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Abstract

In the process of Human-robot skill transfer, we require the robot to reproduce the trajectory of teacher and expect that the robot
can generalize the learned trajectory. For the trajectory after generalization, we expect that the robot arm can accurately track.
However, because the model of the robot can not be accurately obtained, some researchers have proposed using a neural network to
approximate the unknown term. The parameters of the traditional RBF neural network are usually selected through the empirical
and trial-and-error method, which maybe biased and inefficient. In addition, due to the end-effector of the mechanical arm trajectory
will be constantly changing according to the needs of the task, when the neural network of compact set cannot contain the whole
input vector, the neural network cannot achieve the ideal approximation effect. In this paper, the broad neural network is used to
approximate the unknown terms of the robot. This method can reuse the motion controller that has been learned and complete
other motions in the robot operating space without relearning its weight parameters. In this paper, the effectiveness of the proposed
method is proved by the ultrasound scanning task.

Keywords: Adaptive neural control; Broad learning; Dynamic movement primitive; Learning from demonstration; Human-robot
skill transfer; Force control

1. Introduction 20 models, such as the Gaussian Mixture Model (GMM), Hid-
den Markov model (HMM) and Hidden Semi-Markov Model
(HSMM). The dynamic motion primitive model is essentially
a second-order nonlinear system (spring-damping system) to
approximate a motion trajectory. Dynamic motion primitive

»s  framework [1} 2] and its derivative structure [3]] have been pro-

pansion ability. There have been efforts to give robots this kind posed by many researchers and widely applied to motion mod-

of intelligent behavior. Man-machine skill transfer can transfer eling based on imitative learning [4] and reinforcement learning
human skills to robots, so that robots can replace people to per- [5]. [6] improved the DMP method and proposed the DMP-+ al-
form some repetitive and tiring tasks. Doing ultrasound scan- gorithm. On the basis of retaining the advantages of DMPS, it
ning tasks for a long time can easily cause the doctors’ muscles | .an obtain lower mean square error in the case of the same ker-
too tired. Besides, the doctor needs to contact the patient in e fynction, and at the same time allows the learning trajectory
the process of ultrasound task, which can lead to the spread of ;) pe effectively modified by updating the subset of the ker-
disease. In this paper, the robot arm is considered to perform B- nel. However, DMPs can only learn one demonstration. Even
ultrasound scanning instead of the doctor, to reduce the muscle for professionals, it is difficult to obtain a good trajectory on-
strain of the doctor and improve the work efficiency. Mean- ly through one demonstration. In this paper, DMPs are com-
while, the isolation between the doctor and the patient will in- bined with GMM and the Gaussian mixture regression (GMR)
crease safety. to solve the shortcoming that the original DMPs can only learn
The commonly used skills representation models include  fom one demonstration. Some scholars have developed sever-
the dynamic movement primitives (DMPs) and probabilistic ;] variant models based on the original GMM. For example, the
s work [7]] proposed an Incremental, Local and Online variation

*Corresponding author of Gaussian Mixture Regression (ILO-GMR) model, which en-
Email address: cyang@ieee.org (Chenguang Yang) ables the robots to learn new skills online, thus avoiding repeat-

In daily life and work, human can easily learn some basic
task skills. They can flexibly expand these basic skills to oth-
er more complex tasks through combination, optimization and
other ways due to human’s excellent learning, summary and ex-
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Figure 1: The overview of the proposed approach.

ed adjustment of model parameters and improving skill learn-
ing efficiency. A task-Parameterized Gaussian Mixture Model
(TP-GMM) is proposed in [8] to integrate task information pa-
rameters into the learning process of the model, so that it can
have a certain perception effect on the external environment in ss
the task repetition stage. The article [9] further optimized the
TP-GMM model and reduced the dependence of the model on
external environment information.

