

Geo-AI to Aid Disaster Response by Memory-

Augmented Deep Reservoir Computing

Konstantinos Demertzisa*, Lazaros Iliadisa, Elias Pimenidisb
aSchool of Civil Engineering, Faculty of Mathematics Programming and General courses, Democritus University of Thrace,

Kimmeria, Xanthi, Greece,
b Faculty of Environment and Technology, Department of Computer Science and Creative Technologies, University of the West

of England, Bristol, UK

Abstract. It is a fact that natural disasters often cause severe damage both to ecosystems and humans.

Moreover, man-made disasters can have enormous moral and economic consequences for people. A typical

example is the large deadly and catastrophic explosion in Beirut on 4 August 2020, which destroyed a very

large area of the city. This research paper introduces a Geo-AI disaster response computer vision system,

capable to map an area using material from Synthetic Aperture Radar (SAR). SAR is a unique form of radar

that can penetrate the clouds and collect data day and night under any weather conditions. Specifically, the

Memory-Augmented Deep Convolutional Echo State Network (MA/DCESN) is introduced for the first time

in the literature, as an advanced Machine Vision (MAV) architecture. It uses a meta-learning technique, which

is based on a memory-augmented approach. The target is the employment of Deep Reservoir Computing

(DRC) for domain adaptation. The developed Deep Convolutional Echo State Network (DCESN) combines

a classic Convolutional Neural Network (CNN), with a Deep Echo State Network (DESN), and analog

neurons with sparse random connections. Its training is performed following the Recursive Least Square

(RLS) method. In addition, the integration of external memory allows the storage of useful data from past

processes, while facilitating the rapid integration of new information, without the need for retraining. The

proposed DCESN implements a set of original modifications regarding training setting, memory retrieval

mechanisms, addressing techniques, and ways of assigning attention weights to memory vectors. As it is

experimentally shown, the whole approach produces remarkable stability, high generalization efficiency and

significant classification accuracy, significantly extending the state-of-the-art Machine Vision methods.

Keywords: Geo-AI, Disaster Response, Domain Adaptation, Meta-Learning, Synthetic Aperture Radar, Echo State

Network, Deep Reservoir Computing, Memory-Augmented Architecture.

1. Introduction

A disaster that leads to many casualties is a great

challenge for all services involved in rescue and

support. Immediate assistance by any possible means

is required, to make the best possible decisions, under

difficult and adverse conditions in an environment of

panic and increased risk. Disaster response

mechanisms should be able to collect information

immediately; to support mapping the area of interest,

and compare conditions before and after the disaster.

Decisions need to be made about options such as,

finding the most suitable location for rescue vehicles,

sorting stations, and first aid kits. In addition,

decisions must be made on the necessary equipment,

the allocation of priorities, and the scheduling of

required human resources to support rescue services.

The case of the Beirut explosion is a typical example

[1]. The huge explosion in the port of the Lebanese

*Konstantinos Demertzis, School of Civil Engineering, Faculty of Mathematics Programming and General courses,

Democritus University of Thrace, Kimmeria, Xanthi, Greece, E-mail: kdemertz@fmenr.duth.gr, Website:

https://utopia.duth.gr/~kdemertz

capital, came from 2,750 tons of stored ammonium

nitrate. It destroyed a very large area of the city,

especially the port of Beirut, while hundreds of people

were trapped in the wreckage of buildings.

In cases like this, aerial observations and satellite

images, could be particularly valuable in dealing with

the crisis. Even when the weather does not allow

traditional electro-optical sensors to get a clear

picture, SAR shots offer significant help [2]. SAR can

penetrate the clouds and collect high resolution data

under all weather conditions, day and night. However,

despite its undoubted advantages, this approach can

be reduced to an inquiry tool, limited to the

observation ability of humans.

 This risk gives rise to the need of and demand for

distancing from human intervention and the

engagement of advanced Computer Vision

technologies and Artificial Intelligence (AI). These

will make it possible to automatically extract essential

information, such as spatial-temporal area

comparisons and object recognition, in almost real-

time.

This paper introduces the Μ-Α/DCESN, a Geo-AI

disaster response computer vision system, which uses

memory-augmented deep reservoir computing for

domain adaptation. It aims to record, map and identify

a disaster area, using materials from SAR.

The proposed system offers a meta-learning

technique, which implements a reservoir computing

system, using memory-augmented methods. More

specifically, it employs a DCESN network which

allows the storage of useful data from past processes,

by integrating external storage memory. At the same

time, it facilitates the rapid integration of new

information, without the need for retraining the

network.

The main contribution of this work is that it

enhances scientific and technical knowledge about

meta-learning methods, which are based on a

memory-augmented approach for domain adaptation.

In order to obtain acceptable classification results,

these techniques require sufficient training data to be

available for every particular image and tuned

hyperparameters to achieve the best performance.

Obtaining accurate results is challenging, particularly

for near real-time applications. Therefore, past

knowledge must be utilized to overcome the lack of

training data in the current regime. This challenge of

domain adaptation, in which the training data (source)

and the test data (target) are sampled from different

domains is a considerable challenge and the

performance of the proposed techniques can be

significantly affected by the type of problem, the

nature of the data, and the type of data shift associated

with the domains. Although more data can be

obtained from different sources, adapting these

sources to obtain acceptable results is also a

challenging task. This is especially true when the

different domains contain a severely imbalanced class

distribution. In this study, a novel technique, based on

deep neural networks, was developed and evaluated

in order to solve the domain adaptation problem for

remote sensing image classification in different

settings.

The proposed DCESN combines a classic CNN

and a DESN with analogue neurons, with sparse

random connections in the input levels and in the

Dynamical Reservoir (DR). Its training process uses

the RLS method in the output layer. Moreover, the

proposed system is assisted by a set of original

modifications to the training setting, memory retrieval

mechanisms, addressing techniques, and ways of

assigning attention weights to memory vectors.
These facilitate the learning of specialized techniques

for extracting useful intermediate representations,

making full use of first and second order derivatives

as a pre-training method for learning parameters,

without the risk of problems such as exploding or

diminishing gradients. At the same time it avoids

possible overfitting, while significantly reducing

training time, producing improved stability, high

generalization performance, and categorization

accuracy.

The rest of this paper, includes the following

sections: section 2 provides a detailed review of the

relevant literature. Section 3 presents the

methodology followed, while section 4 analyzes in

detail the implementation of the proposed

architecture. Section 5 describes the data and presents

the results from the experiments performed.
Section 6 critically discusses the method and

observations made, while Section 7 summarizes the

findings and presents the future objectives of the

research.

2. Related Research

The success of deep learning in the field of computer

vision, has been highlighted by multiple surveys

about topics such as simple [3], fast [4] and 3D object

detection [5]; image recognition [6] or classification

[7] by novel intelligence methods [8], pixel-level

classification [9] and semantic segmentation [10].
A variety of architectures have been proposed to solve

complex problems and have provided a new impetus

in this area. In particular, in the field of data analysis

from multispectral sensors, many architectural

prototypes have been developed and have delivered

impressive results. Specifically, [11] proposes a

hybrid approach, which combines the use of a Stacked

Auto-encoder, Principle Component Analysis (PCA),

and Logistic Regression in order to perform

Hyperspectral Data Classification.
Tao et al. [12], are using a sparse stacked auto-

encoder, to effectively represent features from

unlabeled spatial data. The learned features are used

as input to a SVM for hyperspectral data

classification. Various 1D [13] and 2D [14] CNN

architectures, aiming to encode spectral and spatial

information, have been suggested in the literature.

The most recent and advanced proposal, concerns 3D

CNN [15] in which the third dimension refers to the

time axis. This is resulting in a hyperspectral

classification that follows a spatiotemporal

architecture. In 3D CNN, the convolution operations

are performed both spatially and spectrally, while in

2D CNNs they are performed only spatially.

Compared to 1D and 2D CNNs, 3D CNNs can

better format spectral information due to the

contribution of 3D convergence functions.

More sophisticated techniques inspired by

dynamic architectures have raised additional

expectations for even more important innovative

applications in the field of spectral analysis. A typical

example is our proposal [16] for a major modification

that upgrades the well-known Residual Neural

Network (ResNet) architecture. The network is

effectively simplified, by eliminating the Vanishing

Gradient Problem (VGP) which plagues other deep

learning architectures. This is achieved

by omitting some layers in the early training stages.
The most important innovation of the proposed

system concerns the use of the AdaBound algorithm

that uses dynamic limits in its learning rates,

achieving a smooth transition to stochastic gradient

techniques. This fact treats the noisy scattered points

of incorrect classification with great precision,

something that other spectral classification methods

cannot handle. Our research team has proposed the

Model-Agnostic Meta-Ensemble Zero-shot Learning

(MAME-ZsL) [17], which facilitates the learning of

specialized techniques for extracting useful

intermediate representations in complex deep

learning architectures. This significantly reduces

computational cost and training time, producing

remarkable classification accuracy.

MAME-ZsL follows a heuristic, hierarchical

hyperparameter search methodology. It uses the

intermediate representations extracted from other

possibly irrelevant images, so that it can discover the

appropriate representations that can lead to correct

classification of unknown samples.

Visual perception often involves sequential

inference over a series of intermediate goals of

growing complexity towards the final objective.

