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Abstract 

Over the past few years, what might not unreasonably be described as a true revolution has 

taken place in the field of machine vision, radically altering the way many things had 

previously been done and offering new and exciting opportunities for those able to quickly 

embrace and master the new techniques. Rapid developments in machine learning, largely 

enabled by faster GPU-equipped computing hardware, has facilitated an explosion of 

machine vision applications into hitherto extremely challenging or, in many cases, previously 

impossible to automate industrial tasks. Together with developments towards an internet of 

things and the availability of big data, these form key components of what many consider to 

be the fourth industrial revolution. This transformation has dramatically improved the 

efficacy of some existing machine vision activities, such as in manufacturing (e.g. inspection 

for quality control and quality assurance), security (e.g. facial biometrics) and in medicine 

(e.g. detecting cancers), while in other cases has opened up completely new areas of use, such 

as in agriculture and construction (as well as in the existing domains of manufacturing and 

medicine). Here we will explore the history and nature of this change, what underlies it, what 

enables it, and the impact it has had - the latter by reviewing several recent indicative 

applications described in the research literature. We will also consider the continuing role that 

traditional or classical machine vision might still play. Finally, the key future challenges and 

developing opportunities in machine vision will also be discussed. 
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1. Introduction – the purpose of this paper and what it brings that is new to the reader 

The appropriate utilisation of visual data is the enabling component in many automated tasks, 

from industrial quality control to driverless cars. Here we consider the recent history of 

machine vision research, the huge changes that have, and are still taking place, and the 

dramatic impact this is having, both in terms of methodology and new applications. We 

introduce, define, and explain key terminology for those not completely familiar with the 

discipline, and comment on the most relevant and impactful developments by pinpointing 

ideas in the literature which have changed radically the approaches and techniques now being 

explored. Using insightful examples taken from representative applications, we will explain 

how these ideas are being applied now and consider the future directions.  

 

 

2. What is machine vision? 

The introduction of machine vision to industrial processes is often motivated by a desire to 

reduce costs by increasing efficiency (and so productivity), reduce errors (and so improve 

quality) or gather data. Equally importantly, it may also substitute for an absence of available 



skilled labour or release workers from dangerous, demanding or fatiguing industrial 

activities. In the past, the definition of the term has been somewhat unclear, however more 

recently ‘machine vision’ has, largely de facto, come to be understood as the practical 

realisation of image understanding, or more specifically computer vision techniques, to help 

solve practical industrial problems that involve a significant visual component. The more 

recent emphasis on the marriage between machine vision and machine learning, that has so 

revolutionised the discipline, has been made possible by transformative developments in the 

field of artificial intelligence (AI) and has served to move some machine vision capabilities 

closer to that of human vision – a long unmet ambition that has existed since the early days of 

computer vision as far back as the 1960s.  

 

 

3. Machine learning and the artificial neural network (ANN) 

To help appreciate why this transformation has come about, we first need to understand the 

role of machine learning and have an appreciation of some of the overlapping terminology. 

Deep learning is a particular kind of machine learning, which in turn is itself a subset of 

artificial intelligence or AI (Figure 1). The term general AI, also referred to as strong AI, 

captures the ambitious notion of a theoretical synthetic device able to learn, reason and 

behave as humans do. This does not (perhaps yet) exist. A form of AI that does exist is that of 

narrow AI. This includes software able to dramatically outperform humans, but only in very 

limited, usually single, tasks. It is generally the case that while machine learning software can 

automatically learn from historical data, and so improve with experience, and make informed 

decisions using a range of (often statistical) techniques, without needing to be explicitly 

manually programmed, the term deep learning is reserved for a special kind of machine 

learning that allows computers to solve much more challenging and complex problems.  

 

 
Figure 1  The relationship between the domains of AI, machine learning and deep 

learning 

 

In practice, deep learning is realised using artificial neural networks (ANNs) to simulate 

human-like decision making. Inspired by, and loosely simulating the functioning of the 

human cortex, ANNs comprise a matrix of connected layers of nodes (Figure 2). The input 

layer is where data enter the network (for which the number of nodes is the same as the 

dimension of input features). This is followed by one or more hidden layers that transform the 

data flowing through the network towards the output layer (where the number of nodes is the 

same as the number of classes to be classified), that produces the network predictions. A deep 

network simply refers to an ANN with more than three hidden layers and in some cases can 

have millions of nodes (loosely analogous to neurons in the human brain). We should note 
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here that in fact there are two different kinds of output prediction - either regression (a 

continuous quantity), or, as mentioned above and which is more often the case in many 

machine vision applications, a classification (a discrete class label or category). 

 
Figure 2  The connected node topology of an artificial neural network (ANN) 

 

Connections between the layer nodes have weights and biases, known as the layer parameters 

(Figure 3), that control how the layers together transform data between the input and output 

of the network during a process known as feedforwarding. It is these parameters that 

represent the network model, and we shall see later how a feedback learning process is used 

to first establish these parameters during training. The development of ANNs has its origins 

as far back as the 1950s and for a while fell out of favour. However, a series of breakthroughs 

dating from the 1990s by Yann LeCun et. al. [1, 2], culminating in [3] and then later around 

2010, most notably the work by Alex Krizhevsky [4] and others in image classification, led to 

a particular form of ANN known as a deep convolutional neural network (CNN) becoming 

established for many challenging computer vision tasks, particularly those involving 

perception for object recognition and localisation in natural images. 

