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Abstract 

 

The NKCS model was introduced to explore coevolutionary systems, that is, systems in 

which multiple species are closely interconnected. The fitness landscapes of the species are 

coupled to a controllable amount, where the underlying properties of the individual 

landscapes are also controllable. Previous work has assumed symmetry with respect to the 

controlling parameters. This paper explores the effects of reducing that symmetry on the 

behaviour of the coevolutionary system, including varying genome complexity, the degree of 

landscape coupling, and the use of local learning. Significant changes in behaviour from the 

traditional model are seen across the parameter space. These findings are suggested as 

particularly pertinent to symbiotic relationships. 
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1. Introduction 

 

Coevolution is ubiquitous in natural systems and widely used in artificial systems. Almost 

thirty years ago, Kauffman and Johnsen [1992] presented a tuneable, abstract model 

through which to explore some of the basic properties of such systems – the NKCS model. 

Extending the well-known NK model [Kauffman and Levin, 1987] of rugged fitness 

landscapes, the NKCS model couples multiple NK landscapes to study the evolutionary 

dynamics of ecosystems containing multiple species. Versions of the model have also been 

applied to artificial systems, including management science (e.g., [Levitan et al., 1997]), 

receiver-based communication optimisation [Kauffman, 1995], and engineering design (e.g., 

[Preen et al., 2019]).  

 

In almost all known instances, it has been assumed that the characteristics of the underlying 

NK fitness landscapes are the same, i.e., the model is symmetrical. This is clearly a 

simplification. For example, the NKCS model has previously been used to explore 

symbiosis, in particular the formation of hereditary (endo)symbioses where the relationship 

between species is maintained across generations [Bull & Fogarty, 1996]. However, these 

intimate symbioses are typically formed between species of very differing complexity, such 

as bacteria and multicellular eukaryotes. Further consideration of this difference, in the form 

of the relative speed of replication between the species involved, significantly altered the 

conditions under which such relationships may be expected to emerge [Bull, 2010] (see 

[Bull, 2020] for an overview). Heterogeneous complexity has been shown to be important 

within artificial systems as well, such as in competitive coevolutionary optimisation (e.g., 

[Stanley & Miikkulainen, 2004]). 

 

This paper explores the effects of asymmetric complexity within the NKCS model, 

considering landscape ruggedness, the degree of coupling, partner size, mutation rate, 



reproduction speed, and the use of local learning. Variance in behaviour from the traditional 

symmetrical case is seen across the parameter space of the model. 

 

2. Background: The NKCS Model 

 

Kauffman and Levin [1987] introduced the NK model to allow the systematic study of various 

aspects of fitness landscapes. In the standard model, the features of the fitness landscapes 

are specified by two parameters: N, the length of the genome; and K, the number of genes 

that has an effect on the fitness contribution of each (binary) gene. Thus increasing K with 

respect to N increases the epistatic linkage, increasing the ruggedness of the fitness 

landscape. The increase in epistasis increases the number of optima, increases the 

steepness of their sides, and decreases their correlation [Kauffman, 1993]. The model 

assumes all intragenome interactions are so complex that it is only appropriate to assign 

random values to their effects on fitness. Therefore for each of the possible K interactions a 

table of 2(K+1) fitnesses is created for each gene with all entries in the range 0.0 to 1.0, such 

that there is one fitness for each combination of traits. The fitness contribution of each gene 

is found from its table. These fitnesses are then summed and normalized by N to give the 

selective fitness of the total genome (Figure 1).  

 

Fig. 1. An example NK model showing how the fitness contribution of each gene depends on K 

random genes (left) and the table with 2(K+1) rows used for the fitness calculation (right). 



Kauffman and Johnsen [1992] subsequently introduced the abstract NKCS model to enable 

the study of various aspects of coevolution. Each gene is said to also depend upon C 

randomly chosen traits in each of the other S species with which it interacts. Altering C, with 

respect to N, changes how dramatically adaptive moves by each species deform the 

landscape(s) of its partner(s), where increasing C typically increases the time to equilibrium. 