Depending on a deep learning architecture, the graph

can also contain extra nodes that explicitly represent

tensors between operations. In such representations,

operation nodes are not connected directly to each

other, rather using data nodes as intermediate stops

for data flow. If data nodes are not used, the produced

data is associated with an output port of a

corresponding operation node that produces the data.

In order to achieve a smooth formalization, the

notion of intermediate concepts points to better

generalization through deep supervision, when

compared to standard end-to-end training. This is

achieved by a strict architecture where hidden layers

are supervised with an intuitive sequence of

intermediate concepts, in order to incrementally

regularize the learning to follow the prescribed

inference sequence. Practically the intermediated

representations produce superior generalization

capability that addresses the scarcity of learning shape

patterns from synthetic training images with complex

multiple object configurations.

Domain adaptation [18], partial domain

adaptation [19] and domain alignment [20] is a

relatively recent forecasting technique for target

domain data. Both supervised and unsupervised

methods have been used, which in most of the cases

try to minimize domain deviation, while neglecting

essential class information. This often results in

misalignment and poor generalization performance.
To address this issue, the authors of [21] propose a

Contrastive Adaptation Network (CAN) that

explicitly models domain-level mismatch, while also

calculating the difference between classes. This

technique performs relatively well against similar

methods, producing distinctive features, but lags far

behind in terms of generalization as it is completely

determined by the available data. Accordingly, the

success of unsupervised sector adaptation relies

heavily on the alignment of capabilities between

sectors.

A common feature space may not always be a

training tool and in particular an immediate alignment

feature, especially when large domain gaps are

observed. To solve this problem, the authors of [22]

introduce a Gaussian guided Latent Alignment

approach, aiming to align the latent feature

distributions of two domains. The implementation

delivers an innovative alignment of features between

sectors, transforming the distributions of samples

from two sectors into a common feature space.
Despite the enhanced knowledge transfer capabilities,

this method adds significant complexity to the system.
Memory-Augmented Neural Networks (MANNs)

have been shown to outperform other repetitive neural

networks in a number of sequence [23] learning tasks

[24]. However, they still have limited application in

real world problems. An evaluation of MANNs

applications is performed in [25].
Finally, an impressive approach is presented in

[26], where a One-shot Learning approach is

performed, using an augmented-memory neural

network. It yields accurate predictions using only a

few training samples.

3. Discussion on the Methodological approach

Recent developments in the field of information

technology and especially in the techniques of high-

capacity models, such as deep neural networks, allow

very powerful implementations in the processing of

large-scale data [27]. Nevertheless, the disclosure of

critical knowledge from large-scale datasets, and in

particular the correct classification of new, unknown

data, combined with a parallel automatic correction of

classification errors, remains a very serious challenge.

A potential solution to this problem is offered by

meta-learning techniques [28] as specific “learning to

learn” models [29]. They learn from previous

learning processes, or from previous classification

tasks that have been completed [30].

This is a subfield of machine learning where advanced

learning algorithms are applied to data and metadata

of a given problem.

In general, input patterns with and without tags

come from the same boundary distribution or follow

some common cluster structure. This is the case for

modeling situations of real physical problems [30].

Thus, the classified data contribute to the learning

process, while useful information can be extracted

from the unclassified data, for the exploration of the

data structure of the general set. This information can

be combined with knowledge from previous learning

procedures, or previous classification tasks

performed.

Based on the above, meta-learning techniques can

discover the underlying structure of data, allowing for

fast learning of new tasks. This is achieved by using

different types of knowledge, such as the properties

of the learning problem, the properties of the

algorithm used (e.g. performance measures) or

patterns derived from data related to a previous

problem. Cognitive information from unknown

examples sampled from the distribution of real-world

cases is used. The goal is to enhance [28] the outcome

[29] of the learning process [30].

In this way it is possible to learn, select, change, or

combine different learning algorithms to effectively

solve a given problem.

A meta-learning system [28] should combine [29]

the following requirements [30]:
1. The system must include a learning

subsystem.
2. Experience should be gained from the use of

knowledge extracted from metadata, related
to the dataset under consideration or from
previous learning tasks, completed in similar
or different fields.

3. The learning bias should be selected
dynamically.

Depending on the approach, there are four meta-

learning prototypes as mentioned below [30]:
1. Model-based: These are techniques based on

the use of retrospective networks with
external or internal memory. These
techniques quickly update their parameters
with minimal training steps, which can be
achieved through their internal architecture,
or by using control from other models.

2. Memory-Augmented: Neural Networks and
Meta Networks are typical model-based
meta-learning techniques.

3. Metrics-based: These are techniques based on
learning effective distance measurements that
can generalize. The core idea of their
operation is similar to that of the “Nearest
Neighbors” whereas their goal is to learn a
measurement or distance from objects. The
concept of a good metric depends on the
problem, as it should represent the
relationship between the inputs in the space,
facilitating problem solving. Convolutional
Siamese Neural Network, Matching
Networks, Relation Networks and
Prototypical Networks are typical cases of
metrics-based and meta-learning approaches.

4. Optimization-based: They are based on the
optimization of the model’s parameters in
order to achieve fast learning. LSTM Meta-
Learners, Temporal Discreteness and the
Reptile algorithm are typical cases of
optimization-based, meta-learning
techniques.

Recurrent Neural Networks (RNN) with only

internal memory and Long Short-Term Memory

methods (LSTM), are not considered as meta-learning

approaches. Literature suggests that memory capacity

neural networks provide a meta-learning [28]

approach [29] for deep neural networks [30].

However, this particular memory usage strategy that

is inherent to unstructured iterative architectures, is

unlikely to extend to settings where each new task

requires significant amounts of new information for

rapid encoding [30].

A scalable solution has some essential

requirements. Information must be stored in memory

in a representation that is stable, so that it can be

reliably accessed when needed and addressed with

data. In this way, it can selectively access relevant

data. The number of parameters must not be related to

the size of the memory. These two features do not

occur in the original retrospective memory network

architectures such as RNNs or more advanced ones

such as LSTMs. In contrast, architectures such as

Neural Turing Machines (NTMs) [31] and Memory

Networks [32] meet the required criteria.

This research introduces the M-A/DCESN

approach that uses external storage memory, which is

compiled by employing the NTMs architecture. It

allows memorization of useful information from past

processes, while facilitating the rapid integration of

new information, without the need for retraining.

4. Implementation

The NTMs are a model-based meta-learning [30]

architecture and they constitute the implementation of

a neural control mechanism with external storage

memory. Specifically, it is an architecture that

connects a neural network and an external memory

storage unit. Taking a general approach to

MA/DCESN in terms of its meta-learning properties

[28-30], it trains in a variety of learning tasks.

It is optimized to provide a/for a better

performance in generalizing tasks, including

potentially unknown cases. Each task is associated

with a data set D, containing feature vectors and class

labels on the given supervised learning problem. The

optimal parameters of the model are [30, 33-34]:

𝜃∗ = 𝑎𝑟𝑔𝜃
𝑚𝑖𝑛𝔼𝐷~𝑃(𝐷)[𝐿𝜃(𝐷)] (1)

Although it seems similar to a normal learning

process, each data set is still considered a sample of

data.

The dataset D comprises two parts, a training set

S and a testing set Β for validation and testing [30, 33-

34].

𝐷 = ⟨𝑆, 𝐵⟩ (2)

D contains pairs of vectors and labels so that

 [30, 33-34]:

𝐷 = {(𝑥𝑖 , 𝑦𝑖)} (3)

Each tag belongs to a known set of tags L.

In the case of the classifier 𝑓𝜃, parameter θ

extracts a probability of the class y render of attributes

vector, 𝑥, 𝑃𝜃 (𝑦|𝑥).

Optimal parameters maximize the likelihood of

finding true tags in multiple training batches.

 𝛣 ⊂ 𝐷 [30, 33-34]:

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝔼(𝑥,𝑦)∈𝐷[𝑃𝜃(𝑦|𝑥)] (4)

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝔼𝐵⊂𝐷 [∑ 𝑃𝜃(𝑦|𝑥)

(𝑥,𝑦)∈𝛣

] (5)

The aim of the model is to reduce prediction error

in data samples with unknown tags, considering that

there is a small set of support for fast learning which

works as "fine-tuning".

A modification of the model is shown in the

following function, to which the symbols of the meta-

learning process have been added

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝔼𝐿𝑠⊂𝐿 [𝔼𝑆𝐿⊂𝐷,𝐵𝐿⊂𝐷 [∑ 𝑃𝜃(𝑥, 𝑦, 𝑆𝐿)

(𝑥,𝑦)∈𝛣𝐿

]] (6)

As for the model in terms of the augmented-

memory technique, memory stores processed

information.

It can be considered as a Ν×Μ matrix. The control

mechanism is a DCESN which is responsible for

performing tasks in memory.

The controller processes the input and interacts

with the memory bank to generate the output, through

a recurring update process. A general description of

the function of the proposed NTM [31] is shown in

figure 1 below.

Fig. 1. Architectural modeling of the NTM [31]

When the memory is read at time t, an attention

vector wt of magnitude N controls how much attention

should be allocated to different memory locations.

Vector rt is the sum of the weights from the

attention intensity resulting from the assignment

process.

