
Trajectory Outlier Detection: New Problems and Solutions
for Smart Cities

YOUCEF DJENOURI, Dept. of Mathematics and Cybernetics, SINTEF Digital, Oslo, Norway

DJAMEL DJENOURI, Computer Science Research Centre, Dep. of Computer Science and Creative Tech-

nologies, University of the West of England, Bristol, UK

JERRY CHUN-WEI LIN, Dept. of Computing, Mathematics, and Physics, HVL, Bergen, Norway

abstract This paper introduces two new problems related to trajectory outlier detection: 1) group trajectory
outlier (GTO) detection, and 2) deviation point detection, for both individual and group of trajectory outliers.

Five algorithms are proposed for the first problem by adapting DBSCAN, k nearest neighbors (kNN), and

feature selection (FS). DBSCAN-GTO first applies DBSCAN to derive the micro clusters, which are considered

as potential candidates. A pruning strategy based on density computation measure is then suggested to find

the group of trajectory outliers. kNN −GTO recursively derives the trajectory candidates from the individual

trajectory outliers and prunes them based on their density. The overall process is repeated for all individual

trajectory outliers. FS-GTO considers the set of individual trajectory outliers as the set of all features, while

the feature selection process is used to retrieve the group of trajectory outliers. The proposed algorithms are

improved by incorporating ensemble learning and high-performance computing (HPC) during the detection

process. Moreover, we propose a general two-phase based algorithm for detecting the deviation points, as

well as a version for GPU implementation of this algorithm using sliding windows. Experiments on a real

trajectory dataset have been carried out to demonstrate the usefulness of the proposed approaches. The results

show that they can efficiently identify useful patterns represented by group of trajectory outliers, deviation

points, and that they outperform the baseline group detection algorithms.

Additional Key Words and Phrases: Trajectory Analysis, Outlier Detection, Data Mining, Road Traffic Manage-

ment, Smart City Application.

ACM Reference Format:
Youcef Djenouri, Djamel Djenouri, and Jerry Chun-Wei Lin. 2019. Trajectory Outlier Detection: New Problems

and Solutions for Smart Cities. 1, 1 (September 2019), 28 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Today’s road traffic in smart cities is being monitored by ubiquitous sensing technologies such as

cameras, embedded GPS receivers, road sensors, in-vehicle sensors, etc. [18]. These technologies

enable to generate countless number of sequence points represented by trajectory databases, which

are stored and analyzed using high-performance computing (HPC). These trajectory databases

simulate various behaviors of different objects in several real-world applications such as intelligent

transportation [1, 7, 33, 44, 84], mobile traffic network [27, 34, 60], smart buildings and large indoor

spaces [17], and climate change analysis [4, 15]. In the intelligent transportation domain, data

Authors’ addresses: Youcef Djenouri, Dept. of Mathematics and Cybernetics, SINTEF Digital, Oslo, Norway; Djamel

Djenouri, Computer Science Research Centre, Dep. of Computer Science and Creative Technologies, University of the

West of England, Bristol, UK; Jerry Chun-Wei Lin, Dept. of Computing, Mathematics, and Physics, HVL, Bergen, Norway,

youcef.djenouri@sintef.no,djamel.djenouri@uwe.ac.uk,jerrylin@ieee.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

XXXX-XXXX/2019/9-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Djenouri et al.

analysts face myriad of trajectories derived by the mobility of people, cars, buses, and taxis. One

of the problems dealt with by data analysis of trajectory databases is trajectory outlier detection,

which represents the topic of this paper. From the data mining perspective, outlier detection consists

in separating unusual observations, objects, and/or points from the normal observations [12, 30, 59].

In the context of trajectory analysis, this translates into discovering trajectories or sub-trajectories

that do not conform with the rest of trajectories in a database [49, 51, 85]. Current solutions only

consider single view of outliers in a whole trajectory or a sub-trajectory. However, it is not only

individual outliers that could be identified in real-world scenarios. Different types of patterns and

useful features can be derived such as group of trajectory outliers, and deviation point for both

individual and group of trajectory outliers. We define the group of trajectory outliers by the set of

few number of individual outliers that are closer to each other, or proving some common features.

We also define the deviation points by the set of points that causes anomalies. In this work, we

explore new solutions to retrieve these patterns.

1.1 Motivating Example
Consider the three examples of taxi trajectories as illustrated in Figure 1. Each taxi trajectory starts

from the source point and ends up at the destination point. Traditional trajectory outlier detection

algorithms [25, 38, 47, 81] may detect the outlier illustrated in Figure 1(a) (represented with red

color). Here, taxi 4, follows the normal trip from the source to the destination up to a given point,

where it highly deviates from the trajectory followed by taxis (1, 2, and 3). However, traditional

trajectory outlier detection algorithms are not able to identify the groups of trajectory outliers

presented in Figures 1(b), and 1(c). This is because they calculate the score of each individual

trajectory and then rely on the fixed threshold (set by the user) to decide whether the trajectory is

an outlier or not. They do not examine the different correlations between the individual trajectory

outliers and do not consider the pattern represented by the group of trajectories as input during the

detection process. In Figure 1(b), taxis (5 and 6) deviate from the normal trip at the same deviation

point but follow different trajectories. However, in Figure 1(c), the two taxis deviate from the normal

trip at the same deviation point and follow the same trajectory. Detecting these different types

of outliers could help the city planners and local authorities to extract patterns and to discover

relevant knowledge. For instance, detecting individual outliers and deviation points (the case of

Figure 1(a)) allows to determine individual taxi fraud, detecting frequently individual taxi fraud at

the same individual deviation point with different time periods. This will help supporting the city

planners on taking appropriate measures and decisions such as putting surveillance cameras at this

point or reinforcing security there. Detecting group of trajectory outliers (Figure 1(b), 1(c)) allows

the city planners to make fair decisions regarding the taxi outliers. Taxis which deviate from the

same deviation point but follow different trajectories have strong probabilities that their aim is

avoiding unpleasant circumstances on the main trajectory, e.g., traffic jam, rather than taxi fraud.

However, group of taxis outliers at the same or different deviation point with the same trajectory

taking place in different time periods might be partners in the taxi fraud. Notice both temporal and

spatial information are required to retrieve the taxi frauds. The major problem in the existing taxi

fraud detection algorithms is the the detection of group of trajectory outliers, and the deviation

points identification on the spatio-temporal trajectory data.

1.2 Contribution
This paper introduces two new problems related to trajectory outlier detection. The first problem

is Group Trajectory Outlier detection (GTO for short), while the second is Deviation Point Detection
(DPD for short) for both individual and group of trajectory outliers. The main contributions of this

work can be summarized as follows.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 3

(a) Individual Trajectory Outlier (b) Group Trajectory Outliers (ex-

ample1)

(c) Group Trajectory Outliers (ex-

ample2)

Fig. 1. Motivated Example: trajectory and outliers.

(1) GTO: We introduce and formulate the GTO problem, for which we develop two algorithms.

The first is based on DBSCAN [23] (say DBSCAN-GTO) and the seconds on kNN [58] (kNN-
GTO). DBSCAN-GTO first applies DBSCAN to derive themicro clusters, which are considered

as potential candidates. A pruning strategy based on density computation measure is then

suggested to find the group of trajectory outliers. kNN-GTO starts recursively by deriving

the trajectory candidates from the individual trajectory outliers, and then it prunes these

candidates using the density computation. The overall process is repeated for all individual

trajectory outliers. A new algorithm called FS-GTO is also proposed, in which the set of

individual trajectory outliers are considered as the set of all features, and the feature selection

process is adopted to identify the group of trajectory outliers. Finally, two improvements of

the above-mentioned solutions are proposed by incorporating ensemble learning and HPC.

(2) DPD: First we introduce and formulate this problem and then develop a general two-phase

based algorithm. The first phase aims at identifying individual trajectory outliers based on

the distance of each point in each trajectory, while the second phase explores the individual

trajectory outliers to derive the group of trajectory outliers by using the feature selection

process. Moreover, a GPU-based version of the two-phase based algorithm is incorporated

with a sliding windows to boost the performance of the outlier detection on large-scale

trajectories point-spaces.

We investigate the performance of the proposed algorithms on different real trajectory databases.

The results confirm the scalability of the new approaches and their usefulness by extracting group

of trajectory outliers for the traffic planners, and that they outperform the baseline algorithms for

group detection. They also show that the two-phase based algorithm is able to derive deviation

points for both individual and group of trajectory outliers for 92% of cases. Regarding the big

trajectory databases, the results show that the proposed GPU-based solutions outperform the

baseline GPU solutions for detecting trajectory outliers.

1.3 Outline
The remainder of the paper is organized as follows. Section 2 reviews the main existing trajectory

and group outlier detection algorithms. Section 3 formulates the two problems (GTO and DPD).
Section 4 describes DBSCAN-GTO, kNN-GTO, FS-GTO, and the two improvements using ensemble

learning and HPC. Section 6 presents the performance evaluation. Section 7 discusses the lessons

learned and draws future directions of this work. Finally, Section 8 concludes the paper.

, Vol. 1, No. 1, Article . Publication date: September 2019.

4 Djenouri et al.

2 RELATEDWORK
2.1 Trajectory Outlier Detection
We split out the trajectory outlier detection algorithms into two categories, 1) offline methods that
can only detect the trajectory outliers, and 2) online methods in which the sub-trajectory that causes

the outlierness can be identified.

2.1.1 Offline methods. Zhang et al. [78] proposed a graph-based method for detecting multi levels

of taxi trip outliers in a large scale urban traffic network. The method implements a contraction

hierarchy based on the shortest path computation algorithm and a spatial join algorithm to snap,

pickup, and drop-off locations. Kong et al. [36] proposed an adopted local outlier factor by consider-

ing the anomaly index score as a local reachability density. Zhu et al. [86, 87] proposed an approach

that determines time-dependent outliers by using the common routes for each time interval. The

trajectories’ database is divided into groups with the same source and destination points in the

given time interval. The score of the representative trajectory of each group is determined by

comparing its similarity with the most common roads using the edit distance. If a group’s score is

below a predefined threshold, then all the trajectories of the group are considered as outliers. Zhang

et al. [77] proposed the isolation-based anomalous trajectory algorithm, in which the "few and

different" properties of anomalous trajectories are explored instead of using a distance or density

measure. By exploring different locations or the same locations with different orders, anomalous

trajectories are few in number and different from the majority of trajectories. The algorithm attempts

to find a separate way for anomalous trajectories from the rest of "many and similar" trajectories

by applying the adapted isolation Forest (iForest) [46].

Zhongjian et al. [48] proposed an approach inwhich the set of routes is grouped using themedoids

algorithm [8]. The choice of medoids instead of k −means is justified by the difficulty of computing

the mean trajectories. The set of the centers of the clusters are considered as representative routes,

while the scores of the new trajectories’ scores are computed based on the representative routes

using edit distance between routes and trajectories. Trajectories with scores exceeding a similarity

threshold are considered as outliers. In the work by Zhou et al. [83], the trajectory database was

matched to identify whether each point in the trajectories database is a metered or unmetered

point. The process starts by finding the trajectory outliers using a stochastic gradient model [24].

