stereo for face 

recognition, the paper focused its research on the reconstruction of 

the face, where the angle of the lights was the focus of 

examination. Additionally, no experiments were conducted to 

evaluate which values of the surface normal or albedo performed 

best. Furthermore, the validation set used was relatively small 

with only 125 images. 

2.2  3D Face Recognition 

Using known physical properties, 3D face recognition addresses 

the problems of 2D face recognition by inferring more descriptive 

information from an image or images. Using two cameras at a 

known distance apart, binocular stereo vision captures a stereo 

pair of images to infer depth. Lao et al. proposed a template 

matching framework [17] using the depth maps generated from 

stereo vision to create a pose invariant recognition algorithm. 

Using the 3D feature vector, the algorithm accurately determines 

the pose of a face. It does this by searching the face for arcs with 

radiuses within a certain range, indicating the location of the 

irises. Using these two iris center coordinates, the model is 

distorted to transform the face into a canonical pose. Once 

transformed, recognition is performed to extract the features at the 

same pose as the other known subjects. In their experiments, 

varying face poses show only minor differences in recognition 

accuracy. 

 

Although a lot of literature is available on comparison of 2D to 

3D face recognition, little work has been presented in which 2D 

and 3D face recognition are evaluated using the same database. 

Comparisons often use qualitative analysis as a means of 

evaluation [21, 22]. This is due to the lack of data captured 

containing both 2D and 3D features of the same subject during the 

same session.  

 

Soltana et al. [23] was one of the first to evaluate the recognition 

performance of both 2D and 3D features using a database 

containing both. The 3D images were captured using an infrared 

camera to produce range images. The paper shows the 3D features 

outperforming 2D by nearly 10%, especially when there is a pose 

variation in the subject. To measure the effect of pose and 

illumination variations on recognition accuracy, the two types of 

variations need to be isolated from the validation set. Georghiades 
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et al. [18] performed experiments using five different face 

recognition techniques where the level of pose and illumination 

variations were known. Their results showed a correlation 

between the classification error rate and the angle of the 

illumination. Natural features of a face, such as a nose, can cause 

shadows to appear given undesirable illumination and hence an 

increase in incorrect classifications can occur 

3  System Overview 

As mentioned, one of the biggest drawbacks to using 3D data is 

the amount of training data available [21]. Using the Photoface 

database it would be particularly challenging to train the network 

from scratch. In order to utilise the vast amount of 2D training 

data currently available, the network was trained using transfer 

learning. First the network was initialised using the weights from 

the popular vggface [30] network and then fine-tuned using the 

Photoface database. The vggface model is based on the VGG-

Very-Deep-16 CNN [31] network architecture and was trained 

using a combination of the LFW dataset [32] and YouTube face 

dataset [33]. The network comprises of 11 blocks, each containing 

a linear operator followed by ReLU. The first 8 blocks are said to 

be convolutional while the last 3 are fully connected, where the 

size of the filter matches the size of the input. The resulting 

feature vector is then passed to a softmax layer to compute the 

class posterior probabilities. 

 

We have used a much smaller learning rate of 0.00025 for the fine 

tuning, we found a learning rate higher than this, such as 0.001 

was too high and caused the network to overfit to the new data.   

Lastly, we allowed the network to fine tune all its layers, instead 

of freezing the convolutional backbone. Although this increased 

training time, it proved to show even better results than retraining 

only the classification head and last few convolutional layers. This 

indicates the appropriateness of the Photoface database for our 

experiment, since training the network end to end would only be 

effective when provided enough data. 

 

In order to determine which type of data is more descriptive for 

our system, we compare the performance of the system using the 

synthesized data against the albedo and surface normals along the 

X and Y axis. For information on how the albedo and surface 

normals are calculated we refer to the method described in the 

original paper [34]. 

 

Figure 2 illustrates the process of using transfer learning to train 

our network using an existing network trained with similar data. 

Note that we did not actually freeze the convolutional backbone, 

instead we opted for a low learning rate to effectively only train 

the last layers, although the convolutional layers can still then be 

optimised. 

 

 
Figure 2: Processing stages of training the network through 

transfer learning 

 

Shown in Figure 3 is the sequence of our system and its 

recognition process. There are 5 main entities of the system, the 

Application, which is responsible for initializing the other 4 

entities and ensuring any system resources required are attained. 

The Camera, which is the software interface to the hardware 

trigger capturing the actual data. Seen in the diagram is the source 

images captured by the 4 different cameras. The Image 

Synthesiser, which combines the source images by averaging each 

pixel’s light vector, to synthesize a new well-lit image. Next is the 

Face Detector, this is a class implementing the Viola-Jones face 

detection algorithm and returns a cropped image of only the face 

region. Lastly we have the Neural Network, this takes the face 

image and provides a class id and probability of the highest 

matching classification. Since our network contains fully 

connected layers after the convolutional layers, we return a 

prediction directly from the network instead of a feature vector 

that is then passed to a classifier. 

