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Abstract. It is a fact that natural disasters often cause severe damage both to ecosystems and humans. 

Moreover, man-made disasters can have enormous moral and economic consequences for people. A typical 

example is the large deadly and catastrophic explosion in Beirut on 4 August 2020, which destroyed a very 

large area of the city. This research paper introduces a Geo-AI disaster response computer vision system, 

capable to map an area using material from Synthetic Aperture Radar (SAR). SAR is a unique form of radar 

that can penetrate the clouds and collect data day and night under any weather conditions. Specifically, the 

Memory-Augmented Deep Convolutional Echo State Network (MA/DCESN) is introduced for the first time 

in the literature, as an advanced Machine Vision (MAV) architecture. It uses a meta-learning technique, which 

is based on a memory-augmented approach. The target is the employment of Deep Reservoir Computing 

(DRC) for domain adaptation. The developed Deep Convolutional Echo State Network (DCESN) combines 

a classic Convolutional Neural Network (CNN), with a Deep Echo State Network (DESN), and analog 

neurons with sparse random connections. Its training is performed following the Recursive Least Square 

(RLS) method. In addition, the integration of external memory allows the storage of useful data from past 

processes, while facilitating the rapid integration of new information, without the need for retraining. The 

proposed DCESN implements a set of original modifications regarding training setting, memory retrieval 

mechanisms, addressing techniques, and ways of assigning attention weights to memory vectors. As it is 

experimentally shown, the whole approach produces remarkable stability, high generalization efficiency and 

significant classification accuracy, significantly extending the state-of-the-art Machine Vision methods. 

Keywords: Geo-AI, Disaster Response, Domain Adaptation, Meta-Learning, Synthetic Aperture Radar, Echo State 

Network, Deep Reservoir Computing, Memory-Augmented Architecture. 

1. Introduction 

A disaster that leads to many casualties is a great 

challenge for all services involved in rescue and 

support. Immediate assistance by any possible means 

is required, to make the best possible decisions, under 

difficult and adverse conditions in an environment of 

panic and increased risk. Disaster response 

mechanisms should be able to collect information 

immediately; to support mapping the area of interest, 

and compare conditions before and after the disaster. 

Decisions need to be made about options such as, 

finding the most suitable location for rescue vehicles, 

sorting stations, and first aid kits. In addition, 

decisions must be made on the necessary equipment, 

the allocation of priorities, and the scheduling of 

required human resources to support rescue services. 

The case of the Beirut explosion is a typical example 

[1]. The huge explosion in the port of the Lebanese 
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capital, came from 2,750 tons of stored ammonium 

nitrate. It destroyed a very large area of the city, 

especially the port of Beirut, while hundreds of people 

were trapped in the wreckage of buildings. 

In cases like this, aerial observations and satellite 

images, could be particularly valuable in dealing with 

the crisis. Even when the weather does not allow 

traditional electro-optical sensors to get a clear 

picture, SAR shots offer significant help [2]. SAR can 

penetrate the clouds and collect high resolution data 

under all weather conditions, day and night. However, 

despite its undoubted advantages, this approach can 

be reduced to an inquiry tool, limited to the 

observation ability of humans. 

 This risk gives rise to the need of and demand for 

distancing from human intervention and the 

engagement of advanced Computer Vision 

technologies and Artificial Intelligence (AI). These 

will make it possible to automatically extract essential 

information, such as spatial-temporal area 



  

comparisons and object recognition, in almost real-

time. 

This paper introduces the Μ-Α/DCESN, a Geo-AI 

disaster response computer vision system, which uses 

memory-augmented deep reservoir computing for 

domain adaptation. It aims to record, map and identify 

a disaster area, using materials from SAR.   

The proposed system offers a meta-learning 

technique, which implements a reservoir computing 

system, using memory-augmented methods. More 

specifically, it employs a DCESN network which 

allows the storage of useful data from past processes, 

by integrating external storage memory. At the same 

time, it facilitates the rapid integration of new 

information, without the need for retraining the 

network. 

The main contribution of this work is that it 

enhances scientific and technical knowledge about 

meta-learning methods, which are based on a 

memory-augmented approach for domain adaptation. 

In order to obtain acceptable classification results, 

these techniques require sufficient training data to be 

available for every particular image and tuned 

hyperparameters to achieve the best performance. 

Obtaining accurate results is challenging, particularly 

for near real-time applications. Therefore, past 

knowledge must be utilized to overcome the lack of 

training data in the current regime. This challenge of 

domain adaptation, in which the training data (source) 

and the test data (target) are sampled from different 

domains is a considerable challenge and the 

performance of the proposed techniques can be 

significantly affected by the type of problem, the 

nature of the data, and the type of data shift associated 

with the domains. Although more data can be 

obtained from different sources, adapting these 

sources to obtain acceptable results is also a 

challenging task. This is especially true when the 

different domains contain a severely imbalanced class 

distribution. In this study, a novel technique, based on 

deep neural networks, was developed and evaluated 

in order to solve the domain adaptation problem for 

remote sensing image classification in different 

settings. 

The proposed DCESN combines a classic CNN 

and a DESN with analogue neurons, with sparse 

random connections in the input levels and in the 

Dynamical Reservoir (DR). Its training process uses 

the RLS method in the output layer. Moreover, the 

proposed system is assisted by a set of original 

modifications to the training setting, memory retrieval 

mechanisms, addressing techniques, and ways of 

assigning attention weights to memory vectors. 
These facilitate the learning of specialized techniques 

for extracting useful intermediate representations, 

making full use of first and second order derivatives 

as a pre-training method for learning parameters, 

without the risk of problems such as exploding or 

diminishing gradients. At the same time it avoids 

possible overfitting, while significantly reducing 

training time, producing improved stability, high 

generalization performance, and categorization 

accuracy.  

The rest of this paper, includes the following 

sections: section 2 provides a detailed review of the 

relevant literature. Section 3 presents the 

methodology followed, while section 4 analyzes in 

detail the implementation of the proposed 

architecture. Section 5 describes the data and presents 

the results from the experiments performed.  
Section 6 critically discusses the method and 

observations made, while Section 7 summarizes the 

findings and presents the future objectives of the 

research. 

2. Related Research 

The success of deep learning in the field of computer 

vision, has been highlighted by multiple surveys 

about topics such as simple [3], fast [4] and 3D object 

detection [5]; image recognition [6] or classification 

[7] by novel intelligence methods [8], pixel-level 

classification [9] and semantic segmentation [10].  
A variety of architectures have been proposed to solve 

complex problems and have provided a new impetus 

in this area. In particular, in the field of data analysis 

from multispectral sensors, many architectural 

prototypes have been developed and have delivered 

impressive results. Specifically, [11] proposes a 

hybrid approach, which combines the use of a Stacked 

Auto-encoder, Principle Component Analysis (PCA), 

and Logistic Regression in order to perform 

Hyperspectral Data Classification.  
Tao et al. [12], are using a sparse stacked auto-

encoder, to effectively represent features from 

unlabeled spatial data. The learned features are used 

as input to a SVM for hyperspectral data 

classification. Various 1D [13] and 2D [14] CNN 

architectures, aiming to encode spectral and spatial 

information, have been suggested in the literature.  