From the trajectory outliers, the fraud trajectories are identified by matching each point in the

trajectory outlier with the taximeter database.

2.1.2 Online methods. Chen et al. [11] automatically detected fraud implications of rapacious taxi

drivers who take unnecessary detours during trips. This is by using an approach based on adaptive
working window. Lee et al. [38] dealt with the angular sub-trajectory outlier detection problem, i.e.,

when the direction of anomalous sub-trajectories differs from those of neighboring sub-trajectories.

Each trajectory in the set of all trajectories was partitioned into different line segments noted

t-partitions. The particularity of this algorithm consists in the computation of distances between

two t-partitions, where the projection and the angular dimensions are incorporated. Yu et al. [73, 76]

found sub-trajectories outliers during a time window using two strategies. The first one is based

on the point-neighbors principle in which the sub-trajectory neighbor set for each sub-trajectory

is calculated using the point neighbors set of every point in this sub-trajectory. The second is

based on trajectory-neighbors principle that determines the sub-trajectory neighbors set for each

sub-trajectory. In Wu et al. [70], the set of historical trajectories was first matched to the road

network of the city according to the source and destination points. The probabilistic learning

model described by the maximum entropy inverse reinforcement [88] was used to transform the

mapped trajectories into historical action trajectories. The probability of every sub-trajectory is

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 5

computed based on the set of action historical trajectories. If the probability value exceeds a defined

threshold then the sub-trajectory is considered as outlier. Mao et al. [50] used the local outlier factor

algorithm to determine the fragment outliers, as well as the local difference density (instead of the

local reachability density). In this method, the set of trajectory fragments is derived in fragments,

and each fragment of a trajectory is composed by a line segment of two consecutive points. This

process repeats for all fragments in all trajectories. Yu et al. [74] provided a new definition of the

sub-trajectory outlier based on the concept of "slice outlier". Slices are obtained by connecting

consecutive line segments having the same direction, and a trajectory slice is considered slice

outlier if the number of its neighbors is less than a given threshold. The neighbors refer to the

other trajectory slices within a small distance from it.

2.2 Group Outlier Detection
The generic problem of group outlier detection is not new, but only a few solutions have reported.

Some solutions employed statistical models to derive the group of outliers [43, 65, 72, 75]. Chalapathy

et al. [10] considered the use of deep generative model to find out the group outliers. The approach

was applied on various image processing applications. The outlierness for each group in the input

data was estimated by group reference function using the standard backpropagation algorithm.

Liang et al. [72] considered the use of flexible genre model to find specific group outliers. Gibbs

sampling [26] was used for inference and the Monte Carlo approach for learning [9]. Das et al.

[14] considered the different correlation between the data outliers to detect pattern anomalous by

investigating Bayesian network anomaly detection [53], [13]. The correlation score between the

individual outliers was determined by the probability of possible outlier values in the training data.

Tang et al. [64] defined contextual outlier detection as small group of points that share similarity,

on some attributes, with a significantly larger reference group of data but deviates dramatically on

some other attributes. The authors proposed to maintain only the closure context outliers (to avoid

enumerating all contextual outliers). Furthermore, their approach retrieves only contextual outliers

with a statistical significance test greater than a given threshold. Li et al. [42] proposed assigning

feature weights on each group outlier and computing chain rule entropy to determine correlation

between different feature groups. Parallel computing was used in [79] to deal with contextual

outlier detection in high and sparse dimensional spaces. Xiong et al. [71] proposed a solution that

detects two kinds of group anomalies, 1) a group of individual anomalous points, and 2) a set of

normal points but with abnormal distribution as a group. An application of this algorithm in social

media analysis has been investigated in [75]. Other approaches gather group individual outliers

into similar clusters [14, 62, 64]. Each cluster is then considered as a group of outliers. Soleimani et

al. [62] proposed supervised learning approach that groups anomalous patterns when memberships

are previously unknown. This approach was applied on topic documents modeling, and it is able to

discover irregular topic mixtures from a collection of documents. Sun et al. [63] proposed abnormal

group-based joint medical fraud approach. The abnormal group problem was converted into the

maximal clique enumeration problem [52] by considering the set of patients as the set of vertices,

while each edge indicates that the two connected patients are similar. Since the maximal clique

enumeration is NP-hard problem, different partitioning methods [22] have been investigated to

reduce the graph size, and every maximal clique was considered as abnormal group of patients.

2.3 Discussion
We conclude from this short literature review that there is no work that explores group outlier

detection for trajectory data. Existing solutions for trajectory only find individual outliers of

whole trajectory using offline processing, and the sub-trajectory outliers using online processing.

Also notice that the current group outlier detection algorithms find the group outliers from the

, Vol. 1, No. 1, Article . Publication date: September 2019.

6 Djenouri et al.

set of candidate groups, and not from the individual outliers. Moreover, most of the existing

group outlier detection algorithms are based on some well-known distributions. However, it is

hard to fit the data to such distributions in real scenarios. This paper deals with the challenging

problem of group trajectory outlier detection. It proposes several strategies based on clustering,

neighborhood computation, and feature selection to detect group trajectory outliers from individual

trajectory outliers. It also propose algorithms to detect the deviation point of the trajectories, both

for individual and group outliers.

3 PROBLEM STATEMENT
Throughout the paper, a trajectory is considered as a sequence of location points in space and

time. Some preliminary definitions are given in the following before introducing the GTO and DPD

problems.

Definition 1 (Trajectory Database). A trajectory database is defined as a set of raw trajectories
T = {T1,T2, . . . ,Tm}. Each raw trajectory, Ti , is a sequence of time-ordered points (p1, . . . ,pn) that
might be obtained by localization techniques (e.g., GPS).

Definition 2 (Time interval). The time period is split into several time intervals, and p(interval)
denotes the time interval to which the point p belongs.

Similar location points are aggregated into regions [19]. Let us denote by R a location region in

space.

Definition 3 (Mapped Trajectory Database). A mapped trajectory database is a set Λ =
{Λ1, . . . ,Λm}, in which eachmapped trajectoryΛi is a sequence of spatio-temporal regions, (R1, . . . ,Rn),
obtained by mapping every point in Ti to the closest region Ri . The time interval of Ri represents the
time interval of the point pi , i.e., Ri (interval) = pi (interval).

Definition 4 (Trajectory Dissimilarity). The dissimilarity between any two trajectories,
d(Λi ,Λj), is defined as the distance between them, which is the difference between the number of all
regions to the number of shared regions belonging to the same time interval between the two trajectories.
That is,

d(Λi ,Λj) = n − |{(Rl ,R
′
l) : Rl = R′l ∨ ∀l ∈ [1...n]}|. (1)

The trajectory candidates are represented by the set of potential trajectories that belong to a

group of trajectory outliers. These trajectory candidates are retrieved from the individual trajectory

outliers and are formally defined as.

Definition 5 (Trajectory Candidates). The set of the top l individual trajectory outliers found
by a given trajectory outlier detection algorithm, denoted G+ = {Λ+

1
,Λ+

2
...Λ+l }, is,

G+ = {Λ+i : ∀j ∈ Λ \ G+, ScoreA(Λi) ≥ ScoreA(Λj)}. (2)

Note that ScoreA(Λi) is the outlier score of the trajectory Λi using the outlier detection algorithm A.
The score depends on the algorithm used for identifying the individual trajectory outliers and finding
out the trajectory candidates. In the experimentation part, we use the local outlier factor [5] to retrieve
the trajectory candidates.

The area of the point and the density of a group of trajectories are important concepts in our

analysis. Intuitively, the area of a point is defined by the sum of distances between this point and

the points of all trajectories with the same time timestamp. The density of the group is defined as

the number of shared regions between all the trajectories of the group.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 7

Definition 6 (Point Area). We define the area of the point, pi , as:

PA(pi) =

∑m
l=1 distance(pi ,pl)

m
. (3)

Note that the distance between two points is calculated using the Euclidean distance by considering the
spatio-temporal information (latitude, longitude, and interval) in the Euclidean space.

Definition 7 (Group Density). The density of the candidate group trajectory outliers, G, is,

Density(G) = |{R : ∀Λi ∈ G,R ∈ Λi }|. (4)

Definition 8 (Group Trajectory Outlier). A set of trajectories, G, is called a Group Trajectory
Outlier iff, {

G ⊆ G+

Density(G) ≥ γ
(5)

Note that γ is the density threshold from the interval [1 . . .n].

Definition 9 (Group Trajectory Outlier Problem). The group trajectory outlier problem aims
to discover from the set of all individual trajectory outliers the set of all groups of trajectory outliers,
denoted by G∗.

Definition 10 (Individual Deviation Point). Consider Λi an individual trajectory outlier. Λi
could be divided into two sub-trajectories, Λ1x

i and Λxn
i . x is called individual deviation point (IDP for

short) iff Λxn
i is sub-trajectory outlier, and every point, y ∈ [1..x], is a normal sub-trajectory.

Definition 11 (GroupDeviation Point). Consider a group of trajectory outliers:G = {Λx1,y1
1
(G),

Λ
x2,y2
2
(G), . . . ,Λ |G|

x |G|,y |G| (G)}. x is called group deviation point (GDP for short) iff the point x is a
starting point for at least one trajectory in G, and x is highly ordering all remaining starting points in
G.

Definition 12 (Deviation Point Detection Problem). It aims to discover from the set of all
individual and group trajectory outliers, all the IDP and GDP points.

The trivial solution for GTO and DPD problems is to consider all possible combinations between

the individual trajectory outliers, and then evaluates every subset separately using Def. 7. The

group of trajectory outliers are first derived, and all points for all individual and group of trajectory

outliers are scanned and checked if they are IDP and GDP points. This method evaluates the

candidate sets and save the potential groups of trajectory outliers. It then processes all points for

individual and group of trajectory outliers. This requires high computational and memory resources.

The theoretical complexity of such an approach would be O(2 |G
+ |) for identifying group trajectory

outliers, further to O(n × |G+ |) for determining IDP and GDP points. To address these issues, we

propose in the next sections different solutions to improve the detection of group trajectory outliers

and deviation points.

4 PROPOSED FRAMEWORK AND ALGORITHMS FOR GTO PROBLEM
This section first presents the overall framework proposed for the GTO problem. The framework

detects group of trajectory outliers with different methods based on machine learning, computa-

tional intelligence, and HPC. Several machine learning techniques are used including clustering,

feature selection, neighborhood computation, and ensemble learning. Computational intelligence

and HPC boost the runtime performance and enable dealing with big trajectory databases in a

reasonable time. As illustrated in Fig. 2, the framework includes the following steps:

, Vol. 1, No. 1, Article . Publication date: September 2019.

8 Djenouri et al.

Fig. 2. General Framework.