The overall calculation procedure is presented by

the following equation [31, 37]:

𝑟𝑖 = ∑ 𝑤𝑡(𝑖)

𝑁

𝑖=1

𝑀𝑡(𝑖), 𝑤ℎ𝑒𝑟𝑒 ∑ 𝑤𝑡(𝑖)

𝑁

𝑖=1

= 1, ∀𝑖: 0 ≤ 𝑤𝑡(𝑖) ≤ 1 (7)

Where, 𝑤𝑡(𝑖) is the ith element in 𝑤𝑡 and 𝑀𝑡(𝑖) is the ith

element stored in memory.

In addition (inspired by forgetting gates in LSTM)

the process of writing to memory in time t initially

provides for the deletion of the old erasable vector et

which is the content of memory in a specific location.

Then new information is inserted by adding vector at.

This procedure is described below in the

corresponding deletion equation 8 and addition

equation 9 [31, 37]:

𝑀̂𝑡(𝑖) = 𝑀𝑡−1(𝑖)[1 − 𝑤𝑡(𝑖)𝑒𝑡] 𝑒𝑟𝑎𝑠𝑒 (8)

𝑀𝑡(𝑖) = 𝑀̂𝑡(𝑖) + 𝑤𝑡(𝑖)𝑎𝑡 𝑎𝑑𝑑 (9)

The way of the development of the attention

distribution wt depends on the addressing

mechanisms, which operate on the basis of content or

location.

The content-based addressing process, generates

attention vectors based on the similarity between the

kt key vector (extracted by the controller from the

input lines) and the memory content.

Content-based attention scores are calculated as

the cosine of similarity between the content, which is

then normalized with the use of the softmax function.

In addition, a power multiplier βt is added to

enhance or soften the focus of attention distribution.

The procedure is described in the following

equation [31, 37]:

𝑤𝑡
𝑐(𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽𝑡 ∙ 𝑐𝑜𝑠𝑖𝑛𝑒[𝑘𝑡, 𝑀𝑡(𝑖)])

=
𝑒𝑥𝑝 (𝛽𝑡

𝑘𝑡 ∙ 𝑀𝑡(𝑖)
‖𝑘𝑡‖ ∙ ‖𝑀𝑡(𝑖)‖

)

∑ 𝑒𝑥𝑝 (𝛽𝑡
𝑘𝑡 ∙ 𝑀𝑡(𝑖)

‖𝑘𝑡‖ ∙ ‖𝑀𝑡(𝑖)‖
)𝑁

𝑗=1

 (10)

A step-by-step gateway is then used to mix in the

last step of the time, the newly created content-based

attention vector with the attention weights [31, 37]:

𝑤𝑡
𝑔

= 𝑔𝑡𝑤𝑡
𝑐 + (1 − 𝑔𝑡)𝑤𝑡−1 (11)

On the other hand, location-based addressing

gathers values at different positions in the attention

vector, weighted based on a weight distribution

relative to permissible integer displacements.

They are equivalent to a 1-d convolution with

kernel st(.).Finally, the attention distribution is

enhanced by a gradual escalation 𝛾𝑡 ≥ 1. The above

procedures are described in the following equations

12 (circular convolution) and 13 (sharpen) [31, 37]:

𝑤̂𝑡(𝑖) = ∑ 𝑤𝑡
𝑔(𝑗)

𝑁

𝑗=1
𝑠𝑡(𝑖 − 𝑗) (12)

𝑤𝑡(𝑖) =
𝑤̂𝑡(𝑖)𝛾𝑡

∑ 𝑤̂𝑡(𝑗)𝛾𝑡𝑁
𝑗=1

 (13)

This work is based on the MA/DCESN

architecture [8], proposing a set of modifications

regarding the training setting, memory recovery

mechanisms, addressing techniques and ways of

assigning attention weights to memory vectors.

In particular, the main concern of the proposed

system, is related to the development of a training

process that uses memory capable of rapid encoding

and recording information for new tasks. Moreover,

any stored representation should be easily and stably

accessible. Training should be performed in a way

that memory can hold information for a longer time,

until the appropriate labels that fit the categorization

process are presented.

In each training cycle, the actual tag is presented

following a step shift (xt+1, yt), so that this label (while

it is part of the time step input t) can be part of the

input in the next time step t+1. Following this

process, the proposed MA/DCESN is motivated to

memorize the information of a new data set. Memory

has to hold the current input until the label appears

and then the old information has to be retrieved in

order for a similar prediction to be produced.

In addition to the training process, an innovative

addressing mechanism is used, where the reading

attention process is constructed solely on the basis of

the similarity of the content.

This procedure first predicts a key vector attribute

kt in the time step t as a function of input x.

A gravity reader 𝑤𝑡
𝑟of the N elements is calculated

as the similarity between the cosine of the key vector

and each line of the memory vector, normalized to

Softmax [33] as follows in equation 14.

𝑤𝑡
𝑟(𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑐𝑜𝑠𝑖𝑛𝑒[𝑘𝑡 , 𝑀𝑡(𝑖)]) (14)

Additionally, the vector reader ri is a sum of

weighted memory files. Its mathematical description

is presented in the following equation15 [31, 37]:

𝑟𝑖 = ∑ 𝑤𝑡
𝑟(𝑖)

𝑁

𝑖=1

𝑀𝑡(𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑤𝑡
𝑟(𝑖)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑘𝑡 ∙ 𝑀𝑡(𝑖)

‖𝑘𝑡‖ ∙ ‖𝑀𝑡(𝑖)‖
) (15)

Where, 𝑀𝑡 is a memory matrix for time stamp t

and 𝑀𝑡(𝑖) is the ith line of the table.

The memory updating, for efficient retrieval and

storage of information, is performed based on the

Least Recently Used Access (LRUA) algorithm. This

writes new content either to the least used memory

location, based on the Least Frequently Used (LFU)

algorithm, or to the most recently used memory

location based on the Most Recently Used algorithm

(MRU) [37]. Specifically, LFU is used to retain the

most frequently used information.

One of the most serious weaknesses of this

method is the fact that new data entering memory may

be removed very soon. This may happen because they

receive a very low counter, although they may be used

very often after this assignment. Accordingly, the

MRU algorithm first removes the most recently used

memory components.

This process has proven to be very effective in

cases where the older elements are considered the

most useful. The motivation for its use is the fact that

once an information is retrieved, it will probably not

be needed immediately again [37].

The proposed MA/DCESN is developed with the

employment of LRUA. Another advantage of this

hybrid scheme is that all of its parameters are fully

customizable.

Specifically [37]:
1. The weight 𝑤𝑡

𝑢 which is used at time t
is a sum of the used read and write vectors.
𝑤𝑡−1

𝑢 is the decayed last usage weight, where
γ is the decay factor.

2. The write vector is an interpolation between
the previous reading weight (found in the last
used position) and the previous least used
weight (whose position is rarely used).
The application of the sigmoid function on
the hyperparameter α is the interpolation
parameter.

3. The least used weight 𝑤 𝑙𝑢 is scaled according
to the usage weights 𝑤𝑡

𝑢, where each
dimension retains the value 1 if it is less than
the nth element and it has the value 0 in any
other case [37]:

𝑤𝑡
𝑢 = 𝛾𝑤𝑡−1

𝑢 + 𝑤𝑡
𝑟 + 𝑤𝑡

𝑤 (16)

𝑤𝑡
𝑟 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑐𝑜𝑠𝑖𝑛𝑒(𝑘𝑡 , 𝑀𝑡(𝑖))) (17)

𝑤𝑡
𝑤 = 𝜎(𝛼)𝑤𝑡−1

𝑟 + (1 − 𝜎(𝛼))𝑤𝑡−1
𝑙𝑢 (18)

𝑤𝑡
𝑙𝑢 = 1𝑤𝑡

𝑢(𝑖)≤𝑚(𝑤𝑡
𝑢 ,𝑛) (19)

Where 𝑚(𝑤𝑡
𝑢 , 𝑛) is the nth smallest element of the

weight vector, 𝑤𝑡
𝑢.

Finally, each memory string is updated when the

least used position indicated by 𝑤𝑡
𝑙𝑢 is equal to zero.

The update process is performed based on the

following equation [37]:

𝑀𝑡(𝑖) = 𝑀𝑡−1(𝑖) + 𝑤𝑡
𝑤(𝑖)𝑘𝑡 , ∀𝑖 (20)

The analytical procedure presented above, is used

by the proposed model to facilitate the learning

process and to achieve adaptation in new situations

after processing with only a few samples. At the same

time it allows the rapid coding of new information by

using external memory storage. In general, the

proposed MA/DCESN is an NTM which consists of

three main parts: The Controller, the Memory Bank

and the Read/Write Heads, as presented in figure 2 in

Appendix 1.

The proposed architecture has 256 positions of

memory, while the range of allowed position changes

is obtained by circular shifts and replacement of

records, based on the LRUA algorithm.
It should be noted that the above parameters were

obtained by following a trial and error approach. The

most important decision in the architectural design of

MA/DCESN is the type of neural network used as a

controller. In particular, the decision to use an

iterative architecture (RNN, LSTM) or a simple FNN

network is very important.

An iterative controller like LSTM has its own

internal memory [38]. It also has significant

computational resource requirements, adding high

complexity to the model and the process is much

slower.