The most recent and advanced proposal, concerns 3D 

CNN [15] in which the third dimension refers to the 

time axis. This is resulting in a hyperspectral 

classification that follows a spatiotemporal 

architecture. In 3D CNN, the convolution operations 

are performed both spatially and spectrally, while in 

2D CNNs they are performed only spatially.  

Compared to 1D and 2D CNNs, 3D CNNs can 

better format spectral information due to the 

contribution of 3D convergence functions. 



  

More sophisticated techniques inspired by 

dynamic architectures have raised additional 

expectations for even more important innovative 

applications in the field of spectral analysis. A typical 

example is our proposal [16] for a major modification 

that upgrades the well-known Residual Neural 

Network (ResNet) architecture. The network is 

effectively simplified, by eliminating the Vanishing 

Gradient Problem (VGP) which plagues other deep 

learning architectures. This is achieved  

by omitting some layers in the early training stages. 
The most important innovation of the proposed 

system concerns the use of the AdaBound algorithm 

that uses dynamic limits in its learning rates, 

achieving a smooth transition to stochastic gradient 

techniques. This fact treats the noisy scattered points 

of incorrect classification with great precision, 

something that other spectral classification methods 

cannot handle. Our research team has proposed the 

Model-Agnostic Meta-Ensemble Zero-shot Learning 

(MAME-ZsL) [17], which facilitates the learning of 

specialized techniques for extracting useful 

intermediate representations in complex deep 

learning architectures. This significantly reduces 

computational cost and training time, producing 

remarkable classification accuracy. 

MAME-ZsL follows a heuristic, hierarchical 

hyperparameter search methodology. It uses the 

intermediate representations extracted from other 

possibly irrelevant images, so that it can discover the 

appropriate representations that can lead to correct 

classification of unknown samples. 

Visual perception often involves sequential 

inference over a series of intermediate goals of 

growing complexity towards the final objective. 

Depending on a deep learning architecture, the graph 

can also contain extra nodes that explicitly represent 

tensors between operations. In such representations, 

operation nodes are not connected directly to each 

other, rather using data nodes as intermediate stops 

for data flow. If data nodes are not used, the produced 

data is associated with an output port of a 

corresponding operation node that produces the data.  

In order to achieve a smooth formalization, the 

notion of intermediate concepts points to better 

generalization through deep supervision, when 

compared to standard end-to-end training. This is 

achieved by a strict architecture where hidden layers 

are supervised with an intuitive sequence of 

intermediate concepts, in order to incrementally 

regularize the learning to follow the prescribed 

inference sequence. Practically the intermediated 

representations produce superior generalization 

capability that addresses the scarcity of learning shape 

patterns from synthetic training images with complex 

multiple object configurations. 

Domain adaptation [18], partial domain 

adaptation [19] and domain alignment [20] is a 

relatively recent forecasting technique for target 

domain data. Both supervised and unsupervised 

methods have been used, which in most of the cases 

try to minimize domain deviation, while neglecting 

essential class information. This often results in 

misalignment and poor generalization performance. 
To address this issue, the authors of [21] propose a 

Contrastive Adaptation Network (CAN) that 

explicitly models domain-level mismatch, while also 

calculating the difference between classes. This 

technique performs relatively well against similar 

methods, producing distinctive features, but lags far 

behind in terms of generalization as it is completely 

determined by the available data. Accordingly, the 

success of unsupervised sector adaptation relies 

heavily on the alignment of capabilities between 

sectors. 

A common feature space may not always be a 

training tool and in particular an immediate alignment 

feature, especially when large domain gaps are 

observed. To solve this problem, the authors of [22] 

introduce a Gaussian guided Latent Alignment 

approach, aiming to align the latent feature 

distributions of two domains. The implementation 

delivers an innovative alignment of features between 

sectors, transforming the distributions of samples 

from two sectors into a common feature space. 
Despite the enhanced knowledge transfer capabilities, 

this method adds significant complexity to the system. 
Memory-Augmented Neural Networks (MANNs) 

have been shown to outperform other repetitive neural 

networks in a number of sequence [23] learning tasks 

[24]. However, they still have limited application in 

real world problems. An evaluation of MANNs 

applications is performed in [25]. 
Finally, an impressive approach is presented in 

[26], where a One-shot Learning approach is 

performed, using an augmented-memory neural 

network. It yields accurate predictions using only a 

few training samples. 

3. Discussion on the Methodological approach 

Recent developments in the field of information 

technology and especially in the techniques of high-

capacity models, such as deep neural networks, allow 

very powerful implementations in the processing of 

large-scale data [27]. Nevertheless, the disclosure of 

critical knowledge from large-scale datasets, and in 

particular the correct classification of new, unknown 



  

data, combined with a parallel automatic correction of 

classification errors, remains a very serious challenge. 

A potential solution to this problem is offered by 

meta-learning techniques [28] as specific “learning to 

learn” models [29]. They learn from previous 

learning processes, or from previous classification 

tasks that have been completed [30].  

This is a subfield of machine learning where advanced 

learning algorithms are applied to data and metadata 

of a given problem.  

In general, input patterns with and without tags 

come from the same boundary distribution or follow 

some common cluster structure. This is the case for 

modeling situations of real physical problems [30].  

Thus, the classified data contribute to the learning 

process, while useful information can be extracted 

from the unclassified data, for the exploration of the 

data structure of the general set. This information can 

be combined with knowledge from previous learning 

procedures, or previous classification tasks 

performed. 

Based on the above, meta-learning techniques can 

discover the underlying structure of data, allowing for 

fast learning of new tasks. This is achieved by using 

different types of knowledge, such as the properties 

of the learning problem, the properties of the 

algorithm used (e.g. performance measures) or 

patterns derived from data related to a previous 

problem. Cognitive information from unknown 

examples sampled from the distribution of real-world 

cases is used. The goal is to enhance [28] the outcome 

[29] of the learning process [30].  

In this way it is possible to learn, select, change, or 

combine different learning algorithms to effectively 

solve a given problem.  

A meta-learning system [28] should combine [29] 

the following requirements [30]: 
1. The system must include a learning 

subsystem. 
2. Experience should be gained from the use of 

knowledge extracted from metadata, related 
to the dataset under consideration or from 
previous learning tasks, completed in similar 
or different fields. 

3. The learning bias should be selected 
dynamically. 

Depending on the approach, there are four meta-

learning prototypes as mentioned below [30]:  
1. Model-based: These are techniques based on 

the use of retrospective networks with 
external or internal memory. These 
techniques quickly update their parameters 
with minimal training steps, which can be 
achieved through their internal architecture, 
or by using control from other models. 

2. Memory-Augmented: Neural Networks and 
Meta Networks are typical model-based 
meta-learning techniques. 

3. Metrics-based: These are techniques based on 
learning effective distance measurements that 
can generalize. The core idea of their 
operation is similar to that of the “Nearest 
Neighbors” whereas their goal is to learn a 
measurement or distance from objects. The 
concept of a good metric depends on the 
problem, as it should represent the 
relationship between the inputs in the space, 
facilitating problem solving. Convolutional 
Siamese Neural Network, Matching 
Networks, Relation Networks and 
Prototypical Networks are typical cases of 
metrics-based and meta-learning approaches.  