The simulation performance of the robot also depends on
the accuracy of the trajectory tracking controller involved in
robot dynamics. In general, model-based controls perform bet-
ter if the model is accurate enough [10]. However, it is im-
possible to obtain an accurate motion model because of the un-
certainty of load and unknown disturbance. Approximation-
based controllers are designed to overcome these uncertainties %
[LL14 1124 [13]. [14] propose a dynamic neural network discrim-
inator (DNN) based on Lyapunov function to approximate the
unknown dynamics of the system. The neural network has been
widely used in controller design due to its powerful approxima-
tion capability [[15[16]. In the design of a traditional RBF neu-100
ral network, the selection of its center point and width values
determines the performance of the neural network, and these
parameters are usually selected through the designer’s experi-
ence and trial-and-error method, which is both biased and low
efficiency [[17,[18]]. For the traditional neural network, when the1os
input vector is input into the neural network, the neural nodes
near the input vector will be activated due to the characteristics
of Gaussian kernel, to achieve the purpose of learning. How-
ever, the neural nodes far away from the input vector will not
realize the function of learning. If the compact set of the neu-11o
ral network cannot contain the entire input vector, the neural
network cannot achieve the ideal approximation effect. In this
paper, the broad neural network is used to solve this problem.
When the width radial neural network is initialized, the neural
nodes of the network take the initial state of the system as theis
first node. Subsequently, the nodes of the neural network will
determine whether new network nodes should be added accord-
ing to the change of the input vector of the system and the po-

sition relationship of the existing nodes in the network. When
there is no need to add network nodes, the learning process is
consistent with the learning principle of traditional radial neural
network. When the input vector is far away from the original
system network nodes, that is, beyond the compact set domain
of the neural network, it is necessary to increase the network
nodes, so that the input vector can be within the expanded com-
pact set domain, to ensure the approximation performance of
the neural network [17]].

However, considering position control alone cannot achieve
tasks which requires force constraints. A survey [[19] designed
a cost function with muscle activation parameters as the vari-
able and deduced the updating rules of impedance and feedfor-
ward force according to the position error by gradient descen-
t method. The algorithm was verified on a single-degree-of-
freedom platform. The work [20]] improved the algorithm by
considering motion position error and force trajectory error in
the parameters, and integrating the algorithm and motion plan-
ning into a teaching system. Finally, the method was verified
on the virtual robot platform in the simulation environment, and
the effectiveness of the algorithm was proved. In this paper, the
learning of force information is added on the basis of learning
the position information, and the force controller is added to
realize the force tracking.

The structure diagram of this paper is shown in Fig. [3] in-
cluding the trajectory generation part and the trajectory track-
ing part. Firstly, GMM and GMR were used to fit the teaching
data, and then DMPs was used to model the data after fitting.
In this paper, a neural network controller based on broad learn-
ing is used to track the desired trajectory generated by DMPs.
Finally, the effectiveness of the proposed framework is proved
by experiments.

The rest of the article structure is as follows: In Section 2, the
method of trajectory generation and the force controller used in
this paper are introduced. In Section 3, we mainly introduce the
principle of neural network controller based on broad learning
and proves its stability. The effectiveness of the framework pro-
posed in this paper is verified in Section 4. Finally, Section 5
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summarizes the whole paper.

2. Basic Model of Discrete Motion

2.1. Dynamic Movement Primitives (DMPs)

In this paper, motion DMPs and force DMPs can be obtained
by using DMPs model to fit motion trajectory and force tra-
jectory respectively. The principles of motion DMPs and force
DMPs used in this paper are stated as follows:

2.1.1. DMPs for motion trajectory
The essence of DMPs is a second-order nonlinear dynamical
system including spring and damper. A single degree of free-

dom motion can be expressed by the following formula [21]]:

™2 = a(g - B1) — bp2 + f(s;w) (1)
61 =B )
T$=—ks 3)

where, we ignore the time variable for the sake of simplicity,
for example, B;(¢) is represented by ;; a and b represent the
damping coefficient and spring constant of the system respec-'4
tively, and « is usually set as a = b”/4; g is the target value of
the motion trajectory; 7 represents the time scaling constant; 5;
and (3, represent the position and velocity of motion trajectories
respectively, and the relationship between these two variables is
shown in formula (2); w means the weight of the Gaussian mod-
el, and s is the phase variable of the system, which is calculated
by the regular system of equation (3), where k; is a positiverso
constant. The nonlinear function f(s; w) is defined as:

N
Zi:1 diw;

fsi0) = —3

i=1 i

(& = Bo)s “

¢i = exp(_di(s - Ci)z) (5)155

where, ¢;, d; and w; are the center, width and weight of the
i-th kernel function respectively; Sy is the initial value of the
motion trajectory; N is the total amount of Gaussian models.
In general, the initial value of s is set to 1, which gradually
decays to zero. Since the value of s tends to zero, the nonlinearts
function f(s;w) is bounded, and the model becomes a stable
second order spring-damped system.

In general, supervised learning algorithms such as local
weighted regression algorithm (LWR) is used to determine
model parameters w. Given the teaching trajectory (), where'es
t =[1,2..,T], g = B(T), the objective function can be deter-
mined according to formula (1):

ﬁarget = TBZ - K(g _ﬁ]) + DﬁZ (6)
w can be determined by the following formula:
argmin > (fuarger = £(5; ))* )

2.1.2. DMPs for force trajectory

Similar to the DMPs for motion trajectory planning, force
trajectories obtained by teaching are modeled by DMPs. Given
the trajectory of teaching force f(¢), where r = [1,2,...,T], g =

f():

th=clfe - fi) —df + f(s;7) ®)
h=f C))

N . .
iy = 220V s (10)

i=1 Pi

where, ¢ and d respectively represent the damping coefficien-
t and spring constant of the system, and c is usually set as
c = d*/4; fe; and fy are the target value and initial value of
the force trajectory respectively; T represents the time scaling
constant; f; and f, respectively represent the position and ve-
locity of force trajectories, and the relationship between these
two variables is shown in formula (9); y; means the weight of
the i-th Gaussian model. The two transformation systems are
driven by the same phase variable s, so that they can be syn-
chronized on the time axis. The estimation process of model
parameters of force DMPs is the same as that of motion DMPs,
as shown in formula (6) and (7).

2.2. Learning from Multiple Demonstrations

For the same task, it is usually necessary to teach the robot
several times in order to learn the human movement character-
istics better. Accordingly, multiple teaching trajectories need to
be modeled in order to learn skill representation from the result-
s of multiple teaching better. The main methods can be divided
into two categories:

2.2.1. Subjective evaluation

In this method, the results of each teaching are evaluated by
the quality and performance of the teaching, and then a compre-
hensive result is obtained by some weighted method. For exam-
ple, in the retransport object experiment, the teaching quality is
evaluated according to the smoothness of each transport object
process, whether it leads to a large interaction force and other
factors, and accordingly higher weight is given to the teaching
data with high teaching quality. In order to learn from the re-
sults of multiple demonstrations, we can take a direct approach
to determining the weight of each session. This evaluation
method is simple and intuitive, but highly subjective.

In order to learn from the results of multiple teachings, we
can adopt a direct way to determine the weight of each teaching.
First, score them based on the performance of each teaching.
Assign a coefficient k; related to the score xr; for each teaching,
that is:

i

where, L represents the total teaching number.

ki )
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Then, the final teaching trajectory y can be obtained accord-
ing to the weighted average of each teaching output y;:

L
y= Z kiyi
P

2.2.2. Method based on GMM model

First, a joint probability distribution P(z,6) was construct-
ed to represent the demonstration trajectory (f,,0.x)ln =
(1,2,..,N),k = (1,2,...,K) based on N demonstration data,
where N stands for teaching time and K stands for K times of
demonstration. P(t, 0) is defined as follows [22]:

12)

L
P(,0) = ) mH(1, 0 11, %1)
=1

13)

In the formula, ; € [0, 1] is the prior coeflicient and satisfies:

L
Zﬂl =1
=1

The [-th (I = 1, ..., L) center parameter y; and covariance ma-
trix X; are defined respectively as:

l 0 s
= [” fli] 3 = [2&’5’2&?}
Hg 2y Zog

(14)

15)

where 251,) represents the variance of ¢ of the I-th Gaussian
component, and Z% represents the covariance of ¢ and 6 of
the 1-th Gaussian component. Gaussian probability distribution
H(t, 6; w;, Z;) has the following forms:

H(t, 60,11, %0) = Q1=

1 Ty \-1 T (16)
exp(=z ([0 @)~ (11, 61" = p))
where, model parameters 7, 1;, and Z; can be determined by us-
ing Expectation-Maximization (E-M) algorithm. Because the
algorithm is very sensitive to the initial values of parameters,
k-means algorithm can be used to initialize E-M model param-
eters. The algorithm divides data sets into multiple sets in order
to find a partitioned set F = (Fy, F3, ..., Fx) and minimizing the
sum of the square deviation of each set [23]].

K

F= argmin Z Z [lx — Xkl

F =1 xeFy

7)

where, x = [t,, 0,417 € R*!, %, € R¥*! is the average of set F.
Then E-M algorithm is used to find the best GMM parameter-
s. The main process is to maximize the logarithmic likelihood
function by finding the parameters 7y, /i and 3 [21]]: 175

(ks A £4) = argmaxlog (p (1,0 | 7 i, ) (18)

Ttk Zi
in addition, the number of Gaussian models also needs to be
determined in advance, which can be selected empirically ac-1so
cording to the complexity of trajectory shape.

Then, the Gaussian Mixture Regression (GMR) algorithm is
used to estimate the function 6(r). According to the reference
[24], formula (13) can be written as:

K
P(t,0) = ) mH (0] m(0), o) H (140, 2)

19)
k=1
where,
-1
m0) = i + (%) (1= 1) (20)
-1
Tl = Zkan — T (T Zhy 1)
The marginal density of ¢ is:

K
P(t) = f P(t,0)d6 = Z e (1 10 24) (22)

k=1

and the conditional probability distribution function of 8¢ is:

K
PO11)= ) wi)H (6,m(), 0}) 23)
k=1
where,
1 (4, 59)
wi(t) = —¢ B <@ (24)
Zk:l ﬂkH (ty ,ut [} Et’f )
Then, the estimated value of function 6(¢) is:
K
o) = " womi(1) (25)
k=1

2.3. Force Control

During the execution of ultrasound scanning, we need to con-
trol the force applied to the skin to avoid discomfort and to en-
sure the quality of the ultrasound image. The force received
by the object in the reproduction process is hoped to be main-
tained near the expected value. In this paper, a force controller
is added on the basis of the position controller to realize the
force control in the ultrasound process. The force controller
used in this paper is:

AX =mXg - X) - nX - (Fq—F) (26)
where,
ny 0 0 Ny 0 0
m={0 my, O0|,n={0 n, 0 (27)
0 0 m 0 0 n

represent damping and stiffness respectively. By adjusting these
two parameters, the force tracking performance of the robot
terminal can be changed. X, = (x4, Va, 2a]T € R¥>! and
X = [x,y,z]" € R are the expected trajectory and the ac-
tual trajectory respectively; Fy = [fix, fay, f1:] € R**! and
F = [fo f;» £:1T € R**! are the expected force and the actual
force respectively. The output of the force controller is acceler-
ation AX = [A%, Ay, A7]T € R*!, and by integrating ¥ twice and
adding it to the desired position x,, the force can be adjusted as
shown in Fig. 3]
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3. RBFNN With Broad Learning Framework