The aim was not only to prove that the proposed

MA/DCESN is capable of effectively solving the

given categorization problem, but also that it is able

to generalize far beyond the range of training data in

a feasible time and computational resources’ frame.

Experiments were performed and various neural

network architectures were compared. The selector

finally chosen to be used is an extremely fast and

highly efficient DESN.

ESN [39] is an iterative neural network with input,

a sparsely connected hidden reservoir layer and a

simple linear readout output. The connection weights

on each ESN reservoir, as well as the input weights,

are random. The reservoir weights are scaled in such

a way as to ensure the Echo State Property (ESP) [40].

ESP is defined as a state in which the reservoir is an

"echo" of its entire entry history, which is partly

determined by its architecture.

The only distinct levels of the ESN are those of

input u(n) and output y(n) which are determined by

the problem. The hidden levels are grouped in a DR

area and their number is indistinguishable. A

percentage of the neurons in DR, are interconnected.

This percentage is related to the sparsity of DR which

is determined experimentally [41].

The synaptic compounds that unite the levels with

each other and the DR are characterized by a value

that determines the weights. In ESNs, each input

neuron is connected via Win
ij weights (i-input neuron,

j-neuron to DR) to each DR neuron [41]. These

weights, although normalized, are determined

randomly before training and their values are final as

they do not change during training. Also each DR

neuron is interconnected via Wjk weights to any other.

The weights of these neurons, although

normalized, are determined randomly before training

and their values do not change. Finally, each DR

neuron is connected via Wout
jm weights to the neurons

of the output. These weights in the readout layer, are

the only ones that are trained in order to get their final

values. The basic architecture of an ESN network is

described in figure 1. Where u (n) is the number of

neurons in the input unit, x(n) is the number of

neurons in the internal unit (which is essentially DR)

and y(n) is the number of neurons in the readout layer

[41].

Development of a DESN Reservoir Computing

architecture [42], requires the use of multiple

reservoirs. A Deep Dynamical Reservoir (DDR) area

is created with the properties mentioned above [43].

The DESN architecture is characterized by a

stacked hierarchy of reservoirs, where at each time

step t, the first repeating layer is fed from the external

input u(t), while each successive layer is fed from the

output of the previous one into the stack [42-43].

The architectural organization of DDRs in DESN

allows for general flexibility in the size of each layer

Ηere we consider a hierarchical tank installation

with repeating layers NL, each of which contains the

same number of units NR. Moreover we use x(l)(t) ∈

𝑅𝑁𝑅 to declare the status of level l at time t. By

omitting the bias conditions, the first level state

transition function is defined as follows [42-43]:

𝑥(1)(𝑡) = (1 − 𝑎(1))𝑥(1)(𝑡 − 1) +

𝑎(1) tanh (𝑊𝑖𝑛𝑢(𝑡) + 𝑊̂(1)𝑥(1)(𝑡 − 1)) (20)

For each level higher than l >1 the equation has

the following form [42-43]:

𝑥(𝑙)(𝑡) = (1 − 𝑎(𝑙))𝑥(𝑙)(𝑡 − 1) +

𝑎(𝑙) tanh (𝑊𝑙𝑥𝑙−1(𝑡) + 𝑊̂(𝑙)𝑥(𝑙)(𝑡 − 1)) (21)

Where 𝑊𝑖𝑛 ∈ 𝑅𝑁𝑅×𝑁𝑈 is the input weight matrix,

𝑊̂(𝑙)∈ 𝑅𝑁𝑅×𝑁𝑅 is the recurrent weight matrix for

layer l, 𝑊(𝑙)∈ 𝑅𝑁𝑅×𝑁𝑅 is the matrix containing the

connection weights between layer l-1 and l, 𝑎(𝑙) is the

leaky parameter of layer l and 𝑡𝑎𝑛ℎ is the Tangent

Hyperbolic function [42-43].

In the DESN architecture, we must determine the

number of neurons in the input unit, the size of the

DDR, the depth of the architecture, the training mode

and the number of nodes [42] in the readout layer [43].

4.1 Input Unit

The number of neurons at the input level is usually

determined by the requirements of the problem, the

individual issues related to modeling at the level of

available data, and the solution sought.

The weights connecting the input level and DDR

are taking random normalized values, and their

population number is (K+1)×N where (Κ+1) is the

number of neurons at the entry level along with the

threshold.

4.2 Deep Dynamical Reservoir

The creation of DDR, presupposes that the

reservoir allows previous network states to sound

even after their passage. So if the network receives an

input line similar to data in which it has been trained,

it will follow the appropriate activation trajectory in

the reservoir. This will generate the appropriate

output signal and in case the network is satisfactorily

tuned, it will be able to generalize from the data with

which it has been trained. The reservoir acts both as a

non-linear extension of the input data, but also as a

memory.

It is essentially a larger non-linear representation

𝑥(𝑛) of the input data, 𝑢(𝑛). It is also used to store

data as internal memory, providing temporal context.

In this spirit, RNN-like architecture is used to ensure

that history is preserved. The size of the reservoir is

one of the most basic parameters. Larger size means

easier to find a linear combination that can produce

the desired result. Due to the fact that ESNs do not

have very high computational costs in many cases the

size of the reservoir can receive high values. The

lower limit can be calculated approximately based on

the desired number of values that the network should

remember. So the largest number of values to be

stored should not exceed Nx, i.e. the total size of the

reservoir.

Also the reservoir variable sparsity, indicates how

sparse the connections between DDR neurons will be.

It is a parameter that is determined during the

development of the network. In many approaches the

use of dilute reservoir is encouraged because it gives

slightly better results. However, in relation to other

parameters, sparsity does not have a high priority in

the sense that it does not greatly affect the

functionality of the network.

Based on the DESN architecture, DDR is defined

by the Win and W weight vectors, which are initialized

randomly and normalized based on some parameters

that can be set. The scaling used on these weights is

usually the same as the one used on the weights Win.

The leaking rate α is an independent parameter of

reservoir neurons which translates to the speed at

which the network will upgrade reservoir over time.

That is, how fast the reservoir neurons will get the

ideal value. The value of this variable can be derived

from the time it takes for the network input to be

converted to the desired output and usually the ideal

value is calculated through the experimental method.

One of the most important universal parameters of

the reservoir is the spectral radius of the weights W of

the DDR. This parameter expresses the maximum

eigenvalue of the reservoir and sets a scale on the

weights W. It essentially sets the maximum value that

non-zero reservoir compounds can take. It is

extremely important to maintain the ESP property,

based on which the retained history should fade over

a long period of time and not to depend on the original

network conditions.

In cases where this parameter is set to very high

values, a chaotic situation develops in the network, in

which the reservoir weights change uncontrollably

and the network is not trained.

4.3 Deep Architecture

Deep learning systems have a Credit Assignment

Path (CAP) [33] on their depth, which describes the

chain of transformations from input to output and the

potentially causal links between input and output.

The CAP in the proposed DESN was performed

experimentally, performing tests so that each level

encodes a different range of dynamic characteristics,

from the intermediate representations that are

extracted [33, 41]. The main idea behind the proposed

DESN design method is to stop adding new layers

every time the filtration process becomes negligible.

That is, when during addition of new layers, no

intermediate representations are provided capable to

contribute towards capturing or matching of the input

data to the desired network responses of the output.

In order to determine when the filtration effect

becomes negligible, a thorough study was performed.

It was proved experimentally following the trial and

error method that the network in this set of tests tends

to converge at a certain value, as we add more than 4

levels.

Our future goal is to create a heuristic algorithm

for automatically determining the depth of DESN,

which will be based on a search strategy technique,

suitable for automatically determining the quality of

the network, based on the training dataset.

The DCESN is a hybrid of two of the most

prominent forms of neural networks in modern

engineering, namely a CNN [14] and a DESN

architecture.

The proposed DCESN introduced in this paper

incorporates a classic CNN with convolutional filters

with very small receptive fields 3×3. The

convolutional stride and the spatial padding were

defined to be equal to 1 pixel. Max-pooling is

performed over 3×3 pixel windows with stride 3. The

CNN architecture includes 3 convolutional layers

with 4×4, 5×5 and 4×4 convolutional filters. The

number of the convolutional filters for the respective

layers are 32, 64 and 128. All of the convolutional

layers are employing ReLU nonlinear activation

function [33]:

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) or 𝑅𝑒𝐿𝑈(𝑥) = {
0 𝑖𝑓 𝑥 < 0
𝑥 𝑖𝑓 𝑥 ≥ 0

 (22)

However in the last layer, the Softmax activation

function is used instead of the Sigmoid [33]:

𝜎(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

, 𝑗 = 1, … , 𝐾 (23)

This is done due to the fact that Softmax performs

better in multi-classification problems, like the one

examined here, whereas the Sigmoid is used in binary

classification tasks.

In Softmax, the sum of probabilities (SUP) is

equal to 1 and high values have the highest

probabilities. On the contrary, in Sigmoid the SUP

must be different than 1 and the high values have high

probabilities, but not the highest ones.

In the proposed model, the Learning Rate was set

to be equal to 0.001 and the cross-entropy error was

used as the loss function [33].