Again, for each of the possible K+(SxC) interactions, a table of 2(K+(SxC)+1) fitnesses is created 

for each gene, with all entries in the range 0.0 to 1.0, such that there is one fitness for each 

combination of traits. Such tables are created for each species (Figure 2).  

 

 

Fig. 2. The NKCS model: Each gene is connected to K randomly chosen local genes and to C 

randomly chosen genes in each of the S other species. Connections and table shown for one gene in 

one species for clarity. Here N=3, K=1, C=1, S=1. 

 

 

Following [Kauffman, 1993], a mutation-based hill-climbing algorithm is used here, where the 

single point in the fitness space is said to represent a converged species, to examine the 

properties and evolutionary dynamics of the NKCS models. That is, the population is of size 

one and a species evolves by making a random change to M randomly chosen genes per 

generation. The “population” is said to move to the genetic configuration of the mutated 

individual if its fitness is greater than the fitness of the current individual; the rate of supply of 

mutants is seen as slow compared to the actions of selection. Ties are broken at random.  



  

 

Fig. 3. Showing example single runs of the typical behaviour of the standard NKCS model of 

coevolution with different degrees of landscape coupling (C). 

 

  

  

 

Fig. 4. Showing the fitness reached after 20,000 generations on landscapes of varying ruggedness 

(K), coupling (C), and length (N). Note how fitness drops as K→N, as in the traditional NK model. 

Error bars show min and max values. 



Figure 3 shows example behaviour for one of two coevolving species where the parameters 

of each are the same and hence behaviour is symmetrical. The effects of mutual fitness 

landscape movement are clearly seen. All results reported in this paper are the average of 

10 runs (random start points) on each of 10 randomly created NKCS fitness landscapes, i.e., 

100 runs, for 20,000 generations, for each parameter configuration. The (average) final 

fitness of the converged population is used for comparisons. Here M=1, 0≤K≤10, 1≤C≤7, 

S=1, for N=20 and N=100. Figure 4 shows how increasing the degree of coupling (C) 

between the two landscapes causes fitness levels to fall significantly (T-test, p<0.05) when 

C≥K for N=20. Note this change in behaviour around C=K was suggested as significant in 

[Kauffman & Johnson, 1992], where N=24 was used throughout. However, Figure 4 also 

shows how with N=100 fitness always falls significantly with increasing C (T-test, p<0.05), 

regardless of K. As noted in [Kauffman & Johnson, 1992], increasing N increases the time to 

equilibrium; the duration of evolutionary search is increased. 

 

 

3. Asymmetry in the NKCS Model 

 

3.1 Epistasis K 

 

Kauffman and Johnsen [1992] explored the effects of asymmetric K for varying C.  In 

particular, they describe the changes in behaviour seen before Nash equilibria are reached. 

That is, in the symmetrical case, as C increases, the time taken to reach a Nash equilibrium 

increases (see Figure 3) and, for a given C, the time taken to reach an equilibrium 

decreases with increasing K. They show how, for higher values of C, a low K species has a 

higher pre-Nash average fitness against a high K species, and vice versa.  

 

Figure 5 shows the final fitness reached is also affected by coevolving against a species with 

different K. Note the partner species’ asymmetric parameter X is denoted X’ here. With 



N=100, when C>1, a significant decrease in fitness is typically seen when K’<K and a 

significant increase when K’>K (T-test, p<0.05). This appears to correlate with Kauffman and 

Johnsen’s observations about pre-Nash fitness. When N=20 behaviour is less clear overall 

but with C=5 a similar result is seen when K<C. For C<5, increasing K’ typically increases 

fitness when K<C. The point at which the increase becomes significant decreases with C. 

No significant effect is seen otherwise. For example, when K=0, fitness is significantly higher 

when K’≥8 and C=1 (T-test, p<0.05), whereas fitness is significantly higher when K’>0 with 

C>1 (T-test, p<0.05). Conversely, there is no significant change in fitness seen when K≥6 for 

any K’ or C (T-test, p≥0.05).  