3.1. Dynamics Description a0

According to the Lagrange-Euler form, the dynamics model
of robot can be described as [25]:

M6+ C6,0)0 + F.(0) + GO®) = . (28)

where, M(6) € RV*V is the inertia matrix of the manipulator, the
matrix is symmetric and positive definite [22]]. C(6, ) € RNV
represents the centrifugal force and the Coriolis force vectors.
The inertial matrix of the manipulator is symmetric and positive
definite, and the inertial matrix and Coriolis force vector satisfy
the oblique symmetric relation: x” [MX(H) —2C.(6, 0)] x = 0.
F.(6) € RV is the Coulomb friction term, G(8) € RV*! is
the gravity term. 7. = 7 — 7,, 7. and 7, represent the control
moment and load moment respectively.

3.2. Radial Basis Neural Network (RBFNN)

Due to the uncertainty of the environment and the limitation?®
of measuring tool accuracy, it is difficult to obtain the precise
model parameters of the robot. Therefore, the function approx-
imation adaptive control method based on neural network is
widely used, that is, the radial basis function neural network is
used to approximate the robot indeterminate term. The general
form of radial basis function is as follows:

SX—y) =S(X -yl (29)z1

where X represents the input vector of the neural network,
|| X —y| represents the standard Euclidean distance between vec-
tor X and center point vector ¢. It can be seen that the output
of the radial basis function depends on the distance between
the input and the center point. Gaussian function is a common’
form of radial basis function neural network control due to its
advantages of good smoothness, simple form of expression and
differentiability of any order. Its expression is as follows:
—_ . 2 220
S (lx - @il) = exp (—u) (30)
i
where, 7; represents the adjustable width of the i-th Gaussian
kernel function, and ¢; represents the center point of the i-th
Gaussian kernel. Studies show [26] that RBF neural network
can approximate any nonlinear continuous function with any

accuracy as long as there are enough ganglia: oo

X)) = WIS(X) +e(X) VX eQy 31)

where W represents the weight of the neural network, Qx €
RP stands for neural network emergency, (X) represents the
approximation error of the neural network, where for any £* > 0
there exists |e(X)| < &*. Thus, the optimal estimation weight of
the neural network can be expressed as:

W* = arg min [sup X1 W) - XN (32)

where, X € Qy, W represents the estimated weight of the neural
network, and QF represents the estimated compact set of W.

3.3. RBFNN with Broad Learning System
We define the parameter vector of the newly added neural
network node as [17]]:

N =< @Pnew > new » Wnew > (33)

where, @new » TThew » and Wy, represent the newly added center
point, width value and weight value of the radial basis function
respectively.The distance between the input state x(t) and the
neural network node is defined as:

Pnew = Cmin +B (X(t) - C_min) (34)
where, 8 € R is the adjustable parameter, which determines the
distance between the location of the new node and the original
neural network node set. Cy,;, represents the average node of
network node set Cpyin:

= Zf’cﬂ Cmin(K)

Cvmin = >
k

therefore, the set of center points updated after each calculation
period ¢ can be expressed as,

(35)

> &

[e(t)pnew | ‘X(f) = Conin (36)
<e&

e { (1) X() = Coin
where, € represents the adjustable threshold parameter of neural
network node expansion. When the distance between the input
state of the system and the average node of the neural network
is greater than a certain threshold value, we can consider that
the system input exceeds the virtual compact set of the neural
network. In order to ensure the approximation accuracy of the
neural network, a new network node needs to be added. On the
contrary, the weights of the original neural network nodes need
to be updated.

