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Autoencoding with a Classifier System
Richard J. Preen , Stewart W. Wilson , and Larry Bull

Abstract—Autoencoders are data-specific compression algo-
rithms learned automatically from examples. The predominant
approach has been to construct single large global models that
cover the domain. However, training and evaluating models
of increasing size comes at the price of additional time and
computational cost. Conditional computation, sparsity, and model
pruning techniques can reduce these costs while maintaining
performance. Learning classifier systems (LCS) are a framework
for adaptively subdividing input spaces into an ensemble of sim-
pler local approximations that together cover the domain. LCS
perform conditional computation through the use of a population
of individual gating/guarding components, each associated with
a local approximation. This article explores the use of an LCS
to adaptively decompose the input domain into a collection of
small autoencoders where local solutions of different complexity
may emerge. In addition to benefits in convergence time and
computational cost, it is shown possible to reduce code size as
well as the resulting decoder computational cost when compared
with the global model equivalent.

Index Terms—Autoencoder, evolutionary algorithm, learning
classifier system, neural network, self-adaptation, stochastic gra-
dient descent, XCSF.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) combined in some
form with stochastic gradient descent have experienced a

resurgence in their use for optimising large neural networks [1].
These techniques seek to construct a single large global network
that covers the entire feature space. While very large networks
have consistently attained state-of-the-art performance in a
wide range of domains, training and evaluating networks of
increasing size comes at the expense of additional time and
computation. Consequently, a variety of techniques to reduce
the cost while maintaining performance have been proposed,
e.g., pruning and sparsity [2]–[4].

Dynamic neural networks [5] encompass a range of tech-
niques to adaptively modify the structure or parameters of a
neural network in response to the input and have a number of
advantages in terms of accuracy and computational efficiency.
Conditional computation [6] is one such technique that selec-
tively activates parts of the network on a per instance basis. For
example, a separate routing network has been used successfully
to form layers of sparsely-gated Mixture-of-Experts in which
thousands of feed-forward sub-networks may be activated [7].
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Similar to most machine learning techniques, the learning
classifier system (LCS) XCSF [8] attempts to find solutions
that are accurate and maximally general over the global input
space. However, it maintains the additional power to adaptively
subdivide the input space into an ensemble of simpler local
approximations that together cover the domain.

XCSF performs conditional computation through the use of
individual gating/guarding components associated with each
local approximation. Reward is therefore allocated directly to
the sub-solutions. This is in contrast with the traditional EA
approach where the individual being rewarded (or reinforced)
represents the overall solution to the problem, and credit is
therefore much less direct in terms of rewarding the components
actually responsible for the decision. Consequently, XCSF may
experience faster convergence and reduced computational cost.

Autoencoders are data-specific compression algorithms
learned automatically from examples. They form a core
component of many learning systems [9] and have significantly
contributed to improvements in the current state-of-the-art for
speech recognition, computer vision, and natural language
processing. Autoencoders are commonly used to perform
dimensionality reduction, data denoising, imputing missing
data, and anomaly detection. They may be combined with a
predictive component and further refined under a supervised
scheme.

Encoders and decoders of different computational complexity
are required depending on the specific application. For example,
a server with large amounts of available computational power
can afford to spend more time encoding data, but when sent to
a low power mobile device a smaller decoder may be needed.

Usually, autoencoders are trained as single large networks
using standard backpropagation techniques [10]. However,
an ensemble of autoencoders used for image compression
has recently demonstrated superior performance than JPEG-
2000 [11]. In this approach, the most suitable autoencoder is
used for compression and an additional byte then added to the
coding cost in order to identify which autoencoder within the
ensemble was used.

While LCS have been extensively applied to reinforce-
ment learning and supervised learning tasks, their use for
unsupervised learning remains almost unexplored. Following
on very initial work with a simple LCS [12], we suggest
that an XCSF-like system might be capable of building
an emergent ensemble of heterogeneous autoencoders with
possible advantages in performance and efficiency over global
model building techniques.

For example, for a specified distortion/error, a collection
of LCS individuals, each smaller than the equivalent global
solution, could potentially be used in a similar approach to [11],
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thereby reducing byte size and reducing the cost of decoding.
In particular, this article makes the following contributions.

1) The XCSF classifier system is adapted for the autoencoder
problem and tested on numerous data sets for the first
time.

2) The performance of neural networks is explored where
the number of neurons as well as the connectivity are
evolved, i.e., heterogeneous niched encoders may emerge.

3) A self-adaptive scheme is introduced wherein each layer
adapts to a local rate of gradient descent.

4) A means is provided by which a target error is spec-
ified and the system automatically designs maximally
compressed networks with the desired reconstruction
error. This is in contrast with the traditional approach of
manually specifying the network architecture and imposing
predefined penalty functions and sparsity constraints.

5) The hypothesis that LCS adaptive niching can provide
improvements in performance is empirically tested by
comparison with the global model building equivalent.

The remainder of this article is organised as follows.
Section II describes the XCSF classifier system, and presents
an overview of the related work on neural classifiers and
autoencoders. Section III describes the neural classifier rep-
resentation and learning scheme adopted, along with the
experimental method applied. Section IV presents the results
from experimentation on a range of publicly available data
sets. Section V presents our conclusions.

II. BACKGROUND

A. XCSF Classifier System

XCSF is an accuracy-based online evolutionary machine
learning system with locally approximating functions that
compute classifier payoff prediction directly from the input
state. XCSF can be seen as a generalisation of XCS [13] where
the prediction is a scalar value.

XCSF is rule-based and maintains a population of classifiers,
where each classifier cl consists of (i) a condition component
cl.C that determines whether the rule matches input ~x (ii) an
action component cl.A that selects an action a to be performed
for a given ~x (iii) a prediction component cl.P that computes
the expected payoff for performing a upon receipt of ~x. XCSF
thus generates rules of the general form: IF matches← cl.C(~x)
THEN perform action a← cl.A(~x) and EXPECT payoff ~p←
cl.P (~x).

For each step within a learning trial, XCSF constructs
a match set [M ] composed of classifiers in the population
set [P ] whose cl.C matches ~x. If [M ] contains fewer than
θmna actions, a covering mechanism generates classifiers with
matching cl.C and random cl.A. For each possible action ak
in [M ], XCSF estimates the expected payoff by computing
the fitness-weighted average as a system prediction P (ak).
That is, for each action ak and classifier prediction pj in
[M ], the system prediction Pk =

∑
j Fjpj/

∑
j Fj . A system

action is then randomly or probabilistically selected during
exploration, and the highest payoff action arg maxPk used
during exploitation. Classifiers in [M ] advocating the chosen

action are subsequently used to construct an action set [A]. The
action is then performed and a scalar reward r ∈ R received,
along with the next sensory input.

Upon reaching a terminal state within the environment (as
is always the case in single-step problems), each classifier
clj ∈ [A] has its experience exp incremented and fitness F ,
error ε, and set size as updated using the Widrow-Hoff delta
rule with learning rate β ∈ [0, 1] as follows.

. Error: εj ← εj + β(|r − pj | − εj)

. Accuracy: κj =

{
1 if εj < ε0

α(εj/ε0)
−ν otherwise.

