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Abstract  

Dual-arm robot manipulation is applicable to many domains, such as industrial, medical, and home service 

scenes. Learning from demonstrations (LfD) is a highly effective paradigm for robotic learning, where a robot 

learns from human actions directly and can be used autonomously for new tasks, avoiding the complicated 

analytical calculation for motion programming. However, the learned skills are not easy to generalize to new 

cases where special constraints such as varying relative distance limitation of robotic end effectors for 

human-like cooperative manipulations exist. In this paper, we propose a dynamic movement primitives 

(DMPs) based skills learning framework for redundant dual-arm robots. The method, with a coupling 

acceleration term to the DMPs function, is inspired by the transient performance control of Barrier Lyapunov 

Functions (BLFs). The additional coupling acceleration term is calculated based on the constant joint distance 

and varying relative distance limitations of end effectors for object approaching actions. In addition, we 

integrate the generated actions in joint space and the solution for a redundant dual-arm robot to complete 

a human-like manipulation. Simulations undertaken in Matlab and Gazebo environments certify the 

effectiveness of the proposed method.  
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Introduction 

With the development of artificial intelligence (AI) and 

modern engineering technology, robots are widely used in 

the industry and military domains [1], [2] to complete 

dexterous manipulation such as grasping and holding [3] 

objects etc. Compared with single-arm robot, the dual-arm 

robot can complete more complex tasks and take heavier 

objects through the cooperative actions of two robot arms 

[4], which draws a great of attention in academic and 

industrial areas [5]-[7]. 

Different from traditional analytical methods spending 

a lot of time for system modelling, trajectory planning, 

and force control, learning from demonstration (LfD) is a 

new paradigm that robots acquire new skills by learning 

to imitate an expert that is easy to be extended and adapted 

to novel situations and draws more and more attention in 

recent years [8]-[11]. Some researchers used a dual-arm 

robot for robotic skill learning and training which benefits 

the isomorphic structure of the two arms: the operator use 

one arm to record robotic motions and the other robot arm 

is used as an actuator [12]-[15]. There are a great series of 

robotic skill learning methods, such as Hidden Markov 

model (HMM), Gaussian mixture model (GMM) and 

Gaussian mixture regression (GMR), and Dynamic 

movement primitives (DMPs) . Compared with HMM and 

GMM-GMR, DMPs are easier to be explained and have 

linearity in the parameters of expressions with robustness, 

and continuity. 

Due to the advantages, DMPs were widely used for 

dual-arm robot skill learning. Kulvicius et al. proposed 

sensory feedback together with a predictive learning 

mechanism that allows tightly coupled dual-agent systems 

to learn an adaptive, sensor-driven interaction based on 

DMPs [16]. Gams et al. reckoned that the original DMPs 

function should be modified by adding not only 

acceleration term but also velocity term, to get a smoother 



interaction. So they proposed the coupling of originally 

independent robotic trajectories by expanding framework 

of DMPs, which enables the bimanual execution tightly 

coupled for cooperative tasks [17]. Zhao et al. presented a 

reinforcement learning (RL) algorithm called the policy 

improvement with path integrals for sequences of DMPs 

(SDMPs) to learn and adjust recorded trajectories of dual-

arm robot cooperative manipulation [18]. Colome et al. 

studied simultaneously learning a DMP-characterized 

robot motion and the joint couplings through linear 

dimensionality reduction (DR), which provides valuable 

qualitative information leading to a reduced and intuitive 

algebraic description of such motion [19]. Lee et al. 

integrated a similar method for the cooperative aerial 

transportation with the random tree star (RRT*) to enable 

cooperative aerial manipulators to carry a common object 

and keep reducing the interaction force between multiple 

robots while avoiding an obstacle in the unstructured 

environment [20].  

Seen from the above-mentioned methods, it is not hard 

to notice that the original DMPs function is modified by 

adding coupling terms calculated by the relative distance 

or force errors to change the path and ensure the relative 

distance tracking errors converge to 0. But, the dynamic 

performance of the trajectories such as how to enlarge and 

reduce relative distance flexibly and avoidance obstacles 

are not considered for the moving process. If we only use 

a fixed relative distance limitation for the dual arms, the 

object approaching skills such as changes of the speed and 

contact forces will be ignored.   