In addition, in order to meet the real-time requirements of
robot control, the triangular expansion method is used in this
paper to generate network enhancement nodes [27]. Assume
k is the number of ganglion points of the radial basis neural
network of current width, then the enhancement node can be
expressed as:

H{t) =[H,H>,...,H;] 37

where, H; = [cos(5;(X(?))),sin(s;(X(®))],i = 1,---k; s;()
represents the kernel function of the i-th neural network node.
Thus, the updated basis function and enhanced node vector of
the width neural network are:

Sult+T) = [S(1) | S ex(t)]
=[S @ 1exp (=1 = Guew I /17new )|
Hy(t +T) = [H(t) | Hex(0)]

= [H(1) [cos (S ex(1)] sin (S ¢x(1))]
Wa(t +T) = [W() | Wer(D)]

(38)

Thus, the width radial basis neural network can be expressed
as:

Y(1) = [Su(t) | Hu()] W' (39)
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3.4. Globally Stable Robot Broad Neural Network Tracking
Control

After the design of the predetermined performance function
is completed, a globally stable broad neural network controller
is designed based on Obstacle Lyapunov function and backstep-
ping method in this section. For the manipulator with degree
of freedom, we first define its asymmetric obstacle Lyapunovass
function as [[17]]:

g (40)

Z 1—h;i(z1) | 1

i=1 2 1 621

@ _ _z@ _a® _ _za0
where, d; = G2 = G 0hi = 7 = S kai and Ky,
are constants, /; (z1) is defined as:
1 z12>20
hi(z1) = { 0 otherwise 1)

The derivative of (33) with respect to ¢ can be obtained as
follows:

“h& | M0 e
V= PZ1+Z[ -, 1-0,¢ @

2
where, P = [p(1),p@),-+-, p(NoL, P() = =g Xi =
hiop; + (1 — h;) 6, represents the transient control vector. Thus,
the virtual vacancy rate o can be designed as

a=J'(0) (s - Kiz1 = L(Dz1) (43)

-1
where, J© = JT (JJT) represents the generalized inverse of

) V2
the Jacobian matrix J(0), [;(t) = \/(%) + (%)) + ¢ ¢ 1S

a tunable normal number whose function is to guarantee the
boundedness « go to zero. Substituting @ into Equation (42),
we can get:

Vi = PTJ(0)Z, — PT (Kiz1 + L(t)z1) +

i (1-h)é2, . hi6y: @y, (44)
1-62, 162, ¢ui

i=1

Consider inequality /(1) — b5 — (1 = h;) % > 0. Combining
(36) and (37), we can get: 1 ‘

Z 2 (,) ) + P9z (45)
where, y; = hiop; + (1 — h;) 8,4,
Then, we define a positive definite Lyapunov function:
1 240
Vo=V + §Z2T M(0)z (46)

U |
Vo= Vit 55 MO + 5 MO)2

=Vi+20(t - G@O) - CO,0)a - (47

=Vi+2 T+ F@)

M(O)a)

where, € = [6, §, @, &]. Since the robot arm models M(6), C(6, §)
and G(0) are difficult to be accurately obtained, F(¢) is the ap-
proximation term representing the robot model, which will be
estimated by the width radial basis neural network discussed
above.

Because the input of the neural network needs to be defined
in the compact set domain € of the neural network, the ap-
proximation ability of the neural network and the stability of
its controller can be guaranteed. For the problem of global
consistency stability of the controller, the control algorithm of
switching function is proposed in [28]]. In order to achieve the
dynamic global consistency stability of the controller, we define
a smooth switching function:

E@) = diag (E1(é), E2(@), - , En, (&) (48)
where, E;(&) =
as,

[T, ex (¢ (Ng(k — 1) + i), and e;(€) is defined

1 ) 6l < da
d {: 2 d2

d’2) d2 exp( .Edz dtZ‘ )
0 €1 > dp

ex(é) = others (49)

where, d, = 0, * qr, dy, = 0p * qy, qr represents the radius
corresponding to the center point farthest from the remote point
in the neural network, and o, and g, represent the adjustable
distance threshold. Then, the globally uniformly stable adaptive
incremental neural network controller can be designed as:

7y = —Kaza = PTJ(0) = E(€) Y4 — (1 = @)Y, (50)
where K, is a positive definite vector, I, and ', correspond to

the neural network controller and the robust controller in Fig. 1
respectively, and their form is defined as follows:

T, = Y& D
T, = UR(U;2) (52)

where, ¥(¢) is the output of the width neural network controller,
U and o is an adjustable normal number. R(-) = [ry, -+, ry,]
and r; (”g ) tanh (%’(’)) The weight update low of the neural
network (32) is designed as:

Wy = A(E©@)2S1(€) - BW, ) (53)

where A and B are positive definite matrices. S ,(£) represents
the kernel function of the n-th neural network node.



3.5. Stability Proof

According to equation (47), a Lyapunov function is designed
[29. 130]:

N.
_ 1 : T A —1117
V=Vi+s ; WIAT'W, (54)

where, A is a positive definite matrix, and the derivative of (54)
according to time t is:

N; .
V= V2 + Z WnTX_AAWn,.
i=1

N; .
=Vi+2(t+F©)+ Z WA,

i=1
=Vi-Kyihzo - PTJ(O)Z)

Ni
+ D 20 [-Ei (W) - WT) S ) (55)
i=1

+EW,S (&) + €]

al 2o (i)
+ ; 20) (1 - E;) (F,» — u; tanh (%))

1
Nl
+

i=1

|-sW! (W, + W, )|

according to Young’s inequality, we can obtain the following
inequality

Fiz5(i) — (i) tanh (”Z—z(’)) < 1w, (56)
@
thus, (55) can be changed into:
Na 2
) X;
V< -Ki(d) !
Z[ (1-x3)
N ~ 2
: Lo, 1 W
+ Zl {— (Kz(l) - E)zzm - 280 5. } (57)
ol LIPS TE R NP
+ ; Eﬁ(l) “W:Xi” + 562(1) + 117;
consider the following inequality:
2
; 1
__ X 5 <-In > Yyl <1 (58)
(1 —X,-) (1 —X,»)
(57) can be changed into:
Na
V< -Ki()1n
; (1-x3)
al 1 2
N -~ 155
+ )| K030 = B0) [Wes | ] (59)

i

2

L

+

i=1
=1

%ﬁ(i) IV I+ %e%') +

245

250

255

260

where, K3 = K, — % By combining Equations (40), (46) and
(54), we can get:

V=0+ %zg M©)z + (60)

N =

Ni
Z ﬁ/iTA_l Wi
i=1

where, Q = 2?21 [ln (1_1—)(2)] Therefore, inequality (59) can be
re-expressed as: 1

V(D) = n, V() + g (61)

. 2 min(K

Wherea T]S = min {/lmin (Kl) > 1?11‘:1122');) ’ /lmmx(ﬁ/\—l) }a ,uS =
: 2 . .

Zfﬁl (% HW;‘ +1€23) + Lwi). We make S, = f]’—s By com-

bining equations (60) and (61), we can get:

V(t) < (V(O) - gs) eXp (_nst) +Gs (62)
< V(0) + ¢y

So V(#) is negative definite, and the joint velocity tracking
error z; and the neural network weight estimation error W are
bounded. Thus it can be deduced that the position tracking error
71 is also bounded and meets the preset tracking performance,
the system states & and the Jacobian J(6) are also bounded.
Therefore, we can obtain that all state signals of the robot sys-
tem can meet the final consistency stability no matter in the
training stage or in the neural network expansion stage. There-

fore, the system is stable in the Lyapunov sense [31]].

4. Experiment results

In experiment 1, the effectiveness of the force controller was
demonstrated by a tabletop wipe experiment. The robot first
wiped the desktop from right to left, and then from left to right.
We conducted experiments with and without force controller

Position
control

Position and
force control

Figure 2: The experimental results of the comparative test show
that the desired task cannot be achieved only by using position
control, and the task can be successfully completed by intro-
ducing contact force.

respectively, and the experimental results are shown in Fig. 2.
It can be found that the handwriting on the desktop cannot be
wiped clean when only the position control is used, but the
handwriting on the desktop can be cleaned smoothly when the
force controller is added. Figure 2 shows the force tracking re-
sults. Here we give the expected force as a constant force of
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Figure 3: The force tracking of the manipulator when it per-
forms the task after the force controller is added.

20N. It can be seen that the force error during the whole exper-
iment can be maintained within 2N.

In experiment 2, Baxter robot autonomous ultrasound scan-
ning task was used to prove the effectiveness of the proposed
scheme. The whole experiment process is divided into demon-
stration stage, reproduction stage and generalization stage.

In the demonstration stage, the instructor dragged the ma-
nipulator arm to perform body ultrasound task, as shown in
Fig.4(a). The operation was repeated four times and the force
and trajectory of the end-effector were recorded. In the model

(d)

Figure 4: (a) and (b) are the demonstration process and repeti-
tion process respectively.

learning stage, GMR is used to fit the motion trajectories of X
and Y axes as well as the force trajectories of the Z-axis, and
a trajectory containing more motion information is obtained, as
shown in Fig. 5. Then we used DMPs to learn the motion and
force trajectories after processed by GMM and GMR to get the
DMPs model parameters.

In the reproduction stage, the robot performs ultrasound s-
canning task according to the demonstration, as shown in Fig.
4 (b). In order to prove the effectiveness of the proposed force
controller, we compare the force tracking trajectory without the
addition of force controller and with the addition of a force con-zss
trol. As shown in Fig. 6, we can find that the error between the
actual force and the expected force exceeds 10N when the force
controller is not added. In the process of ultrasound scanning,
excessive force will make patients feel uncomfortable. When
the force controller is added, the error between the expectedsw
force and the actual force can be controlled within 2N, which
makes the robot more stable when performing ultrasound task.

In addition, the broad neural network controller is used to con-
trol the movement of the manipulator, and the force tracking in
the process of reproduction is shown in Fig. 7.
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Figure 6: (a) represents the force tracking error in the absence
of a force controller; (b) shows the force tracking error after the
addition of force controller.
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Figure 7: Position tracking under the control of broad neural
network in the reproduction stage.

In the generalization stage, we generalized the motion track
and force track of the teaching respectively, to adapt to the ultra-
sound scanning of different positions and different forces. We
used DMPs to generalize the learned position trajectory of the
x-axis and force trajectory of the z-axis, as shown in Fig. 8.

The position tracking trajectory in the generalization process
is shown in the Fig. 9. In the generalization process, we no
longer retrain the parameters of the broad neural network, but
use the parameters learned in the reproduction process. Since
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the robot’s trajectory in the generalization process exceeds the
compact set of the neural network, the broad neural network
will track the expected trajectory by adding nodes when per-
forming the generalization task. It can be seen from Fig. 9 (a)
that the trajectory other than the learning trajectory can still be
well tracked. Fig. 9 (b) shows the force tracking during the ex-
ecution of the generalized task. It can be seen from Fig. 9 (b)
that the error between the actual force and the expected force
can still be controlled within 2N during the execution of the
generalized task.

5. Conclusion

Traditional neural networks such as RBFNN neural network
cannot achieve the ideal approximation effect when the input
exceeds the compact set of the neural network. In this paper,
the broad neural network is used to replace the traditional neu-
ral network. When the input exceeds the compact set of the
neural network, the broad neural network will expand the com-
pact set by adding nodes. We use a broad neural network to
track the desired trajectory generated by DMPs, which can en-
sure that the trajectory of DMPs generalization can still be ac-
curately tracked. On the basis of position control, we propose a
robot skill learning framework with force control, which is used
to track the force in the process of reproduction and generaliza-
tion. Finally, the method is applied to the ultrasound task, and
the effectiveness of the proposed method is proved by experi-
ments.
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