With target error threshold ε0 and accuracy fall-off rate
α ∈ [0, 1], ν ∈ N>0.

. Relative accuracy: κ′j = κj ·numj/
∑

j κj ·numj

Where classifier numerosity initialised num = 1.
. Fitness: Fj ← Fj + β(κ′j − Fj)
. Set size estimate: asj ← asj + β(|[A]| − asj)

Thereafter, cl.C, cl.A, and cl.P are updated according to the
representation adopted.

The EA is applied to classifiers within [A] if the average set
time since its previous execution exceeds θEA. Upon invocation,
the time stamp ts of each classifier is updated. Two parents are
chosen based on their fitness via roulette wheel (or tournament)
selection and λ number of offspring are created via crossover
with probability χ and mutation with probability µ. Offspring
parameters are initialised by setting the error and fitness to the
parental average, and discounted by reduction parameters for
error εR and fitness FR. Offspring exp and num are set to 1.

If subsumption is enabled and the offspring are subsumed by
either parent with sufficient accuracy (εj < ε0) and experience
(expj > θsub), it is not included in [P ]; instead the parents’
micro-classifier numerosity num is incremented. The resulting
offspring are added to [P ] and the maximum (micro-classifier)
population size N is enforced by removing classifiers selected
via roulette wheel with the deletion vote.

The deletion vote for each cl ∈ [P ] is set proportionally to
the action set size estimate as. However, the vote is increased
by a factor F/Fj for classifiers that are sufficiently experienced
(expj > θdel) and with small fitness Fj < δF ; where F is the
[P ] mean fitness, and typically δ = 0.1. Classifiers selected for
deletion have their (micro-classifier) num decremented, and
in the event that num < 1 are removed from [P ].

In multi-step problems, the previous action set [A]−1 is
updated after each step with a γ ∈ [0, 1] discounted reward,
similar to Q-learning, and the EA may be run therein. For
regression problems, a single (dummy) action is performed
such that [A] = [M ] and the system prediction is made directly
accessible to the environment. See schematic in Fig. 1.

A number of interacting pressures have been identified within
XCS [14]. A set pressure provides more frequent reproduction
opportunities for more general rules. In opposition is a fitness
pressure which represses the reproduction of inaccurate and
over-general rules. See [15] for an overview of LCS and [16]
for a detailed introduction to XCSF.

Many forms of cl.C, cl.A, and cl.P have been used for
classifier knowledge since the original ternary conditions,
integer actions, and scalar predictions. Notable examples



PREEN et al.: AUTOENCODING WITH A CLASSIFIER SYSTEM 3

[P ]
Population

[M ]
Match Set

[A]
Action Set

[A]−1

Previous
Action Set

Prediction Array

Environment

delay = 1max discount

EA

Cover

+
Payoff

calculate P (ak)

match

input ~x

action a

update
(error, etc.)

action
selection

reproduce

de
le

te

insert
prediction P (a)

reward r

Fig. 1: XCSF schematic illustration. For supervised learning, a single (dummy) action is performed such that [A] = [M ] and
the system prediction is made directly accessible to the environment; classifier updates and the EA thus performed in [M ].

include, hyperrectangle [17], symbolic tree [18], and Haar-like
feature conditions [19]; least squares [8] and support vector
predictions [20]; hyperellipsoidal conditions and recursive least
squares predictions [21]; fuzzy logic [22]; temporally dynamic
graphs [23], and neural networks [24].

Perhaps somewhat surprisingly, there had been no previous
use of XCS for extracting structure within unlabelled data until
the work of [25] on clustering. They showed how the XCS
generalisation mechanisms can be used to identify clusters,
both their number and description.

B. Evolving Neural Classifiers

A long history of searching neural network topologies can be
traced back to the origins of computing. Evolutionary, Bayesian,
and reinforcement learning methods are currently widely
used approaches [1], [26]. A recent survey of evolutionary
neural architecture search may be found in [27] wherein a
large number of proposed approaches are analysed in terms
of encoding and search spaces, encoding and architecture
strategies, evolutionary operators and selection strategies. These
approaches typically evolve large global networks whose
structure and parameters remains static across different inputs
and are represented as directed graphs where each node is a
module representing an entire layer or sub-network, e.g., [28].

While EAs usually combine stochastic gradient descent
with an evolutionary search of the architecture, it has been
suggested that EAs are competitive with stochastic gradient
descent on high-dimensional problems, particularly in the case
of reinforcement learning [29]. It has also recently been shown
that evolving the network architecture without explicit weight
training can produce similar results to fixed architectures where
all weights are adapted [30].

EAs are able to optimise neural networks even when there is
no gradient information available. Moreover, several approaches
exist wherein they may be combined with gradient descent
techniques. Under a Lamarckian scheme, the learned weights
remain as part of the genetic code for evolutionary operators to
act upon [31]. In contrast, with Baldwinian evolution, lifetime

learning is not directly reflected within the genome, but still
influences selection [32].

Adaptive gradient descent methods such as AdaGrad, RM-
SProp, and Adam have become increasingly popular. These
scale the magnitude of update for each individual parameter
based on various moments of the gradient. However, they
frequently require some form of annealing (or warm-up
schedule) to maintain early stability. These warm-up parameters
typically require tuning for a specific problem and model; and
the benefits over simple stochastic gradient descent with an
appropriate learning rate remain controversial [33].

There has also been a long history of comparison between
LCS and neural networks. For example, [34] compared clas-
sifiers with the hidden neurons of a single neural network.
[35] used an EA with fitness sharing to perform layer-by-layer
training of a neural network. In their approach, each individual
represents a hidden neuron and the number is allowed to
vary within each layer. Neurons are partitioned into sets that
perform similar functions and a representative from each set
is chosen to form the layer. Layers are added after a fixed
number of search generations. Fitness sharing encourages the
formation of different feature detectors (hidden neurons) within
the population.

[24] was the first to represent LCS classifiers as neural
networks: both cl.C and cl.A were performed within a
single network rule. Self-adaptive mutation [36] and stochastic
gradient descent [37] were subsequently applied. In the latter,
local search was performed by adapting the weights of the
least fit networks in [A] towards the fittest rule in the set.

[38] used neural classifiers for function approximation where
gradient descent was used to update the cl.P weights using the
target outputs—there single networks performed cl.C and cl.P .
With the inclusion of an additional classifier network to predict
the next state input, [39] extended the approach for anticipatory
LCS. More recently, [40] have explored the more biologically
plausible spiking neural networks within LCS, adapting both
the number of neurons and connections to perform temporal
reinforcement learning.
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Since the cl.C is an individual component of a classifier,
different knowledge representations may be paired with neural
networks used for cl.P or cl.A. For example, [41] used
hyperrectangle cl.C and neural network cl.P within XCSF
where the EA adapted the network topology but not the weights.
This separation of concerns enable different encodings, e.g.,
symbolic trees or graphs, to be easily interchanged depending
on the problem.

Furthermore, cl.C such as hyperrectangles can be used
effectively as simple gating functions. Whereas shared rep-
resentations forming a single network rule [24] enable the cl.C
to not only perform matching functionality, but also transform
the inputs processed by cl.P . Cyclic graphs within XCSF have
previously been used in this way to exploit the memory of
processing each input, evolving gated recurrent networks [42].

Recently, [43] have investigated an LCS where the EA
performs feature selection using bitstring conditions and a
selection of convolutional neural network actions are used. LCS
therefore are not mutually exclusive of novel and application-
specific evolutionary NAS representations and operators, but
provide a general framework within which they may be
incorporated to gain additional benefits from adaptive niching
and problem decomposition.

C. Autoencoding

Autoencoders are composed of an encoder and decoder,
which are jointly trained to minimise the discrepancy between
the original input data and its reconstruction. To capture useful
structure, the encoder must be prevented from simply learning
an identity function. Constraining the size of the encoder,
applying regularisation techniques, penalty terms and sparsity
constraints are all widely used for this purpose [10].

Autoencoders have a wide range of applications even without
any labelled data. For example, imputing missing data values
and anomaly detection [44]. They are frequently used in
computer vision and image editing, e.g., colourising black-
and-white images [45], denoising images, inpainting missing
regions, removing watermarks, and sharpening images [46]. Of
particular use with categorical data, the trained encoder can be
used to visualise data within the latent space, e.g., finding the
nearest neighbours within the compressed space rather than the
original input features. Multi-modal learning can be performed
by jointly training an autoencoder to reconstruct multiple data
modalities such as vision and language [47]. Recurrent neural
network autoencoders can be used for sequence learning [48]
and video compression.

A general overview of representation learning may be found
in [10], and EA approaches to feature selection in [49]. EAs
have frequently been used to design autoencoders. For example,
[50] used an EA to design the topology of compositional pattern
producing networks (CPPNs) where the outputs were taken as
the weights of a neural network autoencoder. The autoencoder
was subsequently refined via gradient descent and the resulting
gradients used to update the CPPN weights. Other examples
include the EA design of denoising autoencoders for transfer
learning by treating previously optimised solutions as corrupted
solutions for newly encountered problems [51].

Additionally, EAs have been used to design deep sparse
autoencoders via differential evolution [52] and with multi-
objective optimisation [53]. Particle swarm optimisation has
also been used to design the architecture of deep convolutional
autoencoders [54]. Furthermore, in [55] evolutionary search is
simultaneously performed on multiple tasks through the use
of a denoising autoencoder. EAs have also recently been used
to evolve deep neural networks for classification tasks with
autoencoding components [56], [57].

Similar to training neural networks for supervised learning
tasks, the predominant approach to constructing autoencoders
has been to train single large global networks. However, [11]
found superior compression results when compared with JPEG-
2000 by training multiple hand-crafted convolutional networks.
Each autoencoder in the ensemble was optimised for a particular
rate distortion trade-off. The autoencoder producing the smallest
distortion was then chosen for each image and bit rate, and an
extra byte added to identify the chosen autoencoder.

Autoencoding via a single neural network has recently been
used with XCS [58]. The feature inputs were initially passed
through a pretrained encoder to reduce the dimensionality
before performing XCS classification with an interval encoding.

III. METHODOLOGY

Here, we use a derivative of XCSF to explore the effects of
adaptive niching in the automatic design of an ensemble of
multi-layer perceptron autoencoders. That is, each classifier is
trained to reproduce its inputs via a much smaller (encoding)
hidden layer. Each cl.C and cl.P is a separate fully-connected
neural network, as illustrated in Fig. 2. Each network is com-
posed of hidden scaled exponential linear units (SELUs) [59],
and logistic outputs. The cl.C output layer contains a single
neuron that determines whether the rule matches a given input.
The cl.P (decoding) output layer contains as many output
neurons as inputs.

A population of N = 500 classifiers are initialised ran-
domly and undertake Lamarckian learning. That is, after the
application of evolutionary operators to both cl.C and cl.P
during reproduction, stochastic gradient descent updates cl.P
during reinforcement. The resulting cl.P weights are copied
to offspring upon parental selection.

During instantiation of [P ] the weights of each network are
initialised with small random values sampled from a Gaussian
normal distribution with mean m = 0 and standard deviation
σ = 0.1. Biases are zero initialised. Should covering be
triggered at any stage, networks with random weights and
biases are generated by the same method until the network
matches the current input, however using a larger σ = 1. Upon
receipt of ~x, [M ] is formed by adding all cl ∈ [P ] whose cl.C
outputs a value greater than 0.5.

Classifier reinforcement and the EA take place within [M ].
The [M ] fitness-weighted average prediction is also used for
system output as is usual in XCSF. However, here learning
consists of updating the matching error, which is derived
from the mean squared error (MSE) with respect to ~x and
the corresponding values on each output neuron ~O of a rule
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Fig. 2: Neural classifier knowledge representation. Separate fully-connected feed-forward networks calculate classifier matching
and prediction. Each layer is encoded as a vector of weights (and biases), along with a binary vector indicating whether each
connection is active, an activation function, and gradient descent rate. Each layer maintains its own vector of mutation rates ~µ.

in the current [M ] using the modified Widrow-Hoff delta rule
with learning rate β:

εj ← εj + β

[
1

n

n∑
i=1

(xi −Oi)2 − εj
]

(1)

Subsequently, each cl.P within [M ] is updated using simple
stochastic gradient descent [60] with a layer-specific learning
rate η ∈ R>0 and momentum ω ∈ [0, 1]. That is, the chain rule
is applied at match time t to compute the partial derivative of
the error with respect to each weight ∂E/∂w, and the weight
change:

∆wt = −η∂E/∂wt + ω∆wt−1 (2)

Gradient descent is not applied to cl.C.
Following [36] crossover is omitted and self-adaptive mu-

tation used. However, here each layer within each classifier
maintains a vector of mutation rates initially seeded randomly
from a uniform distribution ~µ ∼ U [µmin, 1]. These parameters
are passed from parent to offspring. The offspring then
applies each of these mutation rates to itself using a Gaussian
distribution, i.e., µ′i = µie

N (0,1), before mutating the rest of
the rule at the resulting rate. This is similar to the approach
used in evolution strategies (ES) where the mutation rate is
a locally evolving entity in itself, i.e., it adapts during the
search process. Self-adaptive mutation not only reduces the
number of hand-tunable parameters of the EA, it has also been
shown to improve performance. Here, four types of mutation
are explored such that for each layer:
• Weights and biases are adapted through the use of a

single self-adaptive mutation rate, which controls the σ of
a random Gaussian added to each weight and bias. This
is also similar to the approach used in ES.

• A second self-adaptive rate controls the number of hidden
neurons to add or remove. This value is discretised into
the range [-hM ,hM ] with hM determining the maximum
number of neurons that may be added or removed
per mutation event. Pressure to evolve minimally sized
networks is achieved by altering the population size

enforcement mechanism as follows. Each time a classifier
must be removed, two classifiers are selected via roulette
wheel with the deletion vote as described above and then
the rule with the most hidden layer nodes is deleted.

• To adapt the rate of gradient descent, each layer maintains
its own η. These values are constrained [10−4, 0.01] and
seeded uniformly random. A third self-adaptive mutation
rate controls the σ of a random Gaussian added to each
η, similar to weight adaptation. [61] have previously
shown how the self-adaptation of local search parameters
can speed learning within XCS. Here it enables the
learning rate to continually adapt to the parameters
throughout the search process, e.g., potentially performing
smaller updates for parameters associated with frequently
occurring features, and larger updates for parameters
associated with infrequent features.

• A fourth self-adaptive rate controls the probability of
enabling or disabling each connection within the layer.
This may encourage a more efficient sparse representation
within the networks. Networks are always initialised fully-
connected. When a connection is disabled, the correspond-
ing weight value is set to zero and is excluded from
mutation and gradient descent updates. Upon activation,
the weight is set to a small random value ∼ N (0, 0.1).
When connection mutation is enabled, the connections of
newly added neurons are activated with 50% probability.
See outline in Algorithm 1.

Since the possibility exists that a cl.C (not generated through
covering) may never match any inputs, any classifiers that have
not matched any inputs within 10000 trials since creation are
selected for removal during population deletion.

As a measure of generalisation we report the fraction of
inputs matched by the single best rule cl∗mfrac. This rule is
determined as follows. If no classifier has an error below ε0,
the classifier with the lowest error is chosen. If more than one
classifier has an error below ε0, the classifier that matches the
largest number of inputs is used.

To test the hypothesis that LCS adaptive niching can improve
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Algorithm 1: Offspring Creation.
1 {c1p, c2p} ∈ [M ]← SelectParentsRouletteF itness()
2 for λ/2 number of times do
3 {c1, c2} ← Copy(c1p, c2p)
4 for cl ∈ {c1, c2} do
5 for layer ` ∈ {cl.C, cl.P} do

// self-adapt mutation rates
6 `.µi ← `.µie

N (0,1)

// mutate gradient descent rate
7 `.η ← `.η +N (0, `.µ1)

// mutate number of neurons
8 `.h← `.h+ round((2× `.µ2 − 1)× hM )

// mutate connectivity
9 for wi ∈ `. ~w do

10 if U [0, 1] < `.µ3 then
11 if ai is enabled then
12 wi, ai ← 0, disabled

13 else
14 wi, ai ← N (0, 0.1), enabled

// mutate weight magnitudes
15 for wi ∈ `. ~w do
16 if ai is enabled then
17 wi ← wi +N (0, `.µ4)

TABLE I
LEARNING PARAMETERS

Description Parameter Value

Maximum population size (in micro-classifiers) N 500
Population initialised with random classifiers Pinit true
Target error, under which accuracy is set to 1 ε0 0.01
Update rate for fitness, error, and set size β 0.1
Accuracy offset (1=disabled) α 1
Accuracy slope ν 10
Fraction of classifiers to increase deletion vote δ 0.1
Classifier deletion threshold θdel 20
Classifier initial fitness FI 0.01
Classifier initial error εI 0
Offspring fitness reduction (1=disabled) FR 0.1
Offspring error reduction (1=disabled) εR 1
Minimum number of actions in [M ] θmna 1
EA invocation frequency θEA 50
Number of offspring per EA invocation λ 2
Crossover probability χ 0
Minimum self-adaptive mutation value µmin 10−4

Stochastic gradient descent momentum ω 0.9
Initial number of hidden neurons hI 1
Max. neurons added or removed per mut. hM {1,2,5}
Whether EA subsumption is performed EASubsume false
Whether set subsumption is performed SetSubsume false

performance, we compare results with the same system, where
however cl.C always match ~x. Classifier updates and the EA
are thus performed within [P ], and single networks that cover
the entire state-space are designed. This configuration operates
as a more traditional EA, and we henceforth refer to this system
as the EA. The EA acts as a control with which we can make
direct comparison since it operates with the same evolutionary
and gradient descent operators, and uses the same parameters.
Any future changes or improvements made to the EA may be
incorporated within XCSF.

When comparing XCSF and the EA on a single data set,

we use the Wilcoxon ranked-sum test, with the null hypothesis
that all observed results come from the same distribution. To
measure the performance across the first 100000 trials, we
also present the area under the curve (AUC) results using a
composite Simpson’s rule applied to the mean errors.

When making comparisons across multiple data sets we
follow the recommendations of [62] and use the Wilcoxon
signed-rank test with the null hypothesis that taken across all
data sets there is no difference in performance. All tests are
applied with a 95% confidence interval.

The following publicly available data sets are used for initial
evaluation from https://www.openml.org

1) USPS DIGITS: 256 features; 10 classes; 9298 instances.
OpenML ID: 41082.

2) MNIST DIGITS: 784 features; 10 classes; 70000 instances.
OpenML ID: 554.

3) MNIST FASHION: 784 features; 10 classes; 70000 instances.
OpenML ID: 40996.

4) CIFAR10: 3072 features; 10 classes; 60000 instances.
OpenML ID: 40927.

Table I lists the parameters used. Most values are typical
defaults (e.g., [21]), with the primary exception of a larger
ν increasing fitness pressure. This was found to speed con-
vergence of XCSF and the EA similarly during initial testing.
All graphs presented depict mean [P ] values over 10 runs for
100000 trials. Inputs are scaled [0, 1] and instances are drawn
at random. 90% of the sample instances are used for training
and 10% reserved for testing.

IV. RESULTS

A. Neuron Growth Rates

The performance of XCSF and the EA without connection
mutation on the MNIST data sets is shown in Fig. 3. As can
be seen, across the 100000 trials with a maximum growth rate
of hM = 1, XCSF achieves a smaller error than the EA. On
both MNIST DIGITS and MNIST FASHION, XCSF has a smaller
AUC (2287.95, 2004.95) than the EA (3184.24, 2339.69).

From Table II it can be seen that when comparing early
learning performance at 20000 trials on MNIST DIGITS with
hM = 1, the XCSF mean error is significantly smaller than
the EA. Similarly on MNIST FASHION after 20000 trials, the
XCSF mean error is significantly smaller than the EA.

On MNIST DIGITS with hM = 1, the mean XCSF error
reaches ε0 after 97000 trials, whereas the EA does not do
so within the 100000 trials run. Comparing performance at
97000 trials, the XCSF mean error is significantly smaller than
the EA. While neither XCSF nor the EA with hM = 1 were
able to reach the target error within 100000 trials on MNIST
FASHION, XCSF has a significantly smaller error after 100000
trials than the EA.

Increasing the growth rates clearly results in faster error
convergence for both the EA and XCSF, with significantly
smaller errors observed when compared with hM = 1 after
100000 trials. On MNIST DIGITS with hM = 2, the mean XCSF
error reaches ε0 after 43000 trials, and the EA does so after
47000 trials. The hM = 2 XCSF AUC = 1415.97 and EA AUC
= 1801.79, showing again that XCSF is faster than the EA

https://www.openml.org
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Fig. 3: The effect of maximum growth rates on the MNIST data sets. Shown are the mean squared error (MSE), fraction of
inputs matched by the best rule (cl∗mfrac), condition hidden neurons (Ch), and prediction hidden neurons (Ph) for the EA and
XCSF with different maximum neuron growth/removal per mutation event hM .
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Fig. 4: MNIST DIGITS test set reconstruction. Single run with
of the EA and XCSF for 25000 trials; no connection mutation;
hM = 2. XCSF MSE = 0.0122 and Ph = 28.2, cl∗mfrac = 1;
EA MSE = 0.0253 and Ph = 6.1.

and that hM = 2 results in a smaller error across the whole
100000 trials.

XCSF early convergence with hM = 2 on MNIST DIGITS
is again faster than the EA after 20000 trials. This difference
in early learning performance can be observed qualitatively in
Fig. 4, which shows the XCSF and EA reconstructions of a
sample of images from the MNIST DIGITS test set over the first
25000 trials.

While the mean XCSF error after 100000 trials with hM = 2
on MNIST DIGITS is not significantly different than the EA,

In
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t
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SF

Fig. 5: XCSF reconstruction of samples from MNIST FASHION
test set with 10% salt and pepper noise after 100000 trials.
Training MSE = 0.0082 and Ph = 67.2.

the XCSF mean, min and median are all smaller.
With hM = 5 on MNIST FASHION, XCSF has a smaller

AUC (1212.36) than the EA (1381.6) and early convergence
is again faster with XCSF. After 20000 trials, XCSF has a
significantly smaller error than the EA. Furthermore, XCSF
reaches ε0 after only 55000 trials, whereas the EA reaches
the threshold after 64000 trials. Comparing performance after
55000 trials, shows that XCSF has a significantly smaller error.

Fig. 5 and Fig. 6 show the XCSF reconstruction after 100000
trials on MNIST FASHION where 10% and 20% salt and pepper
noise has been added to the test images presented as input. As
can be seen, an efficient representation has been learned, which
can be used to effectively denoise the data. Fig. 7 shows the
XCSF reconstruction where random cutout has been applied
to the test images, showing how the learned representation can
be used to impute missing values.
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TABLE II
AUTOENCODING ERRORS. STATISTICALLY SIGNIFICANT VALUES IN

BOLDFACE. SHADED ROWS WITH SMALLEST MEAN. TRIALS IN 1000S.
MAXIMUM NEURON GROWTH RATE (hM ); MAXIMUM NUMBER OF

NEURONS (hMAX ); WITH CONNECTION MUTATION ENABLED (CMUT).

Algorithm Trials hM MSE ± SE Min Median

MNIST DIGITS
XCSF 20 1 0.0373±0.0043 0.0218 0.0316
EA 20 1 0.0570±0.0036 0.0307 0.0619
XCSF 97 1 0.0097±0.0003 0.0082 0.0098
EA 97 1 0.0128±0.0036 0.0097 0.0126
XCSF 20 2 0.0182±0.0015 0.0128 0.0174
EA 20 2 0.0285±0.0044 0.0150 0.0259
XCSF 43 2 0.0098±0.0004 0.0080 0.0101
EA 43 2 0.0108±0.0006 0.0083 0.0106

MNIST FASHION
XCSF 20 1 0.0222±0.0003 0.0211 0.0221
EA 20 1 0.0252±0.0006 0.0220 0.0251
XCSF 100 1 0.0148±0.0002 0.0136 0.0147
EA 100 1 0.0157±0.0004 0.0133 0.0156
XCSF 20 5 0.0137±0.0004 0.0119 0.0134
EA 20 5 0.0149±0.0002 0.0140 0.0149
XCSF 55 5 0.0099±0.0002 0.0091 0.0099
EA 55 5 0.0105±0.0002 0.0099 0.0103

USPS DIGITS
XCSF 16 1 0.0097±0.0005 0.0071 0.0092
EA 16 1 0.0192±0.0046 0.0091 0.0112
XCSF-cmut 16 1 0.0115±0.0006 0.0069 0.0120
EA-cmut 16 1 0.0327±0.0038 0.0147 0.0354
XCSF hmax=12 100 1 0.0108±0.0002 0.0099 0.0107
EA hmax=12 100 1 0.0127±0.0002 0.0115 0.0128

CIFAR10
XCSF 20 5 0.0406±0.0044 0.0240 0.0374
EA 20 5 0.0591±0.0007 0.0546 0.0595
XCSF-cmut 20 5 0.0179±0.0012 0.0134 0.0171
EA-cmut 20 5 0.0302±0.0036 0.0184 0.0265
XCSF 100 5 0.0135±0.0006 0.0107 0.0140
EA 100 5 0.0163±0.0009 0.0131 0.0151
XCSF-cmut 100 5 0.0099±0.0002 0.0090 0.0099
EA-cmut 100 5 0.0101±0.0002 0.0094 0.0102
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Fig. 6: XCSF reconstruction of samples from MNIST FASHION
test set with 20% salt and pepper noise after 100000 trials.
Training MSE = 0.0082 and Ph = 67.2.

B. Feature Selection

The performance of XCSF and the EA with and without
connection mutation on USPS DIGITS and CIFAR10 is shown in
Fig. 8 and a summary of error scores in Table II. As can be seen,
across the 100000 trials, XCSF achieves a smaller error than
the EA. On both data sets without connection mutation, XCSF
has a smaller AUC (893.56, 2568.85) than the EA (1108.87,
3722.06). Similarly with connection mutation enabled, XCSF
has a smaller AUC (1148.17, 1607.72) than the EA (1439.88,
2053.15). While the AUCs with connection mutation are larger

In
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Fig. 7: XCSF reconstruction of samples from MNIST FASHION
test set with random cut out after 100000 trials. Training
MSE = 0.0082 and Ph = 67.2.

on USPS DIGITS, they are smaller on CIFAR10, showing that
connection mutation can be beneficial to learning. Moreover,
with connection mutation enabled the number of neurons grows
to a larger number, whilst the number of non-zero weights is
smaller, showing that a more sparse representation is learned.

Without connection mutation on USPS DIGITS, XCSF with
hM = 1 reaches ε0 after 16000 trials, compared with the EA
which reaches the threshold after 19000 trials. When connection
mutation is enabled, XCSF reaches ε0 after 33000 trials, and
the EA after 28000 trials. However, comparing performance
after 16000 trials (i.e., when ε0 is reached without connection
mutation), the XCSF error without connection mutation is not
significantly different than with connection mutation enabled.

Early MSE on USPS DIGITS with XCSF both with and
without connection mutation is significantly smaller than
the EA. For example, after 16000 trials without connection
mutation, the XCSF error is significantly smaller than the
EA. Similarly at the same number of trials with connection
mutation, the XCSF error is significantly smaller than the EA.

On CIFAR10 with hM = 5, neither XCSF nor the EA
reach ε0 after 100000 trials without connection mutation.
When connection mutation is used, XCSF reaches ε0 after
100000 trials, whereas the EA does not. Comparing errors after
100000 trials shows that XCSF without connection mutation
has a significantly larger error than XCSF with connection
mutation. Furthermore, XCSF without connection mutation has
a significantly smaller error than the EA without connection
mutation. Finally, while there is no significant difference when
comparing XCSF and the EA with connection mutation, the
XCSF mean, min and median are all smaller.

C. Heterogeneous Niched Ensembles

The performance of XCSF and the EA on USPS DIGITS
when the maximum number of hidden neurons hmax = 12 is
fixed below that which ε0 can be attained with a global model
is shown in Fig. 9 and Table II; connection mutation is disabled
and hM = 1. After 100000 trials, XCSF attains a significantly
smaller training error than the EA. The XCSF AUC = 1374.65
and EA = 1700.94, confirming that XCSF is able to partition
the input space and achieve a smaller error than possible with
a global solution.

Applying the evolved autoencoders to a simple denoising task
shows that this improvement in XCSF training error translates
to a smaller test error. After adding 10% salt and pepper noise
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(a) USPS DIGITS (256 inputs).
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(b) CIFAR10 (3072 inputs).

Fig. 8: The effect of feature selection on USPS DIGITS and CIFAR10. Shown are the mean squared error (MSE), fraction of
inputs matched by the best rule (cl∗mfrac), total number of condition (Ch) and prediction hidden neurons (Ph), and the total
number of non-zero condition (Cw) and prediction weights (Pw) for the EA with (star) and without connection mutation
(square), as well as XCSF with (triangle) and without connection mutation (circle). For USPS, hM = 1 and for CIFAR10,
hM = 5.

to the test set inputs and comparing the reconstructions with
the original clean inputs, the XCSF MSE (0.017± 0.001) is
significantly smaller than the EA (0.021± 0.001).

D. Summary

Across all data sets, XCSF provides faster convergence over
the first 100000 trials than the EA (AUC metric). Furthermore,
across all data sets, XCSF can be seen to achieve faster early
convergence, and for finding a global solution is always at least
as fast as the EA in number of trials to ε0. While connection
mutation was found to slow convergence on the simple USPS
DIGITS data set, it was found beneficial to the search process
on CIFAR10, which contains a large number of inputs and
highly correlated features (i.e., RGB channels).

Moreover, when the number of hidden neurons is restricted
below which a global solution can reach the target error, XCSF
has been shown capable of subdividing the input domain to
achieve a smaller reconstruction error than is possible with
the EA. For a given maximum allowable distortion ε0, the
resulting decoders can therefore be made smaller and require
less computation to perform decoding, which may be beneficial
for low powered devices, etc.

Grouping the mean errors at 100000 trials for all data sets
by algorithm, and applying the Wilcoxon signed-rank test
shows that XCSF has a significantly smaller error than the
EA, p ≤ 0.0077. A summary of the discovered autoencoding
architectures can be seen in Table III.

TABLE III
SUMMARY OF DISCOVERED AUTOENCODING ARCHITECTURES AND TIME

TO ε0 AFTER 100000 TRIALS. MEAN VALUES REPORTED.

Algorithm Ch Ph Cw Pw ε0 Trials

MNIST DIGITS
XCSF hM=1 2.1 30.3 1662 47496 97000
EA hM=1 n/a 27.6 n/a 43274 n/a
XCSF hM=2 2.1 41.5 1651 65110 43000
EA hM=2 n/a 40.7 n/a 63801 47000

MNIST FASHION
XCSF hM=1 2.7 18.6 2150 29201 n/a
EA hM=1 n/a 19.3 n/a 30294 n/a
XCSF hM=5 10.8 68.7 8455 107671 55000
EA hM=5 n/a 64.2 n/a 100667 64000

USPS DIGITS
XCSF hM=1 2.1 16.8 534 8593 16000
EA hM=1 n/a 17.4 n/a 8940 19000
XCSF-cmut hM=1 1.9 18.6 242 6689 33000
EA-cmut hM=1 n/a 19.0 n/a 7008 28000

CIFAR10
XCSF hM=5 7.6 50.9 23374 312956 n/a
EA hM=5 n/a 41.4 n/a 253995 n/a
XCSF-cmut hM=5 7.2 67.3 11245 276113 100000
EA-cmut hM=5 n/a 64.3 n/a 265566 n/a

For an identical number of trials, XCSF and the EA are
presented with the same number of training samples. However,
it should be noted that forward and backward propagation of
cl.P networks are performed for all members of [P ] with the
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Fig. 9: The performance of the EA and XCSF with maximum number of hidden neurons hmax = 12 on USPS DIGITS. Shown
are the mean squared error (MSE), fraction of inputs matched by the best rule (cl∗mfrac), condition hidden neurons (Ch), and
prediction hidden neurons (Ph), for the EA (square) and XCSF (circle). Connection mutation not applied; hM = 1.

EA, whereas only those in [M ] are propagated with XCSF.
In this regard, XCSF performs conditional computation and
can be seen as a form of dynamic pruning based on gating
functions [5], as well as sharing characteristics with sparse
autoencoders [52].

V. CONCLUSION

Autoencoding is a key component of many learning systems
and this article has presented the first results from using a
variant of XCSF to perform such dimensionality reduction.
The traditional approach to autoencoding involves manually
specifying the number of neurons and using predefined con-
straints. The approach outlined here automatically identifies
the minimal number of neurons required to reach a target error
ε0—under this threshold, the system focuses on increasing the
generality of solutions and pruning neurons.

LCS enable the emergence of an ensemble of structurally
heterogeneous solutions to cover the problem space. In this case,
when the number of neurons in the autoencoders is allowed
to evolve, networks of differing complexity are typically seen
to cover different areas of the problem space. Furthermore,
the scheme introduced here entirely self-adapts the search
process: both the gradient-free mutation of weights and their
local refinement where gradient information is available. Not
only does this potentially reduce the number of hand-tunable
parameters, it may provide further benefits in network analysis,
use in non-stationary and online domains, etc. Moreover, the
LCS ensemble may reveal input categories more clearly than
are seen in a global network solution. Given their basis in EAs,
LCS do not require the existence of helpful gradients within
the weight space, although gradient-based search can speed
learning, as here.

XCSF adaptively subdivides the input domain into local
approximations that are simpler than a global neural network
solution, enabling a more efficient allocation of reward. Given
this difference in credit allocation, further improvement in con-
vergence might result from certain architectural modifications
to the classifiers. For instance, in the present system, both
condition and prediction networks use a similar architecture
and are subject to the same offspring creation algorithm. It
seems possible that using separate algorithms allowing wider
relative complexities could reveal higher rates of convergence.

Current work is therefore exploring additional layers of
autoencoding and alternative layer architectures such as those
involving local connectivity and weight sharing (e.g., convo-
lutional layers) as well as those with recurrent connections
(e.g., long short-term memory layers). A future examination of
alternative classifier condition representations, e.g., symbolic
trees or Haar-like features, and enhancements to the evolu-
tionary operators may yield further improvements for specific
applications. Future application to supervised and reinforcement
learning tasks, e.g., under a pretraining scheme, will determine
the effectiveness of the suggested dimensionality reduction
shown here on various data sets.

REFERENCES

[1] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nature Mach. Intell., vol. 1,
no. 1, pp. 24–35, Jan. 2019.

[2] W. Hua, Y. Zhou, C. M. De Sa, Z. Zhang, and G. E. Suh, “Channel gating
neural networks,” in Proc. NeurIPS, H. Wallach et al., Eds., vol. 32.
Red Hook, NY, USA: Curran Associates Inc., 2019.

[3] N. Lee, T. Ajanthan, S. Gould, and P. H. Torr, “A signal propagation
perspective for pruning neural networks at initialization,” in Proc. ICLR,
A. Rush, Ed., May 2020.

[4] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity
in deep learning: Pruning and growth for efficient inference and training
in neural networks,” arXiv, vol. 2102.00554, Jan. 2021.

[5] Y. Han et al., “Dynamic neural networks: A survey,” arXiv, vol.
2102.04906, Feb. 2021.

[6] E. Bengio, P.-L. Bacon, J. Pineau, and D. Precup, “Conditional compu-
tation in neural networks for faster models,” in Proc. ICLR, Y. Bengio
and Y. LeCun, Eds., May 2016.

[7] N. Shazeer et al., “Outrageously large neural networks: The sparsely-
gated mixture-of-experts layer,” in Proc. ICLR, Y. Bengio and Y. LeCun,
Eds., May 2017.

[8] S. W. Wilson, “Function approximation with a classifier system,” in Proc.
GECCO, L. Spector et al., Eds. San Francisco, CA, USA: Morgan
Kaufmann, 2001, pp. 974–981.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[10] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[11] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image
compression with compressive autoencoders,” in Proc. ICLR, Y. Bengio
and Y. LeCun, Eds., May 2017.

[12] L. Bull, “Autoencoding with a learning classifier system: Initial results,”
arXiv, vol. 1907.11554, Jul. 2019.

[13] S. W. Wilson, “Classifier fitness based on accuracy,” Evol. Comput.,
vol. 3, no. 2, pp. 149–175, Summer 1995.

[14] M. V. Butz, T. Kovacs, P.-L. Lanzi, and S. W. Wilson, “Toward a theory
of generalization and learning in XCS,” IEEE Trans. Evol. Comput.,
vol. 8, no. 1, pp. 28–46, Feb. 2004.



PREEN et al.: AUTOENCODING WITH A CLASSIFIER SYSTEM 11

[15] L. Bull, “A brief history of learning classifier systems: From CS-1 to
XCS and its variants,” Evol. Intell., vol. 8, no. 2–3, pp. 55–70, Sep. 2015.

[16] M. V. Butz, Rule-Based Evolutionary Online Learning Systems, 1st ed.,
ser. STUDFUZZ. Berlin, Germany: Springer, 2006, vol. 191.

[17] C. Stone and L. Bull, “For real! XCS with continuous-valued inputs,”
Evol. Comput., vol. 11, no. 3, pp. 299–336, Fall 2003.

[18] M. Iqbal, W. N. Browne, and M. Zhang, “Reusing building blocks of
extracted knowledge to solve complex, large-scale Boolean problems,”
IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 465–480, Aug. 2014.

[19] T. Ebadi, I. Kukenys, W. N. Browne, and M. Zhang, “Human-interpretable
feature pattern classification system using learning classifier systems,”
Evol. Comput., vol. 22, no. 4, pp. 629–650, Winter 2014.

[20] D. Loiacono, A. Marelli, and P.-L. Lanzi, “Support vector regression for
classifier prediction,” in Proc. GECCO, D. Thierens et al., Eds. New
York, NY, USA: ACM, 2007, pp. 1806–1813.

[21] M. V. Butz, P.-L. Lanzi, and S. W. Wilson, “Function approximation
with XCS: Hyperellipsoidal conditions, recursive least squares, and
compaction,” IEEE Trans. Evol. Comput., vol. 12, no. 3, pp. 355–376,
Jun. 2008.

[22] J. Casillas, B. Carse, and L. Bull, “Fuzzy-XCS: A Michigan genetic
fuzzy system,” IEEE Trans. Fuzzy Syst., vol. 15, no. 4, pp. 536–550,
Aug. 2007.

[23] R. J. Preen and L. Bull, “Dynamical genetic programming in XCSF,”
Evol. Comput., vol. 21, no. 3, pp. 361–387, Fall 2013.

[24] L. Bull, “On using constructivism in neural classifier systems,” in Proc.
PPSN VII, ser. LNCS, J. J. M. Guervós et al., Eds., vol. 2439. Berlin,
Germany: Springer, Oct. 2002, pp. 558–567.

[25] K. Tamee, L. Bull, and O. Pinngern, “Towards clustering with XCS,” in
Proc. GECCO, D. Thierens et al., Eds. New York, NY, USA: ACM,
2007, pp. 1854–1860.

[26] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” J. Mach. Learn. Res., vol. 20, no. 55, pp. 1–21, Mar. 2019.

[27] Y. Liu et al., “A survey on evolutionary neural architecture search,” arXiv,
vol. 2008.10937, Aug. 2020.

[28] Z. Lu et al., “Multi-objective evolutionary design of deep convolutional
neural networks for image classification,” IEEE Trans. Evol. Comput.,
in press, doi: 10.1109/TEVC.2020.3024708.

[29] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” arXiv, vol.
1703.03864, Mar. 2017.

[30] A. Gaier and D. Ha, “Weight agnostic neural networks,” in Proc. NeurIPS,
H. Wallach et al., Eds., vol. 32. Red Hook, NY, USA: Curran Associates
Inc., 2019.

[31] F. Gruau and D. Whitley, “Adding learning to the cellular development
of neural networks: Evolution and the Baldwin effect,” Evol. Comput.,
vol. 1, no. 3, pp. 213–233, Fall 1993.

[32] G. E. Hinton and S. J. Nowlan, “How learning can guide evolution,”
Complex Syst., vol. 1, no. 3, pp. 495–502, 1987.

[33] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The
marginal value of adaptive gradient methods in machine learning,” in
Proc. NeurIPS, I. Guyon et al., Eds., vol. 30. Red Hook, NY, USA:
Curran Associates Inc., 2017, pp. 4148–4158.

[34] R. E. Smith and H. B. Cribbs, “Is a learning classifier system a type of
neural network?” Evol. Comput., vol. 2, no. 1, pp. 19–36, Spring 1994.

[35] H. C. Andersen and A. C. Tsoi, “A constructive algorithm for the training
of a multilayer perceptron based on the genetic algorithm,” Complex
Syst., vol. 7, no. 4, pp. 249–268, 1993.

[36] L. Bull and J. Hurst, “A neural learning classifier system with self-
adaptive constructivism,” in Proc. IEEE Congr. Evol. Comput., R. Sarker
et al., Eds., vol. 2. Piscataway, NJ, USA: IEEE Press, 2003, pp. 991–997.

[37] T. O’Hara and L. Bull, “A memetic accuracy-based neural learning
classifier system,” in Proc. IEEE Congr. Evol. Comput., D. Corne et al.,
Eds., vol. 3. Piscataway, NJ, USA: IEEE Press, Sep. 2005, pp. 2040–
2045.

[38] ——, “Backpropagation in accuracy-based neural learning classifier
systems,” in Learning Classifier Systems, ser. LNCS, T. Kovacs et al.,
Eds., vol. 4399. Berlin, Germany: Springer, 2007, pp. 25–39.

[39] ——, “Building anticipations in an accuracy-based learning classifier
system by use of an artificial neural network,” in Proc. IEEE Congr.
Evol. Comput., D. Corne et al., Eds., vol. 3. Piscataway, NJ, USA:
IEEE Press, Sep. 2005, pp. 2046–2052.

[40] D. Howard, L. Bull, and P.-L. Lanzi, “A cognitive architecture based
on a learning classifier system with spiking classifiers,” Neural Process.
Lett., vol. 44, no. 1, pp. 125–147, Aug. 2016.

[41] P.-L. Lanzi and D. Loiacono, “XCSF with neural prediction,” in Proc.
IEEE Congr. Evol. Comput., G. G. Yen et al., Eds. Piscataway, NJ,
USA: IEEE Press, Jul. 2006, pp. 2270–2276.

[42] R. J. Preen and L. Bull, “Discrete and fuzzy dynamical genetic
programming in the XCSF learning classifier system,” Soft Comput.,
vol. 18, no. 1, pp. 153–167, Jan. 2014.

[43] J.-Y. Kim and S.-B. Cho, “Exploiting deep convolutional neural networks
for a neural-based learning classifier system,” Neurocomputing, vol. 354,
pp. 61–70, Aug. 2019.

[44] V. L. Cao, M. Nicolau, and J. McDermott, “Learning neural represen-
tations for network anomaly detection,” IEEE Trans. Cybern., vol. 49,
no. 8, pp. 3074–3087, Aug. 2019.

[45] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in
Proc. Euro. Conf. Computer Vision, ser. LNCS, B. Leibe et al., Eds.,
vol. 9907. Berlin, Germany: Springer, 2016, pp. 649–666.

[46] S. Li et al., “Multi-channel and multi-model-based autoencoding prior
for grayscale image restoration,” IEEE Trans. Image Process., vol. 29,
pp. 142–156, Jul. 2019.

[47] Y. Shi, N. Siddharth, B. Paige, and P. H. S. Torr, “Variational mixture-of-
experts autoencoders for multi-modal deep generative models,” in Proc.
NeurIPS, H. Wallach et al., Eds., vol. 32. Red Hook, NY, USA: Curran
Associates Inc., 2019, pp. 15 692–15 703.

[48] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. NeurIPS, Z. Ghahramani et al., Eds.,
vol. 27. Red Hook, NY, USA: Curran Associates Inc., 2014, pp. 3104–
3112.

[49] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary
computation approaches to feature selection,” IEEE Trans. Evol. Comput.,
vol. 20, no. 4, pp. 606–626, Aug. 2016.

[50] C. Fernando et al., “Convolution by evolution: Differentiable pattern
producing networks,” in Proc. GECCO, T. Friedrich et al., Eds. New
York, NY, USA: ACM, 2016, pp. 109–116.

[51] L. Feng, Y.-S. Ong, S. Jiang, and A. Gupta, “Autoencoding evolutionary
search with learning across heterogeneous problems,” IEEE Trans. Evol.
Comput., vol. 21, no. 5, pp. 760–772, Oct. 2017.

[52] M. Gong, J. Liu, H. Li, Q. Cai, and L. Su, “A multiobjective sparse
feature learning model for deep neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 12, pp. 3263–3277, Dec. 2015.

[53] H. Cheng, Z. Wang, Z. Wei, L. Ma, and X. Liu, “On adaptive
learning framework for deep weighted sparse autoencoder: A multi-
objective evolutionary algorithm,” IEEE Trans. Cybern., in press, doi:
10.1109/TCYB.2020.3009582.

[54] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “A particle swarm optimization-
based flexible convolutional autoencoder for image classification,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 30, no. 8, pp. 2295–2309, Aug.
2019.

[55] L. Feng et al., “Evolutionary multitasking via explicit autoencoding,”
IEEE Trans. Cybern., vol. 49, no. 9, pp. 3457–3470, Sep. 2019.

[56] Y. Sun, G. G. Yen, and Z. Yi, “Evolving unsupervised deep neural
networks for learning meaningful representations,” IEEE Trans. Evol.
Comput., vol. 23, no. 1, pp. 89–103, Feb. 2019.

[57] X. Chen, Y. Sun, M. Zhang, and D. Peng, “Evolving deep convolutional
variational autoencoders for image classification,” IEEE Trans. Evol.
Comput., in press, doi: 10.1109/TEVC.2020.3047220.

[58] K. Matsumoto, T. Tatsumi, H. Sato, T. Kovacs, and K. Takadama, “XCSR
learning from compressed data acquired by deep neural network,” J. Adv.
Comput. Intell. Intell. Inform., vol. 21, no. 5, pp. 856–867, Sep. 2017.

[59] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” in Proc. NeurIPS, I. Guyon et al., Eds.,
vol. 30. Red Hook, NY, USA: Curran Associates Inc., 2017, pp. 972–
981.

[60] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533–536, Oct. 1986.

[61] D. Wyatt and L. Bull, “A memetic learning classifier system for describing
continuous-valued problem spaces,” in Recent Advances in Memetic
Algorithms, ser. STUDFUZZ, W. E. Hart, J. E. Smith, and N. Krasnogor,
Eds., vol. 166. Berlin, Germany: Springer, 2005, pp. 355–395.

[62] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, no. 1, pp. 1–30, Jan. 2006.



12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, DOI: 10.1109/TEVC.2021.3079320

Richard J. Preen received the B.Sc. (Hons.) and
M.Sc. degrees in computer science, and the Ph.D.
degree in artificial intelligence from the University
of the West of England, Bristol, U.K., in 2004, 2008,
and 2011, respectively.

He is currently a Research Fellow with the Depart-
ment of Computer Science and Creative Technologies
at the University of the West of England.

Stewart W. Wilson is an independent researcher
in classifier systems and evolutionary computation.
He received his S.B. (physics) and S.M. and Ph.D.
(electrical engineering) from the Massachusetts In-
stitute of Technology. His Ph.D. thesis under Edwin
Land investigated what would happen if a child could
ask questions and receive excellent spoken answers
from a machine that connected him to recordings
made by a scientist such as Carl Sagan. The results
showed long, thoughtful lines of inquiry for this
student-driven style of learning. Later, at Polaroid

Corporation, Wilson developed a first practical implementation.
In 1981 he became interested in John Holland’s classifier system idea,

contacted Holland and his incipient group, and took up this machine learning
approach. The results, eventually, were the algorithms XCS and XCSF which
made Holland’s idea practical and stimulated applications and further research
worldwide. From his interest in vision, Wilson did research that connected
the stroboscopic imagery of Gray Walter to the structure of the retino-cortical
mapping, suggesting the latter contains a scanning mechanism. In recent
years, Wilson developed a system based on genetic algorithms for automatic
investment portfolio definition. The concept found application with SumGrowth
Strategies, LLC in its implementation of Temporal Portfolio Theory.

Dr. Wilson is a co-founder of Adaptive Behavior and the Simulation of
Adaptive Behavior (SAB) Conferences.

Larry Bull received both the B.Sc. (Hons.) degree
in computing for real-time systems and the Ph.D.
degree from the University of the West of England,
Bristol, U.K., in 1992 and 1995, respectively.

He is a Professor of artificial intelligence with
the Department of Computer Science and Creative
Technologies, University of the West of England.
Prof. Bull was the founding Editor-in-Chief of the
journal Evolutionary Intelligence and has published
widely on nature inspired computation, including the
monograph The Evolution of Complexity (Springer,

2020).


	Introduction
	Background
	XCSF Classifier System
	Evolving Neural Classifiers
	Autoencoding

	Methodology
	Results
	Neuron Growth Rates
	Feature Selection
	Heterogeneous Niched Ensembles
	Summary

	Conclusion
	References
	Biographies
	Richard J. Preen
	Stewart W. Wilson
	Larry Bull