 

Figure 3: Sequence diagram of the recognition process 
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4 Method and Experiments 

The Photoface database [29] is a dataset containing over 1000 

sessions of 260 subjects. The data was captured using a four-

source photometric stereo set up, where a camera was set to a 

fixed position with four independent light sources. The light 

sources were positioned at the top left, top right, bottom left and 

bottom right of the camera. In addition to providing a sufficient 

dataset to validate the photometric stereo techniques, it provides 

the possibility to use the active lighting to synthesize illumination 

variation. As the position of the four light sources are fixed and 

known, we can combine the light intensities of the four images to 

produce new 2D data. More specifically, by averaging the pixel 

intensities of all four source images we can create an evenly well-

lit image of the subject. 

 

The Photoface database was captured using a Basler 504kc with 

Camera Link interface operating at 200fps, 1ms exposure time 

and a 55mm lens. Placed approximately 2 meters from the head of 

the subject. The light sources were provided by Jessops M100 

flashguns spaced 75cm apart [29]. 

4.1  Synthesizing Data Using Photometric Stereo 

Lighting 

Originally the Photoface database contains four images per 

subject with varying illumination directions. Traditionally systems 

using photometric stereo use these four images to reconstruct the 

surface of the face. Instead our system calculates the mean 

greyscale values of corresponding pixels across the four images, 

as shown in Figure 3. This provides the deep neural network 

optimal lighting conditions of the subject. Furthermore, this 

allows us to train the neural network on the vast amounts of 2D 

face data available and then fine tune the network using the 

synthetic 2D data. 

 

 
Figure 3: Photometric stereo source images (left) and 

generated synthetic image (right) 

4.2  Effects of Illumination Variation on Face 

Recognition 

Our last experiment measures the effect of illumination variation 

on face recognition. We compare the recognition accuracy of the 

synthetic image used in the first experiment to two additional 

synthetic images representing illumination distortion. The first 

image represents a subject containing a directional light source. 

This was created by averaging the two source images in which the 

light position was at the top and bottom right to the subject. An 

example of this can be seen in Figure 4, where clearly the right 

side of the face contains more illumination. 

 

 
Figure 4: Photometric stereo source images using top / bottom 

right light sources (left) and their generated synthetic image 

 

The last image is a randomly selected source image. This 

represents the worst-case scenario in which there is a single light 

source illuminating only a part of the face, as shown in Figure 5. 

 

 
Figure 5: Single photometric stereo source image 
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5 Results 

In this section, we present our experiment’s validation results 

using the Photoface database. The database was pre-processed by 

removing any subjects with less than three images. Additionally, 

each face was cropped using the OpenCV implementation of 

Viola Jones [28] to ensure each method analysed the same face 

region. 

5.1  Performance of our System Against State-of-

the-art 3D Methods 

Table 1 shows the results of our system using the 3 different types 

of data, synthesized 2D data, the albedo and surface normals. The 

percentage of recognition (PR) was used as our primary 

evaluation metric as it correlates to its effectiveness as a face 

recognition system [35], moreover the PR was used in the original 

paper allowing us to create a fair comparison to the state-of-the-

art method. Additionally, we show the results of the state-of-the-

art method detailed in the original paper for reference. 

 

Method Recognition Performance 

Our system using synthesized 

2D data 

95% 

Our system using albedo 84% 

Our system using surface 

normal (X axis) 

77.57% 

Our system using surface 

normal (Y axis) 

78.77% 

State-of-the-art 3D method 96% 

Table 1: Recognition performance of our system and state-of-

the-art methods 

5.2  Face Recognition Performance Under 

Varying Illumination 

One of the largest problems with 2D face recognition is 

illumination variation [10, 24, 25]. When illuminating a face, the 

light can cast shadows that negatively influence the feature 

vectors extracted and therefore cause classification results to 

degrade [36]. Using the feature vectors generated previously we 

can evaluate the effect of illumination variation on recognition 

accuracy.  

 

Table 2 shows the recognition accuracy for each of three 2D 

feature vectors we generated. Naturally the synthetic 2D image 

performs the best, with an improvement of 23.25% to the 

directional illumination. The synthetic 2D feature vector acts as a 

baseline for the other two to evaluate against, as it represents the 

optimal lighting conditions. The worse performing feature vector 

was the original source image, where an intense illumination 

variation was present (as can be seen in Figure 5). This feature 

vector performed the worse with a performance drop of nearly 

30%. Based on these results we suggest that the lighting 

conditions have a strong impact of recognition performance, as 

discussed in Section 6. 