 

 
Figure 3  The layer node parameters (Output = Input 1 x Weight 1 + Input 2 x 

Weight 2 + Bias) 

 

 

3.1 The convolutional neural network (CNN) – a special kind of ANN for images 

Figure 4 shows the principal components of a convolutional neural network (CNN). The main 

difference between CNNs and regular ANNs, and the reason why they lend themselves so 

well to image analysis, is the addition of a convolutional layer - an initial filtering stage, 

implemented using conventional filter kernels that traverse the 2D image to detect local 

spatial features, such as edges, corners, and other patterns, at different positions – somewhat 

like processes in human vision. Outputs from the kernel are summed using a bias function to 

Input Layer Two Hidden Layers Output Layer

Inputs Outputs

Weight 1

Weight 2

Input 1

Output

Input 2

Bias



form the input to a non-linear activation function layer, often a rectified linear unit (ReLU) (a 

non-linear transformation that reduces negative input values to zero while positive values are 

passed as output). This non-linear characteristic of the ReLU is also similar to the firing 

behaviour of neurons in the human brain and so is suited to visual tasks (or more formally it 

offers a reduced sensitivity to the vanishing gradient problem – an issue that impedes CNN 

training). A data reduction stage (necessary as images may contain millions of pixels and so 

vast amounts of data – some potentially redundant to the task) is then performed by a pooling 

layer. This usually employs either average- or a max-pooling function to a defined 

neighbourhood of pixel values, reducing the data dimensionality to leave only the most 

significant pixels. Note here that the combined convolution and pooling layers may be 

repeated, to detect a hierarchy of image features, before input to a fully connected 

classification stage, giving a feature vector, and finally an output layer, for which a Softmax 

activation function allows multinomial labelling (where the probability of all outputs sums to 

1.0). Hence, the network output gives a probability distribution over the output labels 

indicating which output case the network has most closely matched to the input. So, CNNs 

are very well adapted to machine vision tasks, as they are specifically designed to process 

large quantities of pixel data. The convolution and pooling layers act as feature extractors 

from the input image, while the fully connected layers act as a classifier. In this way, CNNs 

can usefully be divided into two parts: feature extraction and classification. Feature extraction 

is achieved by the convolution plus ReLU together with pooling layers, and classification is 

achieved by the fully connected layers.  

 

 
Figure 4  The architecture of a convolutional neural network (CNN). The CNN can be 

divided into two parts: feature extraction and linear classification 

 

However, before all this can happen, the network must first be trained. Training enables the 

network to output predictions by identifying patterns in a set of labelled training data, fed 

through the network while the outputs are compared with the actual labels by an objective 

loss function. During training the network’s parameters (the weight and bias of each neuron) 

are tuned over a series of iterations or epochs, until the patterns identified by the network 

result in good predictions for the training data. Thus, the parameters of the network (weights 

and biases) are found during a supervised training phase by minimizing a loss function, 

(calculated during a forward propagation), between prediction and ground truth labels at the 

output layer. To help this process, regularisation constraints are used to update the network 

weights and biases at each iteration (e.g. employing stochastic gradient descent – SGD) using 
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backpropagation until convergence. The concept of backpropagation in training the network 

is very important and the key part of how an ANN is made to work. It is therefore worth 

spending a little time underlining what is going on. During backpropagation, within each 

layer, the node weights are adjusted in proportion to the amount of error they contributed to 

the loss function (the difference between predictions and labels) during forward propagation. 

The more a given node contributes to the error, the more it is adjusted. When the loss 

function reaches a convergence state, the current weights and biases are preserved as the 

well-trained model. It is in this manner that the weights and biases of the network are 

established via the learning process using real data to form the deep learnt model. This 

trained model may later be applied (a process known as inferencing) to unknown data (known 

as generalisation) in a practical application to identify various features of interest in images. 

CNNs have become the default choice for simultaneous detection of multi-class 

categorisation problems, typical of many industrial visual tasks. 

 

 

4. Classical machine vision  

Since the 1980s, increasing computational capacity at a reducing cost, combined with 

improvements in camera and lighting technologies, have made possible the practicable 

deployment of industrial grade cameras and microprocessors together with new capabilities 

in LED lighting (offering more control of the lighting intensity, colour or frequency and 

differing projected patterns), to undertake a multitude of industrial vision tasks. Examples 

include measuring the size and position of objects, assessing their surface quality in terms of 

colour or texture, identifying defects or contamination, sorting, checking the integrity of 

safety critical components and assemblies, or guiding industrial robots. In almost all cases, 

these tasks have required strict environmental structuring, whereby, for example, any external 

ambient lighting is eliminated and replaced, and the objects to be inspected are themselves 

unchanging and in known fixed locations. In many production processes, where 

manufactured objects are to be detected, measured, or inspected in some way, this 

requirement for strict environmental structuring is relatively easily accommodated, as the 

components being manufactured are already under control and most often in predictable fixed 

positions at repeatable known times during the manufacturing cycle. For example, in the case 

of objects on a production line conveyor or being handled by an industrial robot, there often 

exists good opportunity to introduce cameras and lighting at suitable physical locations that 

have a minimal impact on the production process. However, while this is fine in many 

manufacturing production lines, there are also a wide range of other industrial activities 

involving a visual sense where such environmental structuring is either problematic, 

undesirable, or even completely impossible. 