Bootstrap Sampling was employed to enhance the

efficiency of the approach [44]. The reason that this

technique is used in this work is that in the specific

problem of high complexity, the prediction results are

multivariate. This can be attributed to the sensitivity

of the correlational models to the data and to the

complex relationship that describes them. An

important advantage of the proposed system is the fact

that it offers a stable prediction mode. The overall

behavior of a multiple model is less noisy than that of

a single one, while for each case, the overall risk of a

particularly poor choice is reduced. It is important that

the dispersion of the expected error was observed to

be concentrated close to the mean error value [44].

Usually, errors of precision are probabilistic. This

means that the experimenter is saying that the actual

value of some parameter is probably within a

specified range. For example, if the half-width of the

range equals one standard deviation, then the

probability is about 68% that over repeated

experimentation the true mean will fall within the

range; if the half-width of the range is twice the

standard deviation, the probability is 95%, etc.

Thus, we can use the standard deviation estimate

to characterize the error in each measurement.

Another way of saying the same thing is that the

observed spread of values in this example is not

accounted for by the reading error. If the observed

spread were more or less accounted for by the reading

error, it would not be necessary to estimate the

standard deviation, since the reading error would be

the error in each measurement.

4.4 Readout Layer

The weights connecting each neuron from the

DDR to each neuron from the output layer have a

population number Ν×L. These weights do not get

random values as long as their values are determined

by the network’s training.

5. Dataset and Results

SAR is a unique form of radar that can penetrate

the clouds, collect data under all weather conditions,

day and night. Data from SAR satellites could be

particularly valuable in disaster management,

especially in cases where difficult weather and clouds

cover the optical capabilities of traditional electro-

optical sensors. Despite their advantages, there is

limited open data available to researchers to

investigate the effectiveness of SAR data.

The dataset used in this research is an open-ended

data set, available freely from [46] and it has been

used for SpaceNet Challenge SN6: Multi-Sensor All-

Weather Mapping.

The dataset uses a combination of SAR and

electro-optical data sets, namely half-meter SAR

images from Capella Space and half-meter electro-

optical images from MaxV’s WorldView 2 satellite

[46]. The area of interest is Europe’s largest port,

Rotterdam, an area with thousands of buildings,

vehicles and boats of various sizes. It is the ideal point

to create an effective test framework for merging SAR

and electro-optical data. In particular, the training

dataset contained both SAR and electro-optical

images, while the test and evaluation data sets

contained only SAR data.

Therefore, electro-optical data can be used to

preprocess SAR data in some way, such as: coloring,

domain customization, or image translation, but they

cannot be used to directly map buildings. The data set

was structured to mimic real-world scenarios where

historical electro-optical data may be available.

However, simultaneous collection of electro-optics

with SAR is often not possible, due to inconsistent

sensor trajectories, or bad weather conditions, that can

make electro-optical data useless.

The Dataset is related to the city of Rotterdam

covering an area of over 120 km2. It comprises both

high resolution synthetic aperture radar (SAR) data

and electro optical (EO) images of ~48,000 buildings’

footprint labels [47].

The training data comprises 450 m x 450 m tiles

with associated building footprint labels of SpaceNet

AOI 11 – Rotterdam (39.0 GB) and the testing data

are 450m x 450m tiles of SpaceNet AOI 11 Rotterdam

(16.9 GB). The data is hosted on AWS (Amazon Web

Services) as a Public Dataset. It is free to download

from [47].

The experiments setup process of the DCESN was

performed following a supervised approach.

Specifically, for each input u(n) ∈ RNu the desired

outcome is ytarget(n) ∈ RNy. Variable n represents

discrete time and it takes values in the closed interval

[1, T] where T is the number of the input data vectors

in the training set. The desired output ytarget(n) and the

actual output y(n) are data vectors from the SAR

dataset.

The purpose of network’s training is to learn from

a model with output y(n) ∈ RNy, where y(n) identifies

as accurately as possible with ytarget(n), reducing error

E(y,ytarget). The ultimate target is generalization

ability.

Root-Mean-Square Error (RMSE) was used as the

error function (11) [33]:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃(𝑖𝑗) − 𝑇𝑗)

2𝑛
𝑗=1 (24)

Where 𝑃(𝑖𝑗) is the forecasted value by program i for a

simple assumption j and 𝑇𝑗 is the target value for j.

It should be noted that the input level neurons are

essentially inactive, as long as they do not perform

any calculation. Their purpose is to transmit the

network input to the DDR.

The following equation was used to update the

values of the neurons in DDR [42-43]:

𝑥̃(𝑛) = 𝑡𝑎𝑛ℎ (𝑊𝑖𝑛[1; 𝑢(𝑛)] + 𝑊𝑥(𝑛 − 1)) (25)

Where 𝑥̃(𝑛) ∈ RNx defines the update values for each

neuron of the DDR. Also, Tanh is the update function,

u(n) is the input at temporal point n and 1 declares the

value of the threshold (bias).

The final value of the neurons in DDR is

estimated by the following equation 13 where α is the

leaky integration rate α ∈ (0, 1] [42-43].

𝑥(𝑛) = (1 − 𝛼)𝑥(𝑛 − 1) + 𝑎𝑥̃(𝑛) (26)

By assigning the value α=1 in the leaking rate, we

can avoid to perform leaky integration in the neurons’

update, thus 𝑥̃(𝑛) = x(n) [42-43].

The weights Win and W, which contribute to the

values of x(n) are initially randomized, in order to

protect our data from noise that may arise in the early

stages of the process. In this way we avoid arbitrarily

adjusting the x(n) values in training and specifically

the ones that lead to an abnormal network boot state.

Upgrading the neurons to the output level based

on which the neurons y(n)∈RNy are defined by the

internal product of the output weights Wout ∈

RNy×(1+Nu+Nx) and the vector that is developed by

combining the threshold value and the vectors u(n) ∈

RNuy(n) where x(n) ∈ RNx, is calculated by the following

function 14 [42-43]:

𝑦(𝑛) = 𝑊𝑜𝑢𝑡[1; 𝑢(𝑛); 𝑥(𝑛)] (27)

The update of the output neurons Wout which

changes the weights in a way that the output y(n) can

be as close as possible to the desired result ytarget(n), is

performed by the following equation 15 [42-43]:

𝑊𝑜𝑢𝑡 = 𝛶𝑡𝑎𝑟𝑔𝑒𝑡𝑋𝑇(𝑋𝑋𝑇 + 𝛽𝛪)−1 (28)

It should be mentioned that β is the Optimization

Parameter used to avoid overtraining.

The proposed DCESN model an online learning

algorithm was used. Based on this algorithm, the

weights of the network change at any time, (at each

input line of the training data).

The Recursive Least Square algorithm (RLS) was

used [45]. RLS operates based on the integration of

the fault history in the network upgrade calculations.

In this research, RLS was used to update the weights

Wout.

The proposed algorithm is using the Forgetting

Factor λ (FF) which exponentially defines the

importance of the error history. For example if λ=1,

the error history has the same weight as the network’s

error at this time. If λ<1, the error history affects the

network over time.

This means that the error at time n has a higher

weight than the error at time n-1.

The error function in the RLS algorithm is

described by the following equation 16 [45].

𝛦(𝑘) = ∑ 𝜆𝑘−𝑖𝑒(𝑘)2𝑘
𝑖=1 (29)

The above error function includes the parameter

e(k) which declares the difference between the desired

value ytarget and the actual output y for temporal

moment k (equation 17) [45]:

𝑒(𝑘) = 𝑦𝑡𝑎𝑟𝑔𝑒𝑡(𝑘) − 𝑦(𝑘) (30)

The weight update function of the RLS algorithm

changes over time, for every temporal moment k [45]:

𝑊𝑜𝑢𝑡(𝑘 + 1) = 𝑊𝑜𝑢𝑡(𝑘) + 𝑒(𝑘)𝑔(𝑘) (31)

Where e(k) is defined by the above equation 18

and g(k) is determined by the following function 19

that determines the significance of the error history in

shifting weights for x neurons in DDR [45]:

𝑔(𝑘) =
𝑃(𝑘−1)𝑥(𝑘)

𝜆+𝑥(𝑘)𝑇𝑃(𝑘−1)𝑥(𝑘)
 (32)

Where P(k-1) is determined by the following equation

20 [45]:

𝑃(𝑘) = 𝜆−1𝑃(𝑘 − 1) − 𝑔(𝑘)𝑥𝑇(𝑘)𝜆−1𝑃(𝑘 − 1)(33)

This is a recursive function that allows error

history to be taken into account when the weights Wout

are updated. Also λ is the forgetting factor and x the

DDR neurons.

For the case of the “SpaceNet” Multi-Sensor All-

Weather Mapping dataset, the ranking was based on

the SpaceNet Metric (SPAN) which is using F1-

Score. It is based on the intersection over union of the

footprints of two buildings, with a threshold equal to

0.5. F1-Score is calculated by taking the total True

Positives (TP), False Positives (FP), and False

Negatives (FN) for the total number of buildings’

footprints present in the testing datasets. Specifically,

the F1-Score is defined by the equation below [33]:

 F1 − Score = 2X
TP

TP+FP
 x

TP

TP+FN
TP

TP+FP
 +

TP

TP+FN

 (34)

Τhe proposed approach was compared with other

corresponding Deep Learning architectures, which

can be summarized as follows:

1. 1-D CNN (1DCNN): The network’s

architecture was designed as in [48] and it

includes the input, the convolutional, the

max-pooling, the fully connected, and the

output layers.

