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A B S T R A C T   

Conventional optimization methodologies may be hindered when the automated search is stuck into local optima 
because of a deceptive objective function landscape. Consequently, open ended search methodologies, such as 
novelty search, have been proposed to tackle this issue. Overlooking the objective, while putting pressure into 
discovering novel solutions may lead to better solutions in practical problems. Novelty search was employed here 
to optimize the simulated design of a targeted drug delivery system for tumor treatment under the PhysiCell 
simulator. A hybrid objective equation was used containing both the actual objective of an effective tumor 
treatment and the novelty measure of the possible solutions. Different weights of the two components of the 
hybrid equation were investigated to unveil the significance of each one.   

1. Introduction 

In optimization theory and machine learning, the idea of searching 
for possible solutions by putting more effort on the areas close to the 
optimum is well established. Nevertheless, these areas are determined 
based on an objective function that most definitely is riddled with local 
optima. It is logical that when the problem and, thus, its objective is 
complicated, the objective function will contain more local optima. A 
shortcoming of using solely an objective function is that areas in the 
search space, that may be stepping stones towards finding the global 
optimum, are neglected. 

Novelty search [1] is an evolutionary search method that does not 
use as a guide the effectiveness of a solution, but its novelty measure. 
The novelty measure [9] is a parameter of the considered solution that 
indicates how far in the behaviour space is located compared with 
previously considered solutions. Novelty search was motivated by the 
fact that greedy search methods, which depend on a specific objective 
function, may suffer from deceptive evolution. Thus, the convergence to 
the optimum objective will in fact be hindered by this deception [1]. 
Moreover, novelty search was proposed to tackle the limited advance 
towards higher complexity that was observed when utilizing 
objective-based search methods based on objective functions. 

Novelty search overlooks completely the objective, while it strives 

towards finding something new every time. Namely, the most novel 
behaviour that can be derived by utilizing each solution from the search 
space. The fact that multiple individuals merge to a single point in the 
behaviour space makes the methodology computationally viable. 
Moreover, as multiple solutions can merge to the same point in the 
behaviour space, it will be expected from novelty search to continue the 
search towards more complex solutions. Thus, it is expected to find a 
good solution in the way up the complexity ladder. This enables the 
mitigation of the concept of open-ended search (from simulated artificial 
life worlds) to real problems [2]. 

This methodology managed to outperform objective driven search in 
several real world problems. In the study where it was first suggested, an 
investigation on how to design artificial neural networks (ANNs), 
through neuro-evolution, that navigate a robot through a maze was 
performed [1]. Because of local optima in the objective space, namely 
dead-ends located close to the final target, the novelty search performed 
better than a greedy search. Risi et al. [3] implemented novelty search to 
a dynamic, reward-based single T-Maze problem. This kind of problem 
(and a couple of variations, like double T-Maze domain and a bee 
domain task studied in Ref. [3]) is equipped with an essential deceptive 
behaviour, that the novelty search managed to handle better than the 
well-established objective-based evolution. 

PhysiCell [4] is a multicellular, agent-based simulator that was 
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designed to extend the BioFVM [5] framework, to form a virtual labo
ratory. PhysiCell is open source and offers several sample projects, one 
of which is studied here. More specifically, sample project “anti-cancer 
biorobots” [4] was developed as a possible tool to investigate the tar
geted cancer treatment, i.e. with drugs that adhere to specialized 
nanoparticles that would target specific molecules of the cancer cells. 

The notion of PhysiCell serving as a guide to optimize the design of 
nanoparticle based cancer treatments [6,7] and discover cancer immu
notherapies [8] was previously suggested. In the study of Preen et al. 
[6], PhysiCell was utilized to deliver surrogate-assisted evolutionary 
algorithms optimising the targeted delivery of a therapeutic compound 
to cancerous tumor cells. In the study of Tsompanas et al. [7] it was used 
under the same application of designing a therapeutic compound de
livery system, as a target simulator for a new memetic algorithm, that is 
inspired by the fundamental haploid-diploid lifecycle of eukaryotic or
ganisms. Finally, Ozik et al. [8] combined PhysiCell with active learning 
and genetic algorithms to dynamically probe a parameter space and 
unveil optimal cancer regression regions of immunotherapies. 