 

3.2 Coupling C 

 

As shown in Figure 4, in the traditional NKCS model, increasing C decreases the fitness 

level reached with N=100 – but only when K<C with N=20. Figure 6 shows the effects of 

allowing different degrees of coupling between the two species. With N=20, fitness typically 

decreases when C’>C when K<C. That is, the fitness of the less coupled species is 

significantly lowered when coevolving with a partner that is more coupled to them. With 

N=100 similar behaviour is seen, although the larger case again appears more sensitive to 

the coupling and fitness decreases for higher K compared to roughly when K<C. 

 

 

 

 

 

 



  

  

  

 

Fig. 5. Showing the fitness reached by one species after 20,000 generations on landscapes of varying 

ruggedness (K), coupling (C), and length (N). The partner species had the same parameters except 

for the landscape ruggedness (K’). 

 

 

 

 



  

  

  

 

Fig. 6. Showing the fitness reached by one species after 20,000 generations on landscapes of varying 

ruggedness (K), coupling (C), and length (N). The partner species had the same parameters except 

for the degree of coupling (C’). 

 

 

 

 



3.3 Size N 

 

Since the larger symmetrical N case shows different behaviour to the smaller N, the effects 

of coevolving two different sized species have also been explored. As noted in the 

introduction, this can be seen as the typical case for more intimate forms of symbiotic 

relationships, for example. Figure 7 shows how, when N=20 and C=5, increasing the length 

of the partner significantly increases fitness when K<C (T-test, p<0.05). No significant effect 

is seen otherwise. When N=100, no significant effect is seen for C=1 (T-test, p≥0.05). For 

C>1, fitness typically decreases with decreasing N’, when K<C. However, when K>C, the 

lowest fitness levels are typically reached when N=N’, increasing again for increasing and 

decreasing values of N’. Figure 8 shows two examples in more detail. The reason for such 

inflection points is not immediately clear amongst the interactions between the number of 

local optima, the typical walk length to such optima, and the duration for which evolution is 

able to search amongst them before an equilibrium is reached. The same effect is seen 

when N=20 when K<C. 

 

3.4 Mutation M 

 

Kauffman and Johnsen [1992] explored the effects of varying the number of mutations 

applied per generation, showing that generally the optimal M decreases with increasing C. 

Figure 9 shows the effects of varying the number of unique mutations per offspring in the 

partner species, that is, M=1 and 1≤M’≤5. When N=20 and C>1, increasing M’ decreases 

fitness when K<C, with no significant effect otherwise. When N=100 and C>1, fitness 

typically decreases with increasing M’ for all K and C. That is, generally, being coupled to a 

species varying significantly is, perhaps not unsurprisingly, detrimental. 

 

 



  

  

  

 

Fig. 7. Showing the fitness reached by one species after 20,000 generations on landscapes of varying 

ruggedness (K), coupling (C), and length (N). The partner species had the same parameters except 

for the size (N’). 

 

 

 



  

 

Fig. 8. Showing examples of how varying the length of the coevolving partner can both increase and 

decrease fitness reached after 20,000 generations under some conditions. 

 

 

 

3.5 Rate R 

 

The traditional NKCS model assumes all species coevolve at the same rate. Following [Bull, 

et al. 2000], a new parameter R can be added to the model to represent the relative rate at 

which one species evolves - by undertaking R rounds of mutation and selection to one round 

in the other(s). Figure 10 shows how with N=100, generally, increasing R decreases the 

effects of C for a given K when C>1, from around R=-5, where -20≤R≤20. That is, evolving at 

a faster rate is beneficial (+R) whereas evolving more slowly (-R) is detrimental. In contrast, 

no notable effect is seen by increasing R for any K and C values tried when N=20, except for 

K=0 when C>1 and R>1. It can be noted that N=64 (only) was used in [Bull et al., 2000]. 

 



  

  

  

 

Fig. 9. Showing the fitness reached by one species after 20,000 generations on landscapes of varying 

ruggedness (K), coupling (C), and length (N). The partner species had the same parameters except 

for the mutation rate (M’). 

 



  

  

  

 

Fig. 10. Showing the fitness reached by one species after 20,000 generations on landscapes of 

varying ruggedness (K), coupling (C), and length (N). The partner species had the same parameters 

except the shown species evolves at a different rate (R). 