4. Optimization-based: They are based on the 
optimization of the model’s parameters in 
order to achieve fast learning. LSTM Meta-
Learners, Temporal Discreteness and the 
Reptile algorithm are typical cases of 
optimization-based, meta-learning 
techniques. 

Recurrent Neural Networks (RNN) with only 

internal memory and Long Short-Term Memory 

methods (LSTM), are not considered as meta-learning 

approaches. Literature suggests that memory capacity 

neural networks provide a meta-learning [28] 

approach [29] for deep neural networks [30]. 

However, this particular memory usage strategy that 

is inherent to unstructured iterative architectures, is 

unlikely to extend to settings where each new task 

requires significant amounts of new information for 

rapid encoding [30].  

A scalable solution has some essential 

requirements. Information must be stored in memory 

in a representation that is stable, so that it can be 

reliably accessed when needed and addressed with 

data. In this way, it can selectively access relevant 

data. The number of parameters must not be related to 

the size of the memory. These two features do not 

occur in the original retrospective memory network 

architectures such as RNNs or more advanced ones 

such as LSTMs. In contrast, architectures such as 

Neural Turing Machines (NTMs) [31] and Memory 

Networks [32] meet the required criteria. 

This research introduces the M-A/DCESN 

approach that uses external storage memory, which is 

compiled by employing the NTMs architecture. It 

allows memorization of useful information from past 

processes, while facilitating the rapid integration of 

new information, without the need for retraining. 



  

4. Implementation 

The NTMs are a model-based meta-learning [30] 

architecture and they constitute the implementation of 

a neural control mechanism with external storage 

memory. Specifically, it is an architecture that 

connects a neural network and an external memory 

storage unit. Taking a general approach to 

MA/DCESN in terms of its meta-learning properties 

[28-30], it trains in a variety of learning tasks. 

It is optimized to provide a/for a better 

performance in generalizing tasks, including 

potentially unknown cases. Each task is associated 

with a data set D, containing feature vectors and class 

labels on the given supervised learning problem. The 

optimal parameters of the model are [30, 33-34]: 

𝜃∗ = 𝑎𝑟𝑔𝜃
𝑚𝑖𝑛𝔼𝐷~𝑃(𝐷)[𝐿𝜃(𝐷)]   (1) 

Although it seems similar to a normal learning 

process, each data set is still considered a sample of 

data. 

The dataset D comprises two parts, a training set 

S and a testing set Β for validation and testing [30, 33-

34].  

𝐷 =  ⟨𝑆, 𝐵⟩   (2) 

D contains pairs of vectors and labels so that 

 [30, 33-34]: 

𝐷 =  {(𝑥𝑖 , 𝑦𝑖)}   (3) 

Each tag belongs to a known set of tags L.  

In the case of the classifier 𝑓𝜃, parameter θ 

extracts a probability of the class y render of attributes 

vector, 𝑥, 𝑃𝜃  (𝑦|𝑥). 

Optimal parameters maximize the likelihood of 

finding true tags in multiple training batches. 

 𝛣 ⊂ 𝐷 [30, 33-34]: 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝔼(𝑥,𝑦)∈𝐷[𝑃𝜃(𝑦|𝑥)]   (4) 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝔼𝐵⊂𝐷 [ ∑ 𝑃𝜃(𝑦|𝑥)

(𝑥,𝑦)∈𝛣

]   (5) 

The aim of the model is to reduce prediction error 

in data samples with unknown tags, considering that 

there is a small set of support for fast learning which 

works as "fine-tuning". 

A modification of the model is shown in the 

following function, to which the symbols of the meta-

learning process have been added 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝔼𝐿𝑠⊂𝐿 [𝔼𝑆𝐿⊂𝐷,𝐵𝐿⊂𝐷 [ ∑ 𝑃𝜃(𝑥, 𝑦, 𝑆𝐿)

(𝑥,𝑦)∈𝛣𝐿

]] (6)  

 

As for the model in terms of the augmented-

memory technique, memory stores processed 

information. 

It can be considered as a Ν×Μ matrix. The control 

mechanism is a DCESN which is responsible for 

performing tasks in memory. 

The controller processes the input and interacts 

with the memory bank to generate the output, through 

a recurring update process. A general description of 

the function of the proposed NTM [31] is shown in 

figure 1 below. 

 
Fig. 1. Architectural modeling of the NTM [31] 

 

When the memory is read at time t, an attention 

vector wt of magnitude N controls how much attention 

should be allocated to different memory locations. 

Vector rt is the sum of the weights from the 

attention intensity resulting from the assignment 

process. 

The overall calculation procedure is presented by 

the following equation [31, 37]:  

𝑟𝑖 = ∑ 𝑤𝑡(𝑖)

𝑁

𝑖=1

𝑀𝑡(𝑖), 𝑤ℎ𝑒𝑟𝑒 ∑ 𝑤𝑡(𝑖)

𝑁

𝑖=1

= 1, ∀𝑖: 0 ≤ 𝑤𝑡(𝑖) ≤ 1   (7) 

Where, 𝑤𝑡(𝑖) is the ith element in 𝑤𝑡 and 𝑀𝑡(𝑖) is the ith 

element stored in memory. 

In addition (inspired by forgetting gates in LSTM) 

the process of writing to memory in time t initially 

provides for the deletion of the old erasable vector et 

which is the content of memory in a specific location. 

Then new information is inserted by adding vector at. 

This procedure is described below in the 

corresponding deletion equation 8 and addition 

equation 9 [31, 37]: 

𝑀̂𝑡(𝑖) = 𝑀𝑡−1(𝑖)[1 − 𝑤𝑡(𝑖)𝑒𝑡]   𝑒𝑟𝑎𝑠𝑒    (8) 

𝑀𝑡(𝑖) = 𝑀̂𝑡(𝑖) + 𝑤𝑡(𝑖)𝑎𝑡    𝑎𝑑𝑑    (9) 

The way of the development of the attention 

distribution wt depends on the addressing 

mechanisms, which operate on the basis of content or 

location. 

The content-based addressing process, generates 

attention vectors based on the similarity between the 

kt key vector (extracted by the controller from the 

input lines) and the memory content. 

Content-based attention scores are calculated as 

the cosine of similarity between the content, which is 

then normalized with the use of the softmax function. 

In addition, a power multiplier βt is added to 

enhance or soften the focus of attention distribution. 

The procedure is described in the following 

equation [31, 37]: 



  

𝑤𝑡
𝑐(𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽𝑡 ∙ 𝑐𝑜𝑠𝑖𝑛𝑒[𝑘𝑡, 𝑀𝑡(𝑖)])

=
𝑒𝑥𝑝 (𝛽𝑡

𝑘𝑡 ∙ 𝑀𝑡(𝑖)
‖𝑘𝑡‖ ∙ ‖𝑀𝑡(𝑖)‖

)

∑ 𝑒𝑥𝑝 (𝛽𝑡
𝑘𝑡 ∙ 𝑀𝑡(𝑖)

‖𝑘𝑡‖ ∙ ‖𝑀𝑡(𝑖)‖
)𝑁

𝑗=1

   (10) 

A step-by-step gateway is then used to mix in the 

last step of the time, the newly created content-based 

attention vector with the attention weights [31, 37]: 

𝑤𝑡
𝑔

= 𝑔𝑡𝑤𝑡
𝑐 + (1 − 𝑔𝑡)𝑤𝑡−1   (11) 

On the other hand, location-based addressing 

gathers values at different positions in the attention 

vector, weighted based on a weight distribution 

relative to permissible integer displacements. 