2. The number of convolutional filters equals

20, the length of each filter is 11 and the

pooling size has the value 3. Finally, 100

hidden units are included in the fully

connected layer.

3. 2-D CNN (2DCNN): The architecture was

designed using the one of [49] as prototype.

It comprises of three convolutional layers

equipped with 4×4, 5×5 and 4×4

convolutional filters (COF). The

convolutional layers –except the last one- are

followed by max-pooling layers. Moreover,

the number of the COF corresponding to the

convolutional layers are 32, 64 and 128,

respectively.

4. Simple Convolutional/Deconvolutional

Network (SCDN): This is the network

comprising of simple convolutional blocks. It

employs the unpooling process which is

applied in [50-51].

5. Residual Convolutional/Deconvolutional

Network (RCDN): This architecture uses

residual blocks and a more accurate

unpooling function [52].

The final parameters used in each of the 4 ESNs

for the development of the DESN in the context of this

proposal, were determined through a trial and error

procedure and are presented in table 1 below. The trial

and error method was used to deliver optimal

hyperparameters for a known pattern. The goal is to

reduce the prediction error in data samples with

unknown tags, given that there is a small set of

support for fast learning that works as fine-tuning. A

step-by-step example of the process run is presented

below:

1. Creation of a subset of 𝐿𝑠 ⊂ 𝐿 tags;
2. Creation of an 𝑆𝐿 ⊂ 𝐷 training subset and a

𝛣𝐿 ⊂ 𝐷 prediction set. Both of these subsets
include labeled data belonging to the subset
𝐿𝑠, y∈𝐿𝑠,∀(x,y)∈ 𝑆𝐿, 𝛣𝐿;

3. The optimization process uses the 𝛣𝐿 subset
to calculate the error and update the model
parameters via error propagation.

Each sample pair (𝑆𝐿 , 𝛣𝐿) is also considered as a

data point. Thus, the model is trained so that it can

generalize to new, unknown datasets.

Table 1. ESN parameters
Parameter Value Explain

Max

Iterations
100

Specifies the maximum number of iterations the

network required for its training.

Input Size 60 Defines the number of neurons in the input layer

Reservoir

Size
210

Defines the number of DR neurons, which map the

distribution of the given problem’s data.

Leaking Rate 0.7

It concerns the speed with which the network

upgrades the reservoir in relation to time and receives

values in (0, 1].

Sparsity of

Reservoir
0,4

Determines how thin the reservoir is. That is, it

determines the number of synaptic connections to be

present in the DR, in order to ensure a balance in the

mode of operation of the network.

Spectral

Radius
1.25

Basic parameter of the reservoir. It is used to set a

maximum value for the weights that connect the

neurons to each other.

Forgetting

Factor
0.6

RLS parameter defining how less important is the

error history exponentially.

Optimization

Parameter
1e-8

This variable is used as a measure to avoid network

overtraining and it is applied to the weight upgrade

equation.

Larning Rate 0.53

It is the Learning rate of the network. An mean

learning rate of 0.53 was used. It uses dynamic

boundaries [0.01, 0.85] aiming to overcome the low

generalization performance.

The classification performance results of the

proposed approach, compared to the ones obtained by

other methods are presented in table 2 below. It

provides information on the results of the McNemar

test of the proposed network and the other approaches

examined. The McNemar statistical test was

employed to evaluate the importance of classification

accuracy derived from different approaches:

𝑧12 =
𝑓12 − 𝑓21

√𝑓12 + 𝑓21

where 𝑓𝑖𝑗 is the number of correctly classified samples

in classification 𝑖, and incorrect one are in

classification 𝑗. McNemar’s test is based on the

standardized normal test statistic, and therefore the

null hypothesis, which is “no significant difference,”

rejected at the widely used 𝑝 = 0.05 (|𝑧| > 1.96)

level of significance.

We have used hardware based on the GPU

chipset, optimized for deep learning software

TensorFlow.

Table 2. Classification Performance
 1DCNN 2DCNN SCDN RCDN Μ-Α/DCESN

OA 80.87 82.91 81.96 83.68 89.74

Precision 80.95 82.90 82.00 83.70 89.80

Recall 81.00 82.95 81.95 83.70 89.75

F1-Score 81.00 82.90 82.00 83.70 89.75

avg5ETT* 698 sec 881 sec 704 sec 751 sec 623 sec

McNemar 35.988 34.311 34.706 35.624 35.545

* average of the 5 epochs training time produced by 10 repeats of
the methodology

As can be seen from the comparative results, the

proposed MA/DCESN has achieved improved results

in relation to the respective competing systems.

One of the main advantages of the introduced

system is its high reliability which is clearly shown by

the high values of the F1-Score. This can be

considered as the result of successful data processing

that allows the retention of the most relevant data for

the upcoming forecasts.

The proposed approach to reducing the

generalization error is to use a larger model. This may

require the use of regularization during training that

keeps the weights of the model small. More

specifically, regularization in the proposed

methodology adds additional information to

transform the ill-posed problem into a more stable

well-posed problem. This leads the model to map the

inputs to the outputs of the training dataset in such a

way that the weights of the model are kept small. This

weight decay approach has proven very effective in

the DESN model. Regularization methods like weight

decay provide an easy way to control overfitting for

large neural network models [70].

The integration of external memory, makes it

possible to memorize useful data from past processes,

while facilitating the rapid integration of new

information, without the need for retraining.

The proposed standardization offers the

possibility of managing multiple intermediate

representations. The hierarchical organization of

reservoirs in successive layers is naturally reflected in

the structure of the dynamics of the developed system.

This scaling also allows the progressive

classification and exploration of input data interfaces

across the levels of the hierarchical architecture, even

if all levels share the same hyperparameters’ values.

Furthermore, the multilevel architecture of the

successive reservoirs, compared to the shallow ones

respectively, yielded a dynamic behavior that

represents a transitional state of how the internal

representations of the input signals are determined

[71]. This leads to high performance even for

problems that require long internal memory intervals.

Correspondingly, the hierarchical set of reservoirs

is more efficient in cases where short-term network

capabilities are required, than the corresponding

shallow architectures, which would have to work with

the same total number of iterative or recursive units in

order to achieve similar results [72].

Accordingly, in terms of computational

efficiency, the introduction of a multilevel

construction of reservoirs in the design of a neural

system, also results in a reduction in the number of

non-zero repetitive connections on many-core

architectures [73]. This implies low complexity and

time savings, which is required to perform specialized

tasks as presented in Table 2. Also, segmentation

maps can be produced as soon as at least a single

satellite image acquisition has been successfully and

subsequently improved, once additional imagery

becomes available. In this way, we are able to reduce

the amount of time needed to generate satellite

imagery-based disaster damage maps, enabling first

responders and local authorities to make swift and

well-informed decisions in responding to disasters.

6. Conclusion

This paper proposes a novel Geo-AI disaster

response computer vision system that uses meta-

learning memory-augmented Deep reservoir

computing for domain adaptation. The purpose is to

map a disaster area [53-60] using SAR radar material,

which can penetrate the clouds and collect data day

and night and in all weather conditions.

The reliability of the proposed system was tested

in the recognition of scenes from remote sensing

images in the SpaceNet Multi-Sensor All-Weather

Mapping dataset. This fact proves its capacity to be

used in higher level Geospatial Data Analysis

processes, such as multidisciplinary classification,

recognition, and monitoring of specific patterns. It

can also be used in the fusion of SAR and multi

sensors’ data for disaster response [74-76].

7. Further work

The proposals for evolution and future

development of MA/DCESN, focus on the

development of reservoirs with Spiking neurons.

These types of neurons require minimum training

time, they do not require delicate manipulations in

determining their operating parameters, and they can

determine the appropriate output weights for the most

efficient solution of a problem.

Also, it would be important to study the expansion

of this system by implementing more complex

architectures in an environment of parallel and

distributed systems that share the same memory.

Moreover, we aim to enhance the research by

newer and more powerful supervised machine

learning/classification algorithms such as Enhanced

Probabilistic Neural Network [77], Neural Dynamic

Classification algorithm [78], Dynamic Ensemble

Learning Algorithm [79], and Finite Element

Machine for fast learning [80].

Finally, a future extension would be the

development of a network with methods of self-

improvement and automatic redefining of its

parameters. This would result in a heuristic algorithm

for determining the depth of DCESN, which will be

based on an ensemble [81] search strategy [82],

suitable for the automatic determination of the

networks’ quality based on the training set.

References

[1] https://en.wikipedia.org/wiki/2020_Beirut_explosion

[2] https://earthdata.nasa.gov/learn/what-is-sar

[3] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and

Efficient Object Detection,” arXiv:1911.09070 [cs, eess], Jul.

2020, Accessed: Aug. 30, 2020. [Online]. Available:

http://arxiv.org/abs/1911.09070.

[4] Z. Cai, Q. Fan, R. S Feris, and N. Vasconcelos. A unified

multi-scale deep convolutional neural network for fast object

detection. ECCV, pages 354–370, 2016

[5] J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B.