2. Novelty search algorithm 

The implementation of novelty search is possible by utilizing any 
evolutionary method, while changing the objective-based fitness func
tion with a novelty measure [9]. As a result, this methodology compels 
the discovery of novel individuals. This new measure that will indicate 
how divergent each solution is compared with others in a behaviour 
space, should be defined based on the problem given. Choosing what the 
behaviour space will represent is not a priori obvious for every problem, 
as is the fitness function. 

The novelty measure should represent how remotely located is the 
behaviour of every new individual, from the rest of the so far known 
ones, in the behaviour space. Thus, every new individual is compared 
with an archive of members of the previous generations in terms of their 
behaviour, and not their genotypes, to determine the new individual’s 
novelty. This archive contains individuals that were considered novel 
during previous generations. A well-established measure to indicate that 
is sparseness [1], which can be defined as the average distance of the 
point under study with the k-nearest neighbors and given in the 
following equation. 

ρðxÞ¼ 1
k
Xk

i¼0
distðx; μiÞ (1)  

where ρ is the sparseness measure, k is the number of nearest neighbors 
considered, μi is the ith nearest neighbor, x is the individual under study 
and dist is a function returning the distance of the two points in the 
behaviour space. Consequently, the individuals that are located far away 
from clusters of others are assigned with higher sparseness values and, 
thus, are considered more novel. 

Similar to a conventional fitness function space of a real problem, 
behaviour space can not be perfectly mapped beforehand its investiga
tion by the evolutionary methodology. As a result, the novel individuals 
can be discovered only through an exploration procedure, analogous to 
locating the areas close to optima of the conventional objective. More
over, novelty search has an inherent coevolutionary nature, given that 
the sparseness is calculated as a distance from previously discovered 
novel individuals throughout the evolution process. 

When a new individual has a comparably large sparseness/novelty 
measure value, meaning it is novel in the present generation, it is added 
in the aforementioned archive of novel individuals. Therefore, having 
this archive as a guide of where the search procedure have already 
sought for solutions, the methodology strives towards unexposed areas 
of the behaviour space, most probably containing more complex and 
better solutions. 

3. Methodology 

The optimization of the parameter set that determines the efficiency 
of nanoparticles in a cancer treatment, defined as worker agents in 
simulator PhysiCell (v.1.5.1) [4] was investigated here. Namely, sample 
project “anti-cancer biorobots” [4] was utilized to simulate the effect of 
different kinds of nanoparticles. For instance, the result of a simulation is 
demonstrated in Fig. 1, where blue dots depict the therapeutic com
pound that is deposited by the nanoparticles (red dots) close to the 
cancer cells (green dots). Cancer cells decay and eventually die 

Fig. 1. Snapshot of simulation of PhysiCell [4] (left) and extraction of positioning of NPs (right). Red dots represent NPs, blue dots represent the therapeutic 
compound and green dots the cancer cells. The black star (right) is the average positioning of the ensemble of the NPs which is translated and used as the behaviour of 
the solution. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Unaltered parameters of PhysiCell simulator.  

Parameter Value 

Damage rate 0.03333 min� 1  

Repair rate 0.004167 min� 1  

Drug death rate 0.004167 min� 1  

Elastic coefficient 0.05 min� 1  

Cargo O2 relative uptake  0.1 min� 1  

Cargo apoptosis rate 4.065e-5 min� 1  

Cargo relative adhesion 0 
Cargo relative repulsion 5 
Maximum relative cell adhesion distance 1.25 
Maximum elastic displacement 50 μm  
Maximum attachment distance 18 μm  
Minimum attachment distance 14 μm  
Motility shutdown detection threshold 0.001 
Attachment receptor threshold 0.1 
Worker migration speed 2 μm=min  
Worker apoptosis rate 0 min� 1  

Worker O2 relative uptake  0.1 min� 1   
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(different shades of green color dots in Fig. 1), due to the proximity of 
the therapeutic compound (for more details refer to Ref. [4]). 

