
Unsupervised One-Class Learning for Anomaly
Detection on Home IoT Network Devices

Jonathan White
Computer Science Research Centre
University of the West of England

Bristol, UK
jonathan6.white@uwe.ac.uk

Phil Legg
Computer Science Research Centre
University of the West of England

Bristol, UK
phil.legg@uwe.ac.uk

Abstract—In this paper we study anomaly detection methods
for home IoT devices. Specifically, we address unsupervised one-
class learning methods due to their ability to learn deviations
from a single normal class. In a home IoT environment, this
consideration is crucial as supervised methods would result in
a burden on many non-technical consumers which could hinder
their effectiveness. For our study, we develop a home IoT network
monitoring tool, and we illustrate network attacks against a
variety of typical home IoT devices. As a result, we propose
measures that could aid home consumers in defending ever-
increasing home IoT networks.

Index Terms—IoT, anomaly detection, one-class learning

I. INTRODUCTION

The proliferation of home Internet of Things (IoT) devices
has led to a dynamic change in terms of size and complexity
of home networks. Many homes now incorporate a number
of “smart” devices, including televisions, kitchen appliances,
lighting, power switches, access controls and security moni-
toring, not only to simplify and automate everyday tasks, but
also to improve our quality of life and wellbeing. Interactions
with devices can be made using mobile phones, smart voice
assistants, or other motion and proximity sensors. However,
each new device connected to the home network increases
the security risks posed within the network. Whilst device
manufacturers are keen to adopt consumer IoT, the rush to
production can result in poor product design with a lack of se-
curity consideration. From a consumer standpoint, IoT devices
often lack the same security needs that consumers may expect
from a traditional computing device, such as a desktop PC or
a laptop [1], yet IoT devices may contain sensitive personal
information such as usernames and passwords. According to
the Open Web Application Security Project (OWASP), weak
passwords and username enumeration are among its top 10
vulnerabilities [2]. In 2016, the Mirai botnet exploited weak
credentials in consumer IoT to launch Distributed Denial
of Service (DDoS) attacks. In 2017, BrickerBot malware
utilised a similar attack to leverage default SSH credentials and
misconfigurations in IoT devices to ‘brick’ them by corrupting
the device firmware, so that the devices are then permanently
broken [3]. The smart home market is projected to show an
annual growth rate of 18.2% between 2020-2023 resulting

Funded by the UK National Cyber Security Centre (NCSC).

in a market volume in 2023 of 139.8 billion USD and a
total of 75.44 billion IoT devices worldwide by 2025 [4].
Yet many devices have been reported to contain security
flaws due to improper implementation and misconfigurations
[5], [6]. Consumers will naturally expect home appliances
to be operational for many years after purchase, therefore it
is crucial that support and security updates of IoT-enabled
devices reflects the true life cycle of consumer ownership.

Whilst home consumers may be familiar with security
measures such as anti-virus and firewall applications from their
traditional computing experience, they are likely less familiar
with how to protect their IoT devices. At an enterprise level,
it is common to deploy Intrusion Detection Systems (IDS),
which may be host-based (HIDS) or network-based (NIDS).
Enterprise IT security solutions usually consist of a combina-
tion of static perimeter defences such as firewalls and IDS,
coupled with host-based defences such as end-point detection
and response (EDR), anti-virus and anti-malware software,
and regular patching of software vulnerabilities [7]. Traditional
enterprise IT-based IDS may be less efficient and/or inadequate
for IoT systems due to issues such as heterogeneity, use cases,
constrained resources and connectivity [8]. Such corporate
security solutions are unsuitable for deployment in a home
network environment due to the complexity of the solution,
costs associated with expensive enterprise-grade software and
hardware, and the ability of non-technical users to understand
the outputs of these tools. Recent attacks have exploited IoT
devices as botnets for distributed denial-of-service attacks [9].
Such attacks can be identified using behavioural analysis [10]
or anomaly detection using network traffic analysis [11].

Machine learning has become widely used for anomaly de-
tection in a number of security applications, including network
traffic analysis [12], [13], malware analysis [14], [15] and
insider threat detection [16]. Supervised classification models
require training of respective classes, such as ‘malicious’ and
‘benign’. This can pose challenges in the security domain,
since we may not have training examples of all ‘malicious’
possibilities, and the number of ‘benign’ samples may signifi-
cantly outweigh the number of ‘malicious’ samples available.
One approach to overcome this is to learn a model of a single
class, and use this to model deviations from some underlying
‘normal’ behaviour. In this paper, we study how this approach,



often referred to as one-class learning, can be utilised to
improve IoT device security. As an unsupervised learning
method, one-class learning can offer a scalable approach for
monitoring large and complex IoT networks, whilst also being
flexible enough to handle a variety of different attack patterns
exhibited by different devices. Furthermore, this analysis can
improve situational awareness to understand the expected
behaviour of home IoT devices; providing consumers with a
means to interpret what information is communicated beyond
their home network, and how their personal data is used. This
paper makes the following contributions:

• We propose the use of one-class learning for profiling
home IoT devices, and demonstrate this to identify attacks
based on anomaly detection.

• We identify networking characteristics of common home
IoT devices, and evaluate the ability to define both normal
and anomalous networking activity for such devices.

• We present a lightweight IoT profiling tool based on
a Raspberry Pi 4, that can be offered to non-technical
consumers as a low cost home defence system.

II. RELATED WORKS

We position our work in the context of existing research
on IoT device profiling, IoT-based machine learning, unsuper-
vised learning anomaly detection, and network-based anomaly
detection. Our underlying hypothesis is that IoT network
traffic can be distinguished from other types of home network
traffic such as laptops and smartphones, as IoT devices will
communicate in a more regular and defined manner with a
limited number of endpoints. Due to a constrained set of
functionality, IoT devices will have more predictable and
structured network activity and therefore any changes to this
pattern should be noticeable. Meidan et al. [17] were able to
use a machine learning algorithm to analyse network flows
in order to accurately predict which IPs belonged to IoT
devices compared to smartphones and PCs. Apthrope et al.
[18] demonstrate that network traffic rates from IoT devices
can leak information regarding user activities.

A lightweight profiling tool aimed at consumer networks
must be able to handle high bandwidth traffic, yet still provide
real-time protection, therefore resource intensive actions such
as deep packet inspection and stateful protocol examination
can be avoided by using network flow analysis. Flow-based
analysis uses metadata gathered from network communication.
Work by Ullah and Mahmoud [19], and Casas et al. [20] shows
that analysing network flow-based features can be effective
for intrusion or activity detection systems. Whilst network
flow methods can be faster than packet and stateful protocol
examination, common attacks embedded within packets such
as SQL injection and XSS would not be detected.

Anthi et al. [21] propose a supervised approach to de-
tect a range of popular network based cyber-attacks on
IoT networks: Denial of Service (DoS), Man-In-The-Middle
(MITM)/Spoofing, Reconnaissance, and Replay. Whilst they
do show encouraging results, the nature of supervised learning
required significant labelling effort upfront, and could also

prove restrictive to identifying new attacks that may arise from
new devices or the discovery of new vulnerabilities.

Doshi et al. [11] tested five different supervised machine
learning algorithms to distinguish normal IoT packets from
DoS attack packets. They compared results from an individual
packet-based analysis with an approach that analysed two fea-
tures of a network flow in a rolling 10 second window. Results
showed using packet-level machine learning, DoS could be
accurately detected and including network flow features further
improved accuracy by an F1 score of 0.01 to 0.05.

There are a limited number of IoT-based intrusion detection
or botnet datasets available. Some prior works use traditional
network datasets such as KDD99 [22], UNSW-NB15 [23]
and TUIDS [24] for evaluating their models. However these
are not appropriate for analysing IoT networks as the traffic
patterns of IoT devices compared with typical computing
devices will differ. Koroniotis et al. developed a Bot-Iot dataset
using simulated IoT sensors [25]. The Avast AIC laboratory
created the IoT-23 dataset [26] containing 20 malware captures
from various IoT devices. Both datasets only provide raw
PCAP data that represents malicious test cases, rather than
separate PCAP data for both malicious and benign activity.
Our proposed model requires a suitable period of only benign
data for it to be formative of deviations caused by malicious
variations. Furthermore, the datasets alternatively provide a
labelled text-based version of the same activity, however this
only provides summary detail where they omit many of the
key features that are utilised in our model.

In our research, Legg [27] studied the effectiveness of
visual analytics for engaging non-technical users in home
networking security, recognising that traditional security tools
do not effectively cater for non-technical users in a way that
encourages security culture and adoption. Our research on IoT
device profiling highlights that much prior work addresses
supervised machine learning methods. Here, we specifically
address unsupervised one-class learning due to the prevalence
of class imbalance in security monitoring, as well as to reduce
the upfront burden of class labelling, and also providing
flexibility to address unknown attack vectors in the future.

III. EXPERIMENTATION

For the purpose of this study, we examine a typical home
IoT network. Specifically, we omit traditional computing de-
vices and smart phones, and focus on five unique IoT devices:
Amazon Echo, Amazon Fire TV, Brother Printer, Netgear Arlo
Security Camera, and Home Hive Hub. The Amazon devices
and the printer are connected via Wi-Fi, and the camera system
and Hive Hub are connected via Ethernet. These devices
were used within the home environment of the first author;
therefore, the normal behaviour reflects the behaviour of the
first author. Future research would explore the feasibility of
developing aggregated benign models in a lab environment.

A network monitoring device was developed using a 4GB
Raspberry Pi 4. Figure 1 displays an overview of the testbed.
A Netgear GS108T switch was used to port mirror all network
traffic from the home router to the Raspberry Pi Ethernet



adaptor, which was placed into the promiscuous monitoring
mode. The Raspberry Pi was also connected via Wi-Fi so
that the web application could be accessed for monitoring and
management purposes.

Fig. 1. IoT Testbed configuration

A. Network Monitor

The network monitoring device periodically scanned the
local network to ascertain which devices were on the network
and online. Simple device identification was performed based
on MAC vendor and service fingerprinting to detect likely IoT
devices. The IoT device IPs were fed into the packet capture
module in order to limit the amount of traffic being captured to
that of the IoT devices on the network. As the packet capture
processing is performed on a resource-constrained device,
reducing the load on the Raspberry Pi is key in maintaining
real-time performance.

B. Packet Capture

The packet capture module uses tcpdump to collect network
traffic from the port mirror data received at the Ethernet
interface. Packet captures files are rotated and processed every
60 seconds. The specific features extracted and analysed from
the packet capture are detailed in section III-D. For each
device, the extracted data is processed and stored in a database.

When a device is initially discovered, an initial two-day
period is used to obtain sufficient training data where device
behaviour is monitored and profiled. This makes a clear
assumption that the device is initially operating normally,
rather than being compromised from the outset. The captured
data is saved, and used to fit a machine learning model. After
this training period, new traffic captures are compared to the
model to check for anomalous behaviour every 60 seconds.

Information is visualised for the user on a node-information
web page. Data is aggregated into 15-minute periods for
display purposes. Total Data In/Out is shown, along with
graphs depicting the average packet size, average number of
packets per conversation and average data per conversation.
It is hypothesised that these graphs will show a difference in
behaviour during normal operation versus during an attack.
The top 5 inbound and outbound connections based on data

transferred are displayed, showing the IP address involved,
the name of the company that this resolves to via a WHOIS
lookup, and the amount of data transferred. It would be
expected that an Amazon device would be mostly conversing
with Amazon servers. A change in this behaviour could be
an indicator of an attack of some kind taking place. Figure 2
shows an example of these graphs for an Amazon Echo device
exhibiting normal user behaviour.

Fig. 2. Normal activity behaviour for an Amazon Echo

C. One-Class Support Vector Machine

Based on the traditional support vector machine, the One-
Class Support Vector Machine (OC-SVM) algorithm was
developed to resolve the training classification problem which
only has one type of sample. The model can be trained with
benign traffic to build a picture of the normal communication
behaviour of a device and used as a base for anomaly detec-
tion. OC-SVM maps the input space into a high-dimensional
space by the kernel function. Popular choices for the kernel
function are linear, polynomial, sigmoidal and radial base
function. The Support Vector Method For Novelty Detection
by Schölkopf et al. [28] separates all the data points from the
origin and maximises the distance from the hyperplane to the
origin. This results in a binary function that captures regions in
the input space where the value +1 is a small region capturing
most of the data points, and -1 elsewhere. In Figure 3 we
can see an example of the learned frontiers of a set of two
dimensional data points.



Fig. 3. Example OC-SVM plot illustrating learned frontiers [29]

Feature Name Description
Protocol Protocol Type (Eg, UDP, TCP, ICMP, etc)

Address A Address of the monitored target
Address B Remote host IP Address

Port A Monitored target port number
Port B Remote host port number

Packets A → B The number of packets from monitored target to
remote host during the conversation

Bytes A → B The number of bytes from monitored target to remote
host during the conversation

Packets B → A The number of packets from the remote host to the
monitored target during the conversation

Bytes B → A The number of bytes from the remote host to the
monitored target during the conversation

TABLE I
METHODS USED FOR CURATING NETWORK TRAFFIC ANALYSIS FEATURES

D. Data Collection

This section presents the data collection, feature extraction
and machine learning classifier phase of the research. We use
the OC-SVM from the popular scikit-learn library [29].

Several basic, traffic and connection-based features were
extracted from each packet. The data is aggregated from each
network capture file into unique data flows between a source
and destination based on the protocol, source and destination
IP addresses and the source and destination port values. We
refer to this grouping of data communication as a conversation.
As network traffic is often encrypted, the payload information
from the Application Layer in the message is not considered as
a feature. Table I shows the list of extracted features. When the
data is aggregated, the Address A value is set as the monitored
target on the local network.

Once the training period is complete, the pre-processed
data was analysed to remove any outliers and erroneous
records. The IP addresses for Address A and Address B
were converted to a decimal value and the values of all the
features were standardised by removing the mean, and scaling
to unit variance using the scikit-learn StandardScaler. This was
required in order to remove the variance in features such as
the IP addresses used. The scaled data is then passed though
the scikit-learn Principal Component Analysis (PCA) to per-

form linear dimensionality reduction, based on 3 component
features of the data.

Once the training period is complete and a model is created,
the packet capture is rotated and processed every 60 seconds.
Current device data is assessed against the model to identify
potential outliers, which are then reported to the user if a threat
is found. As the model is trained with only benign network
traffic, the positive class is defined as benign traffic, and the
negative class defined as the malicious traffic.

IV. ATTACKS

Recent studies [9], [3] show that IoT devices have been
compromised as botnets to form distributed denial-of-service
attack networks. Therefore, we focus this work on the detec-
tion of DoS traffic patterns. Specifically for our testing, two
forms of DoS traffic will be generated using hping3 on a Kali
Linux machine that is connected to the same network as the
IoT devices under test, which are:

• TCP SYN Flood: An attacker sends SYN messages to
the target from spoofed source IP addresses. The SYN,
ACK response returned by the server is sent to a fictitious
host. This causes the target to use their resources waiting
for the ACK from the originator. The number of TCP
connections is limited on the target, so, if enough SYN
packets are sent, it prevents the target from accepting new
connections.

• UDP Flood: UDP floods send a large amount of data
from spoofed IP addresses to the target. If enough data
is sent, it will consume all available bandwidth on the
server.

A common duration for DDoS attacks is around 90 seconds,
so as to try and avoid detection [11]. Therefore our attack
simulation will run for a maximum of 2 minutes at a time.

V. EVALUATION METRICS

Several measures can be used to evaluate the performance
of a machine learning classifier:

• True Positives (TP): Conversations predicted as being
benign that are indeed benign.

• True Negatives (TN): Conversations predicted as mali-
cious that are indeed malicious.

• False Positives (FP): Conversations predicted as benign
that are actually malicious.

• False Negatives (FN): Conversations predicted as mali-
cious that are actually benign.

When we use a one-class classification, we train the model
with only “positive” class data, that being benign network
data. Since our training data is all benign, the output of the
model could only result in TP or FN cases, since we have no
malicious data to inform TN or FP cases.

When assessing the DoS attack traffic against the model
we are looking for True Negatives and False Positives. True
Negatives should be the DoS traffic correctly identified as an
outlier and malicious traffic. False Positive is attack traffic
that has been identified as benign. Although the attack data



is unlabelled, the data is known by us to be negative class
by the fact that we know the PCAP provided contains only
DoS traffic. As we are focused on detection of the negative
class, the evaluation metrics detailed in Table II can be used
to assess the performance.

Accuracy can be used as a measure of performance. Accu-
racy measures the number of conversations that were correctly
classified. However, accuracy does not tell the full story when
working with a class imbalanced data set. If 90% of the traffic
is benign, the classifier can achieve a 90% accuracy rate by
always classifying the traffic as benign, whereas in reality, it
failed to detect 100% of the malicious cases.

Precision attempts to answer the question “What proportion
of negative identifications was actually correct?” whilst recall
attempts to answer “What proportion of actual negatives was
identified correctly?”. To fully evaluate the effectiveness of
a machine learning model, both precision and recall methods
must be analysed. These measures are used together in the F-
measure, which provides a single weighted metric to evaluate
the overall classification performance. An F-measure value of
1 is perfect precision and its worst value is 0.

VI. RESULTS AND DISCUSSION

A. Machine Learning Classifier

For each device, the dataset is collated for a training period
of two days. The training data was fitted to create an OC-SVM
model of normal network traffic behaviour for this user/device.
A unique model was created for each IoT device under test and
stored on the Raspberry Pi. During testing, the Amazon Fire
TV device caused issues with the stability of the system due
to the large volumes of data being collected. All the other IoT
devices under test generate low bandwith traffic. The Amazon
Fire TV was streaming UHD video streams for long periods,
generating gigabytes worth of traffic. The Raspberry Pi and
Python scripts were unable to cope with the high volume of
traffic and process it in a reasonable time frame, and so the
device was removed from further testing.

Figure 4 shows the distribution of benign data flow con-
versations used for training the model against the number of
DoS attack conversations collected that were used to predict
against the model. This demonstrates the uneven balance of
classification of the packets. The Home Hive and Arlo devices
show less imbalance in benign versus attack conversations due
to the low amount of traffic that these devices generate during
normal operation.

Due to the issues previously discussed regarding network
packet capture for large data streams, the DoS attacks were
throttled from line rate to a level where the Raspberry Pi
could process the packets within the packet rotation period
of 60 seconds. A line-rate attack would cause a capture file of
approximately 30MB to be generated in one minute, causing
the monitor to fail. The value of 100 packets a second was the
highest value that the monitor was able to capture and process
in addition to the regular network traffic for the device.

The hyper-plane variables were adjusted and different ker-
nels of ‘linear’, ‘rbf’, ‘poly’ and ‘sigmoid’, with different

Fig. 4. Distribution of packets

gamma and nu values were tested until satisfactory results
were achieved. The final values selected for the model were:

• nu = 0.000005 (An upper bound on the fraction of
training errors and a lower bound of the fraction of
support vectors.)

• kernel = rbf (Radial basis function)
• gamma = 0.000000001 (kernal coefficient)
Table III reports the overall weighted-average performance

for the classifier against the devices under test, using the
evaluation metrics previously described in Table II, resulting
in F-measure scores ranging between 91.58 to 99.67. To gain
a better insight into the performance of the classifier for
each device, Table IV shows the confusion matrix for how
the predicted classes for conversations compares against the
ones analysed for the model fit and attack detection. Figure 5
shows the plot of the OC-SVM clustering plotted with the two
dimensions with the highest explained variance ratio after the
PCA dimensionality reduction. This shows a clear difference
in clustering for benign and malicious traffic patterns for all
four devices under test.

Fig. 5. Plot of the OC-SVM clustering results.

B. Amazon Echo

Normal behaviour data flow for the Amazon Echo shows
that there is minimal data transfer during idle periods, and



Metric Calculation Value
Accuracy (A) TP+TN

TP+TN+FP+FN
Proportion of predictions the model got right

Precision (P) TN
TN+FN

Proportion of conversations identified as malicious that was correct
Recall (R) TN

TN+FP
Proportion of malicious conversations identified correctly

F-Measure (F) F = 2 · P ·R
P+R

Harmonic mean of Precision and Recall
TABLE II

EVALUATION METRICS

Device Training Size DoS Size Accuracy Precision Recall F-Measure
Amazon Echo 86549 17080 96.99 85.00 99.27 91.58

Home Hive Hub 25225 26159 98.21 98.87 98.27 98.57
Brother Printer 138682 45954 96.46 99.38 99.77 99.67
Netgear Arlo 24329 18077 96.23 93.33 98.17 95.69

TABLE III
WEIGHTED AVERAGE FOR EACH IOT DEVICES

Predicted
IoT Device Benign Malicious

Actual

Amazon Echo Benign 86549 5920
Malicious 140 16940

Home Hive Hub Benign 25225 9
Malicious 9315 16844

Brother Printer Benign 138682 1075
Malicious 1529 44425

Netgear Arlo Benign 24329 3077
Malicious 6010 12067
TABLE IV

MODEL FIT AND ATTACK DETECTION CONFUSION MATRIX

limited outgoing traffic from the device, only voice acti-
vated queries and packet acknowledgements to the incoming
streamed data. The average packet size and data per conversa-
tion show a pattern for normal usage, and the graphs reflect a
minimal change in behaviour during a DoS attack (Figure 6).
Average packet size drops compared to normal idle usage,
but there is no significant difference between the average
number of packets in a conversation, nor the average data
per conversation which is reflected in the OC-SVM clustering
graphs in Figure 5.

The nominal source IP addresses for typical user behaviour
were Amazon AWS servers and Content Delivery Networks
(CDNs) such as Limelight and Akamai. During streaming
audio operation, the service changes the origination IP ad-
dress of the data after approximately 100KB of data. During
streaming audio for multiple hours, over 1000 unique IP
addresses associated with the content delivery service were
used. This deviated from the expected behaviour as the original
hypothesis for content delivery would be that an entire stream
would be served from a single IP address and that DoS traffic
would stand out as abnormal by originating from lots of IPs.

During a DoS attack, the attack originates from thousands of
spoofed IP addresses, so, although the number of IP addresses
associated with communication has increased, the constant
change of IP address, coupled with the similar attributes of
conversations during idle periods, make the attacks difficult to
see via the graphs alone. The classifier returned an F-measure
score of 91.58%, showing that it was still able to determine the
DoS traffic compared to normal behaviour with high accuracy.

Fig. 6. Amazon Echo data usage with DoS attack data highlighted

C. Home Hive and Water Sensor

The connected water leak sensor was hardly ever discovered
online during a host scanning. The device operates in an ultra-
lower power mode and only powers up the Wi-Fi interface
when a leak has been detected. It was only detected once
online during a week of network scans. The hub remained
online throughout the test and had a constant low-level flow
of traffic, averaging about 300 bytes per 15-minute aggregated
period between itself and servers hosted by Amazon.

The consistently low level of normal traffic enables any kind
of network-based attack to stand out as unusual. As antici-
pated, the Data In volume of traffic has increased significantly
compared to the normal level of data, and the average packet
size has decreased. The average number of packets and data
per-conversation has trended towards zero compared to normal



Fig. 7. Home Hive Hub normal data usage with DoS attack data highlighted

behaviour, due to the single 60-byte packets being sent from
each IP address in the attack. The results from the classifier
shows an F-measure score of 98.57%.

D. Netgear Arlo Security Camera

The Netgear Arlo cameras send 10-second video files to an
Amazon cloud server each time motion is detected. Netgear
content servers are hosted by Amazon AWS, so all legitimate
communication takes place to these servers. Inbound data to
the device is negligible, but outbound data is punctuated by
1.7MB files being sent to the servers each time motion is
detected. Each file is sent to a different Amazon AWS IP.

As the DoS attack rate was rate-limited due to monitoring
limitations, the graph scales do not reflect the attack. A
marginal drop in the average size of packets and communica-
tion can be seen, but only if the user knows to look for this.
The classifier returned a F-measure score of 96.69%.

E. Brother Printer

Normal network traffic, both inbound and outbound from
the device, is internal network traffic only. Only devices
configured with UPnP, or devices that send print jobs to the
printer are involved in normal traffic flows. The amount of
data transferred within a 15-minute monitoring period is in
the order of <100 Kilobytes. Any DoS attack stands out as
abnormal on the graph. The classifier returned an F-measure of
99.67%, demonstrating it can successfully distinguish between
malicious or benign traffic with high-accuracy.

Fig. 8. Arlo Netgear Camera normal data usage with DoS attack data
highlighted

VII. CONCLUSIONS

A. Challenges in Network Monitoring

The most important design considerations for creation of
such a monitor are associated with performance. The biggest
limitation in this research is the performance of the Raspberry
Pi in processing the packet captures. We used a Pi to address
how non-technical users could adopt a low-cost solution for
monitoring home IoT networks. However the inability of the
Scapy Python package to be able to process packet captures
of greater than 2.5MB within 60 seconds renders the device
incapable of being able to be deployed as a general real-time
network monitor.

When the traffic monitoring was limited to low-bandwidth
IoT devices, using an unsupervised OC-SVM classifier to
analyse network traffic for anomalies shows that it is highly
effective in detecting the DDoS threats tested. The perfor-
mance of the unsupervised machine learning resulted in an
F-measure across devices of between 91.58% to 99.67%. This
demonstrates that the proposed architecture can successfully
distinguish between abnormal traffic from a normal traffic
profile that was learnt during an unsupervised training period.
Packet length and number of packets in a conversation were
good indicators of malicious behaviour; specifically when the
packets are significantly smaller than normal.

A limitation to the approach of building a normal profile of
device behaviour from an unsupervised training period is that
we have to assume that the device is not compromised before
it is added to the network. If a compromised device is added
to the network, the monitor will learn the malicious behaviour
as normal behaviour. A solution to this would be to pre-define



models for popular IoT devices. However, this would require
on-going support to define and maintain these profiles in line
with device software updates.

B. Recommendations and Future Work

The research showed that IoT communication to CDNs
differed in behaviour from what was initially expected. It was
expected that a data stream would be from a single IP address,
and therefore DoS attack would stand out as arriving from a
large number of destinations. However, it was shown that an
Amazon Echo music stream would download ˜90KB from a
single CDN IP before changing IP address, and would use
1000s of unique IPs for a long stream. Instead of using the
source IP address as a feature, the ASN number associated
to the IP could be used. This would provide less variability
for normal behaviour, as the ASNs would be associated to
Amazon or CDNs, but show a marked difference in behaviour
for malicious behaviour such as a DDoS. Further attack types
should be tested, and a second layer of machine learning could
also be added once malicious behaviour has been detected, in
order to classify the type of attack that has been received. The
cluster plots from the OC-SVM model show that the DoS
traffic has a clear pattern of attack in all four devices. It is
anticipated that other attacks will show different clustering and
therefore the attack types can be distinguished. This research
has not yet explored how the analysis of attack data is best
presented to the user. To what extent do we want to present
transparency of the ML decisions to the home user? The output
of classifier does not currently present why the classifier has
determined the traffic to be abnormal. How does a home user
understand the ML-based outcome, and how do we inspect
the network behavioural change? At the moment the data is
presented in a high-level view to the user by means such
as data in/out graphs, but future research should investigate
how to engage and educate non-technical users on IoT device
security.

REFERENCES

[1] M. Fagan, K. N. Megas, K. Scarfone, and M. Smith, Foundational
cybersecurity activities for IOT device manufacturers. US Department
of Commerce, National Institute of Standards and Technology, 2020.

[2] Owasp-iot-top-10-2018. Last accessed 27 April 2021. [On-
line]. Available: https://owasp.org/www-pdf-archive/OWASP-IoT-Top-
10-2018-final.pdf

[3] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, pp. 80–84, 2017.

[4] Smart home - worldwide, statista market forecast.
Last accessed 27 April 2021. [Online]. Available:
https://www.statista.com/outlook/283/100/smart-home/worldwide

[5] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security
evaluation of home-based iot deployments,” in IEEE Symposium on
Security and Privacy, 2019, pp. 1362–1380.

[6] S. Notra, M. Siddiqi, H. Gharakheili, V. Sivaraman, and R. Boreli,
“An experimental study of security and privacy risks with emerging
household appliances,” in IEEE Symposium on Security and Privacy,
2014, pp. 79–84.

[7] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for
the internet-of-things,” in Proceedings of the 14th ACM Workshop on
Hot Topics in Networks, 2015, pp. 1–7.

[8] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion detection
in the internet of things,” Ad hoc networks, vol. 11, no. 8, pp. 2661–
2674, 2013.

[9] E. Bertino and N. Islam, “Botnets and internet of things security,”
Computer, vol. 50, no. 2, pp. 76–79, 2017.

[10] M. Yamauchi, Y. Ohsita, M. Murata, K. Ueda, and Y. Kato, “Anomaly
detection in smart home operation from user behaviors and home
conditions,” IEEE Transactions on Consumer Electronics, vol. 66, no. 2,
pp. 183–192, 2020.

[11] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in 2018 IEEE Security
and Privacy Workshops (SPW). IEEE, 2018, pp. 29–35.

[12] M. V. Mahoney, “Network traffic anomaly detection based on packet
bytes,” in Proceedings of the 2003 ACM symposium on Applied com-
puting, 2003, pp. 346–350.

[13] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A
comparative study of anomaly detection schemes in network intrusion
detection,” in Proceedings of the 2003 SIAM international conference
on data mining. SIAM, 2003, pp. 25–36.

[14] P. Sharma, K. Chaudhary, M. Wagner, and M. G. Khan, “A comparative
analysis of malware anomaly detection,” in Advances in Computer,
Communication and Computational Sciences. Springer, 2020, pp. 35–
44.

[15] A. Mills, T. Spyridopoulos, and P. Legg, “Efficient and interpretable
real-time malware detection using random-forest,” in 2019 International
Conference on Cyber Situational Awareness, Data Analytics And Assess-
ment (Cyber SA), 2019, pp. 1–8.

[16] P. A. Legg, O. Buckley, M. Goldsmith, and S. Creese, “Automated
insider threat detection system using user and role-based profile assess-
ment,” IEEE Systems Journal, vol. 11, no. 2, pp. 503–512, 2017.

[17] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O.
Tippenhauer, and Y. Elovici, “Profiliot: a machine learning approach
for iot device identification based on network traffic analysis,” in
Proceedings of the symposium on applied computing, 2017, pp. 506–
509.

[18] N. Apthorpe, D. Reisman, and N. Feamster, “A smart home is no
castle: Privacy vulnerabilities of encrypted iot traffic,” arXiv preprint
arXiv:1705.06805, 2017.

[19] I. Ullah and Q. H. Mahmoud, “A two-level flow-based anomalous
activity detection system for iot networks,” Electronics, vol. 9, no. 3,
p. 530, 2020.

[20] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised network intrusion
detection systems: Detecting the unknown without knowledge,” Com-
puter Communications, vol. 35, no. 7, pp. 772–783, 2012.

[21] E. Anthi, L. Williams, M. Słowińska, G. Theodorakopoulos, and P. Bur-
nap, “A supervised intrusion detection system for smart home iot
devices,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 9042–9053,
2019.

[22] Kdd cup 99 dataset. Last accessed 27 April 2021. [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[23] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),”
in 2015 military communications and information systems conference
(MilCIS). IEEE, 2015, pp. 1–6.

[24] P. Gogoi, M. H. Bhuyan, D. Bhattacharyya, and J. K. Kalita, “Packet
and flow based network intrusion dataset,” in International Conference
on Contemporary Computing. Springer, 2012, pp. 322–334.

[25] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-iot dataset,” Future Generation
Computer Systems, vol. 100, pp. 779–796, 2019.

[26] A labeled dataset with malicious and benign iot network
traffic. Last accessed 27 April 2021. [Online]. Available:
https://www.stratosphereips.org/datasets-iot23

[27] P. A. Legg, “Enhancing cyber situation awareness for non-expert users
using visual analytics,” in 2016 International Conference On Cyber
Situational Awareness, Data Analytics And Assessment (CyberSA), 2016,
pp. 1–8.

[28] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, J. C. Platt
et al., “Support vector method for novelty detection.” in NIPS, vol. 12.
Citeseer, 1999, pp. 582–588.

[29] sklearn.svm.oneclasssvm - scikit-learn 0.24.2 documentation. Last
accessed 27 April 2021. [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html


