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Abstract
Manipulation skill learning and generalisation have gained increasing attention due to the
wide applications of robot manipulators and the spurt of robot learning techniques.
Especially, the learning from demonstration method has been exploited widely and suc-
cessfully in the robotic community, and it is regarded as a promising direction to realise the
manipulation skill learning and generalisation. In addition to the learning techniques, the
immersive teleoperation enables the human to operate a remote robot with an intuitive
interface and achieve the telepresence. Thus, it is a promising way to transfer manipulation
skills from humans to robots by combining the learning methods and teleoperation, and
adapting the learned skills to different tasks in new situations. This review, therefore, aims to
provide an overview of immersive teleoperation for skill learning and generalisation to deal
with complex manipulation tasks. To this end, the key technologies, for example, manip-
ulation skill learning, multimodal interfacing for teleoperation and telerobotic control, are
introduced. Then, an overview is given in terms of the most important applications of
immersive teleoperation platform for robot skill learning. Finally, this survey discusses the
remaining open challenges and promising research topics.

1 | INTRODUCTION

With the rapid development of robotics, robots have been
widely used in the various fields, e.g., industrial applications
[1,2], medical surgery [3–5], real‐life [6,7], space area [8] and
other fields. Specifically, the robot manipulator has been widely
used to perform tasks in certain and structured environments
due to the advantages of low‐cost, efficiency and safety.
Although the manipulator has been widely used in a variety of
disciplines, especially in the industrial domain, it is still difficult
to perform physical in‐contact tasks, for example, manipulating
deformable materials [7,9,10], cooperation with humans in the
same workplace [11,12], working in unknown and less struc-
tured environments [13].

As shown in Figure 1, several typical in‐contact tasks,
including precise assembly [1], cleaning a surface [9], robot‐
assisted echography [14] and valve turning [15], are presented.
When the robot manipulator performs such tasks, robots not
only track desired trajectories but also interact with the envi-
ronment physically. The challenges of these rich in‐contact
tasks are attaining the accurate contact model, dealing with the

uncertainty of humans' behaviours, and the safety of humans
etc. All of the scenarios, as mentioned above, require robots to
own human‐like and complaint manipulation skills.

Recently, several machine learning techniques, for
example, reinforcement learning (RL) [16], imitation learning
[17] and transfer learning [18], have been successfully
employed in robotic skill learning. There exist some review
papers to introduce and discuss these learning methods [19].
Among the learning methods, the learning from demonstra-
tion (LfD) (also named programming by demonstration, PbD
or imitation learning), is one effective way to transfer
manipulation skills from humans to robots [20]. According to
the demonstration approach, LfD can be divided into three
categories: kinesthetic teaching, teleoperation and passive
observation [21]. Compare with kinesthetic teaching and
passive observation, the teleoperation could provide a
multimodal interface interacting with the human. Kinesthetic
teaching method enables the human to demonstrate by
physically moving the robot through the desired motions.
The demonstration quality of kinesthetic teaching depends on
the dexterity and smoothness of the human user, and even
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with experts, data obtained through this method often require
smoothing or other post‐processing techniques. Besides,
kinesthetic teaching is not applied in some extremely
dangerous situations, such as nuclear plant and polluted areas,
due to its requirement of demonstrators being present.
Furthermore, the kinesthetic teaching requires the human
teacher to work with robots in the same space; the safety of
human is also a concern. However, the learning through
teleoperation could solve the aforementioned issues effec-
tively. Furthermore, as the fast development of immersive
teleoperation, LfD through immersive teleoperation enables
the human demonstrator to teach robots with more natural
demonstrations. In this review, we will focus on robot skill
acquisition through teleoperation‐based LfD.

Teleoperation has been a key driver for robotic research,
and it stems from the pragmatic need to perform tasks in
remote environments [22,23]. After the decades of devel-
opment, the teleoperation technology has been widely used
in various fields, for example, space exploration [24],

underwater exploration [25], mobile robotics assistant [26],
disaster relief [27], tele‐echography [28] and surveillance due
to the existence of risks to humans or unreachable physical
distance. A general teleoperation system includes a human
operator, master devices, communication channel, following
robot and perception module etc. It can be divided into
unilateral and bilateral, based on whether the perception
information is transmitted to the human operator from the
following robot [29]. In such a system, the operator's per-
formance can be improved by increasing the transparency of
the teleoperation system [30].

Currently, the multimodal interfaces, including the virtual
reality (VR)/augmented reality (AR) helmets [31], joystick
[32], contact force sensors [33], bio‐signal sensors [34,35],
have been developed and integrated into the teleoperation
system, aiming to provide immersive teleoperation and in-
crease overall human performance. A promising direction is
to combine the auditory, visual and haptic information to
achieve the multimodal interaction between the operator and

F I GURE 1 Illustrative examples of different contact tasks. (a) Assembly [1]. (b) Cleaning an arbitrary surface [9]. (c) Robot‐assisted Echograph [14].
(d) Valve turning [15]
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the remote robot to improve the comfort of operators and
the performance of robots [30]. Although many achievements
have been done in the teleoperation, there exist several
challenges realising multimodal teleoperation, for example,
time delay caused by multimodal feedback, synchronisation
control, different configurations between the master side and
the slave side.

The paper provides a comprehensive literature review on
the key technologies, applications and challenges for robot
manipulation skills learning and generalisation via tele-
operation‐based LfD. The subsequent sections of this paper
are organised as follows. Preliminaries of the teleoperation
system are presented in Section 2. In Section 3, the skill rep-
resentation methods for LfD are introduced. Section 4 covers
the multimodal teleoperation for LfD. Section 5 provides
several typical applications. Finally, Section 6 discusses future
directions on manipulation skill acquisition through tele-
operation‐based LfD.

2 | PRELIMINARIES

Generally, a multimodal teleoperation system for robot skill
learning includes the following parts: human operator with
interactive interfaces, a communication module, teleoperation
control and skill learning and generalisation. The overview of
the teleoperation system is depicted in Figure 2, and the
description of each module is explained as follows.

� Multimodal interfaces module. The multimodal interface
includes various devices, for example, haptic joystick, VR/
AR helmet, haptic data glove, ElectroMyography (EMG),
MechanoMyography (MMG), enabling human operators to
teleoperate the slave robot with immersive telepresence. In

addition, the interaction interface could also gather the
sensor signals for LfD use.

� Communication module. This module aims to guarantee
the communication between the master side and the slave
side, which has a significant impact on the control system
due to the time delay and data package loss. When the
multimodal information needs to be transmitted, the time
delay can lead to the instability of control system.

� Teleoperation control module. Since there still exist some
control issues in the teleoperation system (e.g. time delay,
synchronisation problem and corresponding issue etc.), the
advanced control frameworks and control algorithms are
employed to tackle with these challenges.

� Skill learning and generalisationmodule. The robot acquires
the human‐like manipulation skill through LfD. The
demonstration data collected in the teaching stage will be used
to train the skill model. The acquired skill of robots should be
adapted to new situations within a given finite time.

As shown in Figure 3, the key technologies of manipulation
skill learning via teleoperation, including skill representation,
robot skill learning, immersive teleoperation and teleoperation
control, are introduced.

3 | LEARNING FROM
DEMONSTRATION

3.1 | The introduction of LfD

LfD could make robot acquire skills from the human
demonstration, without much knowledge of robotics and
programming [36]. It offers a promising approach to transfer
and refine tasks from observation of users who are not expert

F I GURE 2 The structure of the teleoperation system
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in robotics and computer programming. LfD provides the
novice users with an intuitive method to program robots,
which we human already are used to. The difference of LfD
through teleoperation has multimodal interaction interfaces
comparing with the kinesthetic teaching and passive observa-
tion. LfD based on teleoperation provides a user‐friendly
approach to transfer the skill to robots without much knowl-
edge of robotics and programming. LfD can be used to
transfer high‐level symbolic reasoning skills as well as low‐level
motion skills [37]. There are several LfD learning strategies,
such as behavioural cloning and inverse optimal control, for
transferring basic motion skills and extracting the underlying
objectives of optimal actions, respectively. In ref. [38], the task
prioritisation issue of bimanual operation of humanoid robot
was addressed by the LfD, offering the possibility to carry out
more than one manipulation task at the same time. Qin et al.
[39] proposed a skill learning approach based on LfD for
precision assembly robot to realise effective skill transfer from
teacher to the robot through several demonstrations.

In addition, the RL is a different robot skill learning
framework, which allows robots to explore novel skills by trial‐
and‐error. Due to the fast development of deep learning, the
RL is attaining a lot of attention from research and industry
community. The benefit of robot skills learning through
imitation is efficient by reducing the search space of feasible
solution [40]. Combing RL with LfD is a promising approach.
In ref. [41], a skill learning framework integrating LfD and RL
has been proposed to learn and generalise robotic skills. In ref.
[42], deep RL and demonstrations has been used to learn
complex dexterous manipulation.

3.2 | Skill representation in LfD

A key research aspect of the robot skill learning and general-
isation is the skill representation such that it can be analysed
and synthesised. Skill representation has a significant impact on
the performance of robot skill learning and adaptation. Most
generally, the skill representation approaches in LfD fall into
two categories: the dynamical system method and the proba-
bility and statistical method. We will present detailed in-
troductions of each representation approach in the following
content.

In addition, the idea of movement primitive is often
employed in the context of complex manipulation skill
modelling due to its modularity and flexibility. The core idea of
this representation is to decompose the complex behaviours
into a set of movement primitives, which could be reassembled
on demand to produce complex behaviours [43]. Often, such
representation can enable the skill learning and generalisation
to adapt to different tasks in new situations and environments.
For instance, a complex trajectory of manipulation is
segmented into several movement primitives, and the dynam-
ical system or the statistical approach then is exploited to
model the movement primitives.

3.2.1 | Dynamic system approach

The studies on the human motion show that the motion
planning and execution of human is a coupled process, and the
motion trajectory is generated by the evolution of the dynamic
system over time and space [44–46]. Inspired by these works,
the dynamical system approach can be used for robotic motion
planning. Such as ref. [47], a set of non‐linear autonomous
dynamical systems were used to represent the manipulator
motion, and its parameters were estimated by a mixture of
Gaussians. In ref. [48], a stable estimator of dynamical systems
(SEDS) based on Gaussian mixture models (GMMs) was
proposed to learn the parameters of the DS to ensure global
asymptotic stability at the target. This DS‐based approach was
employed to model various motions, such as playing minigolf
[49], human handwriting motion [48]. The characteristics of
various methods were compared in Table 1.

Dynamic movement primitives (DMPs) is another frame-
work to realise the movement planning, online trajectory
modification for LfD use, which was originally proposed by
Ijspeert et al. [50,51]. Recently, it also has been used to encode
different modalities, such as stiffness and force profiles. Ac-
cording to the type of trajectory, it can be categorised into
discrete DMPs and rhythmic DMPs. Take the discrete DMPs
as an example, and it can be formulated as in Equtaion (1).

τv̇ ¼ Kðg � xÞ � Dv � Kðg � x0Þsþ Kf ðsÞ
τẋ ¼ v ð1Þ

where x and v demote position and velocity of the system,
respectively. x0 and g are the start and goal position, τ is a
temporal scaling parameter , K is a spring constant and D is a
damping term. The function f depends on the phase variable s,
instead of the time. The phase variable is determined by the
canonical system, which often evolves from 1 to 0. The ca-
nonical system is given by:

τṡ ¼ � αs ð2Þ

where α is a positive gain, the initial value of s equals 1. Notice
that s converges exponentially to 0.

F I GURE 3 Key technologies in human‐like manipulation skill learning
via LfD and teleoperation
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� Advantages of DMPs. Compare with traditional means of
encoding trajectories, such as spline‐based decomposition,
the DMPs encoding skills have a variety of benefits [52].
First, this motion representation can guarantee global sta-
bility, because, whatever the parameter of the function
approximator we choose, the DMP is guaranteed to
converge towards the target. In addition, the velocity of
motion can be adapted by changing the time constant. The
motion generated by DMPs is robust to strong external
perturbations and can be modified on‐line by additional
perceptual variables. Furthermore, this approach also facil-
itates the motion modelling for multiple DoFs system. They
share one canonical system among all DoFs and maintain
only a separate set of transformation systems.

� Limitations of DMPs. However, the original DMPs also has
limitations on motion planning in some situations, for
example, the goal point coinciding with the start point and
the goal points distributed on both sides of the start point.
Due to the explicit description of the trajectory dynamics, it
introduces many open parameters as well as the basis
functions and it's weighting coefficients. Moreover, it is still
difficult to represent the high‐dimensional trajectory of
interaction tasks for redundant robots [53]. When it is
employed to model manipulation skills, the DMPs needs to
represent the sensory signals as well as motion trajectories.
These sensor profiles represent the similar, but different, to
different tasks. Thus, it is hard to model the correlation
between the sensory value and the states of robots. In
addition, the original DMP cannot achieve the force control
of robots for contact tasks, such as assembly [54]. There-
fore, since the original DMP was proposed, a variety of
modified DMPs were proposed to tackle with limitations as
mentioned earlier.

DMPs with perceptual term (DMPP) have been proposed
to complete physical interaction tasks, which require robots to
regulate the contact force, torque as well as the desired motion.
The perception information, for example, tactile sensing and
force profiles, is fundamental for these contact tasks. To take
advantage of the sensory perception, a feedback term was
proposed to be integrated into the DMPs model [56]. The
benefit of an additional feedback controller to track desired
reference forces was demonstrated in grasping tasks [57]. In
ref. [57], the authors further extended the original DMPs for
online movement adaptation using the sensory feedback. The
specific DMPs enhanced by previous sensor experience for
particular tasks can predict the subsequent task executions.

This DMPs are adaptive and robust to the external perturba-
tions from the environments and various uncertainty from the
sensors; hence it could generate a rich set of trajectories for the
complex tasks. Moreover, the feedback term can be online
trained using learning techniques to reactively modify previ-
ously acquired skills [58].

Coupling DMPs: Some researchers extended the expres-
sion of DMPs model or added control method for realising
obstacle avoidance, interaction with external objects and
bimanual operation, a majority of which added a coupling term
based on the basic model. For example, Park and Khansari‐
Zadeh et al. took repulsive potential fields as coupling terms
into DMPs for obstacle avoidance [64,65]. Hoffmann et al.,
motivated by biological data and human behaviours, modified
DMPs model by adding an acceleration term to avoid colli-
sions with moving obstacle [55]. Composite DMPs was pro-
posed to model both movement and stiffness features
simultaneously to transfer human‐like skill from humans to
robots [66–68]. The coupling DMPs owns better interaction
ability than the original DMPs.

RL‐based DMPs was proposed to increase the generalisa-
tion of original DMPs. In refs. [61,62], RL was exploited to
learn a mapping from circumstances to meta‐parameters of
DMPs to increase new primitive movements. To generate new
behaviours, Kim et al. applied deep RL and a hierarchical
strategy to optimise and generalise the skills produced by
DMPs [41]. The RL technique is able to efficiently and robustly
optimise the parameters of motion primitives. To further
optimise the goal parameters, the path integrals algorithm was
used to simultaneously optimise shape and goal parameters
[63]. In ref. [60], the authors proposed an augmented DMPs
with a perceptual coupling, which was learned by RL. Compare
with the original DMPs, the RL‐based DMPs have better
generalisation ability to novel situations.

3.2.2 | Statistical modelling

Since the statistical approaches have the benefit to deal with
the inherent noise in any mechanical system, they have become
increasingly popular to model robotic motion. The character-
istics of various statistical methods were compared in Table 2.

GMM has been employed to model the joint distribution
of input variables and demonstrated trajectories [69]. In ref.
[78], GMM was used to model both movement and force
patterns for robot learning impedance behaviours. Usually,
GMM is complemented with Gaussian mixture regression

TABLE 1 Comparision of various DS‐
based methods

Category Characteristics Literatures

SEDS Global asymptotic stability; less accuracy. [47–49]

Original DMP Model is simple; computational efficiency. [50,51]

DMPP Modelling sensory feedback; online adaptation; [55–58]

Coupling DMP Bimanual operation; obstacle avoidance. [55,59]

RL‐based DMP Better generalisation; robust to disturbance. [41] [60–63]
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(GMR) [79] to retrieve the desired trajectory. As an extension
of GMM, a task‐parameterized formulation is studied in ref.
[70], which in essence models local (or relative) trajectories and
corresponding local patterns, therefore endowing GMM with
better extrapolation performance. In ref. [32], the GMM was
utilised to encode and parameterise the smooth task trajectory
to realise a task learning mechanism of the telerobots. More-
over, Calinon extended the GMM to Riemannian geometry to
represent robot skills for robot learning and adaptive control in
ref. [71].

Kernelized movement primitives (KMP): Although a
number of advancements have been achieved to model the
robot skill, dealing with unpredicted situations, e.g., unknown
obstacles and external perturbations, and high‐dimensional
inputs are still challenging.Huang et al. [53] proposed the KMP,
which allows the robot to adapt the learned motor skills and
while satisfying various constraints in the process of task
execution. Specifically, KMP is capable of learning trajectories
associated with high‐dimensional inputs by adopting the kernel
treatment technique. In contrast to approaches relying on basis
functions, its model has fewer open parameters which make
the training of models more convenient .

Probabilistic movement primitives (ProMPs) is a useful
skill modelling approach for robot skill learning from humans
and adapts to new tasks and environments. It is a probabilistic
formulation of the movement primitives that maintains a dis-
tribution over trajectories [72]. The property of conditioning
the motion trajectory distribution on the desired point could
generalise to new tasks points. The ProMP has many good
characteristics, such as blending of movement primitives,
adaption to various constraints by conditioning, as well as
temporal scaling and modelling the coupling between different
joints. The weight of ProMPs can be learnt from the demon-
stration data and generalise to new tasks through probabilistic
operations. The ProMPs can also deal with redundant robots'
physical interaction tasks, which often needs to process various
sensory data, such as force/torque [80]. This method enables
robots to acquire complex motor skills and coordinates the
motion with the perception information. In [73], the authors
used active learning approach and ProMPs to generate a set of
primitive skill library, capable of modelling complex skill over a
given space. However, Callens et al., pointed out the ProMPs
method can predict motion over a short time horizon but
struggle to predict motion over a longer horizon [81].

Hidden Markov Model (HMM) was proposed to represent
the correlation between the motion state and sensory profiles

by encoding a joint‐probability density function over the
demonstration data [76]. In ref. [74], the authors proposed a
method based on HMM to generate continuous motion,
involving the time information for each state. Combining the
HMM with a Gaussian regression technique is suitable for
online recognition and continuous trajectory generation
without additional time lag from pre‐ or post‐processing of the
data. In ref. [75], the framework combining HMM and GMR
was proposed to generate a probabilistic model of demon-
strated data. A joint probability density function between the
position and the velocity is generated by using HMM, and
Gaussian Mixture Regression (GMR) is used to generalise the
learned skills. Also, since the demonstration from human
explicitly define forces and velocities, and implicitly define
stiffness as well as their underlying co‐relations with the po-
sitions, which are all crucial for the robot learning. An HMM‐
based approach is proposed and combining GMR to generate
the control variables via regression [82].

Hidden Semi‐Markov Model (HSMM) was used to improve
the robotic system's robustness againt external perturbations in
temporal space comparing with HMM [76]. In ref. [77], the
HSMM‐GMRmodel was used to model motion as well as force
data for in‐contact tasks. Since HSMM‐GMR has been proven
to be more dynamic and efficient than the vanilla HMM, it is
more suitable to learn and model the correlations between the
motion and other multimodal information by exploiting the
collected data. In ref. [82], the HSMM and GMM were
exploited to model the movement and stiffness simultaneously.

4 | MULTIMODAL TELEOPERATION

The purposes of exploiting multimodal interface are owing
telepresence and assisting in modelling the human‐like
manipulation skill for in‐contact tasks. A typical multimodal
teleoperation framework discussed in this study is shown in
Figure 4. The human operator could teleoperate the mobile
manipulator, while the multimodal perception information, for
example, video, audio and force, could be fed into the human
side to increase the telepresence of operators.

4.1 | The design of multimodal interface

To realise the immersive teleoperation, the design of multi-
modal interfaces is the premise. Recently, a number of

TABLE 2 Comparision of various statistical methods

Category Characteristics Literatures

GMM Suitable for high‐dimensional input. [32, 69–71]

KMP Suitable for high‐dimensional input and multiple demonstrations. [53]

ProMPs Better adaptation, but not suitable for high‐dimensional input. [72, 73]

HMM Model the correlation between movement and sensory profiles. [74, 75]

HSMM Encode the duration information of each HMM state and robust to perturbation. [76, 77]
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researchers have proposed various schemes to implement the
human‐robot‐interaction interfaces for a variety of applica-
tions, for example, assembly, space exploration, teleoperated
surgery, telerehabilitation, rescue etc. Generally, the multimodal
interfaces mainly involve the haptic modality, visual modality,
auditory modality and other modalities. As visual feedback is
the fundamental modality, it has been well exploited to
enhance the telepresence in the immersive teleoperation [84].
In ref. [31], a VR‐based teleoperation is implemented to
improve the immersion and situation awareness for live scene
exploration. Under the assistance of the deep neural network, a
vision‐based interface realises the end‐to‐end teleoperation of
Shadow Dexterous hand [85,86]. The VR headsets and hand
tracking hardware are used to naturally teleoperate robots to
perform complex tasks [17].

However, only the visual feedback is unable to complete
the in‐contact task requiring the force control, and the
haptic feedback is essential for the in‐contact teleoperation.
The haptic feedback has been well studied in the tele-
operation. In ref. [87], the authors proposed a robotic tel-
eoperation system with wearable haptic feedback for
telemanipulation in cluttered environments. Moreover, the
haptic interface is also employed in the precise tele-
manipulation, such as the surgical robot, micromanipulation,
micro‐assembly. In addition to the vision and tactile touch,
the auditory information is also utilised to localise the
sounding object [88].

Although the unimodal feedback can complete basic tasks
in structured and predictable situations, combining these
diverse modalities to deal with complex contact task is essen-
tial, which is gaining increasing attention of researchers. In ref.
[89], an enhanced teleoperator interface incorporating multi-
modal augmented reality is proposed to address the dexterous
manipulation of heavy materials. Although some achievements
have been achieved in the immersive teleoperation, there still
exist several challenges to accomplish the multimodal tele-
operation due to many factors such as the effects of time delay
caused by the communication link, the requirement of high
packet rate in the real‐time control loop, and the synchroni-
sation of different modalities.

4.2 | Improving telepresence of
teleoperation

The multimodal interfaces in teleoperation aim to provide
immersive solutions and increase overall human performance
[90]. In this review, we focus on the bilateral teleoperation,
where the multimodal information feedback could transmit to
the operator to improve the telepresence. Extensive compari-
sons [30] have been done to show that regardless of task
complexity, using multimodal interface could improve the
performance. Research in cognitive psychology also suggests
that utilising multisensory stimuli enhances human perceptual

F I GURE 4 The structure of the multimodal teleoperation system adapted from ref. [83]
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learning [91]. Indeed, when we learn from others, we utilise a
variety of multimodal information, including verbal and non‐
verbal cues, to make sense of what is being taught.

Teleoperation systems enhanced by haptic feedback enable
human demonstrators to perceive the remote environment and
the robot interacting with the environment. The high
requirement of packet rate and stability are challengeable for
the teleoperation system with haptic feedback under the time
delay of the communication module. Therefore, several stra-
tegies on the integration of communication and control have
been proposed to deal with the above issues. Such as [83],
reducing the haptic data and stability‐ensuring control strategy
is used to guarantee teleoperation's stability for practical tasks
under the time delay of the communication. In ref. [92], point
cloud‐based model‐mediated teleoperation with dynamic and
perception‐based model updating was proposed to achieve the
stable and transparent teleoperation in the presence of
communication delay.

4.3 | Collecting demonstration data for skill
learning

In addition to increasing the telepresence of human operator,
the multimodal interface contributes to the high‐quality
demonstration that is essential to LfD successfully. For some
scenarios such as car driving [93,94] and helicopter control
[95], it is much easier to implement demonstration data
collection since the intuitive operation interfaces for human
demonstrators exist. However, it is hard to collect high‐quality
demonstration data for manipulators because of the corre-
spondences between the demonstrator's operational spaces and
the robot configuration [21].

VR‐based teleoperation allows for a direct mapping of
observations and actions between the teacher and the robot,
which does not suffer from the correspondence issue [31]. VR
headset was utilised to perceive the environment through the
robot's sensor space, and a motion‐tracked VR controller was
adopted to control the robot in a way that leverages the natural
manipulation instincts that humans possess. Moreover, the
haptic devices have been an effective interface tool for LfD.

In ref. [96], the joystick was used to control remote Baxter
robot, enabling humans to sense the contact torque and force.
For the shared control mode, it is fundamental for the user to
receive an appropriate sensory feedback informing about
the feasibility of her/his commands against the slave system
constraints. To achieve this, a haptic guidance method, which
informs the operator about constraints acting on the tele-
operation system, needs to be designed.

When the robot performs in‐contact tasks, which requires
compliant manipulation, the touch and visual information are
significant. Lee et al. [97] pointed out contact‐rich manipula-
tion tasks in unstructured environments often require both
haptic and visual feedback. They use self‐supervision to learn a
compact and multimodal representation of sensory inputs to
improve the learning efficiency. In ref. [98], the multiple con-
tact modalities are significant to the reactive manipulation

skills. In ref. [99], the problem of cross‐modal visuo‐tactile
object recognition was proposed to improve the objection
recognition performance.

Currently, the bio‐signal sensors, for example, EMG and
MMG, have been exploited in LfD. Traditional learning and
generalisation methods have not well considered human
impedance features, which makes the skills less human‐like and
restricted in physical human‐robot interaction scenarios. Yang
et al. [35,66,67] develop a framework that enables the robot to
learn both movement and stiffness features from the human
tutor. In ref. [100], multiple sensor data has been encoded for
robot skill learning to achieve multimodal demonstration
learning. In ref. [66], EMG signal was utilised to estimate the
stiffness of human arm in LfD to achieve the human‐like skills
transfer from humans to the robot. Learning an in‐contact
task, for example, pushing something, where the constraints of
both position and force have to be satisfied, is usually difficult
for a collaborative robot. In ref. [101], a multimodal teaching‐
by‐demonstration system was proposed, which enable the
robot to perform the force‐dominant tasks.

4.4 | Teleoperation control

The stabilisation of multimodal teleoperation system is essential
to achieve manipulation skill learning through teleoperation.
There exist control issues for the bilateral teleoperation to assist
the human‐like manipulation skill learning, for example, tele-
operation control, manipulation control. A large number of
control methods were proposed to enhance the performance of
teleoperation system [102, 103].

According to control mode, the teleoperation system can be
divided into three categories: direct control, supervised control
and shared control [104]. For the direct control mode, the slave
robot is controlled by human operator directly without auton-
omous abilities.When the robot works in the supervisedmode, it
executes the tasks according to the pre‐programmed code, in
which humanmerely supervise the execution process. However,
the shared control is a hybrid strategy, combing the direct control
and supervised manipulation, in which the human operator
collaboratively work with robots based on a mechanism.The
shared control framework has been well studied in human‐robot
shared manipulation [105–108], robot skill learning through
teleoperation [109]. For instance, in ref. [96], a hybrid‐shared
control method based on EMG and haptic device is proposed to
telecontrol the mobile robot's motion and achieve obstacles
avoidance. Similarly, in ref. [110], a human robot shared control
strategy is developed to realise the autonomous obstacle
avoidance.

Shared control has proved to be an efficient method for
designing intuitive robotic teleoperation interfaces for human
operators, which could reduce human operators' workload when
they carry out complex tasks. Shared control in teleoperation
system makes it possible to share the available degrees of
freedom of a robotic system between the operator and an
autonomous controller, to facilitate the task for the human
operator and improve the overall efficiency of the system. Take a
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robotic cutting example, it has a high requirement of dexterity
and safety. For example, Prada and Payandeh used geometric
virtual fixtures to assist with robot cutting. Besides, the shared
control strategy has been employed to obstacle avoidance, in
which the human operator only needs to consider the motion of
the end‐effector of the manipulator [110]. Moreover combining
the shared control method with the EMG sensor has been
proposed to enable human to teleoperate a mobile robot and
achieve obstacle avoidance simultaneously [96]. The force
feedback based on muscle activation can be transmitted into the
human to update their control intention with predictability. In
ref. [111], a passive task‐prioritised shared‐control method for
remote telemanipulation of redundant robots was proposed.
Haptic feedback and guidance have been shown to play a sig-
nificant and promising role in shared‐control applications.
Haptic cues can be used to increase situation awareness and to
effectively steer the human operator towards the safe execution
of some tasks.

Impedance control is a significant control architecture
when robots need to interact with environments or human
physical or respond appropriately to unforeseen perturbation.
The impedance even can be adjusted based on various tasks.
The variable impedance control is well studied to deal with the
in‐contact task under less predictive and structured environ-
ments. Hogan initially studied the impedance control for
manipulator [112], and since then, a number of improved
methods were proposed to deal with various challenges of
robotic control. In addition, Yang et al. proposed a human‐like
learning controller to achieve variable impedance when robots
interacting with unknown environments [113]. In ref. [114], the
authors studied the stability considerations for variable
impedance control. Kronander and Billard studied the online
learning of varying stiffness when robot learning skill through
LfD [115].

5 | APPLICATIONS

Over the last decade, since the immersive teleoperation pro-
vides a number of advantages mentioned above, the multi-
modal teleoperation system has been widely exploited in
different fields. In addition, the immersive teleoperation pro-
vides an intuitive and flexible interface to transfer the complex
manipulation skills, especially robot performing in‐contact
manipulation tasks under uncertainty and less structured en-
vironments. Many researchers have proposed various intuitive
and flexible teleoperation platforms to realise the robot skills
learning and generalisation, as shown in Figures 5–8. In this
section, we will introduce several typical applications of the
multimodal teleoperation in various domains, for example,
assembly, rehabilitation, palpation.

5.1 | Medical field

As shown in Figure 5, robots learn palpation skill through
human interaction with a haptic device, the surgeon console.

Although the teleoperation originally was designed to address
the industrial nuclear wastes and space explorations, it has been
widely utilised in medical surgery. Telemedicine diagnosis and
telesurgery enable the remote and poor areas to access the
start‐of‐the‐art medical resources in developed countries.
Especially, in the current situation of pandemics, the potential
roles of robotics are becoming increasingly clear. Teleoperation
provides feasible solutions for the remote dexterous manipu-
lation in the medical fields. Specifically, three areas, logistics
(e.g., handling of contaminated waste and delivery), clinical
care (e.g., decontamination and telemedicine), and reconnais-
sance (e.g., monitoring compliance with voluntary quarantines)
are identified to make a difference for robot application in the
medical domain. From a technical point of view, to achieve the
dexterous manipulation of robot manipulator in the above
applications involves skill learning, robotic control, sensing the
environment, decision making etc. Although these applications
are being actively explored, the actual situation is still far from
the expected scenes. In this context, the teleoperation provides
a feasible and effective solution to tackle with these challenges.

After the decades of developments of the medical robot, a
number of start‐of‐the‐art teleoperation platforms for surgery
have been developed. For instance, the da Vinci robotic sur-
gical telemanipulator is a mature and commercialised surgical
platform, and it has been utilized in several surgical specialties
for varied procedures. It is reported that more than 5000 da
Vinci robotic surgical systems are installed and nearly 6 million
procedures performed by the end of 2018 [116]. The da Vinci
system used in the clinic is not equipped with haptic feedback,
although the haptic feedback is significant to improve the
teleoperation performance [117,118]. However, researchers try
to use the force/torque sensors to detect the interaction force
to provide the surgeon's haptic experience [116]. Besides, a
deformation tactile feedback device is developed to provide
haptic to the teleoperators, which can be integrated into the da
Vinci surgical teleoperation system [119]. Its effectiveness of
improving telemanipulation performance has been evaluated
by comparison experiment; 20 participants carried out
manipulation tasks using deformation tactile feedback, force
feedback and the combination of both feedback respectively.
The performance of teleoperation with all feedback is better
than the one without haptic feedback.

To further increase the teleoperation performance of sur-
gical robotics, Su et al. proposed an improved human‐robot
collaborative control scheme, based on a hierarchical operational
space formulation of a seven‐degree‐of‐freedom redundant
robot, to provide a compliant behaviour for the medical staff
[3,120].

5.2 | Industrial field

Robotic assembly has been widely exploited in manufacture
due to the efficiency, safety and low‐cost [121], however,
achieving highly precise assembly and performing tasks under
unpredicted situations is still open. The robot learning as-
sembly skill through teleoperation is shown in Figure 6.
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A dexterous teleoperation interface based on haptic and
visual feedback was proposed to precisely control and
manipulate micro objects [122]. In ref. [123], the authors
proposed an intuitive teleoperation system with haptic and
visual feedback to realise the telemanipulation of micro-
spheres (with a diameter of less than 2 um) between France
and Germany. The visual feedback is used to derive the
relative positions between the objects and the tools from
the scene, while the relative information is transmitted
through the haptic feedback. Further, due to limitations of
the visual feedback, Bolopion et al. implemented a haptic
interface to realise the 3‐D micro assembly of spherical
objects [124].

Recently, combining the machine learning techniques
and the multimodal feedback system has been used to
realise the robotic skill learning. In ref. [39], a skill learning
approach for precision assembly was proposed to realise
efficient skill transfer from human to robot through the

force and visual feedback. In order to transfer the human‐
like manipulation skill, the modulation of human impedance
is essential to deal with tasks under unpredictable and
unstructured environments. Therefore, in ref. [125], a hu-
man‐in‐the‐loop approach based on a stiffness control
interface is proposed for robots to learn assembly tasks in
unstructured environments. As shown in Figure 6, this
approach combines the end‐effector force feedback with an
interface controlled by the human finger for modulation of
the robot end‐effector stiffness. Two assembly tasks, sliding
a bolt fitting inside a groove and driving a self‐tapping
screw into a material of unknown properties were con-
ducted to validate the superiority of this skill learning
approach based on multimodal feedback. It should be
noted that multimodal feedback is essential for robot ma-
nipulators to transfer micro manipulation skill. In this re-
gard, multimodal teleoperation is a promising approach for
robotic skill learning.

F I GURE 5 Robot learning the palpation skill adapted from ref. [101]. (a) Setup for the manipulation of the silicone sample. (b) Human interact with the
haptic device. (c and d) The task environment through the surgeon console
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5.3 | Tele‐rehabilitation

Stroke is becoming increasing prevalent throughout the world,
and rehabilitation training is especially important in post‐
stroke care. For instance, Baek et al. proposed a wireless active
finger rehabilitation approach based on electromagnetic
manipulation for hand rehabilitation [126]. A bilateral reha-
bilitation training scheme based on the fusion of visual and
haptic feedback enables the patient to involve in the rehabil-
itation training actively [127]. Recently, the telerehabilitation
has gained an increasing attention, as it allows a physical
therapist to rehabilitate a patient who is far away from the
physical therapist. In ref. [128], the telerehabilitation system
with motor‐assisted device is developed, and the physical
therapist verifies the condition of the patient by image or data
information. To enhance the telepresence, a bilateral tele-
rehabilitation system with visual and haptic interfaces is used
to rehabilitate the human lower limb [129]. As shown in
Figure 8, the leap motion sensor tracks the motion of a healthy
hand, and the Omega.7 device is used to assist the impaired
hand with force feedback.

5.4 | Rescue and search

Robots have significant advantages over the human for com-
plex tasks in dangerous environments. The rescue and search
environments are often dangerous and uncertain; there is a risk
to their lives if they enter. For instance, the Fukushima nuclear
accident requires robots to work in an unstructured and un-
certain environment, and humans cannot enter as the radiation
and toxic contamination. In ref. [130], a mobile manipulation
robot Momaro has been developed and evaluated in the

DARPA robotics challenges. A teleoperation of a rescue robot
has been developed with a gamepad and images from a camera
mounted on a robot [131].

6 | CHALLENGES AND FUTURE
DIRECTIONS

6.1 | Manipulation skill modelling

Since the existing encoding methods aim for the structural data
modelling, representing the multimodal demonstration data
simultaneously is still open. To end this, the deep neural
network technique is a potential approach. In addition, the
demonstration data is often characterised by varied geometries,
such as angular velocity, stiffness and force profiles. It is still
difficult to encode these heterogeneous data. One potential
approach is to introduce domain knowledge into the corre-
sponding models. The framework of Riemannian geometry
may be a promising direction to address this issue [71]. Rie-
mannian manifolds are a powerful tool to represent rigid‐body
orientations, inertial matrices, manipulability ellipsoids or
controller gain matrices through exploiting the geometry of
non‐Euclidean spaces.

6.2 | Skill learning through multimodal
teleoperation

The synchronisation of multimodality is significant in the
multimodal teleoperation. If signals of different modalities are
out‐of‐synchronisation, overall spatial and temporal immersion
is reduced. Another challenging aspect of utilising multimodal

F I GURE 6 Robot learning assembly by teleoperation adapted from ref. [125]. (a) Experimental setups for slide‐in‐the‐groove assembly task. (b) Human
teaching. (c) The autonomous robot operation of the learnt task. (d) Setup for bolt‐screwing task
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demonstrations is users' comfort and accessibility. It is not
clear how to acquire highly multimodal demonstrations by
placing an overwhelming number of sensors without
burdening the user. Effectively collecting multimodal demon-
strations from remote users also remains challenging [30].

The existing methods for teleoperation based LfD are
limited to learning from a small number of pre‐specified
modalities. To effectively learn a wide variety of complex
skills, we need methods that reason over demonstrations in
multiple modalities, identifying the most relevant demon-
strations, and learn from them. The research of how the
multimodal information influences the learning performance
is still open.

Another challenge is to transmit multimodal signals, which
require high bit rate to teleoperate remote robots. For instance,
the haptic feedback is significant for the contact tasks.

6.3 | Skill generalisation

Since the working environment is often different and the range
of possible tasks that the robot needs to perform is infinite, it
is impossible to teach robots all manipulation skills through
LfD. When the robots work in less‐structured environments,
the robots need to react in a smooth and fast manner to
various perturbations. In this case, it needs to modulate the

F I GURE 8 Tele‐rehabilitation by multimodal teleoperation adapted from ref. [127]. (a) The Leap Motion sensor tracks the motion of a healthy hand.
(b) The omega.7 device assists the impaired hand with force feedback

F I GURE 7 Peg‐in‐hole by teleoperation adapted from ref. [92]

12 - SI ET AL.



movement with respect to the situation, instead of re‐planning
the whole trajectory. Thus, the robot should own the capa-
bilities to cope with novel situation by online learning and
adaptation. Chatzilygeroudis et al. [40] proposed a ‘micro‐data
reinforcement learning’, where a robot adapts with only a
handful of trial and a few minutes.

In addition, the generalisation of movement primitives to
different tasks comes from two sources: the individual move-
ment primitive and the combination of movement primitives.
The generalisation of each movement primitive arises from
integrating the perception into the active planning module. The
combination among the movement primitive library generates
complex manipulation planning for unseen situations.

7 | CONCLUSION

In this review, we focused on multimodal teleoperation based
LfD to realise the manipulation skill transfer from humans to
robots. First, the multimodal teleoperation system for LfD,
including the human demonstrator, multimodal interfaces,
remote robots, communication module, robotic control module
and remote perception module, was introduced. In order to
encode the multimodal demonstration data, we summarised the
skill modelling methods, including the dynamic system and
statistical method. In addition, to achieve the complex manip-
ulation skill transfer from humans to robots, the multimodal
interface plays an important role to enhance the telepresence,
improve the performance of demonstrators and gather the
demonstration data. We further discussed the design of the
multimodal interface and how to integrate it with LfD. Several
typical applications of skill acquisition through the multimodal
teleoperation were also presented. Finally, we provided the
remaining challenges and future work in terms of skill modelling,
multimodal teleoperation and skill generalisation.
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