Nessler, and S. Hochreiter, “Patch Refinement -- Localized

3D Object Detection,” arXiv:1910.04093 [cs], Oct. 2019,

Accessed: Aug. 30, 2020. [Online]. Available:

http://arxiv.org/abs/1910.04093.

[6] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the

train-test resolution discrepancy: FixEfficientNet,”

arXiv:2003.08237 [cs], Apr. 2020, Accessed: Aug. 30, 2020.

[Online]. Available: http://arxiv.org/abs/2003.08237.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Conference on Computer Vision

and Pattern Recognition, June 2016.

[8] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L.

F.-Fei, A. Yuille, J. Huang, and K. Murphy. Progressive

neural architecture search. In International Conference on

Computer Vision, September 2018

[9] A. Tao, K. Sapra, and B. Catanzaro, “Hierarchical Multi-

Scale Attention for Semantic Segmentation,”

arXiv:2005.10821 [cs], May 2020, Accessed: Aug. 30, 2020.

[Online]. Available: http://arxiv.org/abs/2005.10821.

[10] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W.

Liu. Ccnet: Criss-cross attention for semantic segmentation.

arXiv:1811.11721, 2018.

[11] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, Deep

learning-based classification of hyperspectral data, IEEE

Journal of Applied Earth Observations & Remote Sensing,

vol 7, no 6, pp. 2094–2107, 2014

[12] C. Tao, H. Pan, Y. Li, Z. Zou, Unsupervised spectral-spatial

feature learning with stacked sparse autoencoder for

hyperspectral imagery classification, Geosc. Rem. Sensing,

vol 8, no 6, pp 2381–2392,

[13] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep

learning classification of land cover and crop types using

remote sensing data,” IEEE Geoscience and Remote Sensing

Letters

[14] K. Makantasis, K. Karantzalos, A. Doulamis, and N.

Doulamis, Deep supervised learning for hyperspectral data

classification through convolutional neural networks, Geosc.

& Rem. Sensing, 2015

[15] Y. Chen, H. Jiang, C. Li, X. Jia, P. Ghamisi, Deep feature

extraction and classification of hyperspectral images based on

CNN,Transactions on Geosc. & Rem. Sensing, vol 54, no 10,

pp 6232–6251, 2016.

[16] K. Demertzis, L. Iliadis, E. Pimenidis (2020) Large-Scale

Geospatial Data Analysis: Geographic Object-Based Scene

Classification in Remote Sensing Images by GIS and Deep

Residual Learning. In: Iliadis L., Angelov P., Jayne C.,

Pimenidis E. (eds) Proceedings of the 21st EANN

(Engineering Applications of Neural Networks) 2020

Conference. EANN 2020. Proceedings of the International

Neural Networks Society, vol 2. Springer, Cham.

https://doi.org/10.1007/978-3-030-48791-1_21

[17] K. Demertzis, L. Iliadis, GeoAI: A Model-Agnostic Meta-

Ensemble Zero-Shot Learning Method for Hyperspectral

Image Analysis and Classification. Algorithms 2020, 13, 61.

[18] J. Liang, D. Hu, and J. Feng, “Do We Really Need to Access

the Source Data? Source Hypothesis Transfer for

Unsupervised Domain Adaptation,” arXiv:2002.08546 [cs],

Aug. 2020, Accessed: Aug. 30, 2020. [Online]. Available:

http://arxiv.org/abs/2002.08546.

[19] Z., Cao, K., You, M., Long, J., Wang, and Q, Yang. Learning

to transfer examples for partial domain adaptation CVPR 19.

[20] F. M., Cariucci, L., Porzi, B., Caputo, E., Ricci, and S. R.

Bulo, Autodial: Automatic domain alignment layers. In

ICCV, 2017

[21] G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann,

“Contrastive Adaptation Network for Unsupervised Domain

Adaptation,” arXiv:1901.00976 [cs], Apr. 2019, Accessed:

Aug. 30, 2020.

[22] J. Wang, J. Chen, J. Lin, L. Sigal, and C. W. de Silva,

“Discriminative Feature Alignment: Improving

Transferability of Unsupervised Domain Adaptation by

Gaussian-guided Latent Alignment,” arXiv:2006.12770 [cs],

Aug. 2020, Accessed: Aug. 30, 2020. [Online]. Available:

http://arxiv.org/abs/2006.12770.

[23] A., Graves, G. Wayne, and I. Danihelka. 2014. Neural turing

machines. arXiv preprint arXiv:1410.5401

[24] A., Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,

A. G.-Barwiska, S. G. Colmenarejo, E. Grefenstette, T.

Ramalho, and J. Agapiou. 2016. Hybrid computing using a

neural network with dynamic external memory. Nature,

538(7626):471

[25] M. Collier and J. Beel, “Memory-Augmented Neural

Networks for Machine Translation,” arXiv:1909.08314 [cs,

stat], Sep. 2019, Accessed: Aug. 30, 2020. [Online].

Available: http://arxiv.org/abs/1909.08314.

[26] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T.

Lillicrap, “One-shot Learning with Memory-Augmented

Neural Networks,” arXiv:1605.06065 [cs], May 2016,

Accessed: Aug. 30, 2020. [Online]. Available:

http://arxiv.org/abs/1605.06065.

[27] J. Dai et al., “BigDL: A Distributed Deep Learning

Framework for Big Data,” arXiv:1804.05839 [cs], Nov. 2019,

doi: 10.1145/1122445.1122456.

[28] I. Khan, X. Zhang, M. Rehman and R. Ali, "A Literature

Survey and Empirical Study of Meta-Learning for Classifier

Selection," in IEEE Access, vol. 8, pp. 10262-10281, 2020,

doi: 10.1109/ACCESS.2020.2964726.

[29] S.; Hochreiter, A.S.; Younger, P.R. Conwell, Learning to

Learn Using Gradient Descent. In Proceedings of the

ICANN’01 International Conference, Vienna, Austria, 21–25

August 2001; pp. 87–94.

[30] C.; Lemke, M.; Budka, B. Gabrys, Metalearning: A survey of

trends and technologies. Artif. Intell. Rev. 2013, 44, 117–130,

doi:10.1007/s10462-013-9406.

[31] A. Graves, G. Wayne, and I. Danihelka, “Neural Turing

Machines,” arXiv:1410.5401 [cs], Dec. 2014, Accessed: Aug.

30, 2020.

[32] J. Weston, S. Chopra, and A. Bordes. 2015. Memory

networks. In Proceedings of the 2014 International

Conference on Learning Representations (ICLR). arXiv

preprint arXiv:1410.3916.

[33] J. Schmidhuber, 2015 "Deep learning in neural networks: An

overview". Neural Networks. 61: 85–117.

[34] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber.

Gradient flow in recurrent nets: the difficulty of learning

long-term dependencies. IEEE Press, 2001.

[35] C.; Finn, P.; Abbeel, S. Levine, A.Nichol and J.Achiam and

John Schulman (2018). On First-Order Meta-Learning

Algorithms. arXiv 2017, arXiv:1803.02999.

[36] C.; Finn, S. Levine, Meta-learning and universality: Deep

representations and gradient descent can approximate any

learning algorithm. arXiv 2017, arXiv:1710.11622.

[37] A., Santoro, S. Bartunov, M. M. Botvinick, D. Wierstra and

T. P. Lillicrap. “Meta-Learning with Memory-Augmented

Neural Networks.” ICML (2016).

[38] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term

Memory Based Recurrent Neural Network Architectures for

Large Vocabulary Speech Recognition,” arXiv:1402.1128

[cs, stat], Feb. 2014, Accessed: Aug. 30, 2020. [Online].

Available: http://arxiv.org/abs/1402.1128.

[39] E. A., Antonelo, E. Camponogara, and B. Foss, (2017). Echo

State Networks for data-driven downhole pressure estimation

in gas-lift oil wells. Neural Networks 85, 106-117.

[40] M. Buehner and P. Young (2006) A tighter bound for the echo

state property. IEEE Transactions on Neural Networks,

17(3):820-824

[41] M. Lukoševičius (2012) A Practical Guide to Applying Echo

State Networks. In: G. Montavon, G. B. Orr, and K.-R. Müller

(eds.) Neural Networks: Tricks of the Trade, 2nd ed. Springer

LNCS 7700, 659-686

[42] C. Gallicchio and A. Micheli, “Deep Echo State Network

(DeepESN): A Brief Survey,” arXiv:1712.04323 [cs, stat],

Feb. 2019, Accessed: Aug. 30, 2020. [Online]. Available:

http://arxiv.org/abs/1712.04323.

[43] C. Gallicchio, A. Micheli, and L. Pedrelli, “Design of deep

echo state networks,” Neural Networks, vol. 108, pp. 33–47,

Dec. 2018, doi: 10.1016/j.neunet.2018.08.002.