1- Mapping: Trajectories usually provide noisy GPS data points, with possible errors at the order

of several meters. This will negatively influence the final output of the trajectory outlier detection

systems. In practice, a mapping step is used to project GPS data points of each trajectory onto

the road network. Several approaches have been developed in this area [6, 28, 45]. Since we are

interested in dealing with sparse trajectory databases, we are inspired by a probabilistic model

represented by a Hidden Markov Model [28, 57].

The mapped trajectory database is consequently created in which every observed trajectory is

assigned to the associated road segment.

2- Processing: After constructing the mapped trajectory database, a processing step is performed

to find out the group of trajectory outliers. We propose two approaches in this context, 1) first

determine the individual trajectory outliers and then find out the group of trajectory outliers, 2)

derive directly the group of trajectory outliers from the mapped trajectory database. Furthermore,

we suggest more sophisticated approaches by incorporating ensemble learning, computational

intelligence, and HPC. In the remaining of this section, the use all these concepts in the proposed

framework is explained.

4.1 DBSCAN-GTO
This section presents the adaptation of the DBSCAN algorithm [23] for the GTO problem. The

outputs of the DBSCAN algorithm are: i) the set of clusters with different density (high density

and low density), ii) the set of individual trajectory noises. The latter cannot form the group of

trajectory outliers since they are considered as noises and are far from one other. Solutions to

trajectory clustering [39, 40] are able to derive clusters with different densities. However, they do not

explore the micro clusters property for anomaly detection. This section presents a new approach for

identifying group of trajectory outliers, called DBSCAN-GTO. It uses DBSCAN to search for clusters

by checking the neighborhood of each trajectory. The neighborhoods of a trajectory Λi is defined

as a subset of trajectories close to Lambdai . Two trajectories are close if their distance is less than a

given threshold ϵ , while a trajectory Λi is called core trajectory if the size of its neighborhoods

exceeds a minimum number of trajectories MinPts. The core trajectories are determined, then the

density-reachable trajectories are collected directly from the core trajectories. This may involve

merging a few density-reachable clusters. The process terminates when no new trajectories can be

added to any cluster. Algorithm 1 presents the pseudo-code of DBSCAN-GTO. Initially, the set of
trajectories are grouped using DBSCAN. This generates several clusters with different sizes. Each

micro cluster is considered as group of candidates. A micro cluster is the cluster of trajectories that

contains no more than µ trajectories, with µ is a user-defined threshold. The density of each group

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 9

is determined using Def. 7. If the density exceeds a threshold γ , then the group is considered as

outlier.

Algorithm 1 DBSCAN-GTO Algorithm

1: Input: Λ = {Λ1, Λ2 ...Λn }: The set of all trajectories.
ϵ , MinPts: DBSCAN parameters.

µ : User threshold for micro clusters.

γ : density threshold.

2: Output: G∗ : sets of all group trajectory outliers.

3: C← DBSCAN(Λ, ϵ , MinPts)
4: G∗ ← ∅

5: for each Ci ∈ C do
6: if |Ci | ≤ µ ∨ Density(Ci) ≥ γ then
7: G∗ ← G∗ ∪Ci
8: end if
9: end for
10: return G∗

4.2 kNN-GTO
This section presents the adaptation of thekNN algorithm [58] for identifying the group of trajectory

outliers. The kNN of a trajectory Λi is defined as the k closest trajectories to λi . The following
proposition holds:

Proposition 1. Let us consider two trajectories Λ′, Λ′′, and G∗(s) is the group of trajectory outliers
at the iteration s such that Λ′ ∈

⋃
Λ∗i ∈G

∗(s)
kNN(Λ∗i) & Λ′′ <

⋃
Λ∗i ∈G

∗(s)
kNN(Λ∗i).

We have this implication: Λ′ < G∗(s + 1) ⇒ Λ′′ < G∗(s + 1).

Proof. Λ′ ∈
⋃

Λ∗i ∈G
∗(s)

kNN(Λ∗i) ∨Λ
′′ <

⋃
Λ∗i ∈G

∗(s)
kNN(Λ∗i)⇒Density(G∗(s)∪{λ′′}) ≤ Density(G∗(s)∪

{λ′})... (1)
Λ′ < G∗(s + 1) ⇒ Density(G∗(s) ∪ {λ′}) ≤ γ ... (2)
From (1) and (2) it yields Density(G∗(s) ∪ {λ′′}) ≤ γ ⇒ Λ′′ < G∗(s + 1). □

From the above proposition, one may argue that if a trajectory belongs to the k nearest neighbors
of at least one trajectory in the current group of trajectory outliers, and it if is not in the group of

trajectory outliers of the next iteration, then any trajectory that belongs to the k nearest neighbors
of at least one trajectory in the current group of trajectory outliers could not be in the group of

trajectory outliers of the next iteration. Consequently, it seems to be judicious to prune the search

into k nearest neighbors of the individual trajectory outliers.

In the following, we present an adapted kNN algorithm for the GTO ptoblem. The algorithm

considers as input the set of the top p individual trajectory outliers, G+ = {Λ+
1
,Λ+

2
. . .Λ+p }, that

are ranked according to the kNN value, i.e., ∀i ≥ j, kNN(Λ+i) ≥ kNN(Λ+j). The process aims to

enumerate the sets of group trajectory outliers, G∗, by exploring a search tree of G+. It first adds

the most outlier trajectory, Λ+
1
, to the group denoted G∗

1
. It then generates all potential candidates

from Λ+
1
. A trajectory t is a potential candidate from Λ+

1
iff t ∈ G+ ∨ t ∈ kNN(Λ+

1
). The density of

G∗
1
is updated by adding the potential candidates (one by one) to G∗

1
. Only the potential candidates

respecting the density threshold are saved, and all the remaining candidates are removed. Once the

potential candidate is added to G∗
1
, it is removed from G+. If G∗

1
contains less than two elements, it

is removed from G∗. The same process is recursively applied for all potential candidates added to

G∗
1
, and the overall process is repeated for all trajectory outliers in G+. Algorithm 2 presents the

pseudo-code of kNN-GTO.

, Vol. 1, No. 1, Article . Publication date: September 2019.

10 Djenouri et al.

Algorithm 2 kNN-GTO Algorithm

1: Input: Λ = {Λ1, Λ2 ...Λn }: The set of all trajectories.
A: trajectory outlier detection algorithm.

γ : density threshold.

2: Output: G∗ : sets of all group trajectory outliers.

3: G+
A
← A(Λ)

4: for each trajectory Λ+i ∈ G
+
A

do
5: node← Λ+i
6: for each trajectory t ∈ (kNN(node) ∩ G+

A
) do

7: if Density(G∗i ∪ {t }) ≥ γ then
8: G∗i ← G

∗
i ∪ {t }

9: G+
A
← G+

A
\ {t }

10: {repeat lines from 5 to 8 for a trajectory t}
11: end if
12: end for
13: if |G∗i | = 1 then
14: G∗ ← G∗ \ {G∗i }

15: end if
16: end for
17: return G∗

4.3 FS-GTO
This section presents the use of feature selection approaches to identify the group of trajectory

outliers, starting by transforming the GTO problem to the feature selection problem. Consider a

GTO problem represented by < G+
A
,G∗ >. This could be fitted to the feature selection problem

represented by the set of all features, F , and the subset of selected features, F ∗, such as F = G+
A
, and

F ∗=G∗. In this approach, a feature selection technique is considered. Every individual trajectory

outlier is considered as one feature, and the aim is to select the most relevant features from the whole

individual trajectory outliers. The relevant set of features is then considered as group trajectory

outliers. The evaluation of the selected features (trajectories) F ∗ is determined, whose aim is to

maximize Quality(F ∗) − |F
∗ |

|F | . Note that Quality(F
∗) is calculated using Def. 7. According to the

recent work by Li et al. [41], feature selection algorithms have been categorized into three categories,

1) similarity based, 2) information theoretical based, and 3) statistical based methods. Methods of

the first category explore different heuristics such as information gain [35], minimum redundancy

maximum relevance [56], and joint mutual information [29]. These algorithms can only work on

supervised learning, whereas the ground truth is not always available in our case. Methods of

category (2) calculate different statistical measures such as low variance [61], T-score [16], and

Chi-Square Score [82]. These algorithms can only work on discrete data, while a preprocessing step

is required for numerical and continuous data. Methods of the category (3) investigate similarity

computation to associate weight importance on each feature candidate, such as Laplacian score

[31], SPEC [80], Fisher score [55], and trace ratio criterion [32]. These algorithms proved excellent

performance in both supervised and unsupervised scenarios, and they are easy to implement. We

therefore opt for this category and particularly choose the SPEC algorithm, for which we propose

an adaptation that enables to find a group of trajectory outliers. The process starts by applying the

SPEC algorithm on the set of individual trajectory outliers. The output of this step is the descendant

ranking of individual outliers in terms of the score feature relevance. Using the SPEC ranking

vector of individual outliers, a search enumeration tree is generated by applying the BFS (Breadth

First Search) algorithm. If the quality of the current group candidate does not reach the criteria in

Def. 7, a backtracking procedure is launched by taking the next trajectory in the SPEC ranking

vector. Algorithm 3 presents the pseudo-code of FS-GTO.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 11

Algorithm 3 FS-GTO Algorithm

1: Input: Λ = {Λ1, Λ2 ...Λn }: The set of all trajectories.
A: trajectory outlier detection algorithm.

γ : density threshold.

2: Output: G∗ : sets of all group trajectory outliers.

3: G+
A
← A(Λ)

4: Rankinд ← SPEC(G+
A
)

5: G∗ ← BFS (G+
A
, γ , Rankinд)

6: return G∗

4.4 Improvement
In this part, extension of the proposed solutions by exploring ensemble learning and HPC is

considered. This is for the purpose of increasing the accuracy and reducing the runtime.

4.4.1 Ensemble Learning. Each solution proposed in this work (including clustering, neighborhood

computation, and feature selection) returns potential groups of trajectory outliers with varied

quality, i.e., some groups are useful while others are not. In order to improve the accuracy of this

output, we propose EL-GTO that is based on the use of ensemble learning [68, 89]. Three learners

are first launched, DBSCAN-GTO, kNN-GTO, and FS-GTO. The three setsGDBSCAN
,GkNN

, and

GFS
are then combined and merged to derive the final set of groups of trajectory outliers. The

challenge in this approach is the combination of the results of each learner, which should ensure

accurate final result, as well as the capability of capturing new relevant patterns. Some solutions

select the best learner and discard the results from the remaining learners. These solutions are not

able to detect outliers inside the output of the learners. Other solutions combine the trajectory

outliers retrieved from all the learners, which have the capability to capture more trajectory outliers

but only inside the outliers of the learners. In this work, we propose an efficient approach not only

to detect the outliers of the learners, but also to capture other relevant patterns that have not been

identified by the learners. The process of this approach is presented in the following:

(1) First, we suggest to determine the number of occurrences for each group of trajectory outliers

on the three learners and ranking them accordingly. The results will be the groups that are

highly frequent on the three learners. For instance, if there is two groups: the first group

{Λ1,Λ2,Λ4} appears twice, one onG
DBSCAN

, and another onGkNN
, and the second group

{Λ1,Λ2,Λ3} appears only once on GFS
, then the first group is better ranked than the second

one.