 

Image Recognition Performance 

Synthetic 95% 

Consistent but directional light 

source 

71.75% 

Intense lighting variation 54.28% 

Table 2: Recognition performance of our system using 

different training images 

6 Discussion 

Over the last 10 years much attention has gone into obtaining 

robust features (hand crafted or automatically identified) 

including the use of deep neural networks. If we could combine 

the advantages of using deep neural networks and the recovery of 

3D data, even better improvements could be made. The main 

limitation to this is the acquisition of training data. Typically, 

deep neural networks use multiple distributions to obtain 

extremely large data sets [26, 27]. When reconstructing 3D data, 

the data acquisitioning setup needs to be consistent, such as the 

four-source photometric stereo rig used for Photoface. This makes 

gathering the necessary training data for a deep neural network 

challenging to accomplish. 

 

In our experiment we evaluated the use of the synthetic 2D data, 

the albedo and the surface normals with the neural network. From 

our results we clearly see the synthetic data achieving near state-

of-the-art performance and outperforms the traditional 3D data 

such as surface normals, for our system. We believe the neural 

network can use transfer learning more effectively with the 

synthetic 2D data since the properties of light between the 

synthetic and 2D data it was originally trained on are more alike 

than the 3D data, such as the surface normals. 

 

If the neural network learned robust features when originally 

trained, that could generalise to new data, then the similarity 

between the new and original data might have a correlation to the 

effectiveness of the transfer learning. Since the lower level 

features are already identified, a smaller number of features would 

need to be learned, most notably at the higher levels of the neural 

network. This theory also fits the observation that the albedo 

outperformed the surface normals, where the albedo shares similar 

properties to the 2D data, such as representing the ratio of light 

being reflected from the surface [34]. 

 

Although our system did not outperform the state-of-the-art 

method relative to recognition performance, our system has 

several benefits that a traditional 3D system might not. Firstly, as 

we are using the active lighting setup to generate synthetic data to 

overcome illumination variance, the lighting apparatus is not 

necessarily required for enrolling subjects into the model. While 

3D systems require data acquisitioning to be consistent from 

enrolment to inference [37], our system would allow a subject to 

be added using only 2D images, if they do not impose major 

illumination variance. This could be useful for applications where 
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enrolment of subjects does not occur where the face recognition 

system is deployed. Moreover, as mentioned using the Lambertian 

reflectance model photometric stereo requires at least three lights 

to reconstruct a surface [34]. Since our system does not perform 

reconstruction, but instead synthesises the 2D data by averaging 

the corresponding light intensities, our system could be deployed 

with two lights. This might especially be useful for mobile 

applications or areas with limited space, such as small corridors 

and doorways. 

 

Lastly our experiment has shown that when data captured using 

photometric stereo has 3D information embedded in them, the 

reconstruction process might not be a compulsory step for face 

recognition. This would not only simplify the face recognition 

process but could avoid unnecessary error that might arise from 

the surface reconstruction. Furthermore, we believe by using the 

synthetic data instead of the 3D data, more effective transfer 

learning can occur from 2D data. 

7 Conclusion 

In this paper we evaluated our system against the state-of-the-art 

3D methods described in the original Photoface paper. 

Additionally, we measured the effect of illumination variation on 

recognition accuracy for 2D data by synthesizing illumination 

using active lighting from the photometric stereo setup. Our 

results show that performance of a state-of-the-art CNN using the 

synthesized 2D data achieves near state-of-the-art. Furthermore, at 

present neural networks for 2D face recognition are receiving a lot 

more attention from both the research community and industry 

than 3D [21]. Since our system uses transfer learning based on the 

weights found from 2D face recognition, our system can 

continuously appreciate the advances made from other works. 

 

The inspiration for this work was to identify if we could combine 

the advantages from both 2D and 3D face recognition in a novel 

way to overcome the shortcomings of existing methods. Another 

real-world problem with 2D face recognition is spoofing attacks, 

whereby subjects can use photos or videos of an imposter to trick 

the system. In future work we intend to extend our system by 

employing anti-spoofing techniques using the data collected via 

photometric stereo in order to identify surfaces that do not 

conform to the usual shape of a face. 

 

Face recognition, like many computer vision tasks is a multi-

objective problem. Often works performed on face recognition 

focus on a single criterion, such as recognition performance. 

Typically, when optimizing for a specific performance metric, 

trade-offs needs to be made that can affect other criteria. By 

combining the benefits found in 2D face recognition, such as its 

maturity and state-of-the-art feature extractors with the robustness 

to illumination variance and spoofing attacks from 3D face 

recognition, a hybrid system could be developed to overcome the 

challenges found in 2D and 3D face recognition alone. 
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