[44] R. Polikar, (2006). "Ensemble based systems in decision

making". IEEE Circuits and Systems Magazine. 6 (3): 21–45.

doi:10.1109/MCAS.2006.1688199

[45] X., Qing J., Xu F., Guo A., Feng W., Nin H. Tao (2007) An

Adaptive Recursive Least Square Algorithm for Feed

Forward Neural Network and Its Application. In: Huang DS.,

Heutte L., Loog M. (eds) Advanced Intelligent Computing

Theories and Applications. With Aspects of Artificial

Intelligence. ICIC 2007. Lecture Notes in Computer Science,

vol 4682. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-74205-0_35

[46] https://spacenet.ai/

[47] aws s3 ls s3://spacenet-dataset/spacenet/SN6_buildings/

[48] W.; Hu, Y.; Huang, L.; Wei, F.; Zhang, H. Li, Deep

convolutional neural networks for hyperspectral image

classification. J. Sens. 2015, 2015, 258619.

[49] Y.; Chen, H.; Jiang, C.; Li, X.; Jia, P. Ghamisi, Deep feature

extraction and classification of hyperspectral images based on

CNN. Trans. Geosci. Remote Sens. 2016, 54, 6232–6251.

[50] A.; Dosovitskiy, J.T.; Springenberg, T. Brox, Learning to

Generate Chairs, Tables and Cars with Convolutional

Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39,

692–705.

[51] A.; Dosovitskiy, P.; Fischer, J.T.; Springenberg, M.;

Riedmiller, T. Brox, Discriminative unsupervised feature

learning with exemplar convolutional neural networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2016, 38, 1734–1747.

[52] L.; Mou, P.; Ghamisi, X.X. Zhu, Unsupervised Spectral–

Spatial Feature Learning via Deep Residual Conv–Deconv

Network for Hyperspectral Image Classification. IEEE Trans.

Geosci. Remote Sens. 2018, 56, 391–406.

[53] C.,Zhang, W., Yao, Y., Yang, R., Huang, and A. Mostafavi,

(2020), Semi-automated Social Media Analytics for Sensing

Societal Impacts due to Community Disruptions during

Disasters, Computer-Aided Civil and Infrastructure

Engineering, 35:12, 1331-1348 (18 pages)

[54] X. Pan, T.Y. Yang, (2020), Post-disaster imaged-based

damage detection and repair cost estimation of reinforced

concrete buildings using dual convolutional neural networks,

Computer-Aided Civil and Infrastructure Engineering, 35:5,

495-510.

[55] A., Lenjani, C.M., Yeum, S.J., Dyke, I. Bilionis, (2020),

Automated Building Image Extraction from 360-degree

Panoramas for Post-Disaster Evaluation, Computer-Aided

Civil and Infrastructure Engineering, 35:3, 241-257.

[56] A., Nejat, R.J., Javid, S., Ghosh, and S. Moradi, (2020), A

Spatially Explicit Model of Post-Disaster Housing Recovery,

Computer-Aided Civil and Infrastructure Engineering, 35:2,

150-161.

[57] C. Fan, and A. Mostafavi, (2019), A Graph-based Method for

Social Sensing of Infrastructure Disruptions in Disasters,

Computer-Aided Civil and Infrastructure Engineering, 34:12,

1055-1070.

[58] M., Xu, M., Ouyang, Z., Mao, X. Xu, (2019), “Improving

Repair Sequence Scheduling Methods for Post-disaster

Critical Infrastructure Systems,” Computer-Aided Civil and

Infrastructure Engineering, 34:6, 506-522.

[59] X. Liang, (2019), “Image-Based Post-Disaster Inspection of

Reinforced Concrete Bridge Systems Using Deep Learning

with Bayesian Optimization,” Computer-Aided Civil and

Infrastructure Engineering, 34:5, 415-430.

[60] Z., Wang, M., Guo, H., Hu, and J. Gong, (2019),

“Optimization of Temporary Debris Management Site

Selection and Site Service Regions for Enhancing Post-

Disaster Debris Removal Operations,” Computer-Aided Civil

and Infrastructure Engineering, 34:3, 230-347.

[61] F.J., Vera-Olmos, E., Pardo, H., Melero, and N., Malpica,

DeepEye: Deep Convolutional Network for Pupil Detection

in Real Environments, Integrated Computer-Aided

Engineering, 26:1, 2019, pp. 85-95.

[62] T., Yang, C., Cappelle, Y., Ruichek, and M., El Bagdouri,

Multi-object Tracking with Discriminant Correlation Filter

Based Deep Learning Tracker, Integrated Computer-Aided

Engineering, 26:3, 2019, pp. 273-284.

[63] P., Lara-Benıteza, M., Carranza-Garcıa, J., Garcıa-Gutierreza

J.C., Riquelme, Asynchronous dual-pipeline deep learning

framework for online data stream classification, Integrated

Computer-Aided Engineering, 27:2, 2020, 101-119.

[64] R.A., Sørensen, M., Nielsen, and H., Karstoft, Routing in

congested baggage handling systems using deep

reinforcement learning, Integrated Computer-Aided

Engineering, 27:2, 2020, 139-152.

[65] K., Thurnhofer-Hemsi, E., López-Rubio, N., Roé-Vellvé, and

M.A., Molina-Cabello, Multiobjective optimization of deep

neural networks with combinations of Lp-norm cost functions

for 3D medical image super-resolution, Integrated Computer-

Aided Engineering, 27:3, 2020, 233-251.

[66] J., García-González, J.M., Ortiz-de-Lazcano-Lobato, Luque-

R.M., Baena, and E., López-Rubio, Background subtraction

by probabilistic modeling of patch features learned by deep

autoencoders, Integrated Computer-Aided Engineering, 27:3,

2020, 253-265.

[67] S., Hamreras, B., Boucheham, M.A., Molina-Cabello, R.,

Benıtez-Rochel Lopez-Rubio, Content-based image retrieval

by ensembles of deep learning object classifiers, Integrated

Computer-Aided Engineering, 27:3, 2020, 317-331.

[68] D., Simoes, N., Lau, and L.P., Reis, Exploring

Communication Protocols and Centralized Critics in Multi-

Agent Deep Learning, Integrated Computer-Aided

Engineering, 27:4, 2020.

[69] J., Benito-Picazo, E., Domínguez, E.J., Palomo, and E.,

López-Rubio, Deep learning-based video surveillance system

managed by low cost hardware and panoramic cameras,

Integrated Computer-Aided Engineering, 27:4, 2020.

[70] I. Bougoudis, K. Demertzis, and L. Iliadis, ‘Fast and Low

Cost Prediction of Extreme Air Pollution Values with Hybrid

Unsupervised Learning’. 1 Jan. 2016 : 115 – 127.

[71] S. Hamreras, ‘Content Based Image Retrieval by Ensembles

of Deep Learning Object Classifiers’. 1 Jan. 2020 : 317 – 331.

[72] S. Colreavy-Donnelly, ‘Shallow Buried Improvised

Explosive Device Detection via Convolutional Neural

Networks’. 1 Jan. 2020 : 403 – 416.

[73] P., Emerson C., de L., D. Pereira, and T., Gianluca. ‘A

Multiobjective Metaheuristic Approach for Morphological

Filters on Many-core Architectures’. 1 Jan. 2019 : 383 – 397.

[74] H. Luo, and S.G. Paal, (2019), “ A locally-weighted machine

learning model for generalized prediction of drift capacity in

seismic vulnerability assessments,” Computer-Aided Civil

and Infrastructure Engineering, 34:11.

[75] M.H. Rafiei, and H., Adeli, “NEEWS: A Novel Earthquake

Early Warning System Using Neural Dynamic Classification

and Neural Dynamic Optimization Model,” Soil Dynamics

and Earthquake Engineering, Vol. 100, 2017, pp. 417-427.

[76] M.H. Rafiei, and H. Adeli, (2018), “A Novel Machine

Learning Model for Construction Cost Estimation Taking

Into account Economic Variables and Indices,” Journal of

Construction Engineering and Management, 144:12, 2018,

04018106 (9 pages).

[77] M. Ahmadlou, H., Adeli, “Enhanced Probabilistic Neural

Network with Local Decision Circles: A Robust Classifier,”

Integrated Computer-Aided Engineering, 17:3, 2010, pp.

197-210.

[78] M.H. Rafiei, and H. Adeli, “A New Neural Dynamic

Classification Algorithm,” IEEE Transactions on Neural

Networks and Learning Systems, 28:12, 2017, 3074-3083

(10.1109/TNNLS.2017.2682102).

[79] K.M., Rokibul Alam, N., Siddique, H., Adeli, “A Dynamic

Ensemble Learning Algorithm for Neural Networks” Neural

Computing with Applications, 32:10, 2020, 6393-6404.

[80] D.R., Pereira, M.A., Piteri, A.N., Souza, J., Papa, and H.

Adeli, (2020) “FEMa: A Finite Element Machine for Fast

Learning,” Neural Computing and Applications, 32:10, 6393-

6404 (https://doi.org/10.1007/s00521-019-04146-4).

[81] Breiman, L. Bagging Predictors. Machine Learning 24, 123–

140 (1996). https://doi.org/10.1023/A:1018054314350

[82] T. Schoormann, D. Behrens, M. Fellmann and R. Knackstedt,

"<> Design Principles for Supporting Rigorous Search

Strategies in Literature Reviews," 2018 IEEE 20th

Conference on Business Informatics (CBI), Vienna, Austria,

2018, pp. 99-108, doi: 10.1109/CBI.2018.00020.

https://doi.org/10.1023/A:1018054314350

Appendix 1

Fig. 2. Architecture of the proposed Μ-Α/DCESN