 

4.1 Why the need for structure in classical machine vision?  

4.1.1 A rule driven vs a new data driven approach 

For an automated system to be able to make sense of visual data, a model of the visual scene 

together with a set of task rules and parameters is required. Conventionally, this model is 

hand-crafted in the form of rules based on a priori information that is realised in code. In 

other words, in a manufacturing scenario a CAD model of the object being detected, 

measured, or inspected, is most likely readily available. In the case of defect detection, the 

type and range of defects will also be known in advance of inspection system hard and 

software design and installation. Also, given the nature of the manufacturing process, the 

position and pose of the objects to be inspected, when viewed by a camera, can also be 

established in advance, and are able to be readily fixed. Consider the example of the mass 

production of kitchen and bathroom ceramic tiles [5], where an inspection stage is needed to 



check conformity in terms of size and geometry and the presence of any unacceptable surface 

anomalies. The latter may take the form of 2D colour or 3D moulding defects [6]. In this 

case, a model describing the features of an ideal perfect tile can be obtained using existing 

data (or alternatively using suitable good quality examples, sometimes called a ‘golden 

template’ approach), and tolerances of acceptability applied to any variation in these features 

captured during the production process. The introduction of structured lighting, along with 

suitable camera and optics, can allow an ideal and repeatable view of the tiles in a fixed 

position as they pass along a moving conveyor. All this available a-priori knowledge and 

structuring reduces variation, offers predictability, and so greatly simplifies the machine 

vision activity. Any ambient lighting, that may be subject to change, can be excluded, and 

controlled artificial lighting substituted, allowing activities such as segmentation, i.e. the 

isolation of the tile object and its features, to, for example, be performed using simple fixed 

image intensity thresholds. Together, this structuring reduces the need to be able to 

accommodate change and uncertainty within the inspection process. This means that the 

machine vision software solution, that is the design of the algorithms realised in software, is 

relatively straightforward and so easily hand-crafted.  

 

Next consider an entirely different class of industrial machine vision problem, for example 

that of identifying weeds within crops in a field as part of an agricultural farming application 

[7]. This is typical of many machine vision tasks that involve natural objects, such as plants 

(e.g. in farming, and in food and timber processing), minerals (e.g. polished marble and 

granite), animals and animal by-products (e.g. meat and leather products) or humans (e.g. in 

medical and security applications), as opposed to synthetic man-made objects – such as 

manufactured metal and plastic parts and assemblies. In our example case of automated 

weeding, the aim is to automatically provide a targeted precision dose of herbicide only to the 

weeds, and not the crop or surrounding area [8]. Such a visually informed system might not 

only reduce waste but could offer significant environmental benefits by minimising levels of 

toxic chemical runoff and so ground and river pollution. The machine vision system 

specification required here will need to be such that the device can both recognise the weeds, 

or even perhaps a range of differing weed species (dock, ragwort, etc), and determine their 

individual spatial locations. All will need to be completed in real-time in an outdoor 

environment, as a tractor-mounted vision-equipped computer-controlled spray boom 

traverses the crop. These uncontrollable variables, such as different invading species, the 

amount of weed and crop growth, uneven ground, changing lighting and occlusion from the 

crop itself, make the task inherently difficult as it includes a great deal of random variation. 

Until very recently such tasks were considered entirely beyond the capability of a hand-

crafted rule-based model approach for any sort of practical application. Even so, such a 

visually complex task is representative of many that are now being successfully addressed by 

developments in machine learning techniques. More specifically, by deploying a form of 

specialised artificial neural network, known as a convolutional neural network (CNN), it is 

possible for the rules of such a complex machine vision model to be automatically learnt 

from the data by the system itself, in a so-called data-driven approach.  

 

 

5. Deep learning is changing the way machine vision is done 

5.1 The conventional machine vision process 

In conventional or classical machine vision, there are several well-established logical steps 

necessary to realise almost any industrial machine vision application task. These can broadly 

be categorised into the five core activities of: 1. image acquisition; 2. pre-processing; 3. 

segmentation; 4. feature extraction; and 5. classification or interpretation (Figure 5). Image 



acquisition will normally include aspects of environmental structuring, involving scene 

constraints related to object positioning, camera and lens selection, and the design of a 

suitable structured lighting arrangement. This is arguably by far the most impactful stage. It 

needs to be very carefully considered as it can dramatically affect the complexity and so the 

cost, efficiency, and reliability of the subsequent stages. The output following classification / 

interpretation may take the form of an action, such as operating an actuator, guiding a robot, 

altering a process variable (in the case of an adaptive closed-loop feedback system) or 

generating a report (say in a quality or process control monitoring application). However, 

most significantly in terms of the overall performance of the machine vision solution, are the 

stages in between. This is where the creative thinking of the engineer developing a solution 

largely takes place. Realising an optimal solution, often via a time-consuming trial-and-error 

process to establish rules and tune parameters, depends strongly on the knowledge, 

experience, and judgment of the system developer. Note also that when combined, these 

stages produce a translation of data type, along with a filtering, to give a dramatic reduction 

of data quantity. What starts as an optical image, is converted into a numerical data 2D array, 

from which features and then scene descriptors are subsequently derived. So, while an 

acquired image may be comprised of millions of bytes of data, say from a high-resolution 

colour camera, the desired output from a notional machine vision system may take the form 

of only a single binary bit, 1 or 0, indicating that, say, an object is either of acceptable quality 

or not.  