(2) Second, in case there are no redundancy among the outputs of the learners, the similarity

between the group of trajectory outliers of different learners are calculated. If the similarity

is less than γ , then the two group outliers of these learners are merged.

To summarize, in addition to accurately keeping the relevance of the group trajectory outliers of

the three learners GDBSCAN
, GkNN

, andGFS
, the proposed ensemble learning method is able to

capture more relevant group of trajectory outliers that are not in the initial outputs of the learners.

4.4.2 High-Performance Computing (HPC). In this section, we first propose a generic approach to

implement the proposed solutions on parallel architectures. An instantiation on GPU architecture

of this generic approach is then presented.

a. Generic Approach The following sequential steps are needed for running GTO solutions on any

parallel architecture. i) Map partitioning: in which the map is divided into several grids, whereby

each grid contains a set of similar trajectories. This step is performed in CPU. ii) Computing and

storing the local results: in this step, each parallel node applies one of the GTO solutions on every

cluster and generates all group trajectory outliers from the grid that is assigned to it. The set of

, Vol. 1, No. 1, Article . Publication date: September 2019.

12 Djenouri et al.

all group outliers is built following the same logic used in the serial implementation of the GTO

solutions. Once the local group trajectory outliers are calculated, they will be sent to the CPU for

further processing. iii) Merging the local results: the local group of trajectory outliers are merged

into a global one on the CPU. This can be done using a simple concatenation of all local results.

b. GPU-GTO The instantiation of the three steps defined above must be carefully designed to

fit the targeted hardware. The GPUs (Graphic Processing Units) architecture has been gaining

field during the last decade as a powerful computing resource [20, 21, 66, 67, 69]. This hardware is

composed of two hosts, i) the CPU and, ii) the GPU. The former contains the processors and the

main memory. The latter is a multi-threading system that consists of multiple computing cores,
where each core executes a block of threads. Threads of a block in the same core communicate

with one another using a shared memory, whereas the communication between blocks relies on

the global memory. The CPU/GPU communication is made possible by hardware buses. In the

following, the adaptation of GTO for deployment on GPU architectures is denoted GPU-GTO. In

GPU-GTO (see Fig. 3), the map is first partitioned into k grids {д1, . . . ,дk } in the map partitioning

step. The set of designed grids are then sent to the GPU. Each block of threads is mapped onto

one grid, while the GTO solutions are applied on each block in parallel. If we consider the size

of the shared memory of each block to be r , the first r trajectories of the grid, дi , are allocated to

the shared memory of the block, and the remaining trajectories of дi are allocated to the global

memory of the GPU host. GPU-GTO defines a local table, tablei , for storing the group of trajectory

outliers of the grid дi . The local table of each grid is sent to CPU for further processing. In this

context, CPU host merges the results to find the global group of trajectory outliers.

Fig. 3. GPU-GTO framework.

From a theoretical standpoint, GPU-GTO improves the GTO solutions by exploiting the massively

threaded computing of GPUs while mining the grids of trajectories. GPU-GTO also minimizes

the CPU/GPU communication by defining only two points of CPU/GPU communication. The first

one takes place when the grids are loaded into the GPU host, and the second one when the local

tables are returned to the CPU. GPU-GTO also provides an efficient memory management by using

different levels of memories including global and shared memories. However, GPU-GTO may suffer

from a synchronization problem between the GPU blocks. This takes place when the GPU blocks

process grids with different number of trajectories. This issue degrades the performance of the

GPU-based implementation of the GTO solutions. In real scenarios, different number of trajectories

per grid may be obtained. This depends on the way the trajectories are placed into the map; The

more the sizes of the grids are different, the higher the synchronization cost of the GPU-based

implementation will be. A solution to minimize the number of thread divergence is proposed in the

following. The number of thread divergence should first be determined. In the proposed GPU-based

solution, every grid contains different number of trajectories. To identify the group of trajectory

outliers on GPU, each thread compares trajectories to the grid it is mapped with. Consequently,

thread divergence may be caused by two reasons: First, each thread handles different number of

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 13

trajectories. In this case, there are threads that finish before others. Second, the comparison process

of a given thread is stopped when it does not find the trajectory outliers in the grid it is mapped

with. These two parameters affect the number of thread divergence (TD) which can be computed

according to the number of comparisons by the different threads using Eq. 6.

TD =max{max{|t(r∗w)+i | − |t(r∗w)+j |}/(i, j, r) ∈ [1...w]
3}, (6)

where |t(r∗k)+i | is the size of the (r ∗ k) + i
th

trajectory that is assigned to the ith thread and

allocated to the r th grid. Note that k is the number of grids.

Furthermore, thread divergence can be computed according to the distribution of trajectories in

the grids. The following two cases can be distinguished:

Irregular distribution of trajectories: This takes place when the grids are highly different in

size. Thread divergence can be approximated in this case to,

lim

k→+∞
TD(m) =m − 1, (7)

where ism the maximal number of trajectories. Regular distribution of trajectories: This takes
place when there is a slight difference between the size of grids in terms of trajectories. Let us

consider r1 the variation between grids. This yields,

lim

m→+∞
TD(m) = r1. (8)

A solution that minimizes thread divergence is proposed in the following, which also improves

the assignment of the grids on different blocks. The assignment of the grids is performed according

to the number of trajectories in each grid, and the grids of i trajectories are assigned to the ith

block. The number of blocs then is equal to the number of trajectories. The divergence between

threads of the same grid is minimized this way, as the threads of each block have the same number

of grids. However, the load balancing between blocks is not taken into account if many grids have

the same number of trajectories. In fact, some blocks handle much more grids than the others. This

degrades the performance of the group trajectory outlier detection process on GPU. To deal with

this problem, we propose to capture the grids that reduce the load balancing and to sort theme

according to the number of trajectories. Every grid is then assigned to one thread, while the ith grid

is handled by the ith thread. This way, all blocks have the same number of grids, which ensures

load balancing between blocks.

5 DPD: DEVIATION POINT DETECTION

5.1 Two-phase Approach
Motivated by the fact that a group trajectory outlier is composed of individual sub-trajectory

outliers, we propose in the following a two-phase approach that includes, 1) determining individual

deviation, and 2) determining group trajectory outliers and group deviation point.

(1) Determining individual deviation point: The process starts by computing the area of

every point in the whole set of trajectories Λ using the point area measure (See Def. 6).

This allows deriving the individual deviation point, if it exists, for each trajectory. From the

individual deviation point, the process continues determining the individual trajectory outlier.

The area of every point that is highly ordered to the individual deviation point is checked.

If it is below a threshold, say µ, then this point is added to the individual trajectory outlier.

This process is repeated until a normal point is found (a point with area value is greater than

µ). The whole process is repeated until all points of all trajectories are scanned.

, Vol. 1, No. 1, Article . Publication date: September 2019.

14 Djenouri et al.

Algorithm 4 Two-phase-based algorithm

1: Input:
Λ = {Λ1, Λ2 ..., Λm }: The trajectory database.

µ : The point area threshold.
γ : The group density threshold.

2: Output:
IDP , GDP , GTO .

3: {First Phase: Determine individual deviation point}
4: for i=1 to m do
5: for j=1 to n do
6: di j ← PA(pi j) {See Def. 6}
7: end for
8: end for
9: IDP ← ∅
10: ITO ← ∅
11: f laд ← f alse
12: c ← 1

13: for i=1 to m do
14: for j=1 to n do
15: if di j ≤ µ then
16: if flag=false then
17: AddElementToList (IDP [i], pi j)
18: IDP ← IDP ∪ pi j
19: CreateList (ITOc [i], pi j)
20: f laд ← true
21: else
22: AddElementToList (ITOc [i], pi j)
23: end if
24: else
25: f laд ← f alse
26: ITO ← ITO ∪ ITOc [i]
27: c ← c + 1
28: end if
29: end for
30: end for
31: {Second Phase: Determine group trajectory outliers, and group of deviation point}
32: Open ← ∅
33: for i=1 to m do
34: if IDP [i] , ∅ then
35: for j=1 to c do
36: AddElementToList (Open, ITO j [i])
37: end for
38: end if
39: end for
40: while Open , ∅ do
41: node ← RemoveF ir stElement (Open)
42: DG(node) {See Def. 7}
43: AddElementsToList (Open, GPN (node))

{With respect to Def. 8}

44: Best ← SaveBest (Open)
45: end while
46: GTO ← Best
47: GDP ← LastPoint (IDP)
48: return (IDP, GDP, GTO)

(2) Determining group trajectory outliers, and group deviation point: After determining

the individual deviation point, the next step is to derive the group trajectory outliers. A

feature selection technique is used, in which every individual trajectory outlier is considered

as one feature. The aim here is to select the most relevant features from the whole individual

trajectory outliers. The relevant set of features is then considered as group trajectory outliers.

The evaluation of the selected features is computed using the group density measure (See

Def. 7), which should be maximized. A depth first strategy is used for this purpose, which

starts with the empty node ∅ that may contain any trajectory, to the full node that contains

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 15

a

bc

(a) First Phase

a b c

ab ac

abc

bc

(b) Second Phase

Fig. 4. Two-phase approach Illustration.

all individual trajectory outliers. The group deviation point is finally obtained, which is the

last individual deviation point of all trajectories in each group trajectory outlier.

Algorithm 4 presents the pseudo-code of the two-phase based approach for solving the multi-

view trajectory outlier detection problem. The input consists of the trajectory database Λ, the point
area, and the group density thresholds. The output comprises the sets IDP, ITO, GDP, and GTO. The

algorithm starts by computing the area of every point in the trajectory database (lines 4 throughout

8). It then constructs the sets, IDP and ITO, using the µ threshold (lines 13 throughout 30). The

depth-first search is then applied to each ITO j to determine the best features (group trajectory

outliers) with the group deviation point (line 33 throughout 47). The algorithm uses the following

pre-defined methods:

(1) AddElementToList(L, e): Adds an element e to the end of the list L.
(2) AddElementstoList(L, E): Adds all elements in E to the end of the list L.
(3) CreateList(L, e): Creates a new list (L) and assign an element e as the head of this list.

(4) x← RemoveFirstElement(L): Assigns to, x , the first element of the list, L, before removing it.

(5) SaveBest(L)): Returns the current best element in the list, L, with respect to the DG formula.

(6) LastPoint(L): Returns the last point of the list L.
Figure 4 illustrates the Two-Phase algorithm on the set of trajectories shown in Figure 4.(a). The

first phase aims to identify the individual trajectory outliers, as well as the individual deviation

points. We assume the trajectories {a, b, and c} are individual trajectory outliers and deviate from the

whole trajectories marked by black color. The second phase aims to identify the group of trajectory

outliers, and the group deviation points. Therefore, an enumeration tree is generated in which the

root is an empty set, where the nodes of the ith level of the tree contains potential groups with i
trajectories. The score of every node is evaluated, and the best group is derived. At each level, the

potential group deviation points are saved as described by Algorithm 4.