They are equivalent to a 1-d convolution with 

kernel st(.).Finally, the attention distribution is 

enhanced by a gradual escalation 𝛾𝑡 ≥ 1. The above 

procedures are described in the following equations 

12 (circular convolution) and 13 (sharpen) [31, 37]: 

𝑤̂𝑡(𝑖) = ∑ 𝑤𝑡
𝑔(𝑗)

𝑁

𝑗=1
𝑠𝑡(𝑖 − 𝑗)      (12) 

𝑤𝑡(𝑖) =
𝑤̂𝑡(𝑖)𝛾𝑡

∑ 𝑤̂𝑡(𝑗)𝛾𝑡𝑁
𝑗=1

    (13) 

This work is based on the MA/DCESN 

architecture [8], proposing a set of modifications 

regarding the training setting, memory recovery 

mechanisms, addressing techniques and ways of 

assigning attention weights to memory vectors. 

In particular, the main concern of the proposed 

system, is related to the development of a training 

process that uses memory capable of rapid encoding 

and recording information for new tasks. Moreover, 

any stored representation should be easily and stably 

accessible. Training should be performed in a way 

that memory can hold information for a longer time, 

until the appropriate labels that fit the categorization 

process are presented. 

In each training cycle, the actual tag is presented 

following a step shift (xt+1, yt), so that this label (while 

it is part of the time step input t) can be part of the 

input in the next time step t+1. Following this 

process, the proposed MA/DCESN is motivated to 

memorize the information of a new data set. Memory 

has to hold the current input until the label appears 

and then the old information has to be retrieved in 

order for a similar prediction to be produced. 

In addition to the training process, an innovative 

addressing mechanism is used, where the reading 

attention process is constructed solely on the basis of 

the similarity of the content. 

This procedure first predicts a key vector attribute 

kt in the time step t as a function of input x. 

A gravity reader 𝑤𝑡
𝑟of the N elements is calculated 

as the similarity between the cosine of the key vector 

and each line of the memory vector, normalized to 

Softmax [33] as follows in equation 14. 

𝑤𝑡
𝑟(𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑐𝑜𝑠𝑖𝑛𝑒[𝑘𝑡 , 𝑀𝑡(𝑖)])   (14) 

Additionally, the vector reader ri is a sum of 

weighted memory files. Its mathematical description 

is presented in the following equation15 [31, 37]: 

𝑟𝑖 = ∑ 𝑤𝑡
𝑟(𝑖)

𝑁

𝑖=1

𝑀𝑡(𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑤𝑡
𝑟(𝑖)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑘𝑡 ∙ 𝑀𝑡(𝑖)

‖𝑘𝑡‖ ∙ ‖𝑀𝑡(𝑖)‖
)   (15) 

Where, 𝑀𝑡 is a memory matrix for time stamp t 

and  𝑀𝑡(𝑖) is the ith line of the table. 

The memory updating, for efficient retrieval and 

storage of information, is performed based on the 

Least Recently Used Access (LRUA) algorithm. This 

writes new content either to the least used memory 

location, based on the Least Frequently Used (LFU) 

algorithm, or to the most recently used memory 

location based on the Most Recently Used algorithm 

(MRU) [37]. Specifically, LFU is used to retain the 

most frequently used information. 

One of the most serious weaknesses of this 

method is the fact that new data entering memory may 

be removed very soon. This may happen because they 

receive a very low counter, although they may be used 

very often after this assignment. Accordingly, the 

MRU algorithm first removes the most recently used 

memory components.  

This process has proven to be very effective in 

cases where the older elements are considered the 

most useful. The motivation for its use is the fact that 

once an information is retrieved, it will probably not 

be needed immediately again [37].  

The proposed MA/DCESN is developed with the 

employment of LRUA. Another advantage of this 

hybrid scheme is that all of its parameters are fully 

customizable. 

Specifically [37]:  
1. The weight 𝑤𝑡

𝑢 which is used at time t  
is a sum of the used read and write vectors. 
𝑤𝑡−1

𝑢  is the decayed last usage weight, where 
γ is the decay factor. 

2. The write vector is an interpolation between 
the previous reading weight (found in the last 
used position) and the previous least used 
weight (whose position is rarely used). 
The application of the sigmoid function on 
the hyperparameter α is the interpolation 
parameter. 

3. The least used weight 𝑤  𝑙𝑢 is scaled according 
to the usage weights 𝑤𝑡

𝑢, where each 
dimension retains the value 1 if it is less than 
the nth element and it has the value 0 in any 
other case [37]: 

𝑤𝑡
𝑢 = 𝛾𝑤𝑡−1

𝑢 + 𝑤𝑡
𝑟 + 𝑤𝑡

𝑤     (16)    

𝑤𝑡
𝑟 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑐𝑜𝑠𝑖𝑛𝑒(𝑘𝑡 , 𝑀𝑡(𝑖)))    (17) 

𝑤𝑡
𝑤 = 𝜎(𝛼)𝑤𝑡−1

𝑟 + (1 − 𝜎(𝛼))𝑤𝑡−1
𝑙𝑢     (18) 

𝑤𝑡
𝑙𝑢 = 1𝑤𝑡

𝑢(𝑖)≤𝑚(𝑤𝑡
𝑢 ,𝑛)     (19) 



  

Where 𝑚(𝑤𝑡
𝑢 , 𝑛) is the nth smallest element of the 

weight vector, 𝑤𝑡
𝑢. 

Finally, each memory string is updated when the 

least used position indicated by 𝑤𝑡
𝑙𝑢  is equal to zero. 

The update process is performed based on the 

following equation [37]: 

𝑀𝑡(𝑖) = 𝑀𝑡−1(𝑖) + 𝑤𝑡
𝑤(𝑖)𝑘𝑡 , ∀𝑖     (20) 

The analytical procedure presented above, is used 

by the proposed model to facilitate the learning 

process and to achieve adaptation in new situations 

after processing with only a few samples. At the same 

time it allows the rapid coding of new information by 

using external memory storage. In general, the 

proposed MA/DCESN is an NTM which consists of 

three main parts: The Controller, the Memory Bank 

and the Read/Write Heads, as presented in figure 2 in 

Appendix 1. 

The proposed architecture has 256 positions of 

memory, while the range of allowed position changes 

is obtained by circular shifts and replacement of 

records, based on the LRUA algorithm.  
It should be noted that the above parameters were 

obtained by following a trial and error approach. The 

most important decision in the architectural design of 

MA/DCESN is the type of neural network used as a 

controller. In particular, the decision to use an 

iterative architecture (RNN, LSTM) or a simple FNN 

network is very important.  

An iterative controller like LSTM has its own 

internal memory [38]. It also has significant 

computational resource requirements, adding high 

complexity to the model and the process is much 

slower. 

The aim was not only to prove that the proposed 

MA/DCESN is capable of effectively solving the 

given categorization problem, but also that it is able 

to generalize far beyond the range of training data in 

a feasible time and computational resources’ frame.  

Experiments were performed and various neural 

network architectures were compared. The selector 

finally chosen to be used is an extremely fast and 

highly efficient DESN. 

ESN [39] is an iterative neural network with input, 

a sparsely connected hidden reservoir layer and a 

simple linear readout output. The connection weights 

on each ESN reservoir, as well as the input weights, 

are random. The reservoir weights are scaled in such 

a way as to ensure the Echo State Property (ESP) [40]. 

ESP is defined as a state in which the reservoir is an 

"echo" of its entire entry history, which is partly 

determined by its architecture. 

The only distinct levels of the ESN are those of 

input u(n) and output y(n) which are determined by 

the problem. The hidden levels are grouped in a DR 

area and their number is indistinguishable. A 

percentage of the neurons in DR, are interconnected. 

This percentage is related to the sparsity of DR which 

is determined experimentally [41]. 

The synaptic compounds that unite the levels with 

each other and the DR are characterized by a value 

that determines the weights. In ESNs, each input 

neuron is connected via Win
ij weights (i-input neuron, 

j-neuron to DR) to each DR neuron [41]. These 

weights, although normalized, are determined 

randomly before training and their values are final as 

they do not change during training. Also each DR 

neuron is interconnected via Wjk weights to any other. 

The weights of these neurons, although 

normalized, are determined randomly before training 

and their values do not change. Finally, each DR 

neuron is connected via Wout
jm weights to the neurons 

of the output. These weights in the readout layer, are 

the only ones that are trained in order to get their final 

values. The basic architecture of an ESN network is 

described in figure 1. Where u (n) is the number of 

neurons in the input unit, x(n) is the number of 

neurons in the internal unit (which is essentially DR) 

and y(n) is the number of neurons in the readout layer 

[41].  

Development of a DESN Reservoir Computing 

architecture [42], requires the use of multiple 

reservoirs. A Deep Dynamical Reservoir (DDR) area 

is created with the properties mentioned above [43]. 

The DESN architecture is characterized by a 

stacked hierarchy of reservoirs, where at each time 

step t, the first repeating layer is fed from the external 

input u(t), while each successive layer is fed from the 

output of the previous one into the stack [42-43].  

The architectural organization of DDRs in DESN 

allows for general flexibility in the size of each layer 

Ηere we consider a hierarchical tank installation 

with repeating layers NL, each of which contains the 

same number of units NR. Moreover we use x(l)(t) ∈ 

𝑅𝑁𝑅 to declare the status of level l at time t. By 

omitting the bias conditions, the first level state 

transition function is defined as follows [42-43]: 

𝑥(1)(𝑡) = (1 − 𝑎(1))𝑥(1)(𝑡 − 1) +

𝑎(1) tanh (𝑊𝑖𝑛𝑢(𝑡) + 𝑊̂(1)𝑥(1)(𝑡 − 1))   (20) 

For each level higher than l >1 the equation has 

the following form [42-43]: 

𝑥(𝑙)(𝑡) = (1 − 𝑎(𝑙))𝑥(𝑙)(𝑡 − 1) +

𝑎(𝑙) tanh (𝑊𝑙𝑥𝑙−1(𝑡) + 𝑊̂(𝑙)𝑥(𝑙)(𝑡 − 1))  (21) 

Where 𝑊𝑖𝑛 ∈ 𝑅𝑁𝑅×𝑁𝑈 is the input weight matrix, 

𝑊̂(𝑙)∈ 𝑅𝑁𝑅×𝑁𝑅 is the recurrent weight matrix for 

layer l, 𝑊(𝑙)∈ 𝑅𝑁𝑅×𝑁𝑅 is the matrix containing the 

connection weights between layer l-1 and l, 𝑎(𝑙) is the 

leaky parameter of layer l and 𝑡𝑎𝑛ℎ is the Tangent 

Hyperbolic function [42-43]. 



  

In the DESN architecture, we must determine the 

number of neurons in the input unit, the size of the 

DDR, the depth of the architecture, the training mode 

and the number of nodes [42] in the readout layer [43]. 

4.1 Input Unit 

The number of neurons at the input level is usually 

determined by the requirements of the problem, the 

individual issues related to modeling at the level of 

available data, and the solution sought. 

The weights connecting the input level and DDR 

are taking random normalized values, and their 

population number is (K+1)×N where (Κ+1) is the 

number of neurons at the entry level along with the 

threshold. 

4.2 Deep Dynamical Reservoir 

The creation of DDR, presupposes that the 

reservoir allows previous network states to sound 

even after their passage. So if the network receives an 

input line similar to data in which it has been trained, 

it will follow the appropriate activation trajectory in 

the reservoir. This will generate the appropriate 

output signal and in case the network is satisfactorily 

tuned, it will be able to generalize from the data with 

which it has been trained. The reservoir acts both as a 

non-linear extension of the input data, but also as a 

memory.  

It is essentially a larger non-linear representation 

𝑥(𝑛) of the input data, 𝑢(𝑛). It is also used to store 

data as internal memory, providing temporal context. 

In this spirit, RNN-like architecture is used to ensure 

that history is preserved. The size of the reservoir is 

one of the most basic parameters. Larger size means 

easier to find a linear combination that can produce 

the desired result. Due to the fact that ESNs do not 

have very high computational costs in many cases the 

size of the reservoir can receive high values. The 

lower limit can be calculated approximately based on 

the desired number of values that the network should 

remember. So the largest number of values to be 

stored should not exceed Nx, i.e. the total size of the 

reservoir.  

Also the reservoir variable sparsity, indicates how 

sparse the connections between DDR neurons will be. 

It is a parameter that is determined during the 

development of the network. In many approaches the 

use of dilute reservoir is encouraged because it gives 

slightly better results. However, in relation to other 

parameters, sparsity does not have a high priority in 

the sense that it does not greatly affect the 

functionality of the network. 

Based on the DESN architecture, DDR is defined 

by the Win and W weight vectors, which are initialized 

randomly and normalized based on some parameters 

that can be set. The scaling used on these weights is 

usually the same as the one used on the weights Win. 

The leaking rate α is an independent parameter of 

reservoir neurons which translates to the speed at 

which the network will upgrade reservoir over time. 

That is, how fast the reservoir neurons will get the 

ideal value. The value of this variable can be derived 

from the time it takes for the network input to be 

converted to the desired output and usually the ideal 

value is calculated through the experimental method. 

One of the most important universal parameters of 

the reservoir is the spectral radius of the weights W of 

the DDR. This parameter expresses the maximum 

eigenvalue of the reservoir and sets a scale on the 

weights W. It essentially sets the maximum value that 

non-zero reservoir compounds can take. It is 

extremely important to maintain the ESP property, 

based on which the retained history should fade over 

a long period of time and not to depend on the original 

network conditions. 

In cases where this parameter is set to very high 

values, a chaotic situation develops in the network, in 

which the reservoir weights change uncontrollably 

and the network is not trained. 

4.3 Deep Architecture 

Deep learning systems have a Credit Assignment 

Path (CAP) [33] on their depth, which describes the 

chain of transformations from input to output and the 

potentially causal links between input and output. 

The CAP in the proposed DESN was performed 

experimentally, performing tests so that each level 

encodes a different range of dynamic characteristics, 

from the intermediate representations that are 

extracted [33, 41]. The main idea behind the proposed 

DESN design method is to stop adding new layers 

every time the filtration process becomes negligible. 

That is, when during addition of new layers, no 

intermediate representations are provided capable to 

contribute towards capturing or matching of the input 

data to the desired network responses of the output. 

In order to determine when the filtration effect 

becomes negligible, a thorough study was performed. 

It was proved experimentally following the trial and 

error method that the network in this set of tests tends 

to converge at a certain value, as we add more than 4 

levels. 

Our future goal is to create a heuristic algorithm 

for automatically determining the depth of DESN, 

which will be based on a search strategy technique, 

suitable for automatically determining the quality of 

the network, based on the training dataset. 

The DCESN is a hybrid of two of the most 

prominent forms of neural networks in modern 



  

engineering, namely a CNN [14] and a DESN 

architecture. 

The proposed DCESN introduced in this paper 

incorporates a classic CNN with convolutional filters 

with very small receptive fields 3×3. The 

convolutional stride and the spatial padding were 

defined to be equal to 1 pixel. Max-pooling is 

performed over 3×3 pixel windows with stride 3. The 

CNN architecture includes 3 convolutional layers 

with 4×4, 5×5 and 4×4 convolutional filters. The 

number of the convolutional filters for the respective 

layers are 32, 64 and 128. All of the convolutional 

layers are employing ReLU nonlinear activation 

function [33]:  

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) or 𝑅𝑒𝐿𝑈(𝑥) = {
0 𝑖𝑓 𝑥 < 0
𝑥 𝑖𝑓 𝑥 ≥ 0

    (22) 

However in the last layer, the Softmax activation 

function is used instead of the Sigmoid [33]:  

𝜎(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

, 𝑗 = 1, … , 𝐾   (23) 

This is done due to the fact that Softmax performs 

better in multi-classification problems, like the one 

examined here, whereas the Sigmoid is used in binary 

classification tasks.  

In Softmax, the sum of probabilities (SUP) is 

equal to 1 and high values have the highest 

probabilities. On the contrary, in Sigmoid the SUP 

must be different than 1 and the high values have high 

probabilities, but not the highest ones.   

In the proposed model, the Learning Rate was set 

to be equal to 0.001 and the cross-entropy error was 

used as the loss function [33].  

Bootstrap Sampling was employed to enhance the 

efficiency of the approach [44]. The reason that this 

technique is used in this work is that in the specific 

problem of high complexity, the prediction results are 

multivariate. This can be attributed to the sensitivity 

of the correlational models to the data and to the 

complex relationship that describes them. An 

important advantage of the proposed system is the fact 

that it offers a stable prediction mode. The overall 

behavior of a multiple model is less noisy than that of 

a single one, while for each case, the overall risk of a 

particularly poor choice is reduced. It is important that 

the dispersion of the expected error was observed to 

be concentrated close to the mean error value [44].  

Usually, errors of precision are probabilistic. This 

means that the experimenter is saying that the actual 

value of some parameter is probably within a 

specified range. For example, if the half-width of the 

range equals one standard deviation, then the 

probability is about 68% that over repeated 

experimentation the true mean will fall within the 

range; if the half-width of the range is twice the 

standard deviation, the probability is 95%, etc. 

Thus, we can use the standard deviation estimate 

to characterize the error in each measurement. 

Another way of saying the same thing is that the 

observed spread of values in this example is not 

accounted for by the reading error. If the observed 

spread were more or less accounted for by the reading 

error, it would not be necessary to estimate the 

standard deviation, since the reading error would be 

the error in each measurement. 

4.4 Readout Layer 

The weights connecting each neuron from the 

DDR to each neuron from the output layer have a 

population number Ν×L. These weights do not get 

random values as long as their values are determined 

by the network’s training. 

5. Dataset and Results 

SAR is a unique form of radar that can penetrate 

the clouds, collect data under all weather conditions, 

day and night. Data from SAR satellites could be 

particularly valuable in disaster management, 

especially in cases where difficult weather and clouds 

cover the optical capabilities of traditional electro-

optical sensors. Despite their advantages, there is 

limited open data available to researchers to 

investigate the effectiveness of SAR data. 

The dataset used in this research is an open-ended 

data set, available freely from [46] and it has been 

used for SpaceNet Challenge SN6: Multi-Sensor All-

Weather Mapping. 

The dataset uses a combination of SAR and 

electro-optical data sets, namely half-meter SAR 

images from Capella Space and half-meter electro-

optical images from MaxV’s WorldView 2 satellite 

[46]. The area of interest is Europe’s largest port, 

Rotterdam, an area with thousands of buildings, 

vehicles and boats of various sizes. It is the ideal point 

to create an effective test framework for merging SAR 

and electro-optical data. In particular, the training 

dataset contained both SAR and electro-optical 

images, while the test and evaluation data sets 

contained only SAR data.  

Therefore, electro-optical data can be used to 

preprocess SAR data in some way, such as: coloring, 

domain customization, or image translation, but they 

cannot be used to directly map buildings. The data set 

was structured to mimic real-world scenarios where 

historical electro-optical data may be available. 

However, simultaneous collection of electro-optics 

with SAR is often not possible, due to inconsistent 

sensor trajectories, or bad weather conditions, that can 

make electro-optical data useless. 



  

The Dataset is related to the city of Rotterdam 

covering an area of over 120 km2. It comprises both 

high resolution synthetic aperture radar (SAR) data 

and electro optical (EO) images of ~48,000 buildings’ 

footprint labels [47]. 

The training data comprises 450 m x 450 m tiles 

with associated building footprint labels of SpaceNet 

AOI 11 – Rotterdam (39.0 GB) and the testing data 

are 450m x 450m tiles of SpaceNet AOI 11 Rotterdam 

(16.9 GB). The data is hosted on AWS (Amazon Web 

Services) as a Public Dataset. It is free to download 

from [47]. 

The experiments setup process of the DCESN was 

performed following a supervised approach. 

Specifically, for each input u(n) ∈ RNu the desired 

outcome is ytarget(n) ∈ RNy. Variable n represents 

discrete time and it takes values in the closed interval 

[1, T] where T is the number of the input data vectors 

in the training set. The desired output ytarget(n) and the 

actual output y(n) are data vectors from the SAR 

dataset.  

The purpose of network’s training is to learn from 

a model with output y(n) ∈ RNy, where y(n) identifies 

as accurately as possible with ytarget(n), reducing error 

E(y,ytarget). The ultimate target is generalization 

ability. 

Root-Mean-Square Error (RMSE) was used as the 

error function (11) [33]: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃(𝑖𝑗) − 𝑇𝑗)

2𝑛
𝑗=1   (24) 

Where 𝑃(𝑖𝑗) is the forecasted value by program i for a 

simple assumption j and 𝑇𝑗 is the target value for j.  

It should be noted that the input level neurons are 

essentially inactive, as long as they do not perform 

any calculation. Their purpose is to transmit the 

network input to the DDR. 

The following equation was used to update the 

values of the neurons in DDR [42-43]: 

𝑥̃(𝑛) = 𝑡𝑎𝑛ℎ (𝑊𝑖𝑛[1; 𝑢(𝑛)] + 𝑊𝑥(𝑛 − 1)) (25) 

Where 𝑥̃(𝑛) ∈ RNx defines the update values for each 

neuron of the DDR. Also, Tanh is the update function, 

u(n) is the input at temporal point n and 1 declares the 

value of the threshold (bias).  

The final value of the neurons in DDR is 

estimated by the following equation 13 where α is the 

leaky integration rate α ∈ (0, 1] [42-43]. 

𝑥(𝑛) = (1 − 𝛼)𝑥(𝑛 − 1) + 𝑎𝑥̃(𝑛) (26) 

By assigning the value α=1 in the leaking rate, we 

can avoid to perform leaky integration in the neurons’ 

update, thus 𝑥̃(𝑛) = x(n) [42-43]. 

The weights Win and W, which contribute to the 

values of x(n) are initially randomized, in order to 

protect our data from noise that may arise in the early 

stages of the process. In this way we avoid arbitrarily 

adjusting the x(n) values in training and specifically 

the ones that lead to an abnormal network boot state. 

Upgrading the neurons to the output level based 

on which the neurons y(n)∈RNy are defined by the 

internal product of the output weights Wout ∈ 

RNy×(1+Nu+Nx) and the vector that is developed by 

combining the threshold value and the vectors u(n) ∈ 

RNuy(n) where x(n) ∈ RNx, is calculated by the following 

function 14 [42-43]: 

𝑦(𝑛) = 𝑊𝑜𝑢𝑡[1; 𝑢(𝑛); 𝑥(𝑛)] (27) 

The update of the output neurons Wout which 

changes the weights in a way that the output y(n) can 

be as close as possible to the desired result ytarget(n), is 

performed by the following equation 15 [42-43]: 

𝑊𝑜𝑢𝑡 = 𝛶𝑡𝑎𝑟𝑔𝑒𝑡𝑋𝑇(𝑋𝑋𝑇 + 𝛽𝛪)−1 (28) 

It should be mentioned that β is the Optimization 

Parameter used to avoid overtraining.  

The proposed DCESN model an online learning 

algorithm was used. Based on this algorithm, the 

weights of the network change at any time, (at each 

input line of the training data). 

The Recursive Least Square algorithm (RLS) was 

used [45]. RLS operates based on the integration of 

the fault history in the network upgrade calculations. 

In this research, RLS was used to update the weights 

Wout. 

The proposed algorithm is using the Forgetting 

Factor λ (FF) which exponentially defines the 

importance of the error history. For example if λ=1, 

the error history has the same weight as the network’s 

error at this time. If λ<1, the error history affects the 

network over time. 

This means that the error at time n has a higher 

weight than the error at time n-1.  

The error function in the RLS algorithm is 

described by the following equation 16 [45]. 

𝛦(𝑘) = ∑ 𝜆𝑘−𝑖𝑒(𝑘)2𝑘
𝑖=1   (29) 

The above error function includes the parameter 

e(k) which declares the difference between the desired 

value ytarget and the actual output y for temporal 

moment k (equation 17) [45]: 

𝑒(𝑘) = 𝑦𝑡𝑎𝑟𝑔𝑒𝑡(𝑘) − 𝑦(𝑘)  (30) 

The weight update function of the RLS algorithm 

changes over time, for every temporal moment k [45]:  

𝑊𝑜𝑢𝑡(𝑘 + 1) = 𝑊𝑜𝑢𝑡(𝑘) + 𝑒(𝑘)𝑔(𝑘)  (31) 

Where e(k) is defined by the above equation 18 

and g(k) is determined by the following function 19 

that determines the significance of the error history in 

shifting weights for x neurons in DDR [45]:  

𝑔(𝑘) =
𝑃(𝑘−1)𝑥(𝑘)

𝜆+𝑥(𝑘)𝑇𝑃(𝑘−1)𝑥(𝑘)
 (32) 

Where P(k-1) is determined by the following equation 

20 [45]: 

𝑃(𝑘) = 𝜆−1𝑃(𝑘 − 1) − 𝑔(𝑘)𝑥𝑇(𝑘)𝜆−1𝑃(𝑘 − 1)(33) 



  

This is a recursive function that allows error 

history to be taken into account when the weights Wout 

are updated. Also λ is the forgetting factor and x the 

DDR neurons. 

For the case of the “SpaceNet” Multi-Sensor All-

Weather Mapping dataset, the ranking was based on 

the SpaceNet Metric (SPAN) which is using F1-

Score. It is based on the intersection over union of the 

footprints of two buildings, with a threshold equal to 

0.5. F1-Score is calculated by taking the total True 

Positives (TP), False Positives (FP), and False 

Negatives (FN) for the total number of buildings’ 

footprints present in the testing datasets. Specifically, 

the F1-Score is defined by the equation below [33]: 

  F1 − Score = 2X
TP

TP+FP
 x 

TP

TP+FN
TP

TP+FP
 +

TP

TP+FN

 (34) 

Τhe proposed approach was compared with other 

corresponding Deep Learning architectures, which 

can be summarized as follows: 

  

1. 1-D CNN (1DCNN): The network’s 

architecture was designed as in [48] and it 

includes the input, the convolutional, the 

max-pooling, the fully connected, and the 

output layers. 

2. The number of convolutional filters equals 

20, the length of each filter is 11 and the 

pooling size has the value 3. Finally, 100 

hidden units are included in the fully 

connected layer.   

3. 2-D CNN (2DCNN): The architecture was 

designed using the one of [49] as prototype. 

It comprises of three convolutional layers 

equipped with 4×4, 5×5 and 4×4 

convolutional filters (COF). The 

convolutional layers –except the last one- are 

followed by max-pooling layers. Moreover, 

the number of the COF corresponding to the 

convolutional layers are 32, 64 and 128, 

respectively.   

4. Simple Convolutional/Deconvolutional 

Network (SCDN): This is the network 

comprising of simple convolutional blocks. It 

employs the unpooling process which is 

applied in [50-51]. 

5. Residual Convolutional/Deconvolutional 

Network (RCDN): This architecture uses 

residual blocks and a more accurate 

unpooling function [52]. 

The final parameters used in each of the 4 ESNs 

for the development of the DESN in the context of this 

proposal, were determined through a trial and error 

procedure and are presented in table 1 below. The trial 

and error method was used to deliver optimal 

hyperparameters for a known pattern. The goal is to 

reduce the prediction error in data samples with 

unknown tags, given that there is a small set of 

support for fast learning that works as fine-tuning. A 

step-by-step example of the process run is presented 

below: 

1. Creation of a subset of 𝐿𝑠 ⊂ 𝐿 tags; 
2. Creation of an 𝑆𝐿 ⊂ 𝐷 training subset and a 

𝛣𝐿 ⊂ 𝐷 prediction set. Both of these subsets 
include labeled data belonging to the subset 
𝐿𝑠, y∈𝐿𝑠,∀(x,y)∈ 𝑆𝐿, 𝛣𝐿; 

3. The optimization process uses the 𝛣𝐿  subset 
to calculate the error and update the model 
parameters via error propagation. 

Each sample pair (𝑆𝐿 , 𝛣𝐿) is also considered as a 

data point. Thus, the model is trained so that it can 

generalize to new, unknown datasets. 

Table 1. ESN parameters 
Parameter Value Explain 

Max 

Iterations 
100 

Specifies the maximum number of iterations the 

network required for its training. 

Input Size 60 Defines the number of neurons in the input layer 

Reservoir 

Size 
210 

Defines the number of DR neurons, which map the 

distribution of the given problem’s data.  

Leaking Rate 0.7 

It concerns the speed with which the network 

upgrades the reservoir in relation to time and receives 

values in (0, 1].  

Sparsity of 

Reservoir 
0,4 

Determines how thin the reservoir is. That is, it 

determines the number of synaptic connections to be 

present in the DR, in order to ensure a balance in the 

mode of operation of the network. 

Spectral 

Radius 
1.25 

Basic parameter of the reservoir. It is used to set a 

maximum value for the weights that connect the 

neurons to each other.  

Forgetting 

Factor 
0.6 

RLS parameter defining how less important is the 

error history exponentially. 

Optimization 

Parameter 
1e-8 

This variable is used as a measure to avoid network 

overtraining and it is applied to the weight upgrade 

equation. 

Larning Rate 0.53 

It is the Learning rate of the network. An mean 

learning rate of 0.53 was used. It uses dynamic 

boundaries [0.01, 0.85] aiming to overcome the low 

generalization performance. 

 

The classification performance results of the 

proposed approach, compared to the ones obtained by 

other methods are presented in table 2 below. It 

provides information on the results of the McNemar 

test of the proposed network and the other approaches 

examined. The McNemar statistical test was 

employed to evaluate the importance of classification 

accuracy derived from different approaches: 

𝑧12 =
𝑓12 − 𝑓21

√𝑓12 + 𝑓21

 

where 𝑓𝑖𝑗 is the number of correctly classified samples 

in classification 𝑖, and incorrect one are in 

classification 𝑗. McNemar’s test is based on the 

standardized normal test statistic, and therefore the 

null hypothesis, which is “no significant difference,” 



  

rejected at the widely used 𝑝 = 0.05 (|𝑧| > 1.96) 

level of significance. 

We have used hardware based on the GPU 

chipset, optimized for deep learning software 

TensorFlow. 
 

Table 2. Classification Performance 
 1DCNN 2DCNN SCDN RCDN Μ-Α/DCESN 

OA 80.87 82.91 81.96 83.68 89.74 

Precision 80.95 82.90 82.00 83.70 89.80 

Recall 81.00 82.95 81.95 83.70 89.75 

F1-Score 81.00 82.90 82.00 83.70 89.75 

avg5ETT* 698 sec 881 sec 704 sec 751 sec 623 sec 

McNemar 35.988 34.311 34.706 35.624 35.545 

* average of the 5 epochs training time produced by 10 repeats of 
the methodology  

 

As can be seen from the comparative results, the 

proposed MA/DCESN has achieved improved results 

in relation to the respective competing systems.  

One of the main advantages of the introduced 

system is its high reliability which is clearly shown by 

the high values of the F1-Score. This can be 

considered as the result of successful data processing 

that allows the retention of the most relevant data for 

the upcoming forecasts.  

The proposed approach to reducing the 

generalization error is to use a larger model. This may 

require the use of regularization during training that 

keeps the weights of the model small. More 

specifically, regularization in the proposed 

methodology adds additional information to 

transform the ill-posed problem into a more stable 

well-posed problem. This leads the model to map the 

inputs to the outputs of the training dataset in such a 

way that the weights of the model are kept small. This 

weight decay approach has proven very effective in 

the DESN model. Regularization methods like weight 

decay provide an easy way to control overfitting for 

large neural network models [70]. 

The integration of external memory, makes it 

possible to memorize useful data from past processes, 

while facilitating the rapid integration of new 

information, without the need for retraining. 

The proposed standardization offers the 

possibility of managing multiple intermediate 

representations. The hierarchical organization of 

reservoirs in successive layers is naturally reflected in 

the structure of the dynamics of the developed system. 

This scaling also allows the progressive 

classification and exploration of input data interfaces 

across the levels of the hierarchical architecture, even 

if all levels share the same hyperparameters’ values. 

Furthermore, the multilevel architecture of the 

successive reservoirs, compared to the shallow ones 

respectively, yielded a dynamic behavior that 

represents a transitional state of how the internal 

representations of the input signals are determined 

[71]. This leads to high performance even for 

problems that require long internal memory intervals. 

Correspondingly, the hierarchical set of reservoirs 

is more efficient in cases where short-term network 

capabilities are required, than the corresponding 

shallow architectures, which would have to work with 

the same total number of iterative or recursive units in 

order to achieve similar results [72]. 

Accordingly, in terms of computational 

efficiency, the introduction of a multilevel 

construction of reservoirs in the design of a neural 

system, also results in a reduction in the number of 

non-zero repetitive connections on many-core 

architectures [73]. This implies low complexity and 

time savings, which is required to perform specialized 

tasks as presented in Table 2. Also, segmentation 

maps can be produced as soon as at least a single 

satellite image acquisition has been successfully and 

subsequently improved, once additional imagery 

becomes available. In this way, we are able to reduce 

the amount of time needed to generate satellite 

imagery-based disaster damage maps, enabling first 

responders and local authorities to make swift and 

well-informed decisions in responding to disasters. 

6. Conclusion 

This paper proposes a novel Geo-AI disaster 

response computer vision system that uses meta-

learning memory-augmented Deep reservoir 

computing for domain adaptation. The purpose is to 

map a disaster area [53-60] using SAR radar material, 

which can penetrate the clouds and collect data day 

and night and in all weather conditions.  

The reliability of the proposed system was tested 

in the recognition of scenes from remote sensing 

images in the SpaceNet Multi-Sensor All-Weather 

Mapping dataset. This fact proves its capacity to be 

used in higher level Geospatial Data Analysis 

processes, such as multidisciplinary classification, 

recognition, and monitoring of specific patterns. It 

can also be used in the fusion of SAR and multi 

sensors’ data for disaster response [74-76].  

7. Further work 

The proposals for evolution and future 

development of MA/DCESN, focus on the 

development of reservoirs with Spiking neurons. 

These types of neurons require minimum training 

time, they do not require delicate manipulations in 

determining their operating parameters, and they can 

determine the appropriate output weights for the most 

efficient solution of a problem.  



  

Also, it would be important to study the expansion 

of this system by implementing more complex 

architectures in an environment of parallel and 

distributed systems that share the same memory.  

Moreover, we aim to enhance the research by 

newer and more powerful supervised machine 

learning/classification algorithms such as Enhanced 

Probabilistic Neural Network [77], Neural Dynamic 

Classification algorithm [78], Dynamic Ensemble 

Learning Algorithm [79], and Finite Element 

Machine for fast learning [80].  

Finally, a future extension would be the 

development of a network with methods of self-

improvement and automatic redefining of its 

parameters. This would result in a heuristic algorithm 

for determining the depth of DCESN, which will be 

based on an ensemble [81] search strategy [82], 

suitable for the automatic determination of the 

networks’ quality based on the training set. 
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Fig. 2. Architecture of the proposed Μ-Α/DCESN 

 