 

 

 

 



3.6 Learning L 

 

Hinton and Nowlan [1987] were the first to investigate the Baldwin effect [Baldwin, 1896], 

showing that enabling genetically specified neural networks to alter inter-neuron connections 

randomly during their lifetime meant the evolutionary system was able to find an isolated 

optimum, something the system without learning struggled to achieve. That is, the ability to 

learn “smoothed” the fitness landscape into a unimodal hill/peak. They also found that over 

time more and more correct connections became genetically specified and hence less and 

less random learning was necessary; the evolutionary process was guided toward the 

optimum by the learning process (e.g., see [Sznajder et al., 2012] for an overview of the 

Baldwin effect). Using the NK model, it was later shown how the most beneficial frequency 

and amount of learning varies with the ruggedness of the underlying fitness landscape [Bull, 

1999]. Whilst learning and evolution have long been used together within coevolutionary 

scenarios (after [Ackley & Littman, 1992]), no previous systematic exploration is known.  

 

Following [Bull, 1999], a very simple (random) learning process to enable phenotypic 

plasticity can be added to evolution by allowing a new individual to make a further L (unique) 

mutations after the first. If the averaged fitness of this “learned” configuration and that of the 

first mutant is greater than that of the original, the species is said to move to the first mutant 

configuration but assigned the averaged fitness of the two configurations, here 1≤L≤5. 

 

Figure 11 shows how when N=20, with C=1, increasing L is beneficial when K>0, with the 

most benefit typically seen around L=3. However, L>0 proves detrimental when C>K 

thereafter (T-test, p<0.05). When N=100, with C=1, only L=1 is beneficial when K>0 (T-test, 

p<0.05), with the the local learning decreasing fitness for all other parameter combinations. 

Hence it appears increased movement in the fitness landscape disrupts the smoothing 

process seen in the non-coevolutionary case.  



  

  

  

 

Fig. 11. Showing the fitness reached by one species after 20,000 generations on landscapes of 

varying ruggedness (K), coupling (C), and length (N). The partner species had the same parameters 

except the shown species also utilises local random learning at rate (L). 

 

 

 

 



4. Conclusion 

 

The original NKCS model - and almost all known uses of it thereafter - assumes symmetry in 

the species. It has been shown here that introducing asymmetry in the degree of landscape 

ruggedness (K), the degree of landscape coupling (C), the size of the partners’ genomes 

(N), the amount of mutation experienced by a species (M), the relative rate of reproduction of 

the partners (R), and the inclusion of local search (L) can all affect fitness in comparison to 

the symmetrical case.   

 

One of the few previous studies to consider asymmetry revisited the use of the NKCS model 

to explore the conditions under which hereditary (endo)symbioses may emerge [Bull, 2010]. 

It was shown how, assuming that forming the closer relationship slowed the relative speed of 

evolution of one partner (R’), the host would benefit. This extended the previously identified 

conditions of benefit when C>K, noting how interspecies epistasis effectively becomes 

intraspecies epistasis in such cases, i.e., C becomes K [Bull & Fogarty, 1996]. Section 3.5 

above showed how a phase transition-like phenomena typically exists where the fitness of 

the slower species sharply decreases as the relative rate of reproduction of the partner 

increases. 

 

The other asymmetric partnering scenarios explored here can also be seen as relevant to 

symbioses, as well as other close ecological relationships in general: section 3.1 showed 

how partnering with a species on a more rugged fitness landscape (K’) can be beneficial, as 

is the case with bacteria and multicellular eukaryotes; section 3.2 showed how being 

partnered with a more dependent species (C’) can lower fitness, something which might also 

encourage the formation of hereditary symbiotic relationships; section 3.3 showed that 

coevolving with a partner of greater size (N’) is beneficial, especially for low complexity (N 

and K) species, again the typical case of bacteria and multicellular eukaryotes; section 3.4 



explored the sensitivity to the mutation rate (M’) of a partner, with more complex (N) species 

being particularly vulnerable, again this would appear to also motivate the direct inheritance 

of bacterial symbionts by eukaryotes; and finally, section 3.6 showed how fitness landscape 

smoothing through individual learning is generally not beneficial for closely coupled species.   
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