The complexity of Algorithm 4 depends on the number of trajectories,m, the number of points,

n, and the number of the individual trajectory outliers generated in the first stage, c . The cost is the
sum of costs for the first and the second phases. In the first phase, the area computation requires

m2 × n operations, while the construction of the individual trajectory outliers is performed inm
operations. The total cost of this stage is then (m2 × n) +m. The feature selection in the second

phase is performed on the c individual trajectory outliers, which generates (2c − 1) nodes, and c
operations is needed to evaluate every node. The total cost of this phase is c × 2c − c . The total cost
of the two-phase algorithm is of complexityO(m2 ×n+c × 2c). From this analysis, we conclude that

, Vol. 1, No. 1, Article . Publication date: September 2019.

16 Djenouri et al.

the two-phase algorithm is quadratic on the number of trajectories, polynomial on the number of

points, and exponential on the number of individual trajectory outliers. The overall performance of

this algorithm is then hugely affected by the number of trajectories. In the next section, we propose

a GPU-based sliding windows algorithm for boosting the performance of the two-phase algorithm.

5.2 GSW-TP: GPU-based Sliding Windows for Two-Phase Based Algorithm

Fig. 5. GSW-TP Illustration.

The aim of this approach is to improve the overall performance of the two-phase based algorithm

proposed in the previous section using a sliding window approach, as well as the GPU architecture.

Figure 5 illustrates how the proposed approach benefits from the GPU threaded to improve the

runtime performance of the two-phase algorithm. The trajectory database is first divided into

k sliding windows, where k is the number of the GPU-blocks used in the mining process. This

step is performed sequentially on CPU host. The k sliding windows are then sent to the GPU

global memory using to the CPU/GPU communication channels. Each sliding window, SWi , is

transmitted to the shared memory of the bloc, bi , where the threads of the block, bi , are mapped

to the trajectories of, SWi . Therefore, the j
th

thread in bi , say thi j , determines the local individual

trajectory outliers on the trajectory Λj (lines 4 throughout 30 of Algorithm 4). If the trajectory Λj ’s

ending point area on the sliding window SWi−1, and Λj ’s starting point area on the sliding window

SWi are less than µ, then the part of the individual trajectory outlier Λj on SWi−1 is concatenated

with the part of Λj on SWi . In this case, the average point will be the average of both parts of

Λj . Afterwards, the threads of each block compute the local average points for every individual

trajectory outliers. Each block finds the local group trajectory outlier at every sliding window and

sends the local results to the GPU host global memory. A global group trajectory outlier will be a

local trajectory outlier that maximizes a function described in Def. 9. Once the individual trajectory

outliers, the group of trajectory outliers, and the deviation points are determined, they will be sent to

the global memory of the CPU host. The GSW-TP improves the sequential version of the two-phase

based algorithm by exploiting the massively threaded computing of GPUs while determining both

individual and global trajectory outliers. GSW-TP also minimizes the CPU/GPU communication

and reduces it to two points. The first one takes at the beginning place when the trajectory database

is loaded into the GPU, while the second when the individual and the global trajectory outliers

are returned to the host memory. Moreover, GSW-TP minimizes thread divergence, which is a

typical problem in GPU-based computing. Thread divergence only takes place when the threads of

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 17

different blocks process different number of individual trajectory outliers, which needs several GPU

synchronization points. A strategy that minimizes the number of thread divergence is proposed in

the following. The number of thread divergence is first determined similarly to GPU-GTO (using

Eq. 7, and Eq. 8). The previous strategy developed in GPU-GTO divides the grids on all blocks and

minimizes the thread divergence between threads while respecting the load balancing between

blocks. However, if the size of blocks is too large, then any two threads of the same block cannot be

allocated to the same block. The first thread handles the grid of size lenдht , and the second handles

the one of size lenдht +x , This creates additional thread divergence due the difference in the size of

the grids. To deal with this problem, we propose to fix the size of blocks according to the statistical

analysis of the grids. Similarly the previous strategy, the ith element of the grid’s vector determines

the number of the ith grid’s trajectories. The median of this vector is proportional to the size of

each block. The same process used in GPU-GTO is then repeated. To determine the median of a

given vector of l elements, this vector is first sorted and then
l
2
is considered as the median value.

6 PERFORMANCE EVALUATION
Intensive experiments have been carried out to evaluate the proposed algorithms on different

trajectory databases in four steps. 1) serial implementation of the GTO solutions are compared with

the state-of-the art group outlier detection algorithms using standard trajectory databases. 2) the

ability of the GPD solution (two-phase based algorithm) to detect deviation points is investigated

in several scenarios. 3) the scalability of the GPU-based solutions is investigated on big trajectory

databases and compared with the existing GPU-based outlier detection solutions. 4) a case study of

the proposed framework on intelligent transportation is illustrated.

In all experiments, the time period of each interval was set to 5 minutes. A 64 − bit computer

was used for the serial implementation, which features a core i7 processor running Windows 10

and 16GB of RAM. GPU-based implementations were carried out on a CPU host coupled with a

GPU device. The CPU host was a 64 − bit quad-core Intel Xeon E5520, with 2.27GHz clock. The
GPU device was a 1.15GHz Nvidia Tesla C2075 with 448 CUDA cores (14 multiprocessors with 32

cores each), 2.8GB of global memory, 49.15KB of shared memory. Both the CPU and GPU were

used in single precision. The evaluation procedure of the returned outliers’ quality represents a

common problem of outlier detection techniques, in particular for new applications such as group

trajectory outliers and deviation point detection in which a ground truth is not defined or does not

exist. Due to the lack of ground truth in trajectory datasets, we injected synthetic group trajectory

outliers as follow:

Injecting individual trajectory outliers: Individual trajectory outliers were generated by adding
noise several times with a certain probability p ∼ U(0.8, 1.0) and a given threshold µ.
Injecting group trajectory outliers: From the individual trajectory outliers, noise was added

few times with a certain probability p ∼ U(0.0, 1.0) and a given µ.
In both cases, each point pil in the trajectory Λi was changed as,

pil =

{
pil + n ∼ N(0, 1) if p ≥ µ,
pil otherwise.

(9)

For both individual and group trajectory outliers, the starting noise points are considered as

individual and group deviation points. In the following, the evaluation of the group trajectory

outliers is performed using Fmeasure, and ROCAUC, which are commonmeasures for the evaluation

of the outlier detection methods.

, Vol. 1, No. 1, Article . Publication date: September 2019.

18 Djenouri et al.

6.1 Data Description
The following datasets have been used.

Intelligent Transportation: database from the ECML PKDD 2015 competition
1
has been used. It

contains 7733 real trajectories retrieved from 01/07/2013 to 30/06/2014 of 442 taxis in the city of

Porto, Portugal. Further information about this trajectory database can be found in [54].

Climate Change: Atlantic hurricanes track dataset has been used [37], which contains latitude,

longitude, maximum sustained surface wind, and minimum sea-level pressure of hurricane trajec-

tories in USA at 6 hourly intervals for the period from 1851 to 2018. This includes 52775 hurricane

trajectories.

Environment: Starkey Project’s dataset
2
has been used. It includes animal movement data illus-

trated by the radio-telemetry locations of elk, deer, and cattle, collected from 1989 to 1999. The

locations has been recorded at 30minute intervals. With 100 trajectories, and more than 40, 000
different points. This dataset is considered sparse.

Big Databases: Two big trajectory databases have also been used: i) taxi 13 − 1 containing 1.89
million trajectories, and ii) taxi 13 − 2 containing 3.69 million trajectories. Both databases were

generated from the taxis of Shanghai during the period from 01/10/2013 throughout 31/12/2013

[49].

6.2 Serial GTO Performance
The aim of the first part of this experiment is to tune parameters related to the different solutions

proposed in this paper. Several tests have been carried out by varying the user threshold from 1 to

10 for DBSCAN, the number of neighborhood from 1 to 10 for kNN, the tree depth from 1 to 10 for

feature selection, the population size from 10 to 100 for computational intelligence improvement,

and the Point Area threshold from 0.1 to 1.0 for the two-phase based algorithm. The results

show that for trajectory databases (intelligent transportation, climate change or environment),

the accuracy of DBSCAN and kNN increases up to reaching the optimum point and then starts

decreasing. The accuracy of the other solutions (feature selection, computational intelligence, and

the two-phase based algorithm) also goes up with the increase of the overspending parameters

until reaching the optimum values then stabilizes. Tab. 1 summarizes the best parameters’ values

of the proposed solutions for different trajectory databases, which are used in the remaining of the

paper.

Table 1. Best Parameters of the Proposed Solutions.

DBSCAN-GTO kNN-GTO FS-GTO Two-Phase

Data (User Threshold) (k) (Tree Depth) (µ)

Intelligent 4 6 6 0.8

Transportation

Climate 6 5 6 0.6

Change

Environment 6 5 7 0.5

The second part of the experiment aims to compare the proposed solutions with the state-of-the

art algorithms in terms of accuracy and processing time. To the best of our knowledge, this is the

first work that explores group trajectory outlier detection, i.e;, there is no relevant candidate dealing

with group trajectory outlier to compare with. Therefore, comparing the proposed solutions with

some generic group outlier detection algorithms is the only option we have. For this purpose, four

1
http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html

2
https://www.fs.fed.us/pnw/starkey/introduction.shtml

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 19

0 100 200 300 400 500 600 700 800 900 1000

gamma threshold

0.75

0.8

0.85

0.9

0.95

1

F
-m

e
a

s
u

re

DBSCAN-GTO

kNN-GTO

FS-GTO

EL-GTO

Two Phqse

DGM

WATCH

ATD

AGJFD

0 100 200 300 400 500 600 700 800 900 1000

gamma threshold

0.7

0.75

0.8

0.85

0.9

0.95

1

R
O

C
A

U
C

DBSCAN-GTO

kNN-GTO

FS-GTO

EL-GTO

Two Phase

DGM

WATCH

ATD

AGJFD

Intelligent Transportation

Fig. 6. Accuracy on intelligent transportation dataset

0 100 200 300 400 500 600 700 800 900 1000

gamma threshold

0.75

0.8

0.85

0.9

0.95

1

F
-m

e
a

s
u

re

DBSCAN-GTO

kNN-GTO

FS-GTO

EL-GTO

Two Phase

DGM

WATCH

ATD

AGJFD

0 100 200 300 400 500 600 700 800 900 1000

gamma threshold

0.7

0.75

0.8

0.85

0.9

0.95

1

R
O

C
A

U
C

DBSCAN-GTO

kNN-GTO

FS-GTO

EL-GTO

Two Phase

DGM

WATCH

ATD

AGJFD

Climate Change

Fig. 7. Accuracy on climat change datase

0 100 200 300 400 500 600 700 800 900 1000

gamma threshold

0.75

0.8

0.85

0.9

0.95

1

F
-m

e
a

s
u

re

DBSCAN-GTO

kNN-GTO

FS-GTO

EL-GTO

Two Phase

DGM

WATCH

ATD

AGJFD

0 100 200 300 400 500 600 700 800 900 1000

gamma threshold

0.7

0.75

0.8

0.85

0.9

0.95

1

R
O

C
A

U
C

DBSCAN-GTO

kNN-GTO

FS-GTO

EL-GTO

Two Phase

DGM

WATCH

ATD

AGJFD

Environment

Fig. 8. Accuracy on environment datase

, Vol. 1, No. 1, Article . Publication date: September 2019.