As population based optimization methodologies were used, in
dividuals were defined in a 6-D space of possible combinations of the 
simulated nanoparticle parameters. These parameters along with their 
ranges are: attached worker migration bias [0,1], unattached worker 
migration bias [0,1], worker relative adhesion [0,10], worker motility 
persistence time (in mins) [0,10], worker relative repulsion [0,10] and 
the cargo release O2 threshold (in mmHg) [0,20]. All other parameters of 
the simulator were not modified throughout the evolutionary process 
and set at values same as in the initial distribution of the simulator 
(PhysiCell v.1.5.1 [4]), illustrated in Table 1. 

The scenario of the sample project “anti-cancer biorobots” involves 
the initialization of a 200μm radius collection of cancer cells (approxi
mately 570 simulation agents) which then grows for 7 days by dupli
cating randomly chosen cancer cells. Then the therapy is applied for 3 
additional days. The therapy is comprised by 50 simulation agents 
representing nanoparticles and 450 simulation agents representing the 
therapeutic compound. 

To alleviate a part of the effect of the stochastic nature of the 
simulator on the results, a single tumor was used for testing every 
possible individual in the search space. The aforementioned tumor was 
produced after evolving in the simulator an initial 200μm radius 
collection of cancer cells for a simulated period of 7 days. Then, for each 
test the fully grown tumor was loaded to the simulator (after changes in 
the initial source code) and the treatment was applied immediately. The 
test was finalized after 3 days from the introduction of the treatment (an 
example is illustrated in the left part of Fig. 1), namely a total simulation 
time of 10 days from initial 200 μm radius tumor. Nonetheless, to further 
minimize the effect of the stochastic procedure, the average of the 
outputs after 5 runs of the simulator with the same set of parameters was 
examined. The objective fitness of each solution was determined as the 
remaining cancer cells in the simulated area after the 3 days of simulated 
treatment. Note that the execution time for testing each possible solution 
(5 runs of the simulator with the same parameters and averaging re
sults), on an Intel® Xeon® CPU E5-2650 (using 8 of the 48 cores) at 2.20 
GHz with 64 GB RAM requires approximately 6 min of wall-clock time. 

As a reference point, the optimization of the worker agents of 
PhysiCell was attempted by a generic genetic algorithm (GA). The 
population of the GA was of size P ¼ 20. The tournament method was 
used for parents’ selection and replacement by mutated offspring with 
size T ¼ 2. Moreover, uniform crossover with probability X ¼ 80% was 
implemented and mutation rate per allele of μ ¼ 20% with random step 
size of s ¼ ½ � 5; 5�%. Note that the population was evolved in genera
tions (here for 10 generations), namely all individuals from the previous 
population were compared with the offspring and replaced appropri
ately to form the next generation. 

For the proposed methodology of novelty search, the same algorithm 
as in the aforementioned was used, whereas the fitness function was 
altered to incorporate the novelty measure. It is noteworthy that despite 
the fact that the population size is not substantially large, it is chosen 
due to a limited computational load budget. Moreover, using the same 
population size for both algorithms alleviates any effects that the trade- 
off between accuracy and execution time may impose. It is suggested 
that novelty search can be implemented in hybrid fitness functions, 
using both novelty measure and the objective [10,11]. Using that as a 
motivation, we designated a hybrid fitness function as in the following: 

fitness¼
rcc

rccthr
�

sparseness
sthr

(2)  