In this paper, we will integrate the control strategy of 

Barrier Lyapunov Functions (BLFs) and DMPs to enable 

the generate trajectories to satisfy predesigned transient 

performance for the relative distance of robot end effects. 

As the trajectory generalized by DMPs is determined by 

three variables: the start and end points and sampling time 

interval, and the measured data with errors and noises will 

be processed (e.g. aligning, filtering etc.) for skill learning, 

even for the processed data, the data-driven learned results 

may be against physical limitations. The proposed method 

based on the integration of BLFs and DMPs will address 

this problem. Similar ideas combining control and motion 

planning methods for manipulation have been explored in 

previous work [29]-[31]. 

Additionally, we will combine the generated actions in 

the joint space with solution of a redundant dual-arm robot 

to perform human-like operations. Though a similar study 

about human-like coordinative learning in the Cartesian 

and joint space for a redundant dual-arm robot has been 

studied by Qu et al. [21], we will propose another idea by 

defining a “swivel angle” and combining the null-space 

method and the results of DMPs with distance constraints. 

With the dual-arm demonstration data acquired through a 

Kinect, an experiment is taken based on Matlab and 

Gazebo to verify the effectiveness of the proposed method.  

The rest of the paper is organized as follows: Section 2 

makes a brief introduction about DMPs and the problems 

of skill learning for dual-arm redundant robots. Section 3 

presents the DMPs & BLFs framework and related three 

calculating modules. Section 4 masks three experiments 

to certify the effectiveness and application of the proposed 

method. Finally, in Section 5, the conclusions of this paper 

are summarized.  

Problem description 

General DMPs model 

DMPs model is firstly proposed in [22] and updated by 

Ijspeert et al.[23], whose function is expressed as  
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where , 0z z   are coefficients of a two-order function 

as the linear part in (1), ensuring the convergence of the 

generated trajectory to the unique attractor point at x g  

, 0v  .   ( )Tf s s  is a forcing function and a linear 

combination of nonlinear radial basis functions, and    
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where kc   and 0kh    are centers and widths of radial 

basis functions respectively. 0   is a timing parameter 

adjusting speed before execution of movements and s is a 

phase variable to achieve dependency of function  f s  

out of time. The dynamics of s  is expressed by a 

canonical system  

 , 0s s     . (2) 



Term s has implicit relation with time that can modify 

the convergence time by changing   , and    can be 

learned by supervised learning algorithms e.g. locally 

weighted regression (LWR). The purpose of calculating 

process is to minimize the error function: 

     min , , 0, 0Tarf s f s x g v     , (3) 

where  f s  is the forcing function in (1), and  Tarf s

represents the target value of  f s : 

     Tar

z zf s v g x v      . (4) 

DMP-based dual-arm robot manipulation 

From human demonstrations to the skills learned and 

generalized by robots, we will solve the following three 

problems: joint distance restriction, redundant joint 

resolution and relative distance limitations (Figure 1).  

 

Fig.1 Problems for dual-arm robot manipulation 

Joint distance restriction is caused by the bone lengths 

of the adjacent joints such as the elbow and the wrist or 

the elbow and the shoulder. It is a constant. Redundant 

joint resolution is to plan the robot arm joints to achieve 

human-like motions and the relative distance limitations 

provide constraints to the robot end effectors. 

Meanwhile, measuring noise is acquired together with 

raw data. If we use the data for skill learning, then learned 

results will be influenced by noise and measuring errors. 

Therefore, the signals such as EMG measurements will be 

processed before learning procedures. Images and videos 

affected by occlusions are reconstructed, which may cause 

new uncertainties and errors. An example shown in figure 

2 reveals the measuring errors of hand positions are larger 

than the ones of the shoulders and elbows. Based on the 

pre-knowledge such as the size of the object, bone length 

between the elbow and the shoulder, or exact position of 

the object, we can re-plan joints and positions of the end 

effector’s to suit new cases. Here, we argue that the known 

conditions have fixed constraints and propose a new DMP 

-based framework for dual-arm robot cooperative skill 

learning with consideration of the above three problems.  

 

Fig.2 Position measuring errors of shoulders, elbows and 

hands measured by Kinect  

Robotic human-like manipulation has been studied for 

several decades. By using nullspace method for redundant 

robotic arm, robots can avoid conflicts with own arms and 

outer obstacles with multiple joint motion planning results. 

As the skills for robot ends and joints are generated in both 

the Cartesian and joint space, the previous researches like 

[9] and [13] only for the joint or Cartesian space cases are 

not applicable. We will combine the constrained skills and 

the nullspace method for skill generalization for redundant 

dual-arm robots.  

BLFs-based improved DMPs for human-like 

skill learning and redundancy resolution 

In this section, we propose three solutions for the above 

relative distance limitation, joint distance restriction, and 

redundant joint resolution in three subsections. We firstly 

specify mathematical symbols in the following paragraphs 

in Table 1.  

Table 1 Mathematical symbols and meanings  

Symbols Meanings 

, , ,j j l r   Variables of left and right arms (or robot arms)  

, , ,
j

j l r   Cooperative role of the jth  arm 

, 1,2,3i i   Variables of the ith  dimension 

1 2,   Calculations in the first and second round 

wjx  Position vector of the hands (wrists) 

ejx  Position vector of the elbow  

sjx  Position vector of the shoulder 

j ,
j  Upper and lower boundaries of position errors 

,e sd d  Desired contant distances from the wrist to the 

elbow , and from the elbow to the shoulder 

( )jd t  Desired varying distances of the hands (wrists) 



Integrated BLFs and DMPs skills learning for relative 

distance limitation 

Interactive actions of robot end effectors can be seen as 

a common effect of relative distance and posture changes. 

For the cooperative actions e.g. folding clothes, grasping 

and placing objects, relative distance is always changing 

during the interaction process with environmental objects. 

Too large relative tracking errors may cause operational 

failure such as losing control of the object or conflict with 

the obstacle.  

Following robotic desired relative distance ( )jd t , we 

set predesigned error boundaries as , 1,2ij i  , which 

means boundary violation is not allowed throughout the 

cooperative manipulation process, then the relationship 

of the thj hand
wjx  and its cooperative role 

wj
x is  

 
2

( )j wj j jwj
d t    x x . (5) 

The expression of DMPs model can be rewritten as a 

strict feedback nonlinear system as  
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where u  has the same usage with the forcing function 

 f s  in (6), while in (1) of [28], it represents the input 

signal to modify output y  . Set  i i i

j z j jk d    ,

 i i i

j z j jk d    , and  1

i i i

z jj
z k x x   , and zk  is a 

positive factor, i

j , i

j and i

jd  are decomposed values 

of the thi  dimension, and i

jx   and 
i

j
x   are general 

variables that can be instantiated as i

wjx and 
i

wj
x  in (5). 

Then (5) can be expressed as 
1

i i i

j jz   . Inspired by 

the asymmetric BLFs candidate in [28], we define a 

new variable as  2 2 , 0i i

z j zz d v d    , where 2  is a 

function to be designed and build the Lyaponov 

candidate as  
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The difference of cV can be calculated as 

 
  

 
  

   

1

1 2 2

1 1

1

2 2

1 1

2

2

i i i

j jc i i i

i i i i

j j

i i i

j j i i i i

z j z jji i i i

j j

z
V z z z

z z

z
k x x z d v

z z

 

 

 
  

 

 
 

 

 
   

 

.(8) 

Theorem 1: Considering the DMPs function described as 

(6) under the condition of (5), if the initial conditions are 

such that 
1(0) (0) (0)i i i

j jz   and (9) is satisfied, then 

the output constraint is never violated and all the closed 

loop signals are bounded. 

 

 

   

  

1

2

2 2

2

1 1

2

4

i i i i

z j jj

z

i i i i i

j z z j j j n

z

n i i i i

z j j

d x z

d

u g x v k z

k
k

d z z

  


   

  

   
 



    




  

. (9) 

Proof: Taking the expressions of 
2

iz  and (6) into (8), 

we have  
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,  

where 2 0k  is a positive number. As 0zk  , and terms 

 1 2 1 2i i i

j jz     and 
2

i

zz d are not always 0 , then the 

sufficient condition for 0cV  is  
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 Then we can get the expressions of 
2 , i

ju and nk in 

(9). According to lemma 1 in [28], 
1

iz  will be kept 

within the range of  ( ), ( )i i

j jt t  . Following the 

expression of Tarf in (4), the target value of i

ju in (6) 

can be expressed as  
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Furthermore, we use ( )f s  to replace  
Tar

i

jf  based 

on the error function of (3) and get  

 
2 2( ) ( )i i i i

j n z ju f s k z z d f s u      , (12) 

where
2 2

i i i

j n zu k z z d   , which means that i

ju  will 

be calculated by two steps: first, using (3) to get the 

forcing function ( )f s ; second, calculating 
1

iz  and 
2

iz  

timely and adding them to (12). Then the output y is 

determined by the common function of ( )f s  and the 

2

iz  generated by BLFs function.  

Remark 1: Similar to the improved DMPs for multi-

agent formation [16]-[20], by adding a term i

ju , the 

original path point x (or output y ) is modified to fit the 

constraints in (5). However, the proposed method in (9) 

is more general compared with the previous special 

designs only providing limitations for the end effectors 

or point shape of multi-agent formation. The following 

subsection will extend this method to the case of joint 

distance restriction.  

Integrated BLFs and DMPs skills learning with joint 

distance restriction 

The challenges for the joint distance restrictions are 

modifying the distance between the adjacent joints such 

as the elbow and the shoulder or the elbow and twist. 

Following the definitions in Table 2, the distance errors 

ranges (like 
ij for relative distance limitation) are set 

as 
e and

s . Similar to (5), we can use the following 

inequalities to reshape the elbow and shoulder positions 

as 
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x x

x x
. (13) 

However, as mentioned in Section 2, if we want to 

replan positions of the elbow and the shoulder, we should 

take the real measurements of the elbow and the shoulder 

as reference, but they are limited by the hands’ relative 

distance conditions. Therefore, we will reshape the elbow 

and the shoulder distance satisfying both (5) and (13) by 

calculating a common result for the two conditions.  

Additionally, following Fig.2, the measuring errors 

of the hands are larger than those of the elbows. There 

are measuring mistakes due to the occupations, then the 

errors are processed in the following two steps: 

1) Satisfy limitations for hands’ motions 1

wjx as: 

 1 1

2
: ( )wj ej wj e ed t    x x x , (14) 

where 1

wjx represents the results for the first round. Eq. 

(14) is used to filter the data of hands first by the elbow 

measurements.  

2) Synchronized constraints for the hands, elbows and 

shoulders 
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2

: ( )sj ej sj s sd t    x x x , (17) 

where 2

wjx  represents the results for the second round 

and Eqs. (15) to (17) consider both limitations of the 

relative distance and joint distance to rebuild trajectory.  

Remark 2: The calculating basis for (15) and (16) is 

to find a common conditional result satisfying both two 

inequalities. But, sometimes there is no overlap area for 

the two conditions. Here, we reckon that the priority of 

joint distance restriction is higher than that of relative 



distance, thus the inequality of joint distance restriction 

will be first considered and then 
j will be modified to 

adapt to the condition
1 1 2( ) ( ) ( )i i i

j jk z k k   for the kth

calculation.  

Remark 3: Similar to the methods in [16]- [20], the skill 

learning process will be handled first, and then by adding 

new term i

ju , the trajectory will be generalized. Here, we 

will learn and generalize angle skills for the elbow and 

the shoulder first without using any limitations. Then 

the integrated BLFs and DMPs skills learning are used 

to modify the generalized trajectory to suit inequalities 

(15) to (17). The improved DMPs hold the properties 

of normal DMPs and dynamic performance determined 

by the factors: start and end points, sampling interval.  

Based on the BLFs and DMPs integrated skill 

learning method, we present the general calculation 

procedure as follows: 

Demonstrations

f(s) learning Constraints

New 
requirements

u(s) calculation δu 

New trajectory

DMPs BLFs

x,v

 

Fig.3 Procedure of the integrated skills learning method 

In Fig.3, ( )f s in (12) of DMPs and constraints (like 

(5), (13)-(17)) of BLFs are firstly designed separately. 

After initialing i

ju  in (12), i

ju  will be calculated to 

generate new trajectories, and the new position and 

velocity information will be used to update i

ju  for 

the next circulation till the destination.  

Robotic human-like redundancy resolution 

For replanning robotic actions based on the learned skill 

from demonstrations, some previous researches proposed 

human-like swivel motion by using its redundant degrees 

of the manipulator [24] [25]. After rebuilding positions of 

the hand, elbow and shoulder, we can generalize the joints 

and end effectors of the redundant robots. Following the 

depictions in [24], arm plane is the plane built with three 

joint points of the wrist, elbow and shoulder and reference 

plane is set as the vertical plane to the human body. We 

set the swivel angle , ,j j l r   as the angle of arm plane 

and reference plane, shown in Fig.4. 

 

Fig.4 Definition of swivel angle of dual arms  

Set the joint velocities of 7-Dof redundant robot arm as 

7 1, ,j R j l f q , and set the generalized end effectors’ 

positions as 2 3 1, ,wj R j l f x , and the distance between 

the hand and the wrist are ignored for the two-arm holding 

actions as 2

hj wjx x (in fact due to the object occlusion, 

all hand positions cannot be well got). Then by extending

hjx  with gestures of the end effectors to 
hjX  , we have 

hj j jX J q , and 6 7

j R J represents a Jacobian matrix. 

Following null-space projection, we calculate redundancy 

solution of a redundant robot arm as  

  
jj j hj j j E j j     q J X I J J J U , (18) 

where 3 7

E j R J is the Jacobian matrix from the elbow 

of the robot to the robot base as well as the mapping 

between the swivel angle and joint velocities [24]. 
jU is 

defined as the velocity director of swivel motion: 

 
j

SE EW

SE EW






U , (19) 

where sj ejSE  x x represents a vector from the shoulder 

to the elbow and 
2

ej wjEW  x x represents a vector from 

the elbow to the wrist for the generalized human 

demonstrations. Then the vector will be used for the robot 

joint planning and calculation of   shown in Fig. 1.  

Experiment 



In the experiment, we will achieve demonstration data 

by Kinect and verify the manipulation effect through the 

virtual model in Gazebo. The skeleton data of a task of 

holding and placing a box is recorded for demonstrations. 

The positions of joints (the elbow, shoulder and wrist) are 

used for skill training in Cartesian space as Fig.5 shown. 

The upper figures (a) to (g) are the illustrations of human 

demonstrations and the lower figures (a) to (g) show the 

human skeleton data acquired by Kinect. But, we can find 

the acquired sampling data has errors such as the left leg 

motions in (b) and (d) and the hand motions in (e), which 

are caused by obstacle occupation.  

 

Fig.5 Human demonstrations and skeleton data  

 
(a) 

 

(b) 

Fig.6 Desired and real shoulder, elbow and wrist movements (a) changes of trajectories (b) changes of skeletons 

 
(a) 

 
(b) 

Fig.7 Errors of the desired and real the elbow and wrist positions (a) results of the left arm (b) results of the right arm 

Figs. 6 and 7 are the results based on the initialization 

of hand’s positions using (14). Fig. 6 presents changes of 

the trajectories and skeletons of the original and modified 

DMPs. Fig. 7 presents tracking errors to the predesigned 

referring trajectory fitting the constrains in (14) to (17). 

Combining with Fig. 7, we can see that the trajectories of 

both the left and right arms are changed to avoid violation 

(14) to (17). Seen from the blue lines (results of original 



DMPs) in Fig. 7, the amplitudes of the errors in each axis 

vary from -0.1 to about 0.05, causing the final distance of 

the elbow and the wrist changed within a large range of 

(0.12,0.25) , which seriously against to the fact. 

As the distance is measured between the elbow and 

the hand contact point (palm) to about 0.28m, namely 

( ) 0.28ed   . Setting 0.01e  , then the generalized 

results show that the errors to desired position decrease 

to the range of ( 0.01,0.01) after the first few steps and 

the distance converges to the value around the desired 

value of 0.28 for both hands. The initial distance errors 

are large. It need about 15 iterations to guide the large 

distance errors to decrease to the desired conditions in 

(14), which is further processed in step 2 by using (15) 

to (17). Fig.8 (a/b) presents the original distance of the 

joints (the elbow and wrist, and the elbow and shoulder). 

It shows that the joint distance varies within a range of 

(0.13,0.32) for both the elbow and the shoulder, and the 

elbow and the wrist of both arms. Using the proposed 

two-step method, we can get the fixed distance for the 

joint links and the varying relative distance for the dual 

hands’ manipulation, both of which converge to a stable 

interval (Fig. 9(a/b) and Fig. 10).  

  
(a)                    (b) 

Fig.8 Joint distances of the right and left arms (a) Results 

of the left arm (b) Results of the right arm 

 

(a)                    (b) 

Fig.9 Modified joint distances of the right and left arms (a) 

Modified distance of the joints of the left arm (b) Modified 

joint of the joints of the right arm 

 

Fig.10 Original, modified and compared relative distance 

of the wrists 

 As we set the desired joint distance as 0.28ed 

and 0.22sd   by actual measurements, and the error 

range as 0.01, the results presented in Fig.9 verify the 

effectiveness of the proposed method even for the large 

initial errors. The performance functions for the upper 

and lower boundaries are set as  

 

10

2

10

1

0.02e 0.01

0.02e 0.01

k

j

k

j









  


  

, (20) 

where k  represents the sampling times. Additionally, 

we compare the results with the method in [17] and set 

the desired distance as ( ) 0.3jd t  . Fig.10 shows the 

measured relative distances of human two hands (blue 

lines). The black dash lines present the boundaries of 

relative distance that decrease from 0.32 to the interval 

(0.29,0.31)  . The method in [17] enables the relative 

distance to quickly decrease and keep the value around 

0.305, but the relative distance cannot change along 

with dynamic performance like (20).  

The last step is extending the learned skills to new 

task. We select two Franka robots as manipulators to 

hold and place an object with width of 0.3m, the base 

of which located at [0.2,0,0.4]  and [ 0.2,0,0.4] . The 

simulations are taken in Matlab and then the results are 

transferred and certified in the Gazebo environment. 

Here, we select the 4th joint as the elbow joint to solve 

the redundant solution. Fig. 11 presents the simulation 

process that Two Franka robots are controlled to move 

the object to follow the trajectories generated in Matlab 



under the PD control. During the simulation, we set the 

object and robot end effectors have a certain degree of 

deformation to counteract the influence of the relative 

distance tracking errors. 

Conclusion  

In this paper, we proposed a new DMP-based skill 

learning and generalization framework for the dual-arm 

redundant cooperative manipulation. The framework has 

three functions: skill learning and generalization for the 

relative distance limitation, trajectory replanning for the 

joint distance restriction, and redundant solution for multi-

Dof robot based on the generalized dual-arm skills. The 

two former skill/trajectory learning and generalization 

methods are studied based on the integration of BLFs and 

DMPs methods. Using the demonstration data acquired by 

Kinect, the effectiveness of the proposed framework is 

verified by a task of holding and placing an object based 

on the simulations in Matlab and Gazebo. Each technical 

method is proved and explained by the simulation results. 

The future work is hopeful to be taken on the real robotic 

system to complete skill learning autonomously.  

 

Fig.11 Simulated certification taken based on Matlab and Gazebot 
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