20 Djenouri et al.

IT CC Env

Data

0

5

10

15

20

25

R
u

n
ti
m

e
(s

)

DBSCAN-GTO

kNN-GTO

FS-GTO

EL-GTO

Two Phase

DGM

WATCH

ATD

AGJFD

Fig. 9. Runtime: the proposed Solutions vs. state-of-the art group detection.

baseline algorithms have been adapted to trajectory data including DGM [10], WATCH [42], ATD

[62], and AGJFD [63]. Fig. 6, 7, 8 and 9 show the accuracy and the runtime of the proposed solutions

(DBSCAN-GTO, kNN-GTO, FS-GTO, EL-GTO, and the two-phase based algorithm) in comparison

with the above mentioned baseline algorithms. The figures show that solutions based on feature

selection and ensemble learning methods outperform the baseline algorithms in terms of accuracy

(this holds for trajectory databases). However, solutions based on neighborhood computation,

DBSCAN, and the two-phase algorithms show lower performance. The results also reveal that

solutions demonstrating high accuracy needs higher run time, which represents the main obstacle

when dealing with big data trajectory. The parallel solutions that proposed to deal with this problem

are evaluated in the following.

100 150 200 250 300 350 400 450 500

individual change point

0

5

10

15

20

25

E
rr

o
r

R
a

te
(%

)

Intelligent Transportation

Climate Change

Environment

100 150 200 250 300 350 400 450 500

group change point

0

5

10

15

20

25

30

E
rr

o
r

R
a

te
(%

)

Intelligent Transportation

Climate Change

Environment

Fig. 10. Error rate (%) of the two-phase approach for detecting individual and group deviation points

The last part of this experiment is to show the performance of the two-phase algorithm for

identifying both individual and group deviation points. To the best of our knowledge, there is no

work that explores deviation point detection. We use Eq. 9 to calculate the ability of the two-phase

algorithm for identifying starting noise points of trajectories. Fig. 10 presents the error rate (%) of

the two-phase algorithm using different number of individual and group deviation points, with

different trajectory databases. The results show that the error rate slightly increases with the rise

in the number of deviation points for all trajectory databases, and that the rate for the intelligent

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 21

transportation is the highest. They also reveal that the two-phase algorithm has the ability to

identify the individual and group deviation points for more than 67%, even for complex data.

6.3 Performance of Parallel Solutions

0 100 200 300 400 500 600

Threads per Block

50

60

70

80

90

100

110

120

S
p

e
e

d
U

p

#Block=128

GPU-GTO-DBSCAN

GPU-GTO-kNN

GPU-GTO-FS

GPU-GTO-EL

GSW-TP

0 100 200 300 400 500 600

Threads per Block

70

75

80

85

90

95

100

105

110

115

120

S
p

e
e

d
U

p

#Block=256

GPU-GTO-DBSCAN

GPU-GTO-kNN

GPU-GTO-FS

GPU-GTO-EL

GSW-TP

0 100 200 300 400 500 600

Threads per Block

70

80

90

100

110

120

130

140

150

S
p

e
e

d
U

p

#Block=512
GPU-GTO-DBSCAN

GPU-GTO-kNN

GPU-GTO-FS

GPU-GTO-EL

GSW-TP

0 100 200 300 400 500 600

Threads per Block

80

100

120

140

160

180

200

S
p

e
e

d
U

p

#Block=1024

GPU-GTO-DBSCAN

GPU-GTO-kNN

GPU-GTO-FS

GPU-GTO-EL

GSW-TP

taxi 13-1

Fig. 11. Speed of the GPU-based GTO solutions taxi 13-1 dataset

Several experiments have been carried out on GPU architecture using big trajectory databases.

The results reported in Fig. 11 and 12 show that the speed rises with the increase of number

of blocks and the number of threads per bloc, more considerably for ensemble learning and

computation intelligence based solutions. This performance is justified by the partitioning strategy

for mapping the trajectories on GPU blocks that takes advantage of the massively GPU threaded.

Fig. 13 compares the proposed GPU solution that uses the ensemble learning (GPU-GTO), the

two-phase based (GSW-TP), with the baseline GPU-based outlier detection algorithms (SolvingSet

[2], SolvingSet+ [3], and MoNavGPU [78]) on big trajectory databases. The figure shows that the

proposed solutions outperform the baseline approaches. The runtime of the proposed solutions

does not exceed 300seconds to deal with the whole trajectory taxi 13 − 2 database, while the other

solutions need 500 seconds for processing such trajectory database. These results can be explained

by: i) the use of intelligent mapping between trajectories and the GPU blocks, 2) the parallelism of

ensemble learning approach, and 3) the efficient exploration of the trajectory space by the genetic

operators.

, Vol. 1, No. 1, Article . Publication date: September 2019.

22 Djenouri et al.

0 100 200 300 400 500 600

Threads per Block

80

90

100

110

120

130

140

150

160

S
p

e
e

d
U

p

#Block=128

GPU-GTO-DBSCAN

GPU-GTO-kNN

GPU-GTO-FS

GPU-GTO-EL

GSW-TP

0 100 200 300 400 500 600

Threads per Block

90

100

110

120

130

140

150

160

170

180

S
p

e
e

d
U

p

#Block=256

GPU-GTO-DBSCAN

GPU-GTO-kNN

GPU-GTO-FS

GPU-GTO-EL

GSW-TP

0 100 200 300 400 500 600

Threads per Block

100

110

120

130

140

150

160

170

180

190

200

S
p

e
e

d
U

p

#Block=512
GPU-GTO-DBSCAN

GPU-GTO-kNN

GPU-GTO-FS

GPU-GTO-EL

GSW-TP

0 100 200 300 400 500 600

Threads per Block

100

150

200

250

S
p

e
e

d
U

p

#Block=1024

GPU-GTO-DBSCAN

GPU-GTO-kNN

GPU-GTO-FS

GPU-GTO-EL

GSW-TP

taxi 13-2

Fig. 12. Speed of the GPU-based GTO solutions for taxi 13-2 dataset

taxi 13-1

10 20 30 40 50 60 70 80 90 100

% of Trajectory Data

0

50

100

150

200

250

300

350

R
u

n
ti
m

e
(s

)

GSW-TP

GPU-GTO

SolvingSet

SolvingSet+

MoNavGPU

taxi 13-2

10 20 30 40 50 60 70 80 90 100

% of Trajectory Data

0

50

100

150

200

250

300

350

400

450

500

550

R
u

n
ti
m

e
(s

)

GSW-TP

GPU-GTO

SolvingSet

SolvingSet+

MoNavGPU

Fig. 13. The proposed GPU-based solutions vs. state-of-the art GPU-based outlier detection

6.4 Case Study on Intelligent Transportation
The last experiment aims at demonstrating the usefulness of the proposed framework in a real-world

scenario. The taxi trajectory service of Porto
3
is used. Figure 14(a) presents the number of trajectory

3
http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 23

20

1

30

40

8000

50

Nu
mb

er
of

Ind
ivid

ua
l O

utl
ier

s

60

6000

Density Thershold

0.5

70

Trajectories

80

4000

2000
0 0

(a) Number Of Individual Outliers

(b) Map of Individual Outliers

Fig. 14. Case Study of Real Taxi Trajectory Database

outliers with different number of trajectory sizes and different area point threshold values of the

GSW-TP. The figure show that the number of individual trajectory outliers increases as the number

of trajectories goes up. The number of trajectory outliers increases from 35 for 700 trajectories to

reaches 72 for 7, 000 trajectories. However, when the area point threshold (density) increases, the

number of individual trajectory outliers decreases. Figure 14(b) shows the results of both individual

and group trajectory outliers by applying the two-phase algorithm on the same trajectory database.

From this figure, we remark that the two-phase algorithm is able to detect group trajectory outliers

(marked by red color) against normal trajectories (marked by black color). These group trajectory

outliers represent different taxi trips. One of the reason that these taxis deviate from the normal

trajectory is the high traffic jam of Porto city in peak hours.

7 DISCUSSION AND FUTURE DIRECTIONS
The first finding in this work is that the proposed framework identifies new patterns represented by

group of trajectory outliers. This is different from previous trajectory outlier detection approaches,

which are only able to derive individual trajectory outliers. The second finding is that the combina-

tion of several concepts (from different fields) improves the overall performance in detecting group

of trajectory outliers (for both quality and runtime). This includes exploring the micro clusters,

nearest neighbors, feature of the individual trajectory outliers, ensemble learning, genetic operators,

, Vol. 1, No. 1, Article . Publication date: September 2019.

24 Djenouri et al.

and HPC. The proposed GTO solutions are examples of the application of outlier detection algo-

rithms to the context of trajectory outliers. The literature calls for this type of research, particularly

for urban analysis and smart city applications where a large number of trajectories are present

in the daily life. However, porting a data mining and machine learning approach to any specific

application domain always requires methodological refinement and adaptation [44, 62].

While this work is the first milestone in the context of group trajectory outlier detection, much

investigation is still required before reaching advanced solutions that could be exploited by city

planners. A deep progress in all directions is recommended including, i) techniques for GTO:
more sophisticated techniques should be developed for the GTO problem. For instance, other

traditional outlier detection techniques may be adopted such as LOF (Local Outlier Factor) [5].

This is by developing and introducing new concepts of density, local reachability density for GTO
problem. ii) Visualization: new visualization techniques should be developed for GTO providing

city planners with tools that enable visualizing and interpreting group trajectory outliers . iii)

GTO applications: investigating and targeting new applications of GTO, such as climate change

analysis. In this case, a typical example is finding a group of hurricane trajectories that deviates

from the normal hurricane trajectories. This allows to identify and explore other cities that could

be affected by the Hurricanes. The last hurricanes observed in the United States during the period

2018 − 2019 could be a real sketch of this study.

8 CONCLUSION
The problem of Group Trajectory Outlier (GTO) Detection has been introduced in this paper. Three

algorithms (DBSCAN-GTO,kNN-GTO, and FS-GTO) have been proposed and investigated from a set

of individual trajectory outliers. In DBSCAN-GTO, the candidate trajectories are first determined

using the DBSCAN algorithm. The density computation is then calculated for each candidate

trajectory to find the group of trajectory outliers. The process in kNN-GTO starts recursively by

determining the potential candidates from the individual trajectory outliers and pruning them

using density computation. This repeats for all individual trajectory outliers, and then a set of

group trajectory outliers is determined in which outliers in every group share some common points.

FS-GTO considers the GTO problem as a feature selection problem, while the set of individual

trajectory outliers are viewed as the set of all features, and the feature selection process is applied

to identify the group of trajectory outliers. Furthermore, three improvements for these algorithms

have been suggested by using ensemble learning, computational intelligence, and HPC. All the

proposed approaches have been tested on real trajectory databases. The results reveal the usefulness

of exploring computational intelligence and HPC in identifying group trajectory outliers, and the

superiority of the proposed approaches over the baseline group detection. The results also show

that the GPU-parallel approach outperforms the existing HPC approaches when dealing with big

trajectory databases.

REFERENCES

[1] Georgi Ajaeiya, Imad H Elhajj, Ali Chehab, Ayman Kayssi, and Marc Kneppers. 2018. Mobile Apps identification based

on network flows. Knowledge and Information Systems (2018), 1–26.
[2] Fabrizio Angiulli, Stefano Basta, Stefano Lodi, and Claudio Sartori. 2013. Fast outlier detection using a GPU. In 2013

International Conference on High Performance Computing & Simulation (HPCS). IEEE, 143–150.
[3] Fabrizio Angiulli, Stefano Basta, Stefano Lodi, and Claudio Sartori. 2016. GPU strategies for distance-based outlier

detection. IEEE Transactions on Parallel and Distributed Systems 27, 11 (2016), 3256–3268.
[4] Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. 2018. Spatio-temporal data mining: A survey of problems and

methods. ACM Computing Surveys (CSUR) 51, 4 (2018), 83.
[5] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000. LOF: identifying density-based local

outliers. In ACM SIGMOD Record, Vol. 29. 93–104.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 25

[6] Marcus A Brubaker, Andreas Geiger, and Raquel Urtasun. 2015. Map-based probabilistic visual self-localization. IEEE
transactions on pattern analysis and machine intelligence 38, 4 (2015), 652–665.

[7] Nan Cao, Chaoguang Lin, Qiuhan Zhu, Yu-Ru Lin, Xian Teng, and Xidao Wen. 2018. Voila: Visual anomaly detection

and monitoring with streaming spatiotemporal data. IEEE transactions on visualization and computer graphics 24, 1
(2018), 23–33.

[8] Hervé Cardot, Peggy Cénac, and Jean-Marie Monnez. 2012. A fast and recursive algorithm for clustering large datasets

with k-medians. Computational Statistics & Data Analysis 56, 6 (2012), 1434–1449.
[9] Gilles Celeux, Didier Chauveau, and Jean Diebolt. 1996. Stochastic versions of the EM algorithm: an experimental

study in the mixture case. Journal of Statistical Computation and Simulation 55, 4 (1996), 287–314.

[10] Raghavendra Chalapathy, Edward Toth, and Sanjay Chawla. 2018. Group anomaly detection using deep generative

models. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 173–189.
[11] Chao Chen, Daqing Zhang, Pablo Samuel Castro, Nan Li, Lin Sun, Shijian Li, and Zonghui Wang. 2013. iBOAT:

Isolation-based online anomalous trajectory detection. IEEE Transactions on Intelligent Transportation Systems 14, 2
(2013), 806–818.

[12] Raffaele Conforti, Marcello La Rosa, and Arthur HM ter Hofstede. 2017. Filtering out infrequent behavior from business

process event logs. IEEE Transactions on Knowledge and Data Engineering 29, 2 (2017), 300–314.

[13] Kaustav Das and Jeff Schneider. 2007. Detecting anomalous records in categorical datasets. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 220–229.

[14] Kaustav Das, Jeff Schneider, and Daniel B Neill. 2008. Anomaly pattern detection in categorical datasets. In Proceedings
of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. 169–176.

[15] Mahashweta Das and Srinivasan Parthasarathy. 2009. Anomaly detection and spatio-temporal analysis of global

climate system. In Proceedings of the third international workshop on knowledge discovery from sensor data. 142–150.
[16] David Dernoncourt, Blaise Hanczar, and Jean-Daniel Zucker. 2014. Analysis of feature selection stability on high

dimension and small sample data. Computational statistics & data analysis 71 (2014), 681–693.
[17] Djamel Djenouri, Roufaida Laidi, Youcef Djenouri, and Ilangko Balasingham. 2019. Machine learning for smart building

applications: Review and taxonomy. ACM Computing Surveys (CSUR) 52, 2 (2019), 1–36.
[18] Youcef Djenouri, Asma Belhadi, Jerry Chun-Wei Lin, and Alberto Cano. 2019. Adapted K-Nearest Neighbors for

Detecting Anomalies on Spatio–Temporal Traffic Flow. IEEE Access 7 (2019), 10015–10027.
[19] Youcef Djenouri, Asma Belhadi, Jerry Chun-Wei Lin, Djamel Djenouri, and Alberto Cano. 2019. A survey on urban

traffic anomalies detection algorithms. IEEE Access 7 (2019), 12192–12205.
[20] Youcef Djenouri, Ahcene Bendjoudi, Zineb Habbas, Malika Mehdi, and Djamel Djenouri. 2017. Reducing thread

divergence in GPU-based bees swarm optimization applied to association rule mining. Concurrency and Computation:
Practice and Experience 29, 9 (2017), e3836.

[21] Youcef Djenouri, Djamel Djenouri, Asma Belhadi, and Alberto Cano. 2019. Exploiting GPU and cluster parallelism in

single scan frequent itemset mining. Information Sciences 496 (2019), 363–377.
[22] John D Eblen, Charles A Phillips, Gary L Rogers, and Michael A Langston. 2012. The maximum clique enumeration

problem: algorithms, applications, and implementations. In BMC bioinformatics, Vol. 13. BioMed Central, S5.

[23] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-based algorithm for discovering

clusters in large spatial databases with noise. In Proceedings of KDD. 226–231.
[24] Jerome H Friedman. 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis 38, 4 (2002), 367–378.
[25] Yong Ge, Hui Xiong, Zhi-hua Zhou, Hasan Ozdemir, Jannite Yu, and Kuo Chu Lee. 2010. Top-eye: Top-k evolving

trajectory outlier detection. In Proceedings of the 19th ACM international conference on Information and knowledge
management. ACM, 1733–1736.

[26] Stuart Geman and Donald Geman. 1987. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of

images. In Readings in computer vision. Elsevier, 564–584.
[27] Mohammadhossein Ghahramani, MengChu Zhou, and Chi Tin Hon. 2018. Mobile Phone Data Analysis: A Spatial

Exploration Toward Hotspot Detection. IEEE Transactions on Automation Science and Engineering (2018).

[28] Chong Yang Goh, Justin Dauwels, Nikola Mitrovic, Muhammad Tayyab Asif, Ali Oran, and Patrick Jaillet. 2012. Online

map-matching based on hidden markov model for real-time traffic sensing applications. In 2012 15th International IEEE
Conference on Intelligent Transportation Systems. IEEE, 776–781.

[29] Baofeng Guo and Mark S Nixon. 2008. Gait feature subset selection by mutual information. IEEE Transactions on
Systems, MAN, and Cybernetics-part a: Systems and Humans 39, 1 (2008), 36–46.

[30] Manish Gupta, Jing Gao, Charu C Aggarwal, and Jiawei Han. 2014. Outlier detection for temporal data: A survey. IEEE
Transactions on Knowledge and Data Engineering 26, 9 (2014), 2250–2267.

[31] Xiaofei He, Deng Cai, and Partha Niyogi. 2006. Laplacian score for feature selection. In Advances in neural information
processing systems. 507–514.

, Vol. 1, No. 1, Article . Publication date: September 2019.

26 Djenouri et al.

[32] Yi Huang, Dong Xu, and Feiping Nie. 2012. Semi-supervised dimension reduction using trace ratio criterion. IEEE
Transactions on neural networks and learning systems 23, 3 (2012), 519–526.

[33] Ilias Kalamaras, Alexandros Zamichos, Athanasios Salamanis, Anastasios Drosou, Dionysios D Kehagias, Georgios

Margaritis, Stavros Papadopoulos, and Dimitrios Tzovaras. 2018. An interactive visual analytics platform for smart

intelligent transportation systems management. IEEE Transactions on Intelligent Transportation Systems 19, 2 (2018),
487–496.

[34] Tung Kieu, Bin Yang, and Christian S Jensen. 2018. Outlier Detection for Multidimensional Time Series Using Deep

Neural Networks. In 2018 19th IEEE International Conference on Mobile Data Management (MDM). IEEE, 125–134.
[35] Kenji Kira and Larry A Rendell. 1992. A practical approach to feature selection. In Machine Learning Proceedings 1992.

Elsevier, 249–256.

[36] Xiangjie Kong, Ximeng Song, Feng Xia, Haochen Guo, Jinzhong Wang, and Amr Tolba. 2017. LoTAD: long-term traffic

anomaly detection based on crowdsourced bus trajectory data. World Wide Web (2017), 1–23.
[37] Christopher W Landsea and James L Franklin. 2013. Atlantic hurricane database uncertainty and presentation of a

new database format. Monthly Weather Review 141, 10 (2013), 3576–3592.

[38] Jae-Gil Lee, Jiawei Han, and Xiaolei Li. 2008. Trajectory outlier detection: A partition-and-detect framework. In Proc.
of ICDE. 140–149.

[39] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. 2007. Trajectory clustering: a partition-and-group framework. In

Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. 593–604.
[40] Huanhuan Li, Jingxian Liu, Kefeng Wu, Zaili Yang, Ryan Wen Liu, and Naixue Xiong. 2018. Spatio-Temporal Vessel

Trajectory Clustering Based on Data Mapping and Density. IEEE Access (2018).
[41] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and Huan Liu. 2018. Feature

selection: A data perspective. ACM Computing Surveys (CSUR) 50, 6 (2018), 94.
[42] Junli Li, Jifu Zhang, Ning Pang, and Xiao Qin. 2018. Weighted Outlier Detection of High-Dimensional Categorical

Data Using Feature Grouping. IEEE Transactions on Systems, Man, and Cybernetics: Systems 99 (2018), 1–14.
[43] Sheng Li, Ming Shao, and Yun Fu. 2018. Multi-view low-rank analysis with applications to outlier detection. ACM

Transactions on Knowledge Discovery from Data (TKDD) 12, 3 (2018), 32.
[44] Wenjia Li, Houbing Song, and Feng Zeng. 2018. Policy-based secure and trustworthy sensing for internet of things in

smart cities. IEEE Internet of Things Journal 5, 2 (2018), 716–723.
[45] Yang Li, Qixing Huang, Michael Kerber, Lin Zhang, and Leonidas Guibas. 2013. Large-scale joint map matching of GPS

traces. In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems. ACM, 214–223.

[46] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference on. IEEE, 413–422.

[47] Zhipeng Liu, Dechang Pi, and Jinfeng Jiang. 2013. Density-based trajectory outlier detection algorithm. Journal of
Systems Engineering and Electronics 24, 2 (2013), 335–340.

[48] Zhongjian Lv, Jiajie Xu, Pengpeng Zhao, Guanfeng Liu, Lei Zhao, and Xiaofang Zhou. 2017. Outlier Trajectory

Detection: A Trajectory Analytics Based Approach. In International Conference on Database Systems for Advanced
Applications. Springer, 231–246.

[49] Jiali Mao, Pengda Sun, Cheqing Jin, and Aoying Zhou. 2018. Outlier detection over distributed trajectory streams. In

Proceedings of the 2018 SIAM international conference on data mining. SIAM, 64–72.

[50] Jiali Mao, Tao Wang, Cheqing Jin, and Aoying Zhou. 2017. Feature Grouping-Based Outlier Detection Upon Streaming

Trajectories. IEEE Transactions on Knowledge and Data Engineering 29, 12 (2017), 2696–2709.

[51] Amin Hosseinpoor Milaghardan, Rahim Ali Abbaspour, and Christophe Claramunt. 2018. A Dempster-Shafer based

approach to the detection of trajectory stop points. Computers, Environment and Urban Systems 70 (2018), 189–196.
[52] Natwar Modani and Kuntal Dey. 2008. Large maximal cliques enumeration in sparse graphs. In Proceedings of the 17th

ACM conference on Information and knowledge management. ACM, 1377–1378.

[53] Andrew Moore and Weng-Keen Wong. 2003. Optimal reinsertion: A new search operator for accelerated and more

accurate Bayesian network structure learning. In ICML, Vol. 3. 552–559.
[54] Luis Moreira-Matias, Joao Gama, Michel Ferreira, Joao Mendes-Moreira, and Luis Damas. 2013. Predicting taxi–

passenger demand using streaming data. IEEE Transactions on Intelligent Transportation Systems 14, 3 (2013), 1393–1402.
[55] Feiping Nie, Shiming Xiang, Yangqing Jia, Changshui Zhang, and Shuicheng Yan. 2008. Trace ratio criterion for feature

selection.. In AAAI, Vol. 2. 671–676.
[56] Hanchuan Peng, Fuhui Long, and Chris Ding. 2005. Feature selection based on mutual information: criteria of max-

dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis & Machine Intelligence 8
(2005), 1226–1238.

[57] Anatolii Prokhorchuk, Justin Dauwels, and Patrick Jaillet. 2019. Estimating Travel Time Distributions by Bayesian

Network Inference. IEEE Transactions on Intelligent Transportation Systems (2019).

, Vol. 1, No. 1, Article . Publication date: September 2019.

Trajectory Outlier Detection: New Problems and Solutions for Smart Cities 27

[58] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient algorithms for mining outliers from large data

sets. In ACM SIGMOD Record, Vol. 29. 427–438.
[59] Mahsa Salehi, Christopher Leckie, James C Bezdek, Tharshan Vaithianathan, and Xuyun Zhang. 2016. Fast memory

efficient local outlier detection in data streams. IEEE Transactions on Knowledge and Data Engineering 28, 12 (2016),

3246–3260.

[60] Hansi Senaratne, Manuel Mueller, Michael Behrisch, Felipe Lalanne, Javier Bustos-Jiménez, Jörn Schneidewind, Daniel

Keim, and Tobias Schreck. 2018. Urban Mobility Analysis With Mobile Network Data: A Visual Analytics Approach.

IEEE Transactions on Intelligent Transportation Systems 19, 5 (2018), 1537–1546.
[61] Kai-Quan Shen, Chong-Jin Ong, Xiao-Ping Li, Zheng Hui, and Einar PV Wilder-Smith. 2007. A feature selection

method for multilevel mental fatigue EEG classification. IEEE transactions on biomedical engineering 54, 7 (2007),

1231–1237.

[62] Hossein Soleimani and David J Miller. 2016. ATD: Anomalous Topic Discovery in High Dimensional Discrete Data.

IEEE Transactions on Knowledge and Data Engineering 28, 9 (2016), 2267–2280.

[63] Chenfei Sun, Zhongmin Yan, Qingzhong Li, Yongqing Zheng, Xudong Lu, and Lizhen Cui. 2019. Abnormal Group-Based

Joint Medical Fraud Detection. IEEE Access 7 (2019), 13589–13596.
[64] Guanting Tang, Jian Pei, James Bailey, and Guozhu Dong. 2015. Mining multidimensional contextual outliers from

categorical relational data. Intelligent Data Analysis 19, 5 (2015), 1171–1192.
[65] Edward Toth and Sanjay Chawla. 2018. Group Deviation Detection Methods: A Survey. ACM Computing Surveys

(CSUR) 51, 4 (2018), 77.
[66] Md Zia Uddin. 2019. A wearable sensor-based activity prediction system to facilitate edge computing in smart

healthcare system. J. Parallel and Distrib. Comput. 123 (2019), 46–53.
[67] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. 2013. GPU computing for parallel local search metaheuristic

algorithms. IEEE Trans. Comput. 62, 1 (2013), 173–185.
[68] Jan N van Rijn, Geoffrey Holmes, Bernhard Pfahringer, and Joaquin Vanschoren. 2018. The online performance

estimation framework: heterogeneous ensemble learning for data streams. Machine Learning 107, 1 (2018), 149–176.

[69] José R Vázquez-Canteli, Stepan Ulyanin, Jérôme Kämpf, and Zoltán Nagy. 2019. Fusing TensorFlow with building

energy simulation for intelligent energy management in smart cities. Sustainable cities and society 45 (2019), 243–257.

[70] Hao Wu, Weiwei Sun, and Baihua Zheng. 2017. A Fast Trajectory Outlier Detection Approach via Driving Behavior

Modeling. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM, 837–846.

[71] Liang Xiong, Barnabás Póczos, Jeff Schneider, Andrew Connolly, and Jake VanderPlas. 2011. Hierarchical probabilistic

models for group anomaly detection. In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics. 789–797.

[72] Liang Xiong, Barnabás Póczos, and Jeff G Schneider. 2011. Group anomaly detection using flexible genre models. In

Advances in neural information processing systems. 1071–1079.
[73] Cao Lei Yu, Yanwei, Elke A Rundensteiner, and Qin Wang. 2017. Outlier Detection over Massive-Scale Trajectory

Streams. ACM Transactions on Database Systems (TODS) 42, 2 (2017), 10.
[74] Qingying Yu, Yonglong Luo, Chuanming Chen, and Xiaohan Wang. 2017. Trajectory outlier detection approach based

on common slices sub-sequence. Applied Intelligence (2017), 1–20.
[75] Rose Yu, Xinran He, and Yan Liu. 2015. Glad: group anomaly detection in social media analysis. ACM Transactions on

Knowledge Discovery from Data (TKDD) 10, 2 (2015), 18.
[76] Yanwei Yu, Lei Cao, Elke A Rundensteiner, and Qin Wang. 2014. Detecting moving object outliers in massive-scale

trajectory streams. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining. 422–431.

[77] Daqing Zhang, Nan Li, Zhi-Hua Zhou, Chao Chen, Lin Sun, and Shijian Li. 2011. iBAT: detecting anomalous taxi

trajectories from GPS traces. In Proceedings of the 13th international conference on Ubiquitous computing. 99–108.
[78] Jianting Zhang. 2012. Smarter outlier detection and deeper understanding of large-scale taxi trip records: a case study

of NYC. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing. ACM, 157–162.

[79] Xujun Zhao, Jifu Zhang, Xiao Qin, Jianghui Cai, and Yang Ma. 2019. Parallel mining of contextual outlier using sparse

subspace. Expert Systems with Applications 126 (2019), 158–170.
[80] Zheng Zhao and Huan Liu. 2007. Spectral feature selection for supervised and unsupervised learning. In Proceedings of

the 24th international conference on Machine learning. ACM, 1151–1157.

[81] Yu Zheng. 2015. Trajectory data mining: an overview. ACM Transactions on Intelligent Systems and Technology (TIST)
6, 3 (2015), 29.

[82] Zhaohui Zheng, Xiaoyun Wu, and Rohini Srihari. 2004. Feature selection for text categorization on imbalanced data.

ACM Sigkdd Explorations Newsletter 6, 1 (2004), 80–89.
[83] Xibo Zhou, Ye Ding, Fengchao PEng, Qiong Luo, and Lionel M. Ni. 2017. Detecting unmetered taxi rides from trajectory

data. In IEEE International Conference on Big Data. 530–535.

, Vol. 1, No. 1, Article . Publication date: September 2019.

28 Djenouri et al.

[84] Li Zhu, Fei Richard Yu, Yige Wang, Bin Ning, and Tao Tang. 2018. Big Data Analytics in Intelligent Transportation

Systems: A Survey. IEEE Transactions on Intelligent Transportation Systems (2018).
[85] Zhihua Zhu, Di Yao, Jianhui Huang, Hanqiang Li, and Jingping Bi. 2018. Sub-trajectory-and Trajectory-Neighbor-

based Outlier Detection over Trajectory Streams. In Pacific-Asia Conference on Knowledge Discovery and Data Mining.
551–563.

[86] An Liu Guanfeng Liu Zhao Lei Zhu Jie, Jiang Wei. 2015. Time-dependent popular routes based trajectory outlier

detection. In International Conference on Web Information Systems Engineering. Springer, 16–30.
[87] Liu An Liu Guanfeng Zhao Lei Zhu Jie, Jiang Wei. 2017. Effective and efficient trajectory outlier detection based on

time-dependent popular route. World Wide Web 20, 1 (2017), 111–134.
[88] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. 2008. Maximum Entropy Inverse Reinforcement

Learning.. In AAAI, Vol. 8. Chicago, IL, USA, 1433–1438.
[89] Arthur Zimek, Matthew Gaudet, Ricardo JGB Campello, and Jörg Sander. 2013. Subsampling for efficient and effective

unsupervised outlier detection ensembles. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 428–436.

, Vol. 1, No. 1, Article . Publication date: September 2019.

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Contribution
	1.3 Outline

	2 Related Work
	2.1 Trajectory Outlier Detection
	2.2 Group Outlier Detection
	2.3 Discussion

	3 Problem Statement
	4 Proposed Framework and Algorithms for GTO Problem
	4.1 DBSCAN-GTO
	4.2 kNN-GTO
	4.3 FS-GTO
	4.4 Improvement

	5 DPD: Deviation Point Detection
	5.1 Two-phase Approach
	5.2 GSW-TP: GPU-based Sliding Windows for Two-Phase Based Algorithm

	6 Performance Evaluation
	6.1 Data Description
	6.2 Serial GTO Performance
	6.3 Performance of Parallel Solutions
	6.4 Case Study on Intelligent Transportation

	7 Discussion and Future Directions
	8 Conclusion
	References