 

 
Figure 5  The five steps of classical machine vision 

 

5.2 The deep learning machine vision process 

5.2.1 Deep learning is changing the role of the machine vision solution developer 

The development of a machine learning, or more specifically a deep learning solution to a 

machine vision task, is quite different from the processes involved for implementing the 

conventional machine vision pipeline. In some ways the task is greatly simplified by 

combining segmentation, feature extraction and classification stages, and it completely avoids 

the need to design and hand-code these steps. Instead, the system developer is required to 

possess a somewhat differing set of skills, including expertise in implementing deep learning 

network architectures (e.g. selection of an appropriate network architecture, methods of data 

augmentation, adjustment of network hyperparameters such as number of training epochs, 

learning rate, L1 and L2 (regularization parameters), etc) [9]. As we have already seen, the 

way the deep learning machine model is fashioned is via a process known as end-to-end 

(usually supervised) learning, in which the ANN model is created by presenting the network 

with labelled example image datasets (ground truth data). This labelling is used to identify 

the object classes present in the image for training the network. As described above, the 

labels represent the desired output for a given input and are used to create the loss function 

that the network tries to minimise by adjusting the weights during backpropagation. Because 

it is necessary to label the data, to explicitly tell the network what the data represent, this is 

known as a supervised form of learning. The network learns the significant image features 

needed to automatically map image inputs to target labels using a series of data 
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transformations. Then later in application (the network inferencing stage), the output of the 

trained network takes the form of predictions, i.e. which of the possible outputs the network 

thinks most closely match the given input. However, while this all sounds relatively 

straightforward, there are a few downsides. Perhaps most significant of which is the amount 

of example, manually labelled in the case of supervised learning, data (perhaps tens of 

thousands of images) and time (often hours or days), needed to train the network. We will see 

next that there are various ways to tackle these issues (along with a few others), however the 

main takeaway here is that once trained, the inferencing (operational) stage is very much 

quicker (perhaps taking only a matter of milliseconds). 

 

 

6. A few notable key challenges with deep learning 

Apart from the amount of time needed for training, there are one or two other challenging 

issues regularly encountered when using deep learning to solve industrial problems that 

deserve some special attention.  

6.1 Limited training data: Often there may only be limited training data available for the 

desired task - not enough to train a network from scratch. In such cases it may be possible to 

deploy transfer learning with fine tuning as a feature extractor. Transfer learning is a machine 

learning technique where a model (network) previously trained on one task is re-purposed on 

a second (usually) related task. The advantage is that huge quantities of training data are not 

needed. This can also help reduce hardware costs for the computationally expensive training 

stage [10]. Here a pre-trained CNN (where the weights and biases are already established, 

often by training on a large natural image dataset, for example the ImageNet dataset) is 

subject to further supervised training for part, or all, of the network layers using the new 

available data for the task under solution. Often, the last two layers in the original network 

are replaced by two fully connected layers. The last layer is the output layer and is matched 

with the number of classes in the dataset. Examples of differing pre-trained classifiers include 

VGG-16 and VGG-19 networks [11], the ResNet50 network [12], Mobilenet [13], and 

Xception [14]. Available data will usually be divided into training, validation, and test sets 

for learning from examples, establishing the soundness of learning results, and evaluating the 

generalisation ability of a developed algorithm on unseen data, respectively. Also, in the case 

of limited data availability, cross validation methods (e.g. one-leave out, fivefold, or tenfold 

validations) can be used. 

 

6.2 The need to manually label training data: Most applications of CNNs involve 

supervised training with large quantities of data – thousands of images. This can pose two 

problems. Firstly, as mentioned above, is the limited availability of such large datasets for 

training, and secondly there is the need to label (i.e. say what the image contains) the data 

(usually a manual process). Both issues can to some extent be addressed using data 

augmentation. This is where a limited labelled dataset is slightly altered using a range of 

automated image transformations, such as rotations, reflections, height and width shifts, 

zooming, horizontal-flipping, shear intensity changes, cropping, and adding noise, to 

artificially create variation in the images and so a much larger training dataset. It is worth 

noting that while such techniques can help improve training with a limited dataset, it is often 

the case that use of transfer learning and data augmentation would not be expected to result in 

as good a performance as training from scratch using a large dataset. 

 

6.3 Overfitting the training data: Another well-known problem in machine learning is that of 

overfitting. This is where the model fits the training data well but does not generalise to 



unseen data (the useful part). Overfitting is one of the most frustrating problems in machine 

learning projects and most practitioners experience it in their work. There are thankfully a 

range of tools that can help, including just simplifying the network by reducing the number of 

hidden layers, regularisation (adding a cost to the loss function for large weights) and the use 

of dropout layers.  

6.4 The mysterious black box: It is worth noting that it can be difficult to know what the 

ANN is actually doing - for example which parts of the image are being used? Consider an 

object recognition task. Could the network be using something unexpected, such as a 

timestamp in the corner of the image and no part of the object itself? This can be of most 

concern in medical applications, where even if performance is good, this lack of 

accountability could have important legal consequences. Thankfully, a prediction process 

debugging tool exists in the form of the Grad-CAM method. This gives a heatmap of class 

activation that distinguishes the similarity of each image location with respect to a particular 

class. More specifically, the heatmap of class activation is a feature map of the last 

convolutional layer for a given input image, with the feature map channels weighted by a 

class gradient calculated with regards to the feature map [15]. Figure 6 shows an example 

heat map indicating the areas of a pig’s face used in a biometric recognition task [16]. This 

shows in some detail which parts of the face the network was using for recognition and helps 

us, to some extent, understand what the network was doing and the predictions it made. 

 

  
Figure 6  Example heat map (right) indicating the areas of a pig’s face (left) used in a 

biometric face recognition task where yellows and reds progressively show more 

significant areas 

 

 

7. Examples of machine vision tasks enabled by deep learning - a new class of machine 

vision tasks 

We next delve a little deeper into the details of how deep learning is currently being applied 

to real machine vision industrial tasks via a range of seminal state-of-the-art real-world 

prototypical example applications. We explore applications across differing sectors, consider 

their context, including the role of big data [17] and the internet of things [18], the 

motivations, and the potential advantages. We also review the common architectures in use 

today; and look to the future by considering the most significant remaining problematic 

issues still to be addressed. 

 

7.1 Agriculture – pre-farm gate 



As previously discussed, deep learning has improved performance in many existing industrial 

tasks as well as allowing new areas of application. Perhaps none more so than in agriculture, 

where, in so called ‘pre-farm gate’ applications, the imposition of any form of environmental 

structuring is most often extremely difficult, and so in practice tends to be minimal. These 

applications may include, crop assessment (detecting abiotic and biotic stress), pruning 

(including weeding) and picking or harvesting (identifying ripeness and location). 

Uncertainty and variation can exist both in terms of the natural objects being imaged and 

their outdoor context.  

 

Williams et al. [19] present the design and evaluation of a kiwifruit harvesting robot intended 

to operate autonomously in pergola style orchards. The technology is typical of many agri-

tech solutions currently under development and the application highly topical as the work is 

in part motivated within the context of a reduced availability of farm labour. A deep neural 

network with stereo matching was used to detect and locate kiwifruit under real-world 

conditions (with some added illumination). The machine supervised learning model utilised 

here is typical of many similar applications and so worth exploring in a little detail. Semantic 

segmentation (where each image pixel is given a class label) was performed using a fully-

convolutional network (FCN) adapted from the VGG-16 (available via Github as FCN-8S). 

The network was trained using an Nvidia GTX-1070 8GB graphics card on 63 (48 training 

and 15 validation) 200x200 pixel hand-labelled images, collected across multiple orchards 

under a range of typical conditions. Commercial orchard field trials gave an average pick 

cycle time of 5.5s/fruit, of which 3.0s was for the detection step. Some 89.6% of the pickable 

kiwifruit could be detected. This performance was reported as significantly better than other 

comparable automated systems. Wang et al. [20] provide a general review of ground-based 

machine vision for weed detection that included CNN deep learning-based approaches for 

detection and segmentation in the field. Many of the key challenges indicative of agricultural 

applications are identified in this work, such as occlusion and overlap of leaves, varying 

lighting conditions and the effects of different growth stages. Palacios et al. [21] describe a 

system for quantification of grapevine flowers using a field based mobile platform for early 

crop yield forecasting. Here artificial illumination and night-time operation offered some 

limited structuring. A deep fully-convolutional neural network SegNet architecture (two deep 

neural networks) with a VGG-19 network as the encoder were employed for semantic 

segmentation. As with other examples, images were also pixel-wise manually labelled and 

image augmentation (rotations and flipping) used to increase variability in the limited training 

data. As discussed above, we see that in practice the use of such data augmentation 

techniques are very commonly used in an effort to cope with, or avoid the need for, large 

quantities of hand labelled training images. Impressive F1 (F scores are a measure of 

accuracy calculated from the precision and recall) score values of 0.93 and 0.73 were 

obtained for multiscale flower segmentation. A strong correlation was reported between the 

estimated number of flowers and the final produce yield. Kakani [22] take a step back and 

explain how agri-tech start-ups are choosing task-specific AI and vision solutions in the 

context of improving yields and the goal of sustainable food supplies by 2050. Switching 

from largely static crops to moving farm animals, Nasirahmadi et al. [23] demonstrate how 

deep learning can be used to detect standing and lying behaviour of pigs to better than an 

average precision of 0.93 and 0.95 respectively, for monitoring animal health and welfare 

under varied real-world farm conditions. Use of Faster R-CNN (faster regions with 

convolutional neural network features), R-FCN (region-based fully convolutional network) 

and SSD (single shot multi-box detector) methods were all explored. In related work, Hansen 

et al. [16] show how deep learning achieved better than 96% accuracy in biometrically 

recognising pig faces on the farm and point to advantages of facial biometrics when 



compared to the use of conventional RFID ear-tags. They use both a transfer learning 

approach, centred on the pre-trained VGG-Face model (based on the VGG-Very-Deep-16 

CNN and trained on the Labelled (human) Faces in the Wild dataset), and a CNN model, 

trained from scratch with their own artificially augmented pig face data. Class Activated 

Mapping using Grad-CAM was deployed to show the regions that the network used to 

discriminate between pig faces (Figure 6). In an example of the benefits of transfer learning, 

it is very interesting that the VGG-Face pre-trained model performed as well as it did (91% 

accuracy), given that it was trained only on human and not pig faces. In addition to the 

outdoor applications mentioned above, other rapidly developing areas include the use of 

visual data from drones [24]. Here multispectral, thermal and visible cameras can be used for 

land surveys (soil characteristics), inspection of crops for yield prediction, disease detection, 

and when to irrigate (smart irrigation), or otherwise treat and harvest.  

 

7.2 Food processing or agriculture - post-farmgate 

A greater level of environmental structuring is possible in post-farm gate processing, in the 

form of material handling (e.g. conveyors) and indoor controlled lighting. However, it is the 

product or, in the case of quality control, the contaminates themselves that are the main 

source of the variation. This makes conventional hardcoded feature extraction a significant 

challenge. Applications here may include, quality control, sorting, grading, and in packing.  

 

Rong et al. [25] present an approach for detecting foreign objects in walnuts, pointing to the 

issue of irregular shapes and complex features making the manual design of suitable feature 

detectors extremely problematic. Their aim was the detection of different sized natural 

foreign objects (flesh leaf debris, dried leaf debris and gravel dust) and man-made foreign 

objects (paper and plastic scraps, packing material and metal parts). Two different 

convolutional neural network structures were used for segmenting the nuts and detecting 

foreign bodies. The proposed method was able to correctly classify 95% of the foreign 

objects in 277 validation images. Here, as with the production processing applications 

described below, speed of operation is an important consideration. The combined 

segmentation and detection processing time was less than 50ms. Similar issues were 

described by Aslam et al. [26], who offer a survey of inspection methods for leather defect 

detection with various deep learning architectures compared. Nasiri et al. [27] describe an 

egg sorting system using a CNN to perform a classification task with an emphasis on highly 

structured illumination. They classify unwashed egg images into three classes: intact, bloody, 

or broken. A pre-trained CNN, VGG-16 (with weights pre-trained on the ImageNet dataset), 

was modified by replacing the last fully connected layers with a classifier block. This block 

included a global average pooling layer (to minimise over-fitting through decreasing the 

number of parameters), two dense layers with 512 neurons and the ReLU function, batch 

normalization (to maintain all inputs of the layer to the same range), dropout (as a 

regularization technique to prevent overfitting), and a final dense layer in the form of the 

Softmax classifier. This final layer computed the normalized probability value of the three 

classes. Once again, common augmentation techniques were used to increase the size of the 

manually labelled training dataset. Performance was shown to outperform traditional machine 

vision-based models, achieving an average overall accuracy of 94.84% (by 5-fold cross-

validation).  

 

7.3 Traditional manufacturing applications 

While factory-based manufacturing of man-made objects offers the best opportunity for 

greater levels of environmental structuring, there are still many examples of how the 

introduction of deep learning can offer significant advantages.   



 

Würschinger et al. [28] consider the application of deep learning in a range of more 

traditional machine vision applications involving manufacturing production lines. In these 

applications deep learning offers flexibility in terms of adaptation to differing feature 

extraction tasks using transfer learning, allowing for a low-cost and fast set-up. Transferred 

features can be effective for object recognition, subcategory recognition, and so lend 

themselves to this kind of domain adaptation. They review a range of representative examples 

where a classifier is used to detect defects, including in castings and printed circuit boards 

and for cutting tool wear. Interestingly, they point to industrial developers of machine vision 

solutions being initially hesitant to invest in deep learning projects, aware of the challenges 

and risks but also the great opportunities. They also identify the burgeoning added potential 

for deep learning systems to increase the transparency of manufacturing processes and so 

enhance process understanding, contributing to root cause analysis, and helping in the 

evaluation of quality control results, all aimed at improving efficiency. Ren et al. [29] present 

an interesting generic deep learning-based technique for automated surface inspection – a 

huge application area in manufactured products. Their classifier uses features transferred 

from a pre-trained deep learning network for image classification and defect segmentation. 

Results on publicly available datasets, including texture and colour industrial defects in hot-

rolled strip, x-ray images of metal pipe, in welds and in timber products, outperformed that of 

hand-crafted features. AI systems are sometimes applied once the traditional defect 

inspection sequence completes, where their main purpose is to either classify the defects or 

reduce false positives – a concept we shall further explore later. Zhihong et al. [30] propose a 

deep learning method for robotic rubbish sorting, in which bottles are identified traveling on 

a conveyor within a complex cluttered background. A Fast R-CNN composed of two sub-

nets: a region proposal generation (RPN) and VGG-16 model were used for object 

recognition and grasp pose estimation. In related work, Bahaghighat et al. [31] report 99% 

accuracy using an optimised fine-tuning method based on the VGG-19 CNN as an end-to-end 

deep learning method for inspection of bottle caps, classified in three groups (normal cap, 

unfixed cap, and no cap). Against the background of deep learning’s need for large datasets, 

Li et al. [17] set machine vision for manufacturing in the context of big data, where 

computing efficiency has become a bottleneck to implementing real-time inspection systems 

for smart industries. They propose a multibranch deep model for a manufacturing inspection 

application for which a common deep model structure is modified and adapted to a fog 

environment - a decentralised computing structure located between the cloud and devices that 

produce data. Other examples of deep learning in manufacturing applications, that point to a 

wide base of application, include for quality control in the printing industry [32] and for crack 

detection in welds [33] where high accuracies of 98% and 96% respectively were reported.  

 

7.4 Medical applications 

A great deal of pioneering work in applying AI to image analysis has taken place in the 

medical field. Given that many of the concepts currently being explored have transferable 

application to other industries, this sector is worthy of some consideration. The large body of 

published work to date indicates that deep learning is having a huge impact within the 

medical sector, for medical imaging, medical data analysis, medical diagnostics and in wider 

healthcare. Previously, medical applications of machine vision have largely been limited to 

image processing, in which an image is enhanced in some way and then manually interpreted 

by a trained clinician. However, this requires a great deal of skill, is costly, and can be 

subjective and subject to error. Researchers have therefore started to explore how the image 

interpretation process might benefit from AI, potentially offering improved diagnostic 

performance.  



 

Ayan et al. [34] use two well-known CNNs, Xception and VGG-16 with transfer learning and 

fine-tuning in the training stage for diagnosing of pneumonia from chest x-rays. It is notable 

that the Xception network was found to be more successful for detecting pneumonia cases, 

while the VGG-16 network was better at detecting normal cases, indicating that different 

networks have their own special capabilities on the same dataset and so the need for expertise 

in selection (see section 5.2.1 above). Litjens et al. [35] provide a general survey of deep 

learning in medical image analysis for organ detection, classification, segmentation, 

registration, and other tasks. Importantly, they, and others [36], point to future interest in 

unsupervised learning, such as generative adversarial networks (GANs). GANs use two 

competing CNNs - one generating artificial data samples and the other discriminating 

artificial from real samples, and can be trained to learn representative features in an 

unsupervised manner. This allows existing unlabelled data to be exploited more easily by 

leveraging the accessibility to big data, and so potentially has wide application well beyond 

that of medicine. The cost, time and effort involved in obtaining large sets of labelled data is 

one of the main limitations in deep learning – as we discussed above. Lundervold et al. [37] 

provide an overview of deep learning applied to analyse medical images, with a particular 

focus on one of the main areas – the MRI processing chain, from acquisition to image 

retrieval, and from segmentation to disease prediction. The authors conclude that even though 

there remain many challenges, the introduction of deep learning in clinical settings has 

quickly produced valuable results that are reflected in a large body of high-impact 

publications. One such example is that of Akkus et al. [38], who provide a review of deep 

learning for MRI brain segmentation, concluding how such techniques are outperforming 

previous state of the art classical machine learning algorithms. Liu et al. [39] also review 

deep learning in medicine, this time for the analysis of medical ultrasound images. They 

consider applications in biometrics, diagnosis, image guided intervention and therapy. 

Supervised deep models are already becoming widely used for the classification, 

segmentation, and detection of anatomical structures in medical ultrasound images, where 

CNNs and RNNs are the two most popular architectures. Low image quality, another issue 

which occurs across many applications, for example from poor target contrast, moving, non-

rigid organs and the limited availability of medical labelled training data across multiple 

imaging modalities (such as MRI, X-ray, and ultrasound) are all major challenges typical of 

many medical applications. Application to 3D images is also seen as an important future area 

for development in this context. Inhomogeneity, varied intensity ranges, poor registration and 

contrast, together with noise, are all situations where the application of conventional 

techniques for pre-processing can help and we consider below other application examples of 

where conventional machine vision and deep learning techniques can benefit from a close 

integration.  

 

 

8. Combining conventional machine vision with deep learning – the continuing 

important role of conventional techniques 

Next, we consider recent examples across a range of application sectors where there has been 

an emphasis on the benefits of combining conventional machine vision techniques to improve 

the performance of deep learning. We have already seen one major example of this in the 

widespread use of image augmentation. Here we consider others, including for image pre-

processing.  

 

A study by Xie et al. [40] had the aim of combining a convolutional neural network with 

conventional computer vision techniques to automatically recognise and locate bones in 



Atlantic salmon and to explore the impact of different image quality (obtained using differing 

levels of image compression) on performance, in what is considered a safety critical 

application. A Faster-RCNN object detection algorithm with three different convolutional 

neural network models (Alexnet, VGG-16 and VGG-19) were studied. An image 

compression ratio of 25% was identified as maximising costs and benefits with respect to 

detection accuracy, equipment prices and detection speed. Jiang et al. [41] describe the use of 

hyperspectral data for the detection of pesticide residue in post-harvest apples. They also fuse 

deep learning in the form of an Alex-Net-CNN with conventional techniques by using an 

Otsu segmentation and a Hough space transformation to first establish region of interest 

masks, centred on the apples. Detection accuracy was better than 95% and compared 

favourably with traditional k-nearest neighbour and support vector machine (SVM) 

classification algorithms. Related work for online fruit sorting using deep learning to detect 

internal mechanical damage of blueberries using hyperspectral data is presented by Wang et 

al. [42]. Another example implementation that combines conventional machine vision 

techniques with deep learning models for rapid defect identification in industrial process line 

inspection was presented by Wang et al. [43]. Their factory setting allowed the use of a fixed 

object pose and structured lighting to help reveal contamination defects in bottles. After 

applying an image processing stage in the form of a Gaussian filter and (Canny) edge 

detector, to generate an edge graph, a Hough transform was utilised to reduce the deep 

learning defect detection task complexity by establishing regions of interest to which a 

‘lightweight CNN’ was applied. This illustrates how the availability of big data in the form of 

large numbers of example defects and defect free samples in many manufacturing 

applications lends itself to a deep learning solution. Furthermore, as with many 

manufacturing quality control applications of machine vision, the emphasis here was on 

efficiency in terms of speed of operation in a trade off with acceptable detection accuracy. 

Overall accuracy was reported to be as high as 99.6%, with a cycle time of just 47.6ms, 

allowing inspection of 21 products per second. These results compared favourably both with 

traditional feature based shallow machine learning, and other deep learning solutions. Li et al. 

[44] present a hybrid of conventional techniques and deep learning for detecting a wide range 

of defect types (scratches, floaters, light stains, and dark stains) on mobile phone screens 

during production. Conventional techniques were deployed in a pre-examination stage and 

regions of interest containing defect targets established using shape-based template matching. 

A two-stage approach, in which several deep learning models (VGG, ResNet, GoogLeNet, 

ResNeXt, SeNet, NasNet) were explored; all of which reached an impressive 99% detection 

accuracy, with the simpler VGG model achieving a cycle time of 4.56s and 2.47s on a CPU 

and GPU, respectively. Tang et al. [45] present an electrical component recognition method 

based on deep learning and conventional machine vision techniques. Conventional pre-

processing operators, such as grayscale conversion, mean filtering, pose correction and other 

techniques were used (from the OpenCV library). Component coding of different types and 

materials were recognised by the CNN, with recognition results that compared favourably 

with traditional techniques across a wide range of components. Jang et al. [46] also propose a 

surface defect inspection solution but with an emphasis on a small training dataset in the 

context of a lack of defect sample images - typical of some manufacturing applications. Their 

proposed method for wafer/PCB defect inspection, a major application area from machine 

vision, exploited conventional defect inspection techniques to estimate a defect probability 

image. That, together with the original grey level image, formed the input to a CNN. Their 

integrating of conventional inspection techniques with a CNN model was shown to be highly 

effective for conventional defect inspection problems. 

 



 

9. Future key challenges - promises and opportunities 

The literature demonstrates that machine vision systems are being used across a plethora of 

industries for a wide range of tasks. Of these, quality assurance and inspection form the 

largest segment and this alone is expected to grow at a rate of 9.5% over the next four years 

[47]. New markets are also developing, and given the new capabilities offer by deep learning, 

there is a particular growing demand in outdoor applications. These evolving applications 

mean that the global machine vision system market is expected to rapidly grow from $8.6 

Billion in 2020 to $17.7 Billion by 2027 [47], accelerating the demand for improved 

performance and new capabilities.  

 

We have seen how the application of deep ANNs in industrial machine vision tasks can use 

biologically informed modelling of the vision system to achieve substantial leaps in 

performance. Deep learning can also help automate much of the model creation steps during 

development, and in application can be more robust and flexible, more adaptable to change 

and offer greater generality in application. However, it is also apparent that classical machine 

vision still has an important role to play. While some tasks are not suited to deep learning 

[48], for those that are, we have seen how classical techniques can often be combined with 

deep learning to substantially improve performance. 

 

However, it is also clear from the literature that there are challenges remaining, and it seems 

appropriate to attempt to prioritise these as opportunities for future research. Firstly, deep 

learning necessitates a large amount of, usually labelled, training data. This may not always 

be accessible and there can be a scarcity of publicly available data for training CNNs. This 

means, as we have seen, that in practice few researchers train deep CNNs from scratch. 

Instead, many use networks that have been pre-trained on large-scale image data, where the 

trained weights are applied as a feature extractor to a smaller dataset in the solution domain. 

We have seen how this can be achieved by removing the last few layers of the pre-trained 

CNN. This allows a system developed for one application domain to be relatively easily 

transferred to another (e.g. human face to pig face biometric recognition [16]). However, this 

prompts the question as to whether future research should focus on devising new data 

augmentation methods for expanding often limited available data, or on how better to acquire 

real big data for each task, or will transfer learning be sufficient? Secondly, datasets have to 

be labelled, and in some applications (e.g. medical) by domain experts. We have also seen 

how this problem can be partly solved by leveraging effective data augmentation (and to a 

lesser extent automated annotation) techniques. Perhaps a more promising area of research, 

aimed at addressing both limited training data and the need for manual labelling, could be to 

explore methods for unsupervised learning, such as that already offered by generative 

adversarial networks (GANs). As we have seen, GANs offer an unsupervised form of 

learning, in which a generator network works in partnership with a discriminator network to, 

for example, mimic a human expert. Unsupervised learning avoids the need for manual data 

labelling by automatically discovering patterns in the data such that the network model can 

generate new outputs that plausibly could have been drawn from the original real dataset. In 

this regard, it is rather like generating augmented data. Impressive examples of the latter 

exist, where GANs have been used to create very realistic, but completely artificial, fake 

human faces [49]. Unsupervised learning and the ability to create realistic training data with 

wide variation could have a huge impact across many industrial applications where training 

data are limited.  

 



It is widely recognised that deep learning is now the state-of-the-art in machine learning for 

machine vision and is being increasingly widely deployed across industrial applications. We 

have seen how conventional machine vision techniques can support deep learning 

applications and have highlighted some of the key challenges that will need to be addressed 

in the design and development of future CNN based solutions. 
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