where rcc is the remaining number of cancer cells after the 3 days of the 
cancer treatment and sparseness the average distance of the new in
dividual’s behaviour from the 5 nearest neighbors in the behaviour 
space (as defined in Eq. (1)). Moreover, rccthr is a weighted parameter to 
normalize the values of the remaining number of cancer cells. The 

assigned value is equal to 1400 for the following experiments, in order to 
normalize the first part of the fitness function in a range of ½0;1�. Finally, 
sthr is a weighted parameter to normalize the values of the sparseness (or 
novelty measure). For the following experiments this parameter is tak
ing values in the range of 200–1000 (with intervals of 200), in order to 
normalize similarly the second part of the fitness function in a range of 
½0; 1�. The higher values of sthr obviously result to weaker effects of the 
novelty measure to the hybrid fitness function. 

The output of each solution in the behaviour space was defined as the 
center of gravity of the ensemble of worker agents at their final position 
after 3 days of simulated treatment. More specifically, the placement of 
the collection of nanoparticles in the simulated area (an example is 
depicted in the right part of Fig. 1 as a black star). This behaviour is 
easily calculated by the average of the coordinates of all the worker 

Fig. 2. Average and best actual fitness of individuals in each generation for the 
simple GA. 

Fig. 3. Average and best actual fitness of individuals in each generation for the 
hybrid fitness function with sthr ¼ 200. 
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agents. Consequently, as in previous works of novelty search [1,12], the 
topology of the result was taken into account, which is ignoring the 
actual objective. 

4. Results 

To make the comparison between different algorithms meaningful 
the initial population for every case is composed by the same in
dividuals. Three different sets (of P ¼ 20 individuals) of initial pop
ulations were tested. The outputs of using a generic GA and the hybrid 
fitness function (as described in Eq. (2)) with different normalization 
parameter sthr are depicted in Figs. 2–7. These figures illustrate the 
average actual fitness of the population for every generation and the 
actual fitness of the best individual found in each generation. By the 

term actual fitness, we define the number of remaining cancer cells in 
the simulated area, not to be confused with the hybrid fitness function 
used in novelty search method and given in Eq. (2). 

From the results in Figs. 2–7 it is established that while the simple GA 
provides a better (or at least the same) fitness for every generation, the 
novelty search method presents a more erratic behaviour. Namely, with 
sthr ¼ 200 it does not manage to find a better solution than the initial 
randomly generated one, on the contrary it searches the solution land
scape without any profound advance in fitness. However, for higher 
values of the parameter sthr (meaning smaller significance of the novelty 
measure compared with the actual fitness), the searching method 
manages to optimize the solution at least briefly in the extend of the 10 
generations. More specifically, as depicted in Figs. 4–7 there is a decline 
in the amount of remaining cancer cells (actual fitness) for the up to the 

Fig. 4. Average and best actual fitness of individuals in each generation for the 
hybrid fitness function with sthr ¼ 400. 

Fig. 5. Average and best actual fitness of individuals in each generation for the 
hybrid fitness function with sthr ¼ 600. 

Fig. 6. Average and best actual fitness of individuals in each generation for the 
hybrid fitness function with sthr ¼ 800. 

Fig. 7. Average and best actual fitness of individuals in each generation for the 
hybrid fitness function with sthr ¼ 1000. 
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6th generation, but then the novelty measure seems to be putting more 
pressure into finding more novel solutions than remaining the fittest in 
the population. The decline in the actual fitness is more profound for the 
middle values in the range of the sthr parameter, specifically for sthr ¼

800. 
To better compare the results of the search method with different sthr 

parameters and the simple GA, Figs. 8–10 are provided. Each figure is 
containing the results of every run, namely the use of different methods 
in the same initial population of P ¼ 20 individuals. 

Throughout all the different runs, it can be observed that novelty 
search yields more erratic outputs when studying the actual fitness. An 
outcome that is expected, given the fact that the hybrid fitness function 
used in this search method contains the novelty measure that completely 
ignores the actual fitness of the solutions. Nevertheless, it can be noticed 
that while in the final results (after 10 generations of artificial evolution) 
simple GA is providing better solutions, in most of the initial genera
tions, novelty search is providing better solutions. In particular for sthr 
parameters higher than 400. 

This fact is better illustrated in Fig. 11. Here the best individual 

discovered until the 4th generation and throughout all the generations is 
presented for the simple GA and the different cases of the hybrid novelty 
search for the first run. Despite the fact that the simple GA seems to 
outperform the novelty search throughout the 10 generations, it seems 
that the novelty search with sthr � 600 outperforms the simple GA for up 
to the 4th generation. 

The same finding stands for all three runs (different initialization of 
the comparison test). This can be realized by Figs. 12 and 13 rendering 
the boxplots of the best individual in terms of actual fitness up until the 
4th generation and throughout the length of the all the generations. 

5. Conclusion 

Novelty search is motivated by the need to overcome the problems of 
deception and local optima inherent in objective optimization. Ignoring 
the objective completely or using hybrid fitness functions including a 
novelty measure, may often benefit the search of a better solution. In this 
study, this methodology was employed to optimize the design of tar
geted drug delivery systems, aiming cancerous tumours. The solutions 
were evaluated by PhysiCell simulator, namely by its sample project 
“anti-cancer biorobots”. While PhysiCell [4] was previously studied 

Fig. 8. Cumulative results of first run. Best actual fitness of individuals in each 
generation for all sthr parameters compared with the simple GA. 

Fig. 9. Cumulative results of second run. Best actual fitness of individuals in 
each generation for all sthr parameters compared with the simple GA. 

Fig. 10. Cumulative results of third run. Best actual fitness of individuals in 
each generation for all sthr parameters compared with the simple GA. 

Fig. 11. Best actual fitness of individuals in 4th generation and throughout all 
generations. 
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under different optimization algorithms [6–8] that were always guided 
by conventional objectives, here the evolutionary search of solutions is 
guided by including the novelty measure of these solutions considered in 
their behaviour space. 

The association of the fitness function with a novelty measure rather 
than only the objective proved to lead to more efficient solutions faster 
in the initial steps of artificial evolution. Moreover, an analysis of the 
significance of the novelty measure was performed by running optimi
zation processes with different weights on the novelty measure. The 
medium and high values in the range studied proved to be more 
effective. 

Nonetheless, novelty search has some limitations. Given the fact that 
it ignores the objective, there is no pressure towards further optimiza
tion once a good solution is found, which is not ideal. An optimized 
solution may be produced by novelty search only if an individual can 
appear novel, while demonstrating this optimized performance. As 
illustrated in the results provided, a simple GA was able to outperform 
the hybrid novelty search in the course of 10 evolution steps. A possible 
solution to this limitation, is to take the most promising results from 

novelty search and further optimize them based on an objective func
tion. Thus, following this procedure will take advantage of the strengths 
of both approaches. Novelty search successfully locates the approximate 
solutions, while objective optimization further investigates the local 
area around approximate solutions. 

On the other hand, novelty search can be applied in the case where a 
traditional evolutionary algorithm reaches convergence, to inject the 
population with new, diversified individuals. These prospects of com
bined novelty and objective based procedures can serve as aspects of 
future work. Finally, the conclusions driven from this study, will be 
applied on ongoing research [6,7] towards a more wide applicability 
platform that will design, develop and evaluate drug delivery systems 
aiming cancer tumours. Namely, using hybrid fitness functions and 
novelty measures in the application of surrogate-assisted evolutionary 
algorithms [6] or unconventional, innovative evolutionary techniques, 
like haploid-diploid methodology [7], could help avoid being stuck in 
potential local optima. 

Fig. 12. Boxplot of the best actual fitness of individuals in 4th generation for all runs.  

Fig. 13. Boxplot of the best actual fitness of individuals in all generations for all